JP2006224101A - Device and method for producing functional water - Google Patents

Device and method for producing functional water Download PDF

Info

Publication number
JP2006224101A
JP2006224101A JP2006149064A JP2006149064A JP2006224101A JP 2006224101 A JP2006224101 A JP 2006224101A JP 2006149064 A JP2006149064 A JP 2006149064A JP 2006149064 A JP2006149064 A JP 2006149064A JP 2006224101 A JP2006224101 A JP 2006224101A
Authority
JP
Japan
Prior art keywords
water
type semiconductor
semiconductor film
composite
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006149064A
Other languages
Japanese (ja)
Inventor
Saburo Ishiguro
三郎 石黒
Ryoji Fujita
良次 藤田
Tetsuhiro Iwata
哲裕 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2006149064A priority Critical patent/JP2006224101A/en
Publication of JP2006224101A publication Critical patent/JP2006224101A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for producing functional water by bringing water into contact with a composite body obtained by coating an n-type semiconductor membrane and a p-type semiconductor membrane in a laminated state on the surface of a ferroelectric substance, particularly, and to provide a method for producing functional water by bringing the raw water into contact with the composite body in circulation. <P>SOLUTION: This device is composed of: a laminated composite body of the n-type semiconductor membrane and the p-type semiconductor membrane or a composite body obtained by coating the surface of a ferroelectric substance with the n-type semiconductor membrane and the p-type semiconductor membrane; and a water contact apparatus for bringing the raw water into contact with the composite body, In this way, the water effective for the living body is provided on the device easy in industrialization. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機能水の製造装置及び製造法に係り特に強誘電体の表面にn形半導体膜及びp形半導体膜を積層コーティングしてなる複合体に水を接触させる機能水の製造装置及び、前記複合体に原料水を流通・接触せしめる機能水の製造法に関する。   The present invention relates to a functional water production apparatus and production method, and more particularly to a functional water production apparatus for bringing water into contact with a composite formed by laminating and coating an n-type semiconductor film and a p-type semiconductor film on the surface of a ferroelectric substance, and The present invention relates to a method for producing functional water in which raw material water is circulated and brought into contact with the composite.

従来、活性化水の製造法として例えば、セラミック粒子の物理的作用によるもの(特開平5−15872号公報)、イオン交換樹脂による軟水生成器とトルマリン混合体を内蔵するイオン生成器及びマイナスイオンを有する岩石収納器等の複合によるもの(特開平7−132284号公報)、トルマリンを利用した界面浄化装置(特開平7−51664号公報)等が開示されている。
特開平5−15872号 特開平7−132284号 特開平7−51664号
Conventionally, as a method for producing activated water, for example, a method based on the physical action of ceramic particles (JP-A-5-15872), a soft water generator using ion exchange resin, an ion generator containing a tourmaline mixture, and negative ions are used. There are disclosed a combination of a rock container and the like (Japanese Patent Laid-Open No. 7-132284), an interface purification device using tourmaline (Japanese Patent Laid-Open No. 7-51664), and the like.
Japanese Patent Laid-Open No. 5-15872 JP-A-7-132284 JP-A-7-51664

しかし、これらは洗浄、殺菌、抗菌作用を主とするもので、その装置は複雑で大型であった。また、前記トルマリンは天然の鉱石であり、材質の均一性、産出量の問題等、再現性、工業化への課題がある。   However, these mainly have cleaning, sterilization and antibacterial actions, and the apparatus is complicated and large. Further, the tourmaline is a natural ore, and there are problems in reproducibility and industrialization, such as material uniformity and yield problems.

本発明者は、上記課題を解決すべく鋭意研究の結果、以下に記載する人体に有効な機能水の製造装置及び製造方法の発明を完成した。
(1)n形半導体膜とp形半導体膜とを積層した複合体と、該複合体に原料水を接触させるための水接触装置とからなることを特徴とする機能水の製造装置。
(2)強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体と、該複合体に原料水を接触させるための水接触装置とからなることを特徴とする機能水の製造装置。
(3)複合体が、粒状物であることを特徴とする前記(1)項又は(2)項に記載の機能水製造装置。
(4)複合体が、透水性多孔質成型物であることを特徴とする(1)項〜(3)項のいずれか1項に記載の機能水製造装置。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has completed the invention of a functional water production apparatus and production method that are effective for the human body described below.
(1) An apparatus for producing functional water, comprising: a composite in which an n-type semiconductor film and a p-type semiconductor film are stacked; and a water contact device for bringing raw water into contact with the composite.
(2) It is characterized by comprising a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on the surface of a ferroelectric, and a water contact device for bringing the raw material into contact with the composite. Functional water production equipment to do.
(3) The functional water production apparatus according to (1) or (2), wherein the composite is a granular material.
(4) The functional water production apparatus according to any one of (1) to (3), wherein the composite is a water-permeable porous molded product.

(5)n形半導体膜とp形半導体膜とを積層した複合体に、原料水を接触せしめることを特徴とする機能水製造法。
(6)強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体に、原料水を接触せしめることを特徴とする機能水製造法。
(7)原料水の流路に、n形半導体膜とp形半導体膜とを積層した複合体を充填した充填層を介在させ、原料水を前記充填層に流通・接触せしめることを特徴とする機能水の製造法。
(8)原料水の流路に、強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体の粒状物を多数充填した充填層を介在させ、原料水を前記充填層に流通・接触せしめることを特徴とする機能水の製造法。
(9)n形半導体膜とp形半導体膜とを積層した複合体の透水性多孔質成型物に、原料水を接触せしめることを特徴とする機能水の製造法。
(10)強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体の透水性多孔質成型物に、原料水を接触せしめることを特徴とする機能水の製造法。
(5) A method for producing functional water, wherein raw material water is brought into contact with a composite in which an n-type semiconductor film and a p-type semiconductor film are laminated.
(6) A method for producing functional water, comprising bringing a raw material water into contact with a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on a surface of a ferroelectric substance.
(7) A raw material water channel is provided with a filling layer filled with a composite of an n-type semiconductor film and a p-type semiconductor film, and the raw material water is circulated and brought into contact with the filling layer. Production method of functional water.
(8) A raw material water channel is provided with a filled layer filled with a large number of composite particles formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on the surface of the ferroelectric material. A method for producing functional water, wherein the packed bed is distributed and brought into contact with the packed bed.
(9) A method for producing functional water, comprising bringing raw material water into contact with a water-permeable porous molded article of a composite body in which an n-type semiconductor film and a p-type semiconductor film are laminated.
(10) Production of functional water characterized in that raw material water is brought into contact with a water-permeable porous molded product of a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on the surface of a ferroelectric substance. Law.

(11)原料水の流路に、n形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体の透水性多孔質物層を介在させ、原料水を前記透水性多孔質物層に流通・接触せしめることを特徴とする機能水製造法。
(12)原料水の流路に、n形半導体膜とp形半導体膜とを積層した複合体の透水性多孔質物層を介在させ、原料水を前記透水性多孔質物層に流通・接触せしめることを特徴とする機能水製造法。
(11) A water-permeable porous material layer of a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film is interposed in the flow path of the raw material water, and the raw water is distributed to the water-permeable porous material layer. A functional water production method characterized by contact.
(12) A raw material water channel is provided with a water-permeable porous material layer of a composite body in which an n-type semiconductor film and a p-type semiconductor film are stacked, and the raw material water is circulated and brought into contact with the water-permeable porous material layer. Functional water production method characterized by

本発明によれば、人体の疾患治療に有効な機能水を容易に製造でき、また大量の機能水を容易に製造ができる。また、本発明の機能水は、各測定コードに高い波動値を有し、その飲用結果、生体は健康を取り戻すことができる。   ADVANTAGE OF THE INVENTION According to this invention, the functional water effective for a human body disease treatment can be manufactured easily, and a large amount of functional water can be manufactured easily. Moreover, the functional water of this invention has a high wave value in each measurement code, and the living body can regain health as a result of drinking.

本発明者は前に、特開平8−10339号公報「強誘電体と半導体からなる複合治療器」において、人体の患部皮膜面に押し当てることにより、痛みその他の疾患を治癒させるための治療剤、治療器を提供した。
本発明者はその後研究を続けた結果、前記提案の人間の疾患治療のため皮膚表面に接触させて用いる[強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体]を、水に接触させることにより人体に有効な機能水が取得できることを知見した。
さらに、n形半導体膜とp形半導体膜とを積層した複合体に水を接触させても人体に有効な機能水が取得できることを知見した。
本発明はこうした知見に基づいてなされたものであり、基本的には〔1〕.n形半導体膜とp形半導体膜とを積層した複合体又は〔2〕.前記強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体を、水に接触させて得られる機能水及びその機能水の製造装置並びに製造方法であって、得られる機能水は、各種疾患を、人体に有効な人体組成臓器等の働きを活性化させ治療する機能を有するものである。
The present inventor previously disclosed a therapeutic agent for healing pain and other diseases by pressing against the affected skin surface of the human body in Japanese Patent Application Laid-Open No. 8-10339 “Composite Treatment Device Composed of Ferroelectric and Semiconductor”. Provided a treatment device.
As a result of continuing researches, the present inventor has used the above-mentioned proposed human disease in contact with the skin surface [the ferroelectric surface is formed by sequentially laminating an n-type semiconductor film and a p-type semiconductor film. It was found that functional water effective for the human body can be obtained by bringing the complex] into contact with water.
Furthermore, it has been found that functional water effective for the human body can be obtained even when water is brought into contact with a composite in which an n-type semiconductor film and a p-type semiconductor film are stacked.
The present invention has been made based on these findings, and basically [1]. a composite in which an n-type semiconductor film and a p-type semiconductor film are laminated, or [2]. A functional water obtained by bringing a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on the surface of the ferroelectric material, a functional water production apparatus and a production method thereof, The obtained functional water has a function of activating and treating various diseases effective for the human body organs and the like.

近時、従来の方法で測定可能な横波の磁気(質量波)の他に、縦波の微弱磁気(粗密波、圧縮波)があることが判明しており、微弱エネルギー測定装置によりこの縦波の微弱磁気を測定することが可能となった。(例えば、特許第2647786号公報「コンピュータ化磁気共鳴分析器」が開示されている)。
前記縦波の微弱磁気は、電子運動の支持媒体である素粒子群が、電子と共鳴したとき発生するものと考えられており「波動」と呼ばれる。そこで、各種類の生体又は物質の持つ固有の微弱磁気≒「波動」毎に、対応する標準波形を定める指示記号「コード」を設定し、上記コードに基づいて計測したい種類を選択し、測定対象の複合物質から出される合成波形の中から前記コードの標準波形に共鳴する波形を取り出して、例えばフーリエ解析法等を用いて分析し、被測定波形が前記標準波形と比較して、波形に乱れがあるかないかを判読し、その度合いを数値化して判定することが記載されている。
また、前記微弱標準磁気は、ミネラル及び微量金属と酸素を含む「水」により記憶(保有)されるものとみなされており、そして、前記縦波の微弱磁気の作用を受け微弱に磁化された「微弱磁化水」は、〔1〕、表面張力が増加する。〔2〕、最大溶存酸素量も増加する。〔3〕、H+ が増加する。〔4〕、固体表面への付着力を低下させる。〔5〕、沸点、粘性が変わる。〔6〕、磁化率が変わる。〔7〕、水化熱が変わる。〔8〕、弱アルカリ性となる。等の性質を示し、さらに、この「微弱磁化水」は、生体内に取り込まれると細胞の隅々にまで行き渡り、生体内の乱れた微弱磁気を矯正する作用を発揮し、その結果、生体は健康を取り戻すことが記載されている。
以上は(例えば、1996年発行、サトルエネルギー学会誌Vol.1.中村国衛著「微弱エネルギー測定装置の原理と機能」第16頁)、(1997年発行、サトルエネルギー学会誌Vo2.2.中村国衛著「実験動物の病態解析における微弱磁気エネルギー測定の意義」第51頁)等に開示されている。
本発明の「機能水」の諸作用は、前記「微弱磁化水」に略相当するもので優れた効果を発揮する。前記微弱エネルギー測定装置により測定した本発明の「機能水」の「波動」データについては後述する。
Recently, it has been found that in addition to the transverse wave magnetism (mass wave) that can be measured by conventional methods, there is a longitudinal weak wave (coherent wave, compression wave). It became possible to measure the weak magnetism. (For example, Japanese Patent No. 2647786 discloses "Computerized Magnetic Resonance Analyzer").
The weak magnetic field of the longitudinal wave is considered to be generated when a group of elementary particles as a support medium for electron motion resonates with electrons, and is called “wave”. Therefore, for each type of living body or substance inherent weak magnetism ≒ For each `` wave '', set the indication symbol `` code '' that defines the corresponding standard waveform, select the type you want to measure based on the above code, and measure A waveform that resonates with the standard waveform of the code is extracted from the composite waveform generated from the composite material, and analyzed using, for example, a Fourier analysis method, and the measured waveform is distorted by the waveform compared with the standard waveform. It is described that it is determined whether or not there is, and the degree is determined by quantification.
The weak standard magnetism is considered to be stored (held) by “water” containing minerals, trace metals and oxygen, and is weakly magnetized by the action of the weak magnetic field of the longitudinal wave. “Weakly magnetized water” [1] increases surface tension. [2] The maximum dissolved oxygen amount also increases. [3] H + increases. [4] Decrease the adhesion to the solid surface. [5] Boiling point and viscosity change. [6] The magnetic susceptibility changes. [7] The heat of hydration changes. [8] It becomes weakly alkaline. In addition, this “weakly magnetized water” spreads to every corner of the cell when taken into the living body, and works to correct the weak magnetic field disturbed in the living body. It is described to restore health.
The above is (for example, published in 1996, Journal of the Subtle Energy Society of Japan, Vol. 1. “Principle and Function of Weak Energy Measurement Device”, page 16) by Kunihei Nakamura, published in 1997, Journal of the Subtle Energy Society of Japan, Vol. 2.2. Kokuei, “Significance of weak magnetic energy measurement in pathological analysis of experimental animals” (page 51)).
The various functions of the “functional water” of the present invention are substantially equivalent to the “weakly magnetized water” and exhibit excellent effects. “Wave” data of “functional water” of the present invention measured by the weak energy measuring device will be described later.

前記n形半導体膜とp形半導体膜の積層複合体の製造方法では、スパッタリング、CVD、MOCVD、塗布などの方法が採用できる。
例えば、n形半導体フィルムの上にp形半導体膜を蒸着等により積層して製造することができる。
また、前記n形半導体膜及びp形半導体膜の積層コーティングは、スパッタリング、CVD、MOCVD、塗布などいずれの方法でもよいが、まず強誘電体基材の表面にn形半導体膜をコーティングしてから、その上にp形半導体膜を積層してコーティングを行う。これは強誘電体に誘起された電気のうち、マイナスの電気を通さないようにするためである。
なお、前記各半導体膜の厚さは、強誘電体に誘起される電位の変化に追随するため通常1nm〜500nmの薄膜が好適に採用される。
そして、強誘電体が酸化チタンのようにn形の場合は、n形半導体膜を省略し、強誘電体に直接p形半導体膜を形成させても同じ効果が得られる。
In the method for producing a laminated composite of the n-type semiconductor film and the p-type semiconductor film, methods such as sputtering, CVD, MOCVD, and coating can be employed.
For example, a p-type semiconductor film can be laminated on an n-type semiconductor film by vapor deposition or the like.
The n-type semiconductor film and the p-type semiconductor film may be formed by any method such as sputtering, CVD, MOCVD, and coating. First, the surface of the ferroelectric substrate is coated with the n-type semiconductor film. Then, a p-type semiconductor film is stacked thereon to perform coating. This is to prevent negative electricity from passing through the electricity induced in the ferroelectric.
As the thickness of each semiconductor film, a thin film with a thickness of 1 nm to 500 nm is usually preferably used to follow the change in potential induced in the ferroelectric.
When the ferroelectric is n-type like titanium oxide, the same effect can be obtained by omitting the n-type semiconductor film and directly forming the p-type semiconductor film on the ferroelectric.

以下、本発明の実施例を各種装置の構造別、各種形態別に図に示して説明する。
図1は、本発明に係る強誘電体と半導体よりなる粒状複合体並びにn形半導体膜とp形半導体膜の積層複合体の縦断面図で、(イ)図は強誘電体と半導体よりなる円錐状の粒状複合体、(ロ)図は強誘電体と半導体よりなる半球状の粒状複合体、(ハ)図はn形半導体膜とp形半導体膜の積層複合体を示す。
図において1は強誘電体、2はn形半導体膜、3はp形半導体膜、4は円錐状の粒状複合体、5は半球状の粒状複合体、100は薄板状のn形半導体膜とp形半導体膜の積層複合体である。
図2は、他例の粒状複合体の縦断面図で、
(イ)図は球状体の縦断面図で、6は球状体を示す。強誘電体1の外周をn形半導体膜2及びp形半導体膜3で積層している。
(ロ)図は球状体の縦断面図で、7は球状体を示す。強誘電体1(酸化チタン:n形)の外周をp形半導体膜3で積層している。
(ハ)図は角形板状の縦断面図で、8は角形板状体を示す。
図3は、円筒型複合体の集合体の縦断面斜視図を示す。
図において、9は円筒型の集合を示す。円筒状の外周から強誘電体1、その内周をn形半導体膜2及びp形半導体膜3で積層している。図示したように円筒を外周部で線接触的に接合させており、原料水は中空部を流通する。
図4は、ハニカム型複合体の集合体の縦断面斜視図を示す。
図において、10はハニカム型の集合を示す。6角筒の外周から強誘電体1(酸化チタン:n形)と、その内周をp形半導体膜3で積層している。図示したよう6角筒を隣接させており、原料水は6角筒の中空部を流通する。
図5は、透水性多孔質複合体の縦断面斜視図を示す。図において、11は貫通孔を有する板型を示す。図示したように板状複合体の上面に多数の貫通孔12が設けられ、原料水が自在に透過する。そして、前記の強誘電体1、n形半導体膜2、p形半導体膜3が積層されている。
なお、強誘電体1(酸化チタン:n形)に、直接p形半導体膜3を積層してもよい(図示せず)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings for each structure and each form of various devices.
FIG. 1 is a longitudinal sectional view of a granular composite made of a ferroelectric and a semiconductor and a laminated composite of an n-type semiconductor film and a p-type semiconductor film according to the present invention. FIG. 1A shows a made of a ferroelectric and a semiconductor. A conical granular composite, (b) a hemispherical granular composite made of a ferroelectric and a semiconductor, and (c) a stacked composite of an n-type semiconductor film and a p-type semiconductor film.
In the figure, 1 is a ferroelectric, 2 is an n-type semiconductor film, 3 is a p-type semiconductor film, 4 is a conical granular composite, 5 is a hemispherical granular composite, and 100 is a thin plate-shaped n-type semiconductor film. A stacked composite of p-type semiconductor films.
FIG. 2 is a longitudinal sectional view of another example granular composite,
(A) The figure is a longitudinal sectional view of a spherical body, and 6 shows the spherical body. The outer periphery of the ferroelectric 1 is laminated with an n-type semiconductor film 2 and a p-type semiconductor film 3.
(B) The figure is a longitudinal sectional view of a spherical body, and 7 shows the spherical body. The outer periphery of the ferroelectric 1 (titanium oxide: n-type) is laminated with a p-type semiconductor film 3.
(C) The figure is a longitudinal sectional view of a square plate, and 8 is a square plate.
FIG. 3 shows a longitudinal sectional perspective view of an assembly of cylindrical composites.
In the figure, 9 indicates a cylindrical set. A ferroelectric body 1 is laminated from a cylindrical outer periphery, and an inner periphery thereof is laminated with an n-type semiconductor film 2 and a p-type semiconductor film 3. As shown in the drawing, the cylinders are joined in line contact at the outer peripheral portion, and the raw material water flows through the hollow portion.
FIG. 4 shows a longitudinal sectional perspective view of an aggregate of honeycomb type composites.
In the figure, reference numeral 10 denotes a honeycomb type assembly. Ferroelectric material 1 (titanium oxide: n-type) is laminated from the outer periphery of a hexagonal cylinder, and the inner periphery thereof is laminated with a p-type semiconductor film 3. As shown in the figure, hexagonal cylinders are adjacent to each other, and the raw material water flows through the hollow part of the hexagonal cylinders.
FIG. 5 shows a longitudinal sectional perspective view of a water-permeable porous composite. In the figure, reference numeral 11 denotes a plate mold having a through hole. As shown in the drawing, a large number of through holes 12 are provided on the upper surface of the plate-shaped composite body, and raw material water can freely pass therethrough. The ferroelectric material 1, the n-type semiconductor film 2, and the p-type semiconductor film 3 are stacked.
Note that the p-type semiconductor film 3 may be directly laminated on the ferroelectric 1 (titanium oxide: n-type) (not shown).

上記中、強誘電体を含む材料としては、織布、不織布、紙、プラスチック、セラミックス、又はセラミックスに強誘電体粉末を混紡、混合、塗布、又は付着したもの等が使用される。
強誘電体としては、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、ニオブ酸リチウム、PZT、又はロッシェル塩等が使用される。
半導体膜としては、シリコン、ゲルマニウム、ガリウム燐、インジウム燐、セレン化亜鉛、硫化亜鉛、又は有機半導体の薄膜等が使用される。
また、ドーピング材としては、n形は窒素、燐、アンチモン等、p形は硼素、アルミニュム、ガリウム等が使用される。
なお、CVD法の場合には半導体材料として、シラン、ゲルマンが使用され、ドービング剤としてはアンモニア、ホスフィン等、p形はジボラン等が200ppm前後添加される。
また原料水は、水道水、地下水、ミネラルウォータ、一般浄水器の水等が使用される。
Among the above, as the material containing a ferroelectric material, woven fabric, nonwoven fabric, paper, plastic, ceramics, or a material obtained by mixing, mixing, applying, or adhering a ferroelectric powder to ceramics is used.
As the ferroelectric, titanium oxide, barium titanate, strontium titanate, lead titanate, lithium niobate, PZT, Rochelle salt or the like is used.
As the semiconductor film, silicon, germanium, gallium phosphide, indium phosphide, zinc selenide, zinc sulfide, an organic semiconductor thin film, or the like is used.
As the doping material, nitrogen, phosphorus, antimony, or the like is used for the n-type, and boron, aluminum, gallium, or the like is used for the p-type.
In the case of the CVD method, silane or germane is used as a semiconductor material, ammonia or phosphine or the like is added as a doving agent, and diborane or the like is added at about 200 ppm as a p-type.
As the raw water, tap water, ground water, mineral water, water from a general water purifier, or the like is used.

図6は、水槽中の原料水に粒状複合体を接触させた断面図である。
図において13は粒状複合体収納水槽、17は機能水、18は粒状複合体収納網、19は水槽筺体、20は複合体収納網蓋、21は原料水の注入方向矢印、22は吐出機能水、23は吐出口、30は開閉器を示す。
前記機能水は、複合体収納網蓋20をとって、各種粒状複合体(4・5・6・7・8・9・100)のいずれかを、複合体収納網18の中に収納し、原料水の注入方向矢印21のように原料水を水槽を満たす迄注入した後、所要時間、例えば粒状複合体4を原料水に接触させて製造する。
使用時には、開閉器30によって適量を取り出す。
図7は、粒状複合体を多数充填した充填層に原料水を流通・接触させた断面図である。
図において、14は粒状複合体収納流通水槽、24は水槽内の流水方向矢印、25は水槽筺体、26、27は貫通網、28は注水管、29は筺体上蓋を示す。
前記機能水は、筺体上蓋29と貫通網27をとって粒状複合体例えば4を多数充填して充填層を作り、注水管28の上方から水の注入方向矢印21のように原料水を注入する。注入された原料水は、注水管28の下部の貫通網26から周辺の前記充填層を通って水槽内の流水方向矢印24の方向に流れ、上部の貫通網27から吐出口23を経由して吐出機能水22のように吐出させており、原料水注入の開閉によって充填層に原料水を流通・接触させて製造する。
FIG. 6 is a cross-sectional view in which the granular composite is brought into contact with the raw water in the water tank.
In the figure, 13 is a granular composite storage water tank, 17 is functional water, 18 is a granular composite storage network, 19 is a water tank housing, 20 is a composite storage net lid, 21 is an arrow for injecting raw material water, and 22 is discharge functional water. , 23 are discharge ports, and 30 is a switch.
The functional water takes a composite storage net lid 20 and stores any of the various granular composite bodies (4, 5, 6, 7, 8, 9, 100) in the composite storage net 18; After injecting the raw water until the water tank is filled as indicated by the direction 21 of the raw water injection, the required time, for example, the granular composite 4 is produced by contacting the raw water.
At the time of use, an appropriate amount is taken out by the switch 30.
FIG. 7 is a cross-sectional view in which raw water is circulated and brought into contact with a packed bed filled with a large number of granular composites.
In the figure, 14 is a granular composite-containing and circulating water tank, 24 is a water flow direction arrow in the water tank, 25 is a water tank housing, 26 and 27 are penetration nets, 28 is a water injection pipe, and 29 is a housing upper lid.
The functional water takes a casing upper lid 29 and a penetration network 27 to fill a large number of granular composites, for example, 4 to form a packed bed, and injects raw water from above the water injection pipe 28 as indicated by an arrow 21 of water injection direction. . The injected raw material water flows from the lower penetration network 26 of the water injection pipe 28 through the surrounding packed bed in the direction of the flowing water arrow 24 in the water tank, and from the upper penetration network 27 via the discharge port 23. It is discharged like the discharge functional water 22 and is manufactured by circulating and contacting the raw material water to the packed bed by opening and closing the raw material water injection.

図8は、複合体の透水性多孔質物に原料水を接触させた断面図である。
図において15は透水性多孔質物複合体収納水槽を示す。
前記機能水は、複合体収納網蓋20をとって、透水性多孔質物複合体例えば11を、複合体収納網18の中に収納し、水の注入方向矢印21のように原料水を水槽を満たす迄注入した後、所要時間、原料水に接触させて製造する。使用時には、開閉器30によって適量を取り出す。
図9は、透水性複合体を多数充填した充填層に原料水を流通・接触させた断面図である。
図において、16は複合体の透水性多孔質物複合体収納流通水槽、24は水槽内の流水方向矢印、25は水槽筺体、26、27は貫通網、28は注水管、29は筺体上蓋を示す。
前記機能水は、筺体上蓋29と貫通網27をとって例えば透水性多孔質物複合体11を多数充填して、充填層を作り、注水管28の上方から水の注入方向矢印21のように原料水を注入する。注入された原料水は、注水管28の下部の貫通網26から周辺の前記充填層を通って水槽内の流水方向矢印24の方向に流れ、上部の貫通網27から吐出口23を経由して吐出機能水22のように吐出させており、水注入の開閉によって充填層に原料水を流通・接触させて製造する。
FIG. 8 is a cross-sectional view in which raw material water is brought into contact with the water-permeable porous material of the composite.
In the figure, reference numeral 15 denotes a water permeable porous material composite accommodation water tank.
The functional water takes the composite storage net lid 20 to store the water-permeable porous material composite, for example, 11 in the composite storage net 18, and feeds the raw water into the water tank as indicated by the water injection direction arrow 21. After injecting until it is filled, it is produced by contacting the raw material water for the required time. At the time of use, an appropriate amount is taken out by the switch 30.
FIG. 9 is a cross-sectional view in which raw water is circulated and brought into contact with a packed bed filled with a large number of water-permeable composites.
In the figure, 16 is a water permeable porous material composite containing and circulating water tank of the composite, 24 is a flow direction arrow in the water tank, 25 is a water tank housing, 26 and 27 are penetration nets, 28 is a water injection pipe, and 29 is an upper lid of the housing. .
The functional water takes a casing upper lid 29 and a penetration net 27 to fill a large number of, for example, the water-permeable porous material composite 11 to form a packed bed, and the raw material as indicated by the water injection direction arrow 21 from above the water injection pipe 28. Inject water. The injected raw material water flows from the lower penetration network 26 of the water injection pipe 28 through the surrounding packed bed in the direction of the flowing water arrow 24 in the water tank, and from the upper penetration network 27 via the discharge port 23. It is discharged like the discharge functional water 22 and is manufactured by circulating and contacting the raw material water to the packed bed by opening and closing the water injection.

次に、一般浄水器と本発明の機能水製造装置とを一体構造にした事例を示す。
図10は、前記図6(水槽中の原料水に前記粒状複合体を接触させた断面図)に紫外線灯を設置した断面図である。
図において、31は紫外線灯、32は紫外線灯のリード線を示す。水槽筺体19に貯留された機能水17の中には、耐水性の紫外線灯31が複数本設置されており、その作用によって周囲の機能水17は殺菌されるため、長時間の貯留も可能となる。
図11は、前記図7(粒状複合体を多数充填した充填層に原料水を流通・接触させた断面図)に紫外線灯を設置した断面図である。
図において、33は流水空隙を示す。水槽筺体25の中の粒状複合体(4)を、水槽内の流水方向矢印24のように通過し、吐出口23に向かう機能水は、水槽筺体25の上部の流水空隙33に設けられた複数の紫外線灯31の周囲を通過する際に、殺菌されて吐出機能水22となる。
Next, the example which made the general water purifier and the functional water manufacturing apparatus of this invention integrated is shown.
FIG. 10 is a cross-sectional view in which an ultraviolet lamp is installed in FIG. 6 (a cross-sectional view in which the granular composite is brought into contact with raw water in a water tank).
In the figure, 31 indicates an ultraviolet lamp, and 32 indicates a lead wire of the ultraviolet lamp. In the functional water 17 stored in the aquarium housing 19, a plurality of water-resistant ultraviolet lamps 31 are installed, and the surrounding functional water 17 is sterilized by its action, so that it can be stored for a long time. Become.
FIG. 11 is a cross-sectional view in which an ultraviolet lamp is installed in FIG. 7 (a cross-sectional view in which raw water is circulated and brought into contact with a packed bed filled with a large number of granular composites).
In the figure, 33 indicates a running water gap. The functional water that passes through the granular composite (4) in the water tank housing 25 as shown by the flowing water direction arrow 24 in the water tank and goes to the discharge port 23 is provided in a plurality of flowing water gaps 33 in the upper part of the water tank housing 25. When passing around the ultraviolet lamp 31, the water is sterilized to become the discharge functional water 22.

上記と同様にして、図8(複合体の透水性多孔質物に水を接触させた断面図)に紫外線灯31を設置してもよく(図示せず)、また図9(透水性複合体を多数充填した充填層に水を流通・接触させた断面図)に紫外線灯31を設置してもよい(図示せず)   In the same manner as described above, an ultraviolet lamp 31 may be installed (not shown) in FIG. 8 (a cross-sectional view in which water is brought into contact with the water-permeable porous material of the composite), and FIG. The ultraviolet lamp 31 may be installed in a cross-sectional view in which water is circulated and brought into contact with a packed bed filled with a large number (not shown).

次に、前記図6に示した水槽中の原料水に粒状複合体を接触させて製造した機能水の測定データについて述べる。
実施例1:
前記粒状複合体は、酸化チタン(n形)の直径5.5mm円錐台状焼結体の表面に硼素200ppm、ドープシリコン(p形)をスパッタリング処理した物100粒に、水道水1000mlを加え、時々撹拌し常温で1時間以上放置したものである。
次表にその測定データを示す。なお、測定の数値は0±21とし、+21を波動の最高値とし、−21を最低値とする。
また、疾患に対する指定コードは、主な疾患に対するコードを選択した。

各種疾患に対する機能水の波動測定値

指定コード 波 動 値 指定コード 波 動 値
免疫 +21 呼吸中枢 +21
胸腺 +18 血管運動中枢 +21
自律神経系 +21 温度調節中枢 +20
ストレス +20 痛み +21
血液循環 +21 炎症性リウマチ +21
リンパ節 +19 変形性関節症 +20
癌 +21 糖尿病・DM +21
パーキソン病 +21 糖尿病 +15
ドパミン +21 高血圧 +20
インポテンツ +21 肝臓 +19
性欲促進 +19 腎臓 +18
精巣 +19 心臓 +20
性中枢 +20 大腸 +21
Next, measurement data of functional water produced by bringing the granular composite into contact with the raw water in the water tank shown in FIG. 6 will be described.
Example 1:
The granular composite is obtained by adding 1000 ml of tap water to 100 grains of titanium oxide (n-type) having a diameter of 5.5 mm and a truncated cone-shaped sintered body with 200 ppm boron and doped silicon (p-type) sputtered. Stir occasionally and let stand at room temperature for 1 hour or more.
The measurement data is shown in the following table. The numerical value of the measurement is 0 ± 21, +21 is the highest value of the wave, and -21 is the lowest value.
As the designation code for the disease, the code for the main disease was selected.

Wave measurements of functional water for various diseases

Designated code Wave value Designated code Wave value immunity +21 Respiratory center +21
Thymus +18 Vasomotor center +21
Autonomic nervous system +21 Temperature control center +20
Stress +20 Pain +21
Blood circulation +21 Inflammatory rheumatism +21
Lymph node +19 Osteoarthritis +20
Cancer +21 Diabetes / DM +21
Parkinson's disease +21 Diabetes +15
Dopamine +21 Hypertension +20
Impotence +21 Liver +19
Promoting libido +19 Kidney +18
Testis +19 Heart +20
Sexual center +20 Large intestine +21

なお、比較のために、水道水を市販の浄水器により濾過した原料水の波動値を下記に示す。

原料水の波動測定値

指定コード 波 動 値 指定コード 波 動 値
免疫 +5 リンパ節 +2
癌 +3 血液循環 +3
自律神経系 +5 パーキソン病 +2
ストレス +4 以下略

上記に示したように機能水は全測定コードについて優れた測定値を示している。
For comparison, the wave value of raw water obtained by filtering tap water with a commercially available water purifier is shown below.

Raw water wave measurements

Designated code Wave value Designated code Wave value Immunity +5 Lymph node +2
Cancer +3 Blood circulation +3
Autonomic nervous system +5 Parkinson's disease +2
Stress +4 or less

As indicated above, functional water shows excellent measurements for all measurement codes.

実施例2:
外径12mm、内径8mm、長さ8mmの円筒型ジルコニア焼結体を、約1000゜Cに加熱しつつ、ホスフィン200ppm、含有シランガスを10−2mmHgの減圧下で分解し、CVD法によりジルコニア焼結体表面に、約100nmの被覆をつけた。その後ジボラン200ppm含有シランガスに切り替えて、同じくCVD法により100nm程度の皮膜をつけた。
この処置により円筒形ジルコニア焼結体の表面にn形シリコン膜とp形シリコン膜の複合体が付いたことになる。
該複合体付きジルコニア焼結体25個を500ml容器に入れ、水道水(浄化装置付)500mlを加え、時々撹拌しながら2時間放置した。
この時の機能水と原料の水道水(浄化装置付)の波動値を次に示す。

指定コード 機能水の波動値 原料水(浄化装置付水道水)
免疫 +21 +3
血液循環 +20 +2
痛み +20 +0
炎症性リュウマチ +19
高血圧 +19 +1
肝臓 +20 +1
腎臓 +18
大腸 +20 +2
肺 +19
Example 2:
A cylindrical zirconia sintered body having an outer diameter of 12 mm, an inner diameter of 8 mm, and a length of 8 mm is decomposed under a reduced pressure of 10-2 mmHg with 200 ppm of phosphine while heating to about 1000 ° C., and zirconia sintered by CVD. The body surface was coated with about 100 nm. Thereafter, the silane gas was changed to diborane 200 ppm, and a film of about 100 nm was formed by the same CVD method.
By this treatment, a composite of an n-type silicon film and a p-type silicon film is attached to the surface of the cylindrical zirconia sintered body.
Twenty-five zirconia sintered bodies with the composite were placed in a 500 ml container, 500 ml of tap water (with a purifier) was added, and the mixture was allowed to stand for 2 hours with occasional stirring.
The wave values of functional water and raw tap water (with purifier) at this time are shown below.

Specification code Wave value of functional water Raw water (tap water with purifier)
Immunity +21 +3
Blood circulation +20 +2
Pain +20 +0
Inflammatory rheumatism +19
High blood pressure +19 +1
Liver +20 +1
Kidney +18
Large intestine +20 +2
Lung +19

実施例3:
直径25mm、厚さ1.5mmの円板状に焼結したチタン酸バリウムの表面にアンチモン150ppm、ドープゲルマニウムをスパッタリング法で約50nm蒸着し、さらにターゲットを硼素200ppmドープゲルマニウム板に置き換えて、同じくスパッタリング法で約100nm蒸着した。
この場合、両面共それぞれ蒸着したのでチタン酸バリウム焼結体の全面が、n形ゲルマニウム、p形ゲルマニウムの複合膜で覆われたことになる。
この円板を10枚、500mlの容器に入れ、水道水(浄化装置付)500mlを加え時々撹拌しながら2時間放置した。この時の機能水と原料の水道水(浄化装置付)の波動値を次に示す。

指定コード 機能水の波動値 原料水(浄化装置付水道水)
免疫 +21 +4
血液循環 +21 +2
痛み +20 +1
炎症性リュウマチ +18
高血圧 +19 +0
肝臓 +18 +1
腎臓 +17 +0
大腸 +19 +1
肺 +19 +1

上記、実施例2及び3においても機能水の波動値は全測定コードについて優れた測定値を示している。
以上の波動値の測定には、磁気共鳴分析器「BICS」(バイオインフォ−メイション・チェックシステム):(株)アクティ・ツ−ワン社製、を用いた。
Example 3:
On the surface of barium titanate sintered in the shape of a disk with a diameter of 25 mm and a thickness of 1.5 mm, 150 ppm of antimony and doped germanium are deposited by sputtering to a thickness of about 50 nm, and the target is replaced with a 200 ppm boron-doped germanium plate. About 100 nm was deposited by the method.
In this case, since both sides were vapor-deposited, the entire surface of the barium titanate sintered body was covered with the composite film of n-type germanium and p-type germanium.
Ten discs were placed in a 500 ml container, 500 ml of tap water (with a purifier) was added, and the mixture was allowed to stand for 2 hours with occasional stirring. The wave values of functional water and raw tap water (with purifier) at this time are shown below.

Specification code Wave value of functional water Raw water (tap water with purifier)
Immunity +21 +4
Blood circulation +21 +2
Pain +20 +1
Inflammatory rheumatism +18
High blood pressure +19 +0
Liver +18 +1
Kidney +17 +0
Large intestine +19 +1
Lung +19 +1

In Examples 2 and 3 described above, the wave value of functional water shows excellent measurement values for all measurement codes.
For the measurement of the above wave values, a magnetic resonance analyzer “BICS” (Bioinfomation Check System): manufactured by Acti-Twan Co., Ltd. was used.

一方、生体内の各所における「波動値」を測定すると、病変がある箇所には前記共鳴磁場に「乱れ」がみられ、−値を示している(図示せず)。
したがって、細胞間の情報の媒介になっている水の波動の乱れを、本発明の高い波動値の機能水を飲用することによって矯正し、その結果、生体は健康を取り戻す作用が得られる。
On the other hand, when the “wave value” at each place in the living body is measured, “disturbance” is observed in the resonance magnetic field at the lesioned portion, and a −value is shown (not shown).
Therefore, the disturbance of the water wave that mediates information between cells is corrected by drinking the functional water having a high wave value according to the present invention, and as a result, the living body has an action of restoring health.

本機能水は、前記の測定値データに示されているように、生体の各症状に有効である。以下に事例の幾つかを列記する。
事例1:
肝臓疾患(GOT2OO、GPT190)の患者が、前述した機能水を、1日400ml〜600ml飲用した結果、約1ケ月間で、(GOT60、GPT80)に下がった。
事例2:
慢性腎臓疾患の患者が、前述した機能水を、1日400ml〜600ml飲用した結果、約3ケ月間で血圧も安定して、降圧剤を1/2に減らすことができ、クレアチニンも1.4から1.0に減少し、人工透析の回数を従来の2/3まで減らすことができた。
なお、本機能水は、人体に有効であるほか、動物、植物、微生物等にもに有効であり、食品、栽培への応用等その活用範囲は大きい。
This functional water is effective for each symptom of a living body, as shown in the measurement data. Some examples are listed below.
Example 1:
A patient with liver disease (GOT2OO, GPT190) drank 400 ml to 600 ml of the functional water described above, and as a result, dropped to (GOT60, GPT80) in about one month.
Case 2:
As a result of a patient with chronic kidney disease drinking 400 ml to 600 ml of the functional water described above, blood pressure is stabilized for about 3 months, the antihypertensive agent can be reduced to ½, and creatinine is 1.4. The number of artificial dialysis was reduced to 2/3 of the conventional value.
In addition to being effective for the human body, this functional water is also effective for animals, plants, microorganisms, etc., and has a wide range of applications such as food and cultivation applications.

粒状複合体並びに薄板状複合体の縦断面図。The longitudinal cross-sectional view of a granular composite body and a thin plate-shaped composite body. 粒状複合体の縦断面図。The longitudinal cross-sectional view of a granular composite. 円筒型複合体の集合体の縦断面斜視図。The longitudinal cross-sectional perspective view of the aggregate | assembly of a cylindrical complex. ハニカム型複合体の集合体の縦断面斜視図。The longitudinal cross-sectional perspective view of the aggregate | assembly of a honeycomb type composite. 透水性多孔質複合体の縦断面斜視図。The longitudinal cross-sectional perspective view of a water-permeable porous composite. 水槽中の原料水に前記粒状複合体を接触させた断面図。Sectional drawing which made the said granular composite material contact the raw material water in a water tank. 粒状複合体を多数充填した充填層に原料水を流通・接触させた断面図。Sectional drawing which distribute | circulated and contacted raw material water to the packed bed filled with many granular composites. 複合体の透水性多孔質物に原料水を接触させた断面図。Sectional drawing which made raw material water contact the water-permeable porous material of a composite_body | complex. 透水性複合体を多数充填した充填層に原料水を流通・接触させた断面図。Sectional drawing which distribute | circulated and contacted raw material water to the packed bed filled with many water-permeable composites. 図6に紫外線灯を設置した断面図。Sectional drawing which installed the ultraviolet lamp in FIG. 図7に紫外線灯を設置した断面図。Sectional drawing which installed the ultraviolet lamp in FIG.

符号の説明Explanation of symbols

1:強誘電体 2:n形半導体膜
3:p形半導体膜 4:円錐状の粒状複合体
5:半球状の粒状複合体 6:球状体−1
7:球状体−2 8:角形板状
9:円筒型の集合 10:ハニカム型の集合
11:貫通孔を有する板型 12:多数の貫通孔
13:粒状複合体収納水槽 14:粒状複合体収納流通水槽
15:透水性多孔質物複合体収納水槽
16:透水性多孔質物複合体収納流通水槽
17:機能水 18:粒状複合体収納網
19:水槽筺体 20:複合体収納網蓋
21:原料水の注入方向矢印 22:吐出機能水
23:吐出口 24:水槽内の流水方向矢印
25:水槽筺体 26、27:貫通網
28:注水管 29:筺体上蓋
30:開閉器 31:紫外線灯
32:紫外線灯のリード線 33:流水空隙
100:薄板状のn形半導体膜とp形半導体膜の積層複合体

1: Ferroelectric material 2: n-type semiconductor film 3: p-type semiconductor film 4: conical granular composite 5: hemispherical granular composite 6: spherical body-1
7: Spherical body-2 8: Square plate shape 9: Cylindrical set 10: Honeycomb type set 11: Plate type having through holes 12: Many through holes 13: Granular composite storage tank 14: Granular composite storage Distribution tank 15: Permeable porous material composite storage water tank 16: Permeable porous material composite storage water tank 17: Functional water 18: Granular composite storage network 19: Water tank housing 20: Composite storage network lid 21: Raw material water Injection direction arrow 22: Discharge functional water 23: Discharge port 24: Flow direction arrow 25: Water tank housing 26, 27: Penetration network 28: Water injection pipe 29: Housing upper lid 30: Switch 31: Ultraviolet light 32: Ultraviolet light Lead wire 33: flowing water gap 100: laminated composite of thin plate-like n-type semiconductor film and p-type semiconductor film

Claims (12)

n形半導体膜とp形半導体膜とを積層した複合体と、該複合体に原料水を接触させるための水接触装置とからなることを特徴とする機能水の製造装置。   An apparatus for producing functional water, comprising: a composite in which an n-type semiconductor film and a p-type semiconductor film are laminated; and a water contact device for bringing raw water into contact with the composite. 強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体と、該複合体に原料水を接触させるための水接触装置とからなることを特徴とする機能水の製造装置。   Functional water comprising: a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on a surface of a ferroelectric; and a water contact device for bringing the raw material water into contact with the composite. Manufacturing equipment. 複合体が、粒状物であることを特徴とする請求項1又は2に記載の機能水製造装置。   The functional water production apparatus according to claim 1, wherein the complex is a granular material. 複合体が、透水性多孔質成型物であることを特徴とする請求項1〜3のいずれか1項に記載の機能水製造装置。   The functional water production apparatus according to any one of claims 1 to 3, wherein the composite is a water-permeable porous molded product. n形半導体膜とp形半導体膜とを積層した複合体に、原料水を接触せしめることを特徴とする機能水製造法。   A method for producing functional water, comprising bringing raw material water into contact with a composite of an n-type semiconductor film and a p-type semiconductor film. 強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体に、原料水を接触せしめることを特徴とする機能水製造法。   A method for producing functional water, comprising bringing a raw material water into contact with a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on a surface of a ferroelectric substance. 原料水の流路に、n形半導体膜とp形半導体膜とを積層した複合体を充填した充填層を介在させ、原料水を前記充填層に流通・接触せしめることを特徴とする機能水の製造法。   Functional water characterized by interposing a packed layer filled with a composite layered with an n-type semiconductor film and a p-type semiconductor film in a flow path of the raw water so that the raw water is circulated and brought into contact with the packed layer Manufacturing method. 原料水の流路に、強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体の粒状物を多数充填した充填層を介在させ、原料水を前記充填層に流通・接触せしめることを特徴とする機能水の製造法。   A raw material water channel is interposed with a packed layer filled with a large number of composite particles formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on the surface of the ferroelectric material, and the raw water is supplied to the packed layer. A method for producing functional water, characterized in that it is distributed and brought into contact with water. n形半導体膜とp形半導体膜とを積層した複合体の透水性多孔質成型物に、原料水を接触せしめることを特徴とする機能水の製造法。   A process for producing functional water, comprising bringing raw material water into contact with a water-permeable porous molded product of a composite comprising an n-type semiconductor film and a p-type semiconductor film. 強誘電体の表面にn形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体の透水性多孔質成型物に、原料水を接触せしめることを特徴とする機能水の製造法。   A process for producing functional water, comprising bringing a raw material water into contact with a water-permeable porous molded body of a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film on a surface of a ferroelectric substance. 原料水の流路に、n形半導体膜及びp形半導体膜を順次積層コーティングしてなる複合体の透水性多孔質物層を介在させ、原料水を前記透水性多孔質物層に流通・接触せしめることを特徴とする機能水製造法。   A raw material water channel is interposed with a water-permeable porous material layer of a composite formed by sequentially laminating and coating an n-type semiconductor film and a p-type semiconductor film, and the raw material water is circulated and brought into contact with the water-permeable porous material layer. Functional water production method characterized by 原料水の流路に、n形半導体膜とp形半導体膜とを積層した複合体の透水性多孔質物層を介在させ、原料水を前記透水性多孔質物層に流通・接触せしめることを特徴とする機能水製造法。
A water permeable porous material layer of a composite body in which an n-type semiconductor film and a p-type semiconductor film are laminated is interposed in a flow path of raw material water, and the raw water is circulated and brought into contact with the water permeable porous material layer. Functional water production method.
JP2006149064A 2006-05-29 2006-05-29 Device and method for producing functional water Pending JP2006224101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149064A JP2006224101A (en) 2006-05-29 2006-05-29 Device and method for producing functional water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149064A JP2006224101A (en) 2006-05-29 2006-05-29 Device and method for producing functional water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007598A Division JPH11216465A (en) 1998-01-30 1998-01-30 Device for producing functional water and production

Publications (1)

Publication Number Publication Date
JP2006224101A true JP2006224101A (en) 2006-08-31

Family

ID=36985911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149064A Pending JP2006224101A (en) 2006-05-29 2006-05-29 Device and method for producing functional water

Country Status (1)

Country Link
JP (1) JP2006224101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176898A (en) * 2016-03-28 2017-10-05 太平洋セメント株式会社 Water treatment material and production method thereof
JP2020116566A (en) * 2018-12-14 2020-08-06 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Filter, filter assembly, filter apparatus and water purification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176898A (en) * 2016-03-28 2017-10-05 太平洋セメント株式会社 Water treatment material and production method thereof
JP2020116566A (en) * 2018-12-14 2020-08-06 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Filter, filter assembly, filter apparatus and water purification system

Similar Documents

Publication Publication Date Title
Gandin et al. Travertine: distinctive depositional fabrics of carbonates from thermal spring systems
Pedley et al. Freshwater calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas
Kinney et al. Response of primary producers to nutrient enrichment in a shallow estuary
Pedley The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments
CN1535248A (en) Fluid treatment apparatus
Brasier et al. Diagenesis or dire genesis? The origin of columnar spar in tufa stromatolites of central Greece and the role of chironomid larvae
ES2178427T3 (en) ENCAPSULATION DEVICES WITH CENTRAL NUCLEO OF HEBRAS, THREADS OR MESH.
CN102940907A (en) Graphene oxide and silk fibroin composite membrane and preparation method thereof
CN1840486A (en) Activated and magnetic water generating system
JP2006224101A (en) Device and method for producing functional water
CN101250012B (en) Glacier water as well as preparation method and use thereof
Berrendero et al. Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: Example from the Monasterio de Piedra Natural Park (Spain)
CN103193324A (en) Purification method of aquaculture sewage and ecological floating bed based on method
JPH11216465A (en) Device for producing functional water and production
KR100798852B1 (en) Functional water purifying apparatus having high capacity
US20110196188A1 (en) Methods and apparatus to create resonance in water and to destroy resonance in bacteria
Taher Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt
CN204581985U (en) There is the dental instruments of drug storage structure
Yajun et al. Biomass production and nutrient removal efficiency of Suaeda salsa in eutrophic saline water using a floating mat treatment system
CN100554194C (en) Multi-layer type sewage treatment device
CN105036343A (en) Ecological engineering method capable of efficiently removing lipophilic trace organic substances in low-pollution water
KR20090066594A (en) Magentization water making machines
JP3923638B2 (en) Water quality improvement device
KR20170120435A (en) Manufacture system to alkali water using magnetizing apparatus and method thereof
WO2023212249A1 (en) Water treatment devices and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104