JP2006222044A - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP2006222044A
JP2006222044A JP2005036637A JP2005036637A JP2006222044A JP 2006222044 A JP2006222044 A JP 2006222044A JP 2005036637 A JP2005036637 A JP 2005036637A JP 2005036637 A JP2005036637 A JP 2005036637A JP 2006222044 A JP2006222044 A JP 2006222044A
Authority
JP
Japan
Prior art keywords
voltage
circuit
conversion circuit
discharge lamp
constant voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005036637A
Other languages
Japanese (ja)
Other versions
JP4722506B2 (en
Inventor
Yoshinori Sato
嘉典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2005036637A priority Critical patent/JP4722506B2/en
Publication of JP2006222044A publication Critical patent/JP2006222044A/en
Application granted granted Critical
Publication of JP4722506B2 publication Critical patent/JP4722506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the liquid leakage of an electrolytic capacitor constituting an identification potential circuit when a diode constituting a constant voltage circuit of a discharge lamp lighting device is short-circuited. <P>SOLUTION: AC voltage is generated from a primary coil n1 of a transformer TR constituting a first DC/DC conversion circuit 13 outputting an output converting voltages of DC power supply 11 into desired DC and AC voltages, respectively, and the AC voltage is converted into a direct current voltage of the constant voltage circuit 18. This DC voltage is applied to a control circuit 20 for generating the AC voltage of the first DC-DC conversion circuit 13 and a DC-AC conversion driving circuit 19 driving a DC-AC conversion circuit 17 converting the DC voltage into the AC voltage for lighting a discharge lamp as a power supply. The constant voltage circuit 18 comprises a diode D3 carrying out conversion into dc, a capacitor 2 and a transistor Q1 generating a constant voltage C2 , a resistor R2 and a Zener diode ZD. An inductance L1 is connected between the diode D3 and the transistor Q1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、直流電源を電圧変換して所望の電圧に変換し、放電灯を点灯させる放電灯点灯装置に関する。   The present invention relates to a discharge lamp lighting device that converts a DC power source into a desired voltage to light a discharge lamp.

従来の放電灯点灯装置は、DC/DC変換回路のトランスとスイッチング素子の接続点からスイッチング素子駆動回路および制御回路に定電圧を供給するためダイオードを介して定電圧回路を構成している。(例えば、特許文献1)
特開2000−48991公報
A conventional discharge lamp lighting device forms a constant voltage circuit via a diode to supply a constant voltage to a switching element drive circuit and a control circuit from a connection point between a transformer and a switching element of a DC / DC conversion circuit. (For example, Patent Document 1)
JP 2000-48991 A

上記した特許文献1の技術は、定電圧回路に電圧源であるDC/DC変換回路のトランスの一次側巻線から電圧を供給するものであることから、DC/DC変換回路は数十キロまたは百キロ以上の高周波で動作している。スイッチング周波数のリップル電流が定電圧回路の入力段のコンデンサに流れるため、高リップル電流を流せるコンデンサを選定する必要があった。また、ダイオードが短絡した場合、コンデンサに整流されないリップル電流が流れるためコンデンサの防爆弁が作動して電解液が一瞬にして外部に漏れることにより、電解液の蒸発による煙と異臭を発生する問題がある。   Since the technique of Patent Document 1 described above supplies voltage from the primary winding of the transformer of the DC / DC conversion circuit, which is a voltage source, to the constant voltage circuit, the DC / DC conversion circuit is several tens of kilometers or It operates at a high frequency of over 100 km. Since the ripple current of the switching frequency flows to the capacitor in the input stage of the constant voltage circuit, it was necessary to select a capacitor that can carry a high ripple current. In addition, when the diode is short-circuited, a ripple current that is not rectified flows to the capacitor, so the explosion-proof valve of the capacitor is activated and the electrolyte leaks to the outside instantly. is there.

この発明の目的は、定電圧回路を構成する整流用のダイオードが短絡した場合でも、同じ定電圧回路を構成する電解コンデンサの液漏れを防止した放電灯点灯装置を提供することにある。   An object of the present invention is to provide a discharge lamp lighting device that prevents liquid leakage of an electrolytic capacitor constituting the same constant voltage circuit even when a rectifying diode constituting the constant voltage circuit is short-circuited.

上記した課題を解決するために、この発明の放電灯点灯装置は、直流電源と、前記直流電源の電圧を所望の第1の直流電圧および交流電圧に変換する第1のDC/DC変換回路と、前記直流電源の電圧を所望の第2の直流電圧に変換する第2のDC/DC変換回路と、始動時に前記第1のDC/DC変換回路の第2の直流電圧に基づき所望の高電圧を生成するイグナイタと、前記イグナイタの出力に基づき点灯に必要な電力が供給される放電灯と、前記第1のDC/DC変換回路から出力される直流電圧を交流電圧に変換し、前記放電灯がグローからアーク点灯させるDC/AC変換回路と、前記第1のDC/DC変換回路で交流電圧を生成させるための駆動回路および前記DC/AC変換回路の駆動させる前記第1のDC/DC変換回路の交流電圧を直流電圧に変換するとともに定電圧を得る定電圧回路とからなり、前記定電圧回路を構成する直流に変換する手段と該手段により直流変換された電圧を定電圧化の手段との間にインピーダンス素子を直列接続したことを特徴とする。   In order to solve the above-described problems, a discharge lamp lighting device according to the present invention includes a DC power supply, a first DC / DC conversion circuit that converts a voltage of the DC power supply into desired first DC voltage and AC voltage, and A second DC / DC conversion circuit for converting the voltage of the DC power source into a desired second DC voltage, and a desired high voltage based on the second DC voltage of the first DC / DC conversion circuit at the start. , An electric discharge lamp supplied with electric power required for lighting based on the output of the igniter, a direct current voltage output from the first DC / DC conversion circuit is converted into an alternating current voltage, and the electric discharge lamp A DC / AC conversion circuit for lighting an arc from glow, a drive circuit for generating an alternating voltage in the first DC / DC conversion circuit, and the first DC / DC conversion for driving the DC / AC conversion circuit Circuit A constant voltage circuit that converts a current voltage into a DC voltage and obtains a constant voltage, and a means for converting the DC voltage that constitutes the constant voltage circuit into a constant voltage. An impedance element is connected in series to the above.

この発明によれば、放電灯を点灯させるための定電圧回路を構成するダイオードが短絡状態になった場合でも同じく定電圧回路を構成する電解コンデンサに流れるリップル電流を小さくすることで、電解コンデンサの液漏れを防止できる。   According to the present invention, even when the diode constituting the constant voltage circuit for lighting the discharge lamp is short-circuited, the ripple current flowing in the electrolytic capacitor constituting the constant voltage circuit is reduced, thereby reducing the electrolytic capacitor. Liquid leakage can be prevented.

以下、この発明の実施形態ついて、図面を参照しながら詳細に説明する。
図1は、この発明の一実施形態について説明するための概念図である。11は例えば12Vの定電圧の直流電源であり、この直流電源11の電力を、電源スイッチ12を介して第1のDC/DC変換回路13に供給する。また、直流電源11は第2のDC/DC変換回路14にも供給し、ここで1kVに昇圧された直流電圧Vd1を生成し、イグナイタ15に供給する。イグナイタ15では供給された1kVの直流電圧に基づき、例えば25kV程度の高圧のパルス電圧を発生させて放電灯16に供給し、放電灯16をグロー放電させる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram for explaining an embodiment of the present invention. Reference numeral 11 denotes a DC power source having a constant voltage of 12 V, for example, and supplies the power of the DC power source 11 to the first DC / DC conversion circuit 13 via the power switch 12. The DC power supply 11 also supplies the second DC / DC conversion circuit 14 to generate a DC voltage Vd1 boosted to 1 kV and supply it to the igniter 15. The igniter 15 generates a high-voltage pulse voltage of, for example, about 25 kV based on the supplied 1 kV DC voltage and supplies it to the discharge lamp 16 to cause the discharge lamp 16 to glow discharge.

第1のDC/DC変換回路13では、例えば400Vの高い直流電圧Vd2を生成し、DC/AC変換回路17に供給するとともに、交流電圧Va1を生成し、定電圧回路18に供給する。定電圧回路18では交流電圧Va1に基づき降圧させた定電圧の直流電圧Vd3を生成し、DC/AC変換駆動回路19と制御回路20の電源としてそれぞれ供給する。DC/AC変換駆動回路19では、駆動交流電圧Va2を生成してDC/AC変換回路17に供給し、第1のDC/DC変換回路13から供給される直流電圧Vd2を交流電圧Va3に変換して出力する。制御回路20は、第1のDC/DC変換回路13から交流電圧Va1と直流電圧Vd2をそれぞれ生成するための制御信号を生成する。   In the first DC / DC conversion circuit 13, for example, a high DC voltage Vd <b> 2 of 400 V is generated and supplied to the DC / AC conversion circuit 17, and an AC voltage Va <b> 1 is generated and supplied to the constant voltage circuit 18. The constant voltage circuit 18 generates a constant DC voltage Vd3 that has been stepped down based on the AC voltage Va1 and supplies it as power sources for the DC / AC conversion drive circuit 19 and the control circuit 20, respectively. In the DC / AC conversion drive circuit 19, a drive AC voltage Va2 is generated and supplied to the DC / AC conversion circuit 17, and the DC voltage Vd2 supplied from the first DC / DC conversion circuit 13 is converted into an AC voltage Va3. Output. The control circuit 20 generates control signals for generating the AC voltage Va1 and the DC voltage Vd2 from the first DC / DC conversion circuit 13, respectively.

イグナイタ15は、第2のDC/DC変換回路14から供給される直流電圧に基づき生成された高圧直流電圧でパルス電圧を生成してグロー放電された放電灯16に、DC/AC変換回路17から供給される例えば400Vの交流電圧Va3を供給する。これにより、放電灯16をグロー放電からアーク放電に切り替える。   The igniter 15 generates a pulse voltage with a high-voltage DC voltage generated based on the DC voltage supplied from the second DC / DC conversion circuit 14, and then glows the discharge lamp 16 from the DC / AC conversion circuit 17. For example, the supplied AC voltage Va3 of 400V is supplied. Thereby, the discharge lamp 16 is switched from glow discharge to arc discharge.

次に、図1の第1のDC/DC変換回路13、定電圧回路18、DC/AC変換回路17をより詳細に示した図2の回路構成図および図3の波形図を参照しながら、図1についてさらに詳細に説明する。図2において、図1と同一の部分には同一の符号を付している。   Next, referring to the circuit configuration diagram of FIG. 2 and the waveform diagram of FIG. 3 showing the first DC / DC conversion circuit 13, the constant voltage circuit 18, and the DC / AC conversion circuit 17 in more detail in FIG. 1 will be described in more detail. In FIG. 2, the same parts as those in FIG.

図2において、まず、第1のDC/DC変換回路13の構成について説明する。直流電源11の正極は、トランスTRの一次側コイルn1の一端に接続する。一次側コイルn1の他端は、CMOS型トランジスタで構成されるスイッチ回路SWを介して接地する。スイッチ回路SWは制御回路20の出力により駆動される。一次側コイルn1の両端には、図示極性のダイオードD1とコンデンサC1の直列回路を並列接続し、さらにコンデンサC1には抵抗R1を並列接続する。ダイオードD1、コンデンサC1、抵抗R1はスナバ回路を構成し、トランスTRで発生するサージ電圧を吸収してスイッチ回路SWにサージ電圧がかからないようにする。   In FIG. 2, first, the configuration of the first DC / DC conversion circuit 13 will be described. The positive electrode of the DC power supply 11 is connected to one end of the primary coil n1 of the transformer TR. The other end of the primary side coil n1 is grounded via a switch circuit SW composed of CMOS transistors. The switch circuit SW is driven by the output of the control circuit 20. A series circuit of a diode D1 having a polarity shown and a capacitor C1 is connected in parallel to both ends of the primary coil n1, and a resistor R1 is connected in parallel to the capacitor C1. The diode D1, the capacitor C1, and the resistor R1 constitute a snubber circuit that absorbs the surge voltage generated by the transformer TR and prevents the surge voltage from being applied to the switch circuit SW.

二次側コイルn2の一端は、第2のDC/DC変換回路14に接続するとともに、ダイオードD2、コンデンサC2を介して接地する。ダイオードD2とコンデンサC2の接続点は、DC/AC変換回路17に接続する。ニ次側コイルn2の他端は一次側コイルn1の他端に接続する。   One end of the secondary coil n2 is connected to the second DC / DC conversion circuit 14 and grounded via the diode D2 and the capacitor C2. A connection point between the diode D2 and the capacitor C2 is connected to the DC / AC conversion circuit 17. The other end of the secondary coil n2 is connected to the other end of the primary coil n1.

次いで、定電圧回路18の構成について説明する。トランスTRの一次側コイルn1とスイッチ12の接続点にダイオードD3のアノードを接続する。ダイオードD3のカソードは、高周波成分を抑制するインピーダンス素子である、例えばビーズ型のインダクタL1、電解コンデンサC2を介して接地する。インダクタL1と電解コンデンサC2の接続点は、コレクタがコンデンサC3を介して接地されたPNP型トランジスタQ1のエミッタに接続する。トランジスタQ1のエミッタ・ベース間には抵抗R2を接続する。トランジスタQ1のベースは、ツェナーダイオードZDを介して接地する。   Next, the configuration of the constant voltage circuit 18 will be described. The anode of the diode D3 is connected to the connection point between the primary coil n1 of the transformer TR and the switch 12. The cathode of the diode D3 is grounded via, for example, a bead type inductor L1 and an electrolytic capacitor C2, which are impedance elements that suppress high frequency components. The connection point of the inductor L1 and the electrolytic capacitor C2 is connected to the emitter of the PNP transistor Q1 whose collector is grounded via the capacitor C3. A resistor R2 is connected between the emitter and base of the transistor Q1. The base of the transistor Q1 is grounded via a Zener diode ZD.

また、DC/AC変換回路17は、例えばCMOS型のスイッチングトランジスタのスイッチSa,Sb,Sc,Sdからフルブリッジ回路を構成しており、スイッチSaとスイッチSd、スイッチSbとスイッチScは同時にオンオフ制御され、これらの2群のスイッチは交互にオンオフ制御される。   Further, the DC / AC conversion circuit 17 comprises, for example, CMOS-type switching transistors switches Sa, Sb, Sc, and Sd to form a full bridge circuit, and the switches Sa and Sd, and the switches Sb and Sc are simultaneously turned on / off. These two groups of switches are alternately turned on and off.

次に、上記した図2構成の動作について図3の波形図とともに説明する。スイッチ回路SWをオンオフ制御させることでトランスTRの一次側コイルn1に発生する交流電圧Va1は、第2のDC/DC変換回路14を構成する一次側コイルn1より巻線数の多い図示しない三次側コイルに高い交流電圧を生成し、この交流電圧に基づいた例えば1kVの直流電圧Vd1に変換してイグナイタ15に供給する。イグナイタ15では供給された1kVに基づき図3(b)に示す例えば25kVを生成して放電灯16に供給し、放電灯16をグロー放電させる。   Next, the operation of the configuration shown in FIG. 2 will be described with reference to the waveform diagram of FIG. The AC voltage Va1 generated in the primary side coil n1 of the transformer TR by controlling the switch circuit SW on and off is a tertiary side (not shown) having a larger number of windings than the primary side coil n1 constituting the second DC / DC conversion circuit 14. A high AC voltage is generated in the coil, converted to a DC voltage Vd1 of, for example, 1 kV based on this AC voltage, and supplied to the igniter 15. The igniter 15 generates, for example, 25 kV shown in FIG. 3B based on the supplied 1 kV and supplies it to the discharge lamp 16 to cause the discharge lamp 16 to glow discharge.

また、トランスTRは二次側コイルn2を、一次側コイルn1より巻線比を多くし、それに応じた高い交流電圧を生成する。この交流電圧は、ダイオードD2、コンデンサC2を用いて図3(a)に示す例えば400Vの直流電圧Vd2に整流してDC/AC変換回路17に供給する。   Further, the transformer TR increases the winding ratio of the secondary side coil n2 as compared with the primary side coil n1, and generates a high AC voltage corresponding thereto. This AC voltage is rectified to a DC voltage Vd2 of, for example, 400V shown in FIG. 3A using the diode D2 and the capacitor C2, and supplied to the DC / AC conversion circuit 17.

トランスTRの一次側に発生した交流電圧Va1は、ダイオードD3、インダクタL1、電解コンデンサC3により図3(c)に示すような直流電圧に変換する。交流電圧Va1は、リップル電流およびリップル電圧を含むため、高周波成分をインダクタL1で図3(d)に示すように除去する。変換された直流電圧は、ツェナーダイオードZDのツェナー電圧で決まる電圧で一定にされた直流電圧Vd3をトランジスタQ1のコレクタから生成し、この直流電圧Vd3を制御回路20およびDC/AC変換駆動回路19の電源としてこれらに供給する。   The AC voltage Va1 generated on the primary side of the transformer TR is converted into a DC voltage as shown in FIG. 3C by the diode D3, the inductor L1, and the electrolytic capacitor C3. Since AC voltage Va1 includes a ripple current and a ripple voltage, high frequency components are removed by inductor L1 as shown in FIG. The converted DC voltage is generated from the collector of the transistor Q1 by making the DC voltage Vd3 constant by the voltage determined by the Zener voltage of the Zener diode ZD, and this DC voltage Vd3 is generated by the control circuit 20 and the DC / AC conversion drive circuit 19. These are supplied as a power source.

制御回路20は、スイッチング信号を生成し、スイッチ回路SWをオンオフ制御して直流電源11の直流電圧を交流電圧に生成する。また、フルブリッジ構成のDC/AC変換回路17は、DC/AC変換駆動回路19から出力される駆動信号で、スイッチSaとスイッチSdをオン、スイッチSbとスイッチScをオフ、次にスイッチSaとスイッチSdをオフ、スイッチSbとスイッチScをオンする制御を交互に行い、出力から直流電圧Vd2に交流電圧Va2が重畳された交流電圧Va3を得る。放電灯16は、これまで直流電圧Vd1に基づきイグナイタ15で生成された高い直流電圧でグロー放電された状態から、今度は交流電圧Va3に基づきアーク放電に移行し、以降この状態を交流電圧Va3が供給され続けられるまで維持する。   The control circuit 20 generates a switching signal, and controls the switch circuit SW to be turned on / off to generate a DC voltage of the DC power supply 11 as an AC voltage. The DC / AC conversion circuit 17 having a full bridge configuration is a drive signal output from the DC / AC conversion drive circuit 19 and turns on the switches Sa and Sd, turns off the switches Sb and Sc, and then turns on the switch Sa. Control for turning off the switch Sd and turning on the switch Sb and the switch Sc are alternately performed, and an AC voltage Va3 in which the AC voltage Va2 is superimposed on the DC voltage Vd2 is obtained from the output. From the state in which the discharge lamp 16 has been glow-discharged with the high DC voltage generated by the igniter 15 based on the DC voltage Vd1 until now, the discharge lamp 16 shifts to arc discharge based on the AC voltage Va3. Maintain until supplied.

ところで、ダイオードD3が故障した場合、インダクタL1がオープンになるため定電圧回路18の出力がオフし、電解コンデンサC2が故障することなくバラスト動作が停止する。これにより、電解コンデンサC2の防爆弁が作動して電解液が外部に漏れ出し、電解液の蒸発による煙と異臭の発生を防止することが可能となる。また、定電圧回路18の電解コンデンサC2に流れるリップル電流を小さいことから、小さいリップル電流定格のコンデンサを使用でき形状を小さくできる。   By the way, when the diode D3 fails, the inductor L1 is opened so that the output of the constant voltage circuit 18 is turned off, and the ballast operation is stopped without the electrolytic capacitor C2 failing. As a result, the explosion-proof valve of the electrolytic capacitor C2 is activated, and the electrolyte leaks to the outside, and it is possible to prevent the generation of smoke and off-flavor due to evaporation of the electrolyte. Further, since the ripple current flowing through the electrolytic capacitor C2 of the constant voltage circuit 18 is small, a capacitor with a small ripple current rating can be used, and the shape can be reduced.

図4は、この発明の他の実施形態について説明するための図2に相当する回路構成図である。この実施形態は、スイッチ12とトランスTRの一端の接続点から定電圧回路18に交流電圧Va1を供給していた状態から、トランスTRの一次側コイルn1の中間タップから交流電圧Va11を取り出した部分が上記した実施形態と異なる。図2と同一の構成部分には同一符号付してここでは異なる構成について説明する。   FIG. 4 is a circuit configuration diagram corresponding to FIG. 2 for explaining another embodiment of the present invention. In this embodiment, the AC voltage Va11 is extracted from the intermediate tap of the primary coil n1 of the transformer TR from the state where the AC voltage Va1 is supplied to the constant voltage circuit 18 from the connection point between one end of the switch 12 and the transformer TR. Is different from the above-described embodiment. The same components as those in FIG. 2 are denoted by the same reference numerals and different configurations will be described here.

巻線の少ない中間タップから取り出していることから、発生する交流電圧Va11は、図2で発生する交流電圧Va1より低いものとなる。このため、発生するリップル電流成分もそのレベルが低い状態で定電圧回路18に流れ込むことになる。   Since the intermediate tap with few windings is taken out, the generated AC voltage Va11 is lower than the AC voltage Va1 generated in FIG. For this reason, the generated ripple current component also flows into the constant voltage circuit 18 with its level being low.

この実施形態では、トランスTRの一次コイルn1から定電圧回路18までの配線パターンに流れるリップル電流がより小さくなるため高周波リップル電圧が小さくなるためノイズを低減できる。また、上記した実施形態と同様に、ダイオードD3が故障した場合、インダクタL1がオープンになるため定電圧回路18の出力がオフし、電解コンデンサC2が故障することなくバラスト動作が停止する。これにより、電解コンデンサC2の防爆弁が作動して電解液が外部に漏れ出し、電解液の蒸発による煙と異臭の発生を防止することが可能となる。また、定電圧回路18の電解コンデンサC2に流れるリップル電流を小さいことから、小さいリップル電流定格のコンデンサを使用でき形状を小さくできる。   In this embodiment, since the ripple current flowing through the wiring pattern from the primary coil n1 of the transformer TR to the constant voltage circuit 18 becomes smaller, the high-frequency ripple voltage becomes smaller, so that noise can be reduced. Similarly to the above-described embodiment, when the diode D3 fails, the inductor L1 is opened so that the output of the constant voltage circuit 18 is turned off, and the ballast operation is stopped without causing the electrolytic capacitor C2 to fail. As a result, the explosion-proof valve of the electrolytic capacitor C2 is activated, and the electrolyte leaks to the outside, and it is possible to prevent the generation of smoke and off-flavor due to evaporation of the electrolyte. Further, since the ripple current flowing through the electrolytic capacitor C2 of the constant voltage circuit 18 is small, a capacitor with a small ripple current rating can be used, and the shape can be reduced.

この発明の一実施形態について説明するための回路構成図。The circuit block diagram for demonstrating one Embodiment of this invention. 図1の動作について説明するための説明図。Explanatory drawing for demonstrating the operation | movement of FIG. この発明の他の実施形態について説明するための回路構成図。The circuit block diagram for demonstrating other embodiment of this invention. 図3の動作について説明するための説明図。Explanatory drawing for demonstrating the operation | movement of FIG.

符号の説明Explanation of symbols

11 直流電源
12 電源スイッチ
13 第1のDC/DC変換回路
14 第2のDC/DC変換回路
15 イグナイタ
16 放電灯
17 DC/AC変換回路
18 定電圧回路
19 DC/AC変換駆動回路
20 制御回路
TR トランス
D3 ダイオード
L1 インダクタ
C2 電解コンデンサ
Q1 トランジスタ
ZD ツェナーダイオード
11 DC power supply 12 Power switch 13 First DC / DC conversion circuit 14 Second DC / DC conversion circuit 15 Igniter 16 Discharge lamp 17 DC / AC conversion circuit 18 Constant voltage circuit 19 DC / AC conversion drive circuit 20 Control circuit TR Transformer D3 Diode L1 Inductor C2 Electrolytic capacitor Q1 Transistor ZD Zener diode

Claims (2)

直流電源と、
前記直流電源の電圧を所望の第1の直流電圧および交流電圧に変換する第1のDC/DC変換回路と、
前記直流電源の電圧を所望の第2の直流電圧に変換する第2のDC/DC変換回路と、
始動時に前記第2のDC/DC変換回路の第2の直流電圧に基づき所望の高電圧を生成するイグナイタと、
前記イグナイタの出力に基づき点灯に必要な電力が供給される放電灯と、
前記第1のDC/DC変換回路から出力される直流電圧を交流電圧に変換し、前記放電灯がグローからアーク点灯に移行させるDC/AC変換回路と、
前記第1のDC/DC変換回路で交流電圧を生成させるための制御回路および前記DC/AC変換回路の駆動させる前記第1のDC/DC変換回路の交流電圧を直流電圧に変換するとともに定電圧を得る定電圧回路とからなり、
前記定電圧回路を構成する直流に変換する手段と該手段により直流変換された電圧を定電圧化の手段との間にインピーダンス素子を直列接続したことを特徴とする放電灯点灯装置。
DC power supply,
A first DC / DC conversion circuit for converting the voltage of the DC power source into desired first DC voltage and AC voltage;
A second DC / DC conversion circuit for converting the voltage of the DC power source into a desired second DC voltage;
An igniter that generates a desired high voltage based on the second DC voltage of the second DC / DC conversion circuit at the time of starting;
A discharge lamp to which power necessary for lighting is supplied based on the output of the igniter;
A DC / AC conversion circuit that converts a DC voltage output from the first DC / DC conversion circuit into an AC voltage, and the discharge lamp shifts from glow to arc lighting;
A control circuit for generating an AC voltage in the first DC / DC conversion circuit and an AC voltage of the first DC / DC conversion circuit for driving the DC / AC conversion circuit are converted into a DC voltage and a constant voltage And a constant voltage circuit
A discharge lamp lighting device, wherein an impedance element is connected in series between a means for converting to direct current constituting the constant voltage circuit and a means for converting the voltage converted into direct current by the means into a constant voltage.
前記第1のDC/DC変換回路は、二次側が一次側よりも巻数の多いコイルを有するトランスと、該トランスの二次側に発生する交流電圧を直流電圧に変換する手段とを有し、
前記定電圧回路に供給される交流電圧は、前記第1のDC/DC変換回路の交流電圧を発生するトランスの一次側の一端あるいは中間であることを特徴とする請求項1記載の放電灯点灯装置。
The first DC / DC conversion circuit includes a transformer having a coil whose secondary side has a larger number of turns than the primary side, and means for converting an AC voltage generated on the secondary side of the transformer into a DC voltage,
2. The discharge lamp lighting according to claim 1, wherein the AC voltage supplied to the constant voltage circuit is one end or the middle of the primary side of the transformer that generates the AC voltage of the first DC / DC conversion circuit. apparatus.
JP2005036637A 2005-02-14 2005-02-14 Discharge lamp lighting device Expired - Fee Related JP4722506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036637A JP4722506B2 (en) 2005-02-14 2005-02-14 Discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036637A JP4722506B2 (en) 2005-02-14 2005-02-14 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2006222044A true JP2006222044A (en) 2006-08-24
JP4722506B2 JP4722506B2 (en) 2011-07-13

Family

ID=36984193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036637A Expired - Fee Related JP4722506B2 (en) 2005-02-14 2005-02-14 Discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4722506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259375A (en) * 2007-04-06 2008-10-23 Canon Inc Electronic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048991A (en) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2004342324A (en) * 2003-05-12 2004-12-02 Matsushita Electric Works Ltd Discharge lamp lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048991A (en) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2004342324A (en) * 2003-05-12 2004-12-02 Matsushita Electric Works Ltd Discharge lamp lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259375A (en) * 2007-04-06 2008-10-23 Canon Inc Electronic apparatus

Also Published As

Publication number Publication date
JP4722506B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4476817B2 (en) Discharge lamp lighting device
WO2008001519A1 (en) Electric discharge lamp device and lighting apparatus
CN101461288A (en) Lamp driving circuit
JP2007035503A (en) Discharge lamp lighting device
JP3802281B2 (en) Discharge lamp lighting circuit
JP4519613B2 (en) LED lighting device
JP2008544740A (en) Method for driving an inverter of a gas discharge supply circuit
JP4722506B2 (en) Discharge lamp lighting device
JP2010198860A (en) Discharge lamp-lighting circuit
JP2009238731A (en) Discharge lamp lighting circuit
JP5371097B2 (en) Illumination device and dimming method of illumination device
JP2008135265A (en) Discharge lamp lighting device
JPWO2004068914A1 (en) Discharge tube lighting device
JP6558018B2 (en) Discharge lamp driving device, light source device, projector, and discharge lamp driving method
JP2007066596A (en) Discharge lamp lighting device
JP2009060712A (en) Switching power supply
JP2009514158A (en) Gas discharge lamp lighting module
JP4040518B2 (en) Discharge lamp lighting device
JP2005071842A (en) Discharge lamp lighting device and illumination apparatus
JP2007173130A (en) Discharge lighting device
JP2008084579A (en) Discharge lamp lighting device
JP2009026497A (en) Discharge lamp lighting circuit
JP2010140825A (en) Discharge lamp lighting circuit
JP4467941B2 (en) Discharge lamp lighting device
JP2001203086A (en) Light circuit of discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees