JP2006221958A - Heating method and device by microwave of sheet-like heating object having conductive or magnetic thin film - Google Patents

Heating method and device by microwave of sheet-like heating object having conductive or magnetic thin film Download PDF

Info

Publication number
JP2006221958A
JP2006221958A JP2005034165A JP2005034165A JP2006221958A JP 2006221958 A JP2006221958 A JP 2006221958A JP 2005034165 A JP2005034165 A JP 2005034165A JP 2005034165 A JP2005034165 A JP 2005034165A JP 2006221958 A JP2006221958 A JP 2006221958A
Authority
JP
Japan
Prior art keywords
side walls
sheet
cavity resonator
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005034165A
Other languages
Japanese (ja)
Inventor
Tadashi Okamoto
正 岡本
Hiromichi Odajima
博道 小田島
Eiji Matsuo
英治 松尾
Hiyo Son
冰 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDX CORP
Original Assignee
IDX CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDX CORP filed Critical IDX CORP
Priority to JP2005034165A priority Critical patent/JP2006221958A/en
Publication of JP2006221958A publication Critical patent/JP2006221958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new means of heating at high efficiency and uniformly a sheet-like heating object including a conductive thin film or a magnetic thin film. <P>SOLUTION: A sheet-like heating object 1 including a conductive thin film or a magnetic thin film is inserted into a cavity resonator 4 which generates electromagnetic field of TM110, and by utilizing the electric field and current generated in the conductive thin film or magnetic thin film, this is heated directly or indirectly. The insertion location into the cavity resonator 4 can be made changeable according to the size of surface resistance of the thin film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、マイクロ波を照射することにより、シート状の被加熱物を加熱する方法と装置に係り、特に、基板上に導電性薄膜あるいは磁性薄膜を重ねた複合多層膜シートをマイクロ波により高効率で、均一に加熱できる加熱方法とその装置に関する。   The present invention relates to a method and apparatus for heating a sheet-like object to be heated by irradiating microwaves, and in particular, a composite multilayer film sheet in which a conductive thin film or a magnetic thin film is stacked on a substrate is enhanced by microwaves. The present invention relates to a heating method and apparatus capable of heating uniformly and efficiently.

マイクロ波は、電子レンジを始め、産業用加熱炉の熱源として広く利用されている。マイクロ波は、物質に含まれる水を加熱するだけでなく、極性を持った誘電物質に作用してこれを直接、かつ選択的に加熱できるので、従来の加熱手段のように外部から試料を加熱する装置に比較して、短時間で効率よく加熱できる特徴を持っている。
近年、シート状被加熱物に対しマイクロ波を用いて選択的かつ均一に加熱したいという要求が、太陽電池、光触媒、シート状医薬品、印刷、電子デバイス等の分野で高まりつつある。その要求は、単なる乾燥から、熱処理、活性化など、多岐に及んでいる。このような要求の流れの中で、マイクロ波は単なる誘電体加熱の域を越え、導電性薄膜、磁性薄膜をも含めた要求に応える必要に迫られている。
通常、マイクロ波は金属表面で反射し、金属内には進入できないとされている。しかしながら、金属の厚さがnmやサブミクロンオーダになると電磁波が透過するので、特に薄膜の世界で、従来対象外とされたマイクロ波の利用が開かれようとしている。
マイクロ波によるシート状物の加熱装置として、かつて導波管を何度も折り曲げて構成した折り曲げ線路型の装置が開発され、さらに、電界を強くする目的でリング共振器内にこの折れ曲げ線路を取り込む案などが考案されたが、電界が弱いこと、効率が低いことなどの問題があって、限られた範囲でしか利用されなかった。
直方体共振器を用いTM110モードの共振をとると、導波管型に比較してきわめて強い均一な電磁界を発生できる。この装置を用いて薬剤乾燥、印刷物乾燥等が検討され、今日に至っているが、先述のように、シート加熱は単なる誘電体加熱の範囲を超え、導電性薄膜などの加熱に応え得る見通しがあって、加熱試験が進められる状況にある。
米国では粉末冶金に関連して、純磁界、純電界によるマイクロ波処理が提案されている(特許文献3)。これは標準導波管の両端を短絡した系にマイクロ波を結合させTE103を共振させて、この共振器内に両端を除いて電界がゼロで磁界が最大になる点2ヶ所と、電界が最大で磁界がゼロになる点1ヶ所を、それぞれ等間隔で作り、電界が最大になる点と磁界が最大になる点に被加熱物を挿入して特徴のある加熱成果を得ようとするものである。しかしながら、マイクロ波加熱は純電界、純磁界による加熱に限らず、電界と磁界が適当な割合で存在する空間で行われるのが普通で、特許文献3のような提案は学問上、興味のある比較ではあるが、実際的な利用とは言えない。また、この文献で説明されているTE103モード以外にもいろいろな共振があり、その共振で純電界、純磁界を生じる位置があるのはごく一般的に知られた事象である。マイクロ波加熱したい対象に対し最適なモードを適切に利用することは、現状、十分に開拓されていない。したがって、そのような観点に立って、対象物に合う加熱装置を開発し、また加熱方法を考察することは、均一加熱、高効率加熱上、必要でかつ急務である。
米国特許第6,365,885号
Microwaves are widely used as a heat source for industrial heating furnaces including microwave ovens. Microwaves not only heat water contained in substances, but also act on polar dielectric substances to directly and selectively heat them, so that samples can be heated from outside like conventional heating means. Compared to a device that does this, it has the feature of heating efficiently in a short time.
In recent years, there has been an increasing demand in the fields of solar cells, photocatalysts, sheet pharmaceuticals, printing, electronic devices and the like to selectively and uniformly heat a sheet-like object to be heated using microwaves. The demands range from simple drying to heat treatment and activation. In such a flow of demand, microwaves have been forced to meet demands that include conductive thin films and magnetic thin films beyond the scope of simple dielectric heating.
Usually, microwaves are reflected on the metal surface and cannot enter the metal. However, since the electromagnetic wave is transmitted when the metal thickness is on the order of nm or submicron, the use of microwaves, which has been excluded from conventional targets, is being opened up, especially in the world of thin films.
As a heating device for sheet-like materials by microwaves, a folded line type device that was constructed by bending a waveguide many times was developed, and this bent line was placed in a ring resonator for the purpose of strengthening the electric field. The idea of capturing was devised, but it was used only in a limited range due to problems such as weak electric field and low efficiency.
When a TM110 mode resonance is obtained using a rectangular parallelepiped resonator, a very strong uniform electromagnetic field can be generated as compared with the waveguide type. Using this device, drug drying, printed matter drying, etc. have been studied and as of today, sheet heating exceeds the range of mere dielectric heating, and there is a prospect of being able to respond to heating of conductive thin films. The heating test is in progress.
In the United States, microwave processing using a pure magnetic field and a pure electric field has been proposed in connection with powder metallurgy (Patent Document 3). This is because a microwave is coupled to a system in which both ends of a standard waveguide are short-circuited to resonate TE103, and the electric field is zero and the electric field is maximum except for both ends, and the electric field is maximum. One point where the magnetic field becomes zero is created at equal intervals, and the object to be heated is inserted at the point where the electric field is maximized and the point where the magnetic field is maximized to obtain a characteristic heating result. is there. However, the microwave heating is not limited to heating by a pure electric field and a pure magnetic field, but is usually performed in a space in which an electric field and a magnetic field are present at an appropriate ratio. Although it is a comparison, it is not a practical use. In addition to the TE103 mode described in this document, there are various resonances, and it is a generally known phenomenon that there is a position where a pure electric field and a pure magnetic field are generated by the resonance. Appropriate use of the optimum mode for the object to be heated by microwaves has not been fully developed at present. Therefore, from such a viewpoint, it is necessary and urgent to develop a heating apparatus suitable for an object and to consider a heating method for uniform heating and high-efficiency heating.
US Pat. No. 6,365,885

この発明は、上記のような背景と要求のもとになされたものであり、マイクロ波によってシート状被加熱物、特に導電性又は磁性の薄膜を含むシートを高効率で均一に加熱する新しい手段を提供することを目的とする。   The present invention has been made under the background and requirements as described above, and is a new means for uniformly heating a sheet-like object to be heated, particularly a sheet containing a conductive or magnetic thin film, with microwaves. The purpose is to provide.

請求項1に記載された発明においては、上記課題を解決するため、直方体状の空胴共振器内にTM110モードの電界を発生させ、導電性薄膜又は磁性薄膜を含むシート状被加熱物を、この空胴共振器内に通過させ、高効率でほぼ均一な加熱を行う方法を提供する。   In the invention described in claim 1, in order to solve the above-mentioned problem, a TM110 mode electric field is generated in a rectangular parallelepiped cavity resonator, and a sheet-like object to be heated including a conductive thin film or a magnetic thin film is obtained. Provided is a method of passing through the cavity resonator and performing substantially uniform heating with high efficiency.

請求2,3,4に記載された発明は、請求項1に記載のシート状被加熱物の加熱方法を実施するためのマイクロ波加熱装置を提供する。請求項3,4に記載の発明は、特にシートの挿入口を任意に選択できるマイクロ波加熱装置を提供する。   The invention described in claims 2, 3 and 4 provides a microwave heating apparatus for carrying out the heating method for a sheet-like object to be heated described in claim 1. The inventions described in claims 3 and 4 provide a microwave heating apparatus capable of selecting an insertion port of a sheet arbitrarily.

この発明においては、導電性又は磁性薄膜を有するシート状被加熱物を高効率で均一に加熱できるようにした。   In the present invention, a sheet-like object to be heated having a conductive or magnetic thin film can be uniformly heated with high efficiency.

図面を参照してこの発明の一実施形態を説明する。図1はこの発明における加熱対象であるシート、即ち、基板上に導電性又は磁性薄膜を形成したシートの基本構造を示す簡略化した部分断面図、図2は加熱対象であるシートを空胴共振器に通過させる状態を示したマイクロ波加熱装置の斜視図、図3は加熱対象であるシートを装置に挿入、通過させる位置を任意に選択するための開口を備えたマイクロ波加熱装置の斜視図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a simplified partial sectional view showing the basic structure of a sheet to be heated in the present invention, that is, a sheet in which a conductive or magnetic thin film is formed on a substrate, and FIG. 2 shows cavity resonance of the sheet to be heated. FIG. 3 is a perspective view of a microwave heating apparatus having an opening for arbitrarily selecting a position where a sheet to be heated is inserted into the apparatus and passed through the apparatus. It is.

シート1は、誘電体基板2の上に1層又は複数層の薄膜が形成され、うち少なくとも1層が導電性又は磁性の薄膜3であるような形態をとる。図1には、代表的に、シート1が、誘電体基板2と、その上に形成された1層の導電性薄膜3からなるもっとも単純な例を示す。導電性薄膜3は、マイクロ波加熱によって溶融することにより導電性薄膜の形態となる層状のものを含むほか、紫外線等の照射によって導電性を持つ薄膜を含む。例えば、誘電体基板2としてのガラスや樹脂シートの上に、導電性薄膜をスパッタリングや蒸着等の手段でコーティングしたもの、あるいは、導電性物質(通常微粉末)を溶剤等の補助材で溶いて塗工したものである。この薄膜3が空胴共振器4内でマイクロ波の照射を受けて加熱される。なお、以上の説明で基板を誘電体としたが、極端な場合として基板自身が導電性を持つ場合がある。
空胴共振器4は、直方体空胴からなり、直交するx,y,z軸方向にそれぞれ互いに平行に対向する3対6つの導電体側壁4a・4b,4c・4d,4e,4fを持つ。側壁4cの中央にマイクロ波発振器(図示せず)につながる導波管5が結合され、空胴共振器4内にマイクロ波が導入される。側壁4a,4bの対向位置に、側壁4cと平行に伸びる細長い開口6が設けられる。シート1は、開口6を通して空胴共振器4内を通過する。
シート1の導電性薄膜3の表面抵抗が大きいとき、例えば数百Ω/□ないしkΩ/□のときは、空胴内の比較的電界の強いところに挿入され、小さいとき、すなわち数Ω/□ないし数10Ω/□のときは比較的電界の弱いところに挿入される。TM110の電界はシート1の幅方向(z方向)に向かっていて、これと直角な方向(x,y方向)に対し正弦波状に強さが変化し、側壁4a,4b,4c,4dの壁面でゼロ、壁面間の中心で最大になる。磁界はこの電界を取り巻くような形で発生していてシートの幅方向(z方向)の成分はなく、側壁4a,4b,4c,4dの壁面で強さが最大、空胴共振器の中心でゼロとなる。したがって、シートに作用させる電界、あるいは磁界の強さは、空胴共振器4にシートを挿入する位置を選ぶことによって任意に決めることができる。薄膜3の表面抵抗が大きい場合は、主として空胴内のマイクロ波電界の作用を受けて誘電加熱され、小さい場合は主として磁界の作用を受け、新たな電界が薄膜3内とその近傍に発生する結果、薄膜3内の電界あるいは起電力によって流れる電流により加熱される。挿入位置を偏らせる極端な例では、シート1をごく側壁4dに近い位置に挿入する。実際上、側壁4dの存在によって物理的に純磁界の位置におくことはできず、側壁4dからある適切な距離をとっておくことになる。また、誘電体基板2のマイクロ波吸収が大きく、しかもなるべくこれを加熱したくないときは、基板2を側壁4dになるべく近い位置に挿入する。
The sheet 1 takes a form in which one or more thin films are formed on a dielectric substrate 2, and at least one of them is a conductive or magnetic thin film 3. FIG. 1 representatively shows the simplest example in which a sheet 1 is composed of a dielectric substrate 2 and a single conductive thin film 3 formed thereon. The conductive thin film 3 includes a layered material that forms a conductive thin film when melted by microwave heating, and also includes a thin film that has conductivity when irradiated with ultraviolet rays or the like. For example, on a glass or resin sheet as the dielectric substrate 2, a conductive thin film coated by means such as sputtering or vapor deposition, or a conductive substance (usually fine powder) is dissolved with an auxiliary material such as a solvent. It has been applied. The thin film 3 is heated by being irradiated with microwaves in the cavity resonator 4. In the above description, the substrate is a dielectric. However, as an extreme case, the substrate itself may be conductive.
The cavity resonator 4 is formed of a rectangular parallelepiped cavity, and has three to six conductor side walls 4a, 4b, 4c, 4d, 4e, and 4f that face each other in the x, y, and z axis directions orthogonal to each other. A waveguide 5 connected to a microwave oscillator (not shown) is coupled to the center of the side wall 4 c, and a microwave is introduced into the cavity resonator 4. An elongated opening 6 extending in parallel with the side wall 4c is provided at a position opposite to the side walls 4a and 4b. The sheet 1 passes through the cavity resonator 4 through the opening 6.
When the surface resistance of the conductive thin film 3 of the sheet 1 is large, for example, several hundred Ω / □ or kΩ / □, it is inserted in a relatively strong electric field in the cavity, and when it is small, that is, several Ω / □. Or when it is several tens of ohms / □, it is inserted where the electric field is relatively weak. The electric field of TM110 is directed in the width direction (z direction) of the sheet 1, and the intensity changes in a sine wave shape in the direction perpendicular to the sheet (x direction), and the wall surfaces of the side walls 4a, 4b, 4c, 4d. Zero at the maximum and maximum at the center between the walls. The magnetic field is generated in such a form as to surround the electric field, there is no component in the width direction (z direction) of the sheet, the strength is maximum on the side walls 4a, 4b, 4c, and 4d, and at the center of the cavity resonator. It becomes zero. Therefore, the strength of the electric field or magnetic field applied to the sheet can be arbitrarily determined by selecting the position where the sheet is inserted into the cavity resonator 4. When the surface resistance of the thin film 3 is large, dielectric heating is performed mainly by the action of the microwave electric field in the cavity, and when it is small, a new electric field is generated in and near the thin film 3 mainly by the action of the magnetic field. As a result, the thin film 3 is heated by an electric current flowing due to an electric field or an electromotive force. In an extreme example in which the insertion position is biased, the sheet 1 is inserted at a position very close to the side wall 4d. In practice, due to the presence of the side wall 4d, it cannot be physically placed at the position of the pure magnetic field, and a certain appropriate distance is taken from the side wall 4d. When the dielectric substrate 2 has a large microwave absorption and it is not desired to heat it as much as possible, the substrate 2 is inserted as close as possible to the side wall 4d.

薄膜3が磁性薄膜の場合は通常、共振器の側壁4dの近くに挿入される。ただし、この場合でも、磁性薄膜の表面抵抗や、その導磁率と厚さにより、適切な挿入位置を選択することが必要で、通常、実験的に最適な位置を決めることになる。   When the thin film 3 is a magnetic thin film, it is normally inserted near the side wall 4d of the resonator. However, even in this case, it is necessary to select an appropriate insertion position depending on the surface resistance of the magnetic thin film and its magnetic permeability and thickness, and the optimum position is usually determined experimentally.

導電性薄膜、磁性薄膜を電界が強い位置に挿入したときは、通常の誘電体加熱と同様、膜内で電界の向きは同じであるが、これを磁界の強い位置に置いた場合、磁性薄膜が導電性を持たないときは膜内で電界の向きが逆転し、導電性薄膜、導電性を持つ磁性薄膜のとき、電流は表皮電流の形で流れ、向きが裏表で逆転している。表皮電流であるため、導電性がかなり高い場合でもかなり効率のよい加熱が可能である。   When a conductive thin film or magnetic thin film is inserted at a position where the electric field is strong, the direction of the electric field is the same in the film as in normal dielectric heating, but when this is placed at a position where the magnetic field is strong, the magnetic thin film When there is no conductivity, the direction of the electric field is reversed in the film, and in the case of a conductive thin film or a conductive magnetic thin film, the current flows in the form of a skin current, and the direction is reversed on the back and front. Because of the skin current, it is possible to perform heating with considerably high efficiency even when the conductivity is very high.

図2で被加熱物であるシート1は、空胴共振器4内を矢印で示すx方向に通過する。マイクロ波は導波管5を介して空胴に励振され、TM110モードの電磁界を発生している。このモードの電界の強さはシート1の幅方向(z方向)で変化せず移動方向(x方向)に対して正弦波状に変化しているが、シート1をx方向へ移動させることにより、均一に加熱することができる。   In FIG. 2, the sheet 1 that is the object to be heated passes through the cavity resonator 4 in the x direction indicated by the arrow. The microwave is excited in the cavity through the waveguide 5 to generate a TM110 mode electromagnetic field. The intensity of the electric field in this mode does not change in the width direction (z direction) of the sheet 1 but changes in a sine wave shape with respect to the moving direction (x direction), but by moving the sheet 1 in the x direction, It can be heated uniformly.

図3では、側壁4a,4bの一部が複数の短冊状の開口開閉部材7a,7b,7c,7d・・・で構成されている。開閉部材7は、空胴共振器4に対して着脱自在である。対向する1対の開閉部材7を外せば、それがシート1の挿入、移動のための開口6となる。必要に応じ、取り外す開閉部材7を複数にしても、それが互いに離れた位置にある限り、特に開口の幅が広くならないので問題は生じない。また、開口の両端部のみ小さい金属片を付加して両端部が庇状に塞がれた開口とすることも電波漏洩の見地からよい結果を与える場合がある。   In FIG. 3, a part of the side walls 4a, 4b is composed of a plurality of strip-like opening / closing members 7a, 7b, 7c, 7d,. The opening / closing member 7 is detachable from the cavity resonator 4. When the pair of opposed opening / closing members 7 are removed, this becomes the opening 6 for inserting and moving the seat 1. If necessary, even if a plurality of opening / closing members 7 are removed, there is no problem because the width of the opening is not particularly wide as long as the opening / closing members 7 are separated from each other. In addition, it may sometimes give a good result from the viewpoint of radio wave leakage by adding small metal pieces only at both ends of the opening to make the opening closed at both ends.

直方体空胴のTM110モードの壁面電流は電界と平行な方向に流れていて、シート挿入ための開口6に対し平行である。このため、開口6の幅と側壁4a,4bの壁厚を適切に決めれば殆ど電波漏れを生じない。以上、述べた方法により、容易に開口6の位置を変えることができる。   The wall current of the TM110 mode of the rectangular parallelepiped cavity flows in a direction parallel to the electric field, and is parallel to the opening 6 for inserting the sheet. For this reason, if the width of the opening 6 and the wall thickness of the side walls 4a and 4b are appropriately determined, radio wave leakage hardly occurs. As described above, the position of the opening 6 can be easily changed by the method described above.

この発明は、例えば、太陽電池、光触媒、シート状医薬品、印刷、電子デバイス等の分野で、シート状被加熱物に対しマイクロ波を用いて選択的かつ均一に加熱したいという要求に応じることができる。誘電体加熱の域を越え、導電性薄膜、磁性薄膜をも含めたマイクロ波加熱の要求に応えることができる。加熱の目的は、単なる乾燥から、熱処理、活性化など、多岐に及ぶ。   The present invention can meet the demand to selectively and uniformly heat a sheet-shaped object to be heated using microwaves in the fields of solar cells, photocatalysts, sheet-form pharmaceuticals, printing, electronic devices, and the like. . Beyond the area of dielectric heating, it can meet the requirements of microwave heating including conductive thin films and magnetic thin films. The purpose of heating ranges from mere drying to heat treatment and activation.

この発明の方法により加熱するシートの基本構造を示す断面図である。It is sectional drawing which shows the basic structure of the sheet | seat heated by the method of this invention. この発明の実施形態に係るマイクロ波によるシートの加熱装置の斜視図である。It is a perspective view of the heating apparatus of the sheet | seat by the microwave which concerns on embodiment of this invention. この発明の他の実施形態に係るマイクロ波によるシートの加熱装置の斜視図である。It is a perspective view of the heating apparatus of the sheet | seat by the microwave which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 複合多層膜シート
2 基板
3 薄膜
4 空胴共振器
4a・・・4f 側壁
5 導波管
6 開口
7a・・・開口開閉部材
DESCRIPTION OF SYMBOLS 1 Composite multilayer sheet 2 Substrate 3 Thin film 4 Cavity resonator 4a ... 4f Side wall 5 Waveguide 6 Opening 7a ... Opening / closing member

Claims (4)

薄い基板2上に1層または複数層の薄膜3が形成され、この薄膜3のうちの少なくとも1層が導電性又は磁性の薄膜であるシート状被加熱物1の加熱方法であって、
第1ないし第6の6つの側壁4a・・・4fを有する直方体状空胴共振器4の互いに対向する第5,第6の2側壁4e,4fにほぼ垂直で、残りの4側壁4a,4b,4c,4dにほぼ平行なマイクロ波電界を発生させる工程と、
前記空胴共振器4内における前記マイクロ波電界にほぼ平行な第3,第4の側壁4c,4dから任意の距離だけ離れた位置において、当該側壁4c,4dに対して平行に、空胴共振器4内に前記シート状被加熱物1を通過させる工程と、
前記空胴共振器4内に発生する電磁界で前記シート状被加熱物1を加熱する工程と、を含むことを特徴とするマイクロ波によるシート状被加熱物の加熱方法。
A heating method for a sheet-like object to be heated 1 in which one or a plurality of thin films 3 are formed on a thin substrate 2, and at least one of the thin films 3 is a conductive or magnetic thin film,
The rectangular parallelepiped cavity resonator 4 having the first to sixth six side walls 4a... 4f is substantially perpendicular to the fifth and sixth two side walls 4e and 4f facing each other, and the remaining four side walls 4a and 4b. , 4c, 4d generating a microwave electric field substantially parallel to
Cavity resonance is performed in parallel to the side walls 4c and 4d at a position separated from the third and fourth side walls 4c and 4d substantially parallel to the microwave electric field in the cavity resonator 4 by an arbitrary distance. Passing the sheet-like object to be heated 1 through a vessel 4;
Heating the sheet-like object to be heated 1 with an electromagnetic field generated in the cavity resonator 4.
薄い基板2上に1層または複数層の薄膜3が形成され、この薄膜3のうちの少なくとも1層が導電性又は磁性薄膜であるシート状被加熱物1に、マイクロ波を照射してこれを加熱するための装置であって、
第1ないし第6の6つの側壁4a・・・4fを有し、互いに対向する第5,第6の2側壁4e,4fにほぼ垂直で、残りの4側壁4a,4b,4c,4dにほぼ平行なマイクロ波電界を内部に発生させる直方体状空胴共振器4を具備し、
この空胴共振器4における前記マイクロ波電界にほぼ平行な相対向する第1,第2の両側壁4a,4bには、前記マイクロ波電界にほぼ平行に伸びる細長の挿入用開口6が対向位置に設けられ、
前記挿入用開口を通して前記空胴共振器内に前記シート状被加熱物1を通過させ、空胴共振器内に発生する電磁界で加熱することを特徴とするマイクロ波によるシート状被加熱物の加熱装置。
One or a plurality of thin films 3 are formed on a thin substrate 2, and at least one of the thin films 3 is a conductive or magnetic thin film 1 to be irradiated with microwaves. A device for heating,
It has first to sixth six side walls 4a ... 4f, is substantially perpendicular to the fifth and sixth two side walls 4e, 4f facing each other, and is substantially perpendicular to the remaining four side walls 4a, 4b, 4c, 4d. A rectangular parallelepiped cavity resonator 4 for generating parallel microwave electric fields therein;
In the first and second side walls 4a and 4b facing each other substantially parallel to the microwave electric field in the cavity resonator 4, elongated insertion openings 6 extending substantially parallel to the microwave electric field are opposed to each other. Provided in
The sheet-like object to be heated by microwaves is heated by an electromagnetic field generated in the cavity resonator by passing the sheet-like object to be heated 1 through the insertion opening and into the cavity resonator. Heating device.
薄い基板2上に1層または複数層の薄膜3が形成され、この薄膜3のうちの少なくとも1層が導電性又は磁性薄膜であるシート状被加熱物1に、マイクロ波を照射してこれを加熱するための装置であって、
第1ないし第6の6つの側壁4a・・・4fを有し、互いに対向する第5,第6の2側壁4e,4fにほぼ垂直で、残りの4側壁4a,4b,4c,4dにほぼ平行なマイクロ波電界を内部に発生させる直方体状空胴共振器4を具備し、
この空胴共振器4における前記マイクロ波電界にほぼ平行な相対向する第1,第2の両側壁4a,4bには、前記マイクロ波電界にほぼ平行に伸びる細長の挿入用開口6が、マイクロ波電界にほぼ平行な他の対向一対の第3,第4の側壁4c、4dからの距離を段階的に異ならせて複数設けられ、
前記複数の挿入用開口6は、選択的に開閉可能に構成され、
選択的に開放された対向一対の前記挿入用開口6を通して前記空胴共振器4内に前記シート状被加熱物1を通過させ、空胴共振器4内に発生する電磁界で加熱することを特徴とするマイクロ波によるシート状被加熱物の加熱装置。
One or a plurality of thin films 3 are formed on a thin substrate 2, and at least one of the thin films 3 is a conductive or magnetic thin film 1 to be irradiated with microwaves. A device for heating,
It has first to sixth six side walls 4a ... 4f, is substantially perpendicular to the fifth and sixth two side walls 4e, 4f facing each other, and is substantially perpendicular to the remaining four side walls 4a, 4b, 4c, 4d. A rectangular parallelepiped cavity resonator 4 for generating parallel microwave electric fields therein;
The first and second side walls 4a and 4b facing each other substantially parallel to the microwave electric field in the cavity resonator 4 have elongated insertion openings 6 extending substantially parallel to the microwave electric field. A plurality of distances from the other pair of opposite third and fourth side walls 4c, 4d substantially parallel to the wave electric field are provided in stages,
The plurality of insertion openings 6 are configured to be selectively openable and closable.
The sheet-like object to be heated 1 is allowed to pass through the cavity resonator 4 through a pair of opposed openings 6 that are selectively opened and heated by an electromagnetic field generated in the cavity resonator 4. A heating apparatus for a sheet-like object to be heated by using a microwave.
前記空胴共振器4の前記マイクロ波電界にほぼ平行な相対向する第1,第2の両側壁4a,4bの一部が複数の短冊状の開口開閉部材7a,7b,・・・で構成され、これら各開口開閉部材7a,7b,・・・は、空胴共振器4に対して着脱自在であることを特徴とする請求3に記載のマイクロ波によるシート状被加熱物の加熱装置。   A part of the first and second side walls 4a, 4b facing each other substantially parallel to the microwave electric field of the cavity resonator 4 is composed of a plurality of strip-like opening / closing members 7a, 7b,. The opening / closing members 7a, 7b,... Are detachable from the cavity resonator 4. The apparatus for heating an object to be heated by a microwave according to claim 3, wherein
JP2005034165A 2005-02-10 2005-02-10 Heating method and device by microwave of sheet-like heating object having conductive or magnetic thin film Pending JP2006221958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034165A JP2006221958A (en) 2005-02-10 2005-02-10 Heating method and device by microwave of sheet-like heating object having conductive or magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034165A JP2006221958A (en) 2005-02-10 2005-02-10 Heating method and device by microwave of sheet-like heating object having conductive or magnetic thin film

Publications (1)

Publication Number Publication Date
JP2006221958A true JP2006221958A (en) 2006-08-24

Family

ID=36984125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034165A Pending JP2006221958A (en) 2005-02-10 2005-02-10 Heating method and device by microwave of sheet-like heating object having conductive or magnetic thin film

Country Status (1)

Country Link
JP (1) JP2006221958A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075332A1 (en) * 2007-12-12 2009-06-18 Saida Fds Inc. Microwave applicator
JP2010097884A (en) * 2008-10-18 2010-04-30 National Institute Of Advanced Industrial Science & Technology Microwave heating of conductive thin film
WO2019156142A1 (en) 2018-02-08 2019-08-15 国立研究開発法人産業技術総合研究所 Microwave heating method, microwave heating device, and chemical reaction method
JP2019140103A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Microwave-heating device, heating method and chemical reaction method
JP2019140213A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Thin film pattern-firing method and microwave-firing device
JP2020173958A (en) * 2019-04-10 2020-10-22 国立研究開発法人産業技術総合研究所 Microwave heating device and microwave heating method
EP3751963A4 (en) * 2018-02-08 2021-11-24 National Institute Of Advanced Industrial Science And Technology Microwave heating method, microwave heating device, and chemical reaction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230993A (en) * 1990-03-07 1992-08-19 Microonde Energ Syst Super high frequency application device for the treatment of sheet-like or flat-shaped product
JPH068977U (en) * 1992-07-07 1994-02-04 凸版印刷株式会社 label
JP2000012670A (en) * 1998-06-19 2000-01-14 Nikon Corp Substrate cassette
JP2004213962A (en) * 2002-12-27 2004-07-29 Tokyo Denshi Kk Microwave heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230993A (en) * 1990-03-07 1992-08-19 Microonde Energ Syst Super high frequency application device for the treatment of sheet-like or flat-shaped product
JPH068977U (en) * 1992-07-07 1994-02-04 凸版印刷株式会社 label
JP2000012670A (en) * 1998-06-19 2000-01-14 Nikon Corp Substrate cassette
JP2004213962A (en) * 2002-12-27 2004-07-29 Tokyo Denshi Kk Microwave heating device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075332A1 (en) * 2007-12-12 2009-06-18 Saida Fds Inc. Microwave applicator
JP2009146650A (en) * 2007-12-12 2009-07-02 Saida Fds Inc Microwave applicator
CN101897235A (en) * 2007-12-12 2010-11-24 株式会社斎田Fds Microwave applicator
JP2010097884A (en) * 2008-10-18 2010-04-30 National Institute Of Advanced Industrial Science & Technology Microwave heating of conductive thin film
WO2019156142A1 (en) 2018-02-08 2019-08-15 国立研究開発法人産業技術総合研究所 Microwave heating method, microwave heating device, and chemical reaction method
JP2019140103A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Microwave-heating device, heating method and chemical reaction method
JP2019140213A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Thin film pattern-firing method and microwave-firing device
EP3751963A4 (en) * 2018-02-08 2021-11-24 National Institute Of Advanced Industrial Science And Technology Microwave heating method, microwave heating device, and chemical reaction method
JP7389444B2 (en) 2018-02-08 2023-11-30 国立研究開発法人産業技術総合研究所 Microwave heating device, heating method and chemical reaction method
US11883789B2 (en) 2018-02-08 2024-01-30 National Institute Of Advanced Industrial Science And Technology Microwave heating method, microwave heating apparatus, and chemical reaction method
JP2020173958A (en) * 2019-04-10 2020-10-22 国立研究開発法人産業技術総合研究所 Microwave heating device and microwave heating method

Similar Documents

Publication Publication Date Title
JP2006221958A (en) Heating method and device by microwave of sheet-like heating object having conductive or magnetic thin film
Jung et al. Electrically controllable molecularization of terahertz meta‐atoms
Bora et al. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma
WO2015146028A1 (en) Microwave processing apparatus
US20130003245A1 (en) Focusing device for low frequency operation
Hoskinson et al. A two-dimensional array of microplasmas generated using microwave resonators
Zhang et al. Propagating modes of the travelling wave in a microwave plasma torch with metallic enclosure
Jo et al. Efficient pre-ionization by direct XB mode conversion in VEST
Liu et al. Remotely controlled microscale 3D Self‐Assembly using microwave energy
Shenggang et al. Theory of wave propagation along a waveguide filled with moving magnetized plasma
Mathew et al. Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems
Tarey et al. Studies on plasma production in a large volume system using multiple compact ECR plasma sources
He et al. Study of the perpendicular magnetic anisotropy, spin–orbit torque, and Dzyaloshinskii–Moriya interaction in the heavy metal/CoFeB bilayers with Ir22Mn78 insertion
WO2019156142A1 (en) Microwave heating method, microwave heating device, and chemical reaction method
Alù Wave-shaping surfaces
Shugayev et al. Giant microwave spontaneous emission enhancements in planar aperture waveguide structures
Penedo et al. Selective enhancement of individual cantilever high resonance modes
Li et al. Laser propagation in a highly magnetized over-dense plasma
Ji et al. Rotational population measurement of ultracold 85Rb133Cs molecules in the lowest vibrational ground state
Pan et al. Surface plasma waves with their harmonics generation from pre-structured targets
Skalyga et al. First experiments with gasdynamic ion source in CW mode
Cho et al. Optimization of plasma parameters with magnetic filter field and pressure to maximize H− ion density in a negative hydrogen ion source
Lee et al. The discharge condition to enhance electron density of capacitively coupled plasma with multi-holed electrode
Xiao et al. A novel high-efficiency stable atmospheric microwave plasma device for fluid processing based on ridged waveguide
Takahashi et al. Double layer created by electron cyclotron resonance heating in an inhomogeneously magnetized plasma with high-speed ion flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Effective date: 20100716

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101118