JP2006220583A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP2006220583A
JP2006220583A JP2005035587A JP2005035587A JP2006220583A JP 2006220583 A JP2006220583 A JP 2006220583A JP 2005035587 A JP2005035587 A JP 2005035587A JP 2005035587 A JP2005035587 A JP 2005035587A JP 2006220583 A JP2006220583 A JP 2006220583A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
packet
received
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005035587A
Other languages
Japanese (ja)
Inventor
Kenzo Ochi
謙三 黄地
Daisuke Betsusou
大介 別荘
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005035587A priority Critical patent/JP2006220583A/en
Publication of JP2006220583A publication Critical patent/JP2006220583A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an accurate flow meter. <P>SOLUTION: A signal received by ultrasonic transducers 3 and 4 is reshaped into a packet form to find a reception point from the reshaped packet-formed reception wave and propagation time of an ultrasonic wave is measured to operate the amount of a flowing fluid. This allows the propagation time of the ultrasonic wave to be stably measured with the form of the reshaped packet-formed reception wave is hardly affected even if the form of the reception wave is somewhat deformed owing to a change in the state of the fluid, making it possible to obtain a high-accuracy ultrasonic flow meter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体の流量を計測する超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid.

従来、この種の流量計として、図12に示すような超音波流量計101がある。図12は、断面図を示し、流体の流れる流路102の上流側と下流側とに一対の超音波変換器103、104を流体を介し、対向して設置し、一対の超音波変換器間を伝搬する超音波の伝搬時間から流体の流速を計測し、流量を演算し、流量計としていた(例えば、特許文献1参照)。   Conventionally, as this type of flow meter, there is an ultrasonic flow meter 101 as shown in FIG. FIG. 12 is a cross-sectional view, and a pair of ultrasonic transducers 103 and 104 are installed facing each other through the fluid on the upstream side and the downstream side of the flow path 102 through which the fluid flows, and between the pair of ultrasonic transducers. The flow rate of the fluid is measured from the propagation time of the ultrasonic wave, and the flow rate is calculated to obtain a flow meter (see, for example, Patent Document 1).

なお、図中の片矢印105(実線)は流体の流れる方向を示し、両矢印106(破線)は超音波の伝搬する方向を示している。なお、流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している。
特開2002−13958号公報
In the figure, a single arrow 105 (solid line) indicates the direction in which the fluid flows, and a double arrow 106 (broken line) indicates the direction in which the ultrasonic wave propagates. Note that the direction in which the fluid flows and the direction in which the ultrasonic waves propagate intersect at an angle θ.
JP 2002-13958 A

しかしながら、前記従来の流量計101では、上流側の超音波変換器103から下流側の超音波変換器104へ超音波を伝播させ、超音波の伝搬時間Tudを、また下流側の超音波変換器104から上流側の超音波変換器103へ超音波を伝播させ、超音波の伝搬時間Tduを交互に計測し、計測した超音波の伝播時間Tud、Tduなどを用いて時間差を求め流量を演算していた。この際所定の参照レベルをトリガーレベルとして設定し、伝播時間を計測していた。このため、超音波の受信波形が、流体の状態が変動したり、あるいは流体の温度が変化したりするなどにより、トリガーレベルが変動する場合があるため、非常に複雑な処理をし、超音波の受信波形の同一性を確保していた。また、複雑な演算処理をするため、誤差を生じる要因となるという課題を有していた。   However, in the conventional flow meter 101, an ultrasonic wave is propagated from the upstream ultrasonic transducer 103 to the downstream ultrasonic transducer 104, and the ultrasonic propagation time Tud and the downstream ultrasonic transducer are also transmitted. The ultrasonic wave is propagated from 104 to the ultrasonic transducer 103 on the upstream side, the ultrasonic wave propagation time Tdu is measured alternately, the time difference is calculated using the measured ultrasonic wave propagation times Tud, Tdu, and the flow rate is calculated. It was. At this time, a predetermined reference level was set as a trigger level, and the propagation time was measured. For this reason, since the trigger level may fluctuate due to changes in the fluid state or the fluid temperature, etc., the received waveform of the ultrasonic wave may undergo very complex processing. The received waveform was identical. In addition, since complicated calculation processing is performed, there is a problem of causing an error.

本発明は、前記従来の課題を解決するもので、受信した超音波の波形をパケット状に整形することにより、簡単な構成で、高精度な超音波流量計を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a high-accuracy ultrasonic flowmeter with a simple configuration by shaping a received ultrasonic waveform into a packet shape.

前記従来の課題を解決するために、本発明の超音波流量計は、超音波を送受信する一対の超音波振動子からなり、前記一方の超音波振動子から超音波を送信し、他方の超音波振動子で受信し、受信した超音波信号の高周波成分をカットしパケット状に受信波形を整形する整形部と、前記パケット状に整形された受信波形から受信点を検知する受信点検知部と、超音波の送信から前記受信点までの超音波の伝播時間を計測する伝播時間計測部とを備え、前記超音波の伝播時間から流量を演算する構成とした。   In order to solve the conventional problem, an ultrasonic flowmeter of the present invention includes a pair of ultrasonic transducers that transmit and receive ultrasonic waves, transmits ultrasonic waves from the one ultrasonic transducer, and transmits the other ultrasonic flowmeter. A shaping unit that receives the ultrasonic wave and cuts a high-frequency component of the received ultrasonic signal and shapes the received waveform in a packet shape; and a reception point detection unit that detects a reception point from the received waveform shaped in the packet shape; And a propagation time measuring unit that measures the propagation time of the ultrasonic wave from the transmission of the ultrasonic wave to the reception point, and the flow rate is calculated from the propagation time of the ultrasonic wave.

この構成により、上流側の超音波変換器と下流側の超音波変換器間を伝播する超音波の伝播時間、即ち、上流側から下流側および下流側から上流側への伝播時間を同時に計測することができ、高精度な超音波流量計を実現できる。   With this configuration, the propagation time of the ultrasonic wave propagating between the upstream ultrasonic transducer and the downstream ultrasonic transducer, that is, the propagation time from the upstream side to the downstream side and from the downstream side to the upstream side is simultaneously measured. Therefore, a highly accurate ultrasonic flowmeter can be realized.

また、本発明の超音波流量計は、受信波形をパケット状の1つの大きな受信波形として受信するので、受信波形が多少変形しても安定して受信することができ、簡単な構成で高精度な超音波流量計を実現できる。   In addition, the ultrasonic flowmeter of the present invention receives the received waveform as one large received waveform in the form of a packet, so that even if the received waveform is slightly deformed, it can be received stably and with a simple configuration and high accuracy An ultrasonic flowmeter can be realized.

本発明の超音波流量計は、上流側の超音波変換器から下流側の超音波変換器への超音波伝播時間および下流側の超音波変換器から上流側の超音波変換器への超音波伝播時間を、受信波形が多少変形しても正確に計測することができる。このため、計測中に流体の状態が変動、あるいは流体の温度変化などにより受信波形が変形しても、超音波の伝播時間を正確に計測でき、高精度な超音波流量計を実現することができる。   The ultrasonic flowmeter of the present invention includes an ultrasonic propagation time from an upstream ultrasonic transducer to a downstream ultrasonic transducer and an ultrasonic wave from the downstream ultrasonic transducer to the upstream ultrasonic transducer. The propagation time can be accurately measured even if the received waveform is slightly deformed. Therefore, even if the received waveform is deformed due to fluctuations in the fluid state or changes in the temperature of the fluid during measurement, the ultrasonic propagation time can be measured accurately, and a highly accurate ultrasonic flow meter can be realized. it can.

第1の発明は、超音波流量計を、超音波を送受信する一対の超音波振動子からなり、前記一方の超音波振動子から超音波を送信し、他方の超音波振動子で受信し、受信した超音波信号の高周波成分をカットしパケット状に受信波形を整形する整形部と、前記パケット状に整形された受信波形から受信点を検知する受信点検知部と、超音波の送信から前記受信点までの超音波の伝播時間を計測する伝播時間計測部とを備え、前記超音波の伝播時間から流量を演算する構成とした。この構成により、流体の状態により受信波形が多少変形してもパケット状の整形された波形には殆ど影響がなく、超音波の伝播時間を正確に計測することができ、高精度な超音波流量計を実現することができる。   The first invention comprises an ultrasonic flowmeter comprising a pair of ultrasonic transducers that transmit and receive ultrasonic waves, transmitting ultrasonic waves from the one ultrasonic transducer, and receiving by the other ultrasonic transducer, A shaping unit that cuts a high-frequency component of a received ultrasonic signal and shapes a reception waveform in a packet shape, a reception point detection unit that detects a reception point from the reception waveform shaped in the packet shape, and the transmission of ultrasonic waves A propagation time measuring unit for measuring the propagation time of the ultrasonic wave to the reception point, and calculating the flow rate from the propagation time of the ultrasonic wave. With this configuration, even if the received waveform is slightly deformed depending on the fluid state, there is almost no effect on the packet-shaped waveform, and the ultrasonic propagation time can be accurately measured, and the ultrasonic flow rate is highly accurate. The total can be realized.

第2の発明は、特に第1の発明の受信波形の整形部をローパスフィルタで構成とした。これにより、簡単な回路で構成することができ、受信波形を安定にパケット状に整形することができる。このため高精度な超音波流量計を実現できる。   In the second invention, in particular, the received waveform shaping section of the first invention is constituted by a low-pass filter. As a result, a simple circuit can be used, and the received waveform can be stably shaped into a packet. For this reason, a highly accurate ultrasonic flowmeter can be realized.

第3の発明は、特に第2の発明の受信波形の整形部分を、受信波形を全波整形した後にパケット状に整形する構成とした。このため更に安定したパケット状の受信波形を得ることができ、高精度な超音波流量計を実現できる。   In the third aspect of the invention, in particular, the received waveform shaping portion of the second aspect of the invention is configured so as to be shaped into a packet after the received waveform is fully wave shaped. Therefore, a more stable packet-like received waveform can be obtained, and a highly accurate ultrasonic flow meter can be realized.

第4の発明は、特に第1の発明の受信波形の整形部を、受信波形を全波整形した後に、受信波形の各ピーク値からパケット状に受信波形を整形する構成とした。この構成により、受信波形が多少変形しても、パケット状の受信波形が、殆ど変形することがなくなり高精度な超音波流量計を実現できる。   According to the fourth aspect of the invention, in particular, the reception waveform shaping unit of the first aspect of the invention is configured to shape the reception waveform in a packet form from each peak value of the reception waveform after the reception waveform is subjected to full wave shaping. With this configuration, even if the received waveform is slightly deformed, the packet-shaped received waveform is hardly deformed, and a highly accurate ultrasonic flowmeter can be realized.

第5の発明は、特に第1の発明の受信点を、パケット状に整形された受信波形のピークから検知する構成とした。この構成により、受信波形が多少変形しても、パケット状に整形された受信波形は殆ど変化することがないので、高精度な超音波流量計を実現できる。   In the fifth aspect of the invention, the reception point of the first aspect of the invention is particularly detected from the peak of the reception waveform shaped into a packet. With this configuration, even if the received waveform is somewhat deformed, the received waveform shaped into a packet hardly changes, so a highly accurate ultrasonic flowmeter can be realized.

第6の発明は、特に第1の発明の受信点を、パケット状に整形された受信波形が所定の参照レベルと交差する2点の平均値から受信点を検知する構成とした。この構成により、受信波形が多少変形しても、パケット状に整形された受信波形は殆ど変化することがないので、高精度な超音波流量計を実現できる。   In the sixth aspect of the invention, the reception point of the first aspect of the invention is particularly configured to detect the reception point from the average value of two points where the reception waveform shaped in a packet crosses a predetermined reference level. With this configuration, even if the received waveform is somewhat deformed, the received waveform shaped into a packet hardly changes, so a highly accurate ultrasonic flowmeter can be realized.

第7の発明は、特に第1の発明の受信点を、パケット状に整形された受信波形を微分し、前記微分波形のゼロクロス点から受信点を検知する構成とした。この構成により、受信波形が多少変形しても、パケット状に整形された受信波形はS/Nが大きく改善されているので、受信波形が多少変形しても受信点が安定するので、高精度な超音波流量計を実現できる。   In the seventh aspect of the invention, in particular, the reception point of the first aspect of the invention is configured such that the reception waveform shaped into a packet is differentiated and the reception point is detected from the zero-cross point of the differential waveform. With this configuration, even if the received waveform is slightly deformed, the S / N of the received waveform shaped into a packet is greatly improved. Therefore, even if the received waveform is slightly deformed, the reception point is stable, so high accuracy An ultrasonic flowmeter can be realized.

第8の発明は、特に第1から7の発明のいずれかにおいて、超音波変換器の駆動回路と、受信回路とをインピ−ダンスを等しくした対称型回路とする構成とした。この構成により、上流側および下流側で受信する受信波形の対称性が向上するし、高精度な超音波流量計を実現できる。   In an eighth aspect of the invention, in particular, in any one of the first to seventh aspects of the invention, the drive circuit of the ultrasonic transducer and the receiving circuit are configured as symmetrical circuits having the same impedance. With this configuration, the symmetry of the received waveform received on the upstream side and the downstream side is improved, and a highly accurate ultrasonic flowmeter can be realized.

第9の発明は、特に第8の発明のインピ−ダンスを超音波変換器のインピ−ダンスに合致させた対称型回路とする構成とした。この構成により、受信波形が大きく、S/Nも大きくなり、高精度な超音波流量計を実現できる。   In the ninth aspect of the invention, in particular, the impedance of the eighth aspect of the invention is configured to be a symmetrical circuit that matches the impedance of the ultrasonic transducer. With this configuration, the received waveform is large and the S / N is large, and a highly accurate ultrasonic flowmeter can be realized.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における超音波流量計1のブロック図を示すものである。
(Embodiment 1)
FIG. 1 shows a block diagram of an ultrasonic flow meter 1 according to the first embodiment of the present invention.

図1において、上流側の超音波変換器3と下流側の超音波変換器4とは、流路2内において流体を介して対向するよう設置されている。なお、図中の片矢印5(実線)は流体の流れる方向を示し、両矢印6(破線)は超音波の伝搬する方向を示している。なお、流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している。7は送信側超音波変換器を駆動するバ−スト信号を発生する送信部、8は送信部7からの信号を上流側超音波変換器3あるいは下流側超音波変換器4に切換える切換部を示す。   In FIG. 1, an upstream ultrasonic transducer 3 and a downstream ultrasonic transducer 4 are installed in the flow path 2 so as to face each other through a fluid. In addition, the single arrow 5 (solid line) in a figure shows the direction through which a fluid flows, and the double arrow 6 (broken line) has shown the direction through which an ultrasonic wave propagates. Note that the direction in which the fluid flows and the direction in which the ultrasonic waves propagate intersect at an angle θ. 7 is a transmitter for generating a burst signal for driving the transmitter ultrasonic transducer, and 8 is a switching unit for switching the signal from the transmitter 7 to the upstream ultrasonic transducer 3 or the downstream ultrasonic transducer 4. Show.

なお、切換部は送信信号を切換えるとともに、上流側超音波変換器3あるいは下流側超音波変換器4からの受信信号を増幅器などで構成される受信部9へと切換える動作もおこなう。10は受信波形をパケット状に整形する受信波形整形部を、11は送信部からの信号と受信波形整形部からの信号とを用い超音波の伝播時間を計測する時間計測部、12は超音波の伝搬時間から流体の流量を演算する流量演算部を示す。   The switching unit switches the transmission signal, and also performs an operation of switching the reception signal from the upstream ultrasonic transducer 3 or the downstream ultrasonic transducer 4 to the receiving unit 9 constituted by an amplifier or the like. 10 is a received waveform shaping unit that shapes the received waveform into a packet, 11 is a time measuring unit that measures the propagation time of ultrasonic waves using a signal from the transmitting unit and a signal from the received waveform shaping unit, and 12 is an ultrasonic wave. The flow rate calculation part which calculates the flow volume of the fluid from the propagation time of is shown.

この構成において、従来の超音波流量計では、例えば、上流側の超音波変換器3から超音波を送信し、下流側の超音波変換器4で受信していた。このときの送信波と受信波の電圧波形を図2に示す。13が送信部7からの送信波を示し、矩形3波で構成されている。14は受信波を示し、正弦波状を示している。15は受信波のゼロ点を示し、16は所定レベルの参照電圧を示している。   In this configuration, in the conventional ultrasonic flowmeter, for example, ultrasonic waves are transmitted from the upstream ultrasonic transducer 3 and received by the downstream ultrasonic transducer 4. FIG. 2 shows voltage waveforms of the transmission wave and the reception wave at this time. Reference numeral 13 denotes a transmission wave from the transmission unit 7, which is composed of three rectangular waves. Reference numeral 14 denotes a received wave, which is sinusoidal. 15 indicates a zero point of the received wave, and 16 indicates a reference voltage of a predetermined level.

受信波が参照レベルと交差する点17の次に来るゼロクロス点18を受信時点とし、送信波の開始時点19からこのゼロクロス点までの時間を超音波の伝播時間Tudとしていた。切換部8を動作させ、同様にして、下流側の超音波変換器4から上流側の超音波変換器3への超音波の伝播時間Tduを計測する。このようにして得られた超音波伝搬時間TudおよびTduを用いて、流体の流量を以下のようにして流量演算部12で演算した。   The zero cross point 18 that comes next to the point 17 where the received wave crosses the reference level is the reception time point, and the time from the start point 19 of the transmission wave to the zero cross point is the ultrasonic wave propagation time Tud. Similarly, the switching unit 8 is operated to measure the ultrasonic propagation time Tdu from the downstream ultrasonic transducer 4 to the upstream ultrasonic transducer 3. Using the ultrasonic propagation times Tud and Tdu thus obtained, the flow rate of the fluid was calculated by the flow rate calculation unit 12 as follows.

上流側の超音波変換器3から下流側の超音波変換器4への超音波の伝播時間をTud、下流側の超音波変換器4から上流側の超音波変換器3への超音波の伝播時間をTduとし、超音波が流体中を伝搬する伝搬速度をVs、流体の流速をVfとすると、
Tud=Ld/[Vs+Vf・cos(θ)]、
Tdu=Ld/[Vs−Vf・cos(θ)]
となる。なお、Ldは超音波変換器間の距離を示す。
The propagation time of the ultrasonic wave from the upstream ultrasonic transducer 3 to the downstream ultrasonic transducer 4 is Tud, and the ultrasonic wave propagation from the downstream ultrasonic transducer 4 to the upstream ultrasonic transducer 3 is Tud. If the time is Tdu, the propagation velocity of ultrasonic waves in the fluid is Vs, and the fluid flow velocity is Vf,
Tud = Ld / [Vs + Vf · cos (θ)],
Tdu = Ld / [Vs−Vf · cos (θ)]
It becomes. Ld indicates the distance between the ultrasonic transducers.

これらより、
Vs+Vf・cos(θ)=Ld/Tud、
Vs−Vf・cos(θ)=Ld/Tdu
となり、これらの両辺を引き算すると、
2*Vf・cos(θ)=(Ld/Tud)−(Ld/Tdu)
=Ld*[(1/Tud)−(1/Tdu)]
となる。
From these,
Vs + Vf · cos (θ) = Ld / Tud,
Vs−Vf · cos (θ) = Ld / Tdu
And subtracting both sides,
2 * Vf · cos (θ) = (Ld / Tud) − (Ld / Tdu)
= Ld * [(1 / Tud)-(1 / Tdu)]
It becomes.

よって、
Vf={Ld/[2・cos(θ)]}*[(1/Tud)−(1/Tdu)]
となり、流体の流速Vfが得れる。さらに、流路2の断面積Srを乗じ、流量Qmとなる。即ち、Qm=Sr*Vfが、計測した流量値となる。
Therefore,
Vf = {Ld / [2 · cos (θ)]} * [(1 / Tud) − (1 / Tdu)]
Thus, the fluid flow velocity Vf can be obtained. Further, the flow rate Qm is obtained by multiplying the cross-sectional area Sr of the flow path 2. That is, Qm = Sr * Vf is the measured flow rate value.

この場合、流体の流れの状態、流路の壁などからの反射波との干渉、あるいは流体の温度変化などにより、受信波14の大きさが変動したり、形状が変化したりすると、例えば、図2の場合、参照レベルが2つ目と3つ目のピ−クの間に設定されているが、1つ目と2つ目との間、あるいは3つ目と4つ目との間に設定される場合もありうる。この場合には、超音波の伝播時間Tudが不正確になることがあった。   In this case, if the magnitude of the received wave 14 changes or the shape changes due to the state of the fluid flow, interference with the reflected wave from the wall of the flow path, or the temperature change of the fluid, for example, In the case of FIG. 2, the reference level is set between the second and third peaks, but between the first and second, or between the third and fourth. It may be set to. In this case, the ultrasonic wave propagation time Tud may become inaccurate.

図3は本発明の実施の形態1における超音波流量計のパケット状の受信波19を示した波形図である。図3において、従来の受信波を破線14で示す。   FIG. 3 is a waveform diagram showing a packet-like received wave 19 of the ultrasonic flowmeter according to the first embodiment of the present invention. In FIG. 3, a conventional received wave is indicated by a broken line 14.

この場合、電圧の大きな波の塊、パケット状として受信波を整形部10で整形しているので、受信波14の大きさ、あるいは形状が多少変形しても、電圧の大きなパケット状の受信波19には殆ど影響することがなく、例えば、ゼロ点からやや高い位置、すなわち余裕を持って参照レベル16を設定することができ、参照レベルとの交差点を超音波の伝播時間Tudとすることもできる。したがって、受信波14が多少変動しても、安定したパケット状の受信波19として整形部10で整形されるので、伝播時間が安定し、伝搬時間計測部11で、高精度な伝播時間計測が可能となる。   In this case, since the received wave is shaped by the shaping unit 10 as a lump or packet of waves having a large voltage, even if the size or shape of the received wave 14 is slightly deformed, a packet-like received wave having a large voltage is formed. 19, for example, the reference level 16 can be set at a slightly higher position from the zero point, that is, with a margin, and the intersection with the reference level can be set as the ultrasonic propagation time Tud. it can. Therefore, even if the received wave 14 fluctuates somewhat, the shaping unit 10 shapes the packet as a received packet 19 that is stable, so that the propagation time is stable, and the propagation time measuring unit 11 can perform highly accurate propagation time measurement. It becomes possible.

以上のように、本発明によれば、上流から下流あるいは下流から上流への超音波の受信波形を受信波形整形部10で、振幅の大きなパケット状に整形し、整形された受信波を用いて超音波の伝搬時間を伝搬時間計測部11で計測するので、従来のように計測時間が流体の状態によりが変化することもなく、高精度な超音波流量計を実現できる。   As described above, according to the present invention, the received waveform of the ultrasonic wave from upstream to downstream or from downstream to upstream is shaped by the received waveform shaping unit 10 into a packet having a large amplitude, and the shaped received wave is used. Since the propagation time of the ultrasonic wave is measured by the propagation time measuring unit 11, the measurement time does not change depending on the state of the fluid as in the conventional case, and a highly accurate ultrasonic flow meter can be realized.

(実施の形態2)
図4は、本発明の実施の形態2における受信波形をパケット状に整形する整形部10の機能を示したブロック図である。20は受信波形を、21はL(コイル)とC(容量)からなるローパスフィルタを、22は高周波成分がカットされ、整形されたパケット状の波形を示す。
(Embodiment 2)
FIG. 4 is a block diagram illustrating the function of the shaping unit 10 that shapes the received waveform into a packet shape according to the second embodiment of the present invention. Reference numeral 20 denotes a received waveform, 21 denotes a low-pass filter composed of L (coil) and C (capacitance), and 22 denotes a packet-like waveform shaped by cutting high-frequency components.

このように簡単な回路構成のローパスフィルタを通過させるだけで、受信波形を安定な形状のパケット状に整形することができる。従って、安定な、高精度な超音波流量計を実現できる。   The received waveform can be shaped into a stable packet by simply passing through a low-pass filter having a simple circuit configuration. Therefore, a stable and highly accurate ultrasonic flowmeter can be realized.

(実施の形態3)
図5は、本発明の実施の形態3における受信波形をパケット状に整形する整形部10の機能を示したブロック図である。20は受信波形を、23は全波整流部を、24は全波整流された受信波を示す。すなわち、受信波20を、まず全波整流した後、実施の形態2に示したローパスフィルタを通過させ、パッケット状に整形した。なお、全波整流された受信波24の実線25はそのまま通過した受信波を、25は正負反転した受信波をそれぞれ示す。このように受信波を全波整流することにより、より安定した滑らかなパケット状の受信波がローパスフィルタにより得られる。したがって、安定で高精度な超音波流量計を実現できる。
(Embodiment 3)
FIG. 5 is a block diagram illustrating the function of the shaping unit 10 that shapes the received waveform into a packet shape according to Embodiment 3 of the present invention. Reference numeral 20 denotes a received waveform, reference numeral 23 denotes a full wave rectification unit, and reference numeral 24 denotes a full wave rectified received wave. That is, the received wave 20 was first subjected to full-wave rectification and then passed through the low-pass filter shown in Embodiment 2 and shaped into a packet shape. Note that a solid line 25 of the received wave 24 subjected to full-wave rectification indicates a received wave that has passed as it is, and 25 indicates a received wave that has been positively and negatively inverted. By performing full wave rectification on the received wave in this way, a more stable and smooth packet-like received wave can be obtained by the low-pass filter. Therefore, a stable and highly accurate ultrasonic flowmeter can be realized.

(実施の形態4)
図6(a)において、本発明の実施の形態4における受信波形をパケット状に整形する整形部10を示す。実線27および破線28は全波整流された受信波を示す。図6(b)においては、この全波整流された波形を位相反転し、加え合わせ、正負にピ−クを有するパケット状の受信波形29を合成した。
(Embodiment 4)
FIG. 6A shows a shaping unit 10 that shapes a received waveform in a packet form according to the fourth embodiment of the present invention. A solid line 27 and a broken line 28 indicate a reception wave subjected to full-wave rectification. In FIG. 6B, the full-wave rectified waveform is phase-inverted and added to synthesize a packet-like received waveform 29 having peaks in the positive and negative directions.

この合成されたパケット状の受信波形29の各ピークを用いて正弦波状の受信波形を整形し、パケット状の受信波30を得た。このように受信波形を全波整流し、正負反転後重ね合わせることにより、より滑らかなパケット状の受信波形を合成することができる。これにより、安安定で高精度な超音波流量計を実現できる。   A sine wave-like reception waveform was shaped using each peak of the synthesized packet-like reception waveform 29 to obtain a packet-like reception wave 30. Thus, a smoother packet-like received waveform can be synthesized by full-wave rectifying the received waveform and superimposing it after inversion. Thereby, an inexpensive and highly accurate ultrasonic flowmeter can be realized.

なお、この場合にパケット状の受信波が正弦波状であると仮定して、近似曲線をフィットさせると、より滑らかで、より安定したパケット状の受信波が得られる。   In this case, assuming that the packet-like received wave is sinusoidal and fitting the approximate curve, a smoother and more stable packet-like received wave is obtained.

(実施の形態5)
以下に、超音波伝播時間計測部11を説明する。
(Embodiment 5)
Hereinafter, the ultrasonic propagation time measuring unit 11 will be described.

時間計測部11内で、受信点を検知する受信点検知部を図7に示す。31はパケット状に整形された受信波、32はパケット状に整形された受信波31のピ−ク点を示す。このピーク点32までの時間を超音波の伝播時間Tudとして検知するようにした。   FIG. 7 shows a reception point detection unit that detects reception points in the time measurement unit 11. Reference numeral 31 denotes a received wave shaped into a packet, and 32 denotes a peak point of the received wave 31 shaped into a packet. The time to the peak point 32 is detected as the ultrasonic wave propagation time Tud.

これにより、受信波形が流体の状態などにより多少変形しても、安定したパケット状の受信波形31から受信点、すなわち超音波の伝播時間を計測するようにしたので、安定で高精度な超音波流量計を実現できる。   As a result, even if the received waveform is slightly deformed due to the fluid state or the like, the reception point, that is, the propagation time of the ultrasonic wave is measured from the stable packet-like received waveform 31. A flow meter can be realized.

(実施の形態6)
図8に実施の形態6における受信点を検知する受信点検知部を示す。
(Embodiment 6)
FIG. 8 shows a reception point detector for detecting a reception point in the sixth embodiment.

31はパケット状に整形された受信波、33は所定のレベルに設定された参照レベル。34、35はパケット状に整形された受信波31と参照レベル33との2つの交差点を示す。この2つの交差点から平均値36を求め受信点とし、超音波の伝播時間Tudとして検知するようにした。   31 is a received wave shaped into a packet, and 33 is a reference level set to a predetermined level. Reference numerals 34 and 35 denote two intersections between the received wave 31 shaped into a packet and the reference level 33. An average value 36 is obtained from these two intersections and used as a reception point, and is detected as an ultrasonic wave propagation time Tud.

これにより、受信波形が流体の状態などにより多少変形しても、安定したパケット状の受信波形の2点の平均値から求めた受信点36、すなわち超音波の伝播時間がより一層安定するようになり、安定で高精度な超音波流量計を実現できる。   As a result, even if the received waveform is slightly deformed due to the fluid state or the like, the reception point 36 obtained from the average value of the two points of the stable packet-like received waveform, that is, the propagation time of the ultrasonic wave is further stabilized. Therefore, a stable and highly accurate ultrasonic flowmeter can be realized.

(実施の形態7)
図9において、実施の形態7における受信点を検知する受信点検知部を示す。31はパケット状に整形された受信波を示し、37はその受信波31を微分した微分波形を示す。この微分波形37のゼロクロス点38を受信点とし、超音波の伝播時間Tudを計測するようにした。
(Embodiment 7)
In FIG. 9, the receiving point detection part which detects the receiving point in Embodiment 7 is shown. Reference numeral 31 denotes a received wave shaped into a packet, and 37 denotes a differentiated waveform obtained by differentiating the received wave 31. The ultrasonic wave propagation time Tud is measured using the zero-cross point 38 of the differential waveform 37 as a reception point.

これにより、伝播時間Tudの安定性がさらに向上し、安定で高精度な超音波流量計が実現できる。   Thereby, the stability of the propagation time Tud is further improved, and a stable and highly accurate ultrasonic flowmeter can be realized.

(実施の形態8)
図10において、本発明の実施の形態8における送信部7における超音波変換器駆動回路部39と、受信部9における受信回路部40とを示す。
(Embodiment 8)
10, the ultrasonic transducer drive circuit unit 39 in the transmission unit 7 and the reception circuit unit 40 in the reception unit 9 according to Embodiment 8 of the present invention are shown.

送信側の超音波変換器41は、信号源42に出力抵抗43を介して接続されている。また、受信側の超音波変換器44は、入力抵抗45を介して受信回路46に接続されている。矢印47は超音波が送信側超音波変換器41から受信側超音波変換器44へ伝播していることを示している。このような送信、受信系において、出力抵抗43と入力抵抗44とを種々変化させて、例えば数オ−ムから数百キロオ−ムにわたって実験したところ、同じ抵抗値である場合には、すなわち送信側の超音波変換器を41とし、受信側の超音波変換器を44とした場合と、送信側の超音波変換器を44とし、受信側の超音波変換器を41とした場合でのそれぞれの受信波形が非常に似通うことが解った。   The transmission side ultrasonic transducer 41 is connected to a signal source 42 via an output resistor 43. The ultrasonic transducer 44 on the receiving side is connected to the receiving circuit 46 via the input resistor 45. An arrow 47 indicates that the ultrasonic wave is propagating from the transmission side ultrasonic transducer 41 to the reception side ultrasonic transducer 44. In such a transmission / reception system, when the output resistance 43 and the input resistance 44 are variously changed and an experiment is performed over, for example, several ohms to several hundred kilohms, When the ultrasonic transducer on the side is 41 and the ultrasonic transducer on the reception side is 44, and when the ultrasonic transducer on the transmission side is 44 and the ultrasonic transducer on the reception side is 41, respectively. It was found that the received waveform was very similar.

また、出力抵抗45と入力抵抗43の値の比が異なるにつれ、波形の一致度が大きく低下することもわかった。従って、波形の相似性が要求される本発明のような超音波流量計においては、出力抵抗43と入力抵抗45の値を一致させることが、高精度に超音波伝播時間を計測するのに必要である。このように、超音波送信側の出力抵抗43と受信側の入力抵抗45とを一致させて、受信波の相似性を向上させ、超音波伝播時間を計測するので、より正確な超音波伝播時間が得られ、高精度な超音波流量計を実現できる。   It was also found that the degree of coincidence of waveforms greatly decreased as the ratio of the values of the output resistance 45 and the input resistance 43 differed. Therefore, in an ultrasonic flowmeter such as the present invention that requires waveform similarity, it is necessary to match the values of the output resistance 43 and the input resistance 45 in order to accurately measure the ultrasonic propagation time. It is. In this way, the output resistance 43 on the ultrasonic transmission side and the input resistance 45 on the reception side are matched to improve the similarity of the received wave and the ultrasonic propagation time is measured. Therefore, the ultrasonic propagation time is more accurate. And a highly accurate ultrasonic flow meter can be realized.

(実施の形態9)
図11において、本発明の実施の形態9における超音波変換器駆動回路と受信回路との出力抵抗値、入力抵抗値と超音波を受信したときの受信電圧との関係を示す。なお、出力抵抗値43と入力抵抗値45とは同じ抵抗値とした。また図11においては、横軸に抵抗値の対数を、縦軸に受信電圧48を示している。ここで、抵抗値を小さい値から順次大きくしていくと、抵抗値とともに受信電圧48は大きくなり、最大値を通過すると抵抗値とともに受信電圧48は小さくなる。
(Embodiment 9)
FIG. 11 shows the relationship between the output resistance value of the ultrasonic transducer drive circuit and the receiving circuit and the input resistance value and the reception voltage when the ultrasonic wave is received in the ninth embodiment of the present invention. The output resistance value 43 and the input resistance value 45 are the same resistance value. In FIG. 11, the horizontal axis represents the logarithm of the resistance value, and the vertical axis represents the reception voltage 48. Here, when the resistance value is sequentially increased from a small value, the reception voltage 48 increases with the resistance value, and when the maximum value is passed, the reception voltage 48 decreases with the resistance value.

この最大値(破線49で示す)の抵抗値は用いた超音波変換器の内部インピ−ダンスと一致していた。即ち、本発明の超音波の送信回路部39および受信回路部40のおける出力抵抗値および入力抵抗値を、用いる超音波変換器の内部インピ−ダンスに一致させると、比較的大きな受信電圧が得られる。このため、S/Nよく超音波伝播時間を計測することができる。   The resistance value of this maximum value (indicated by the broken line 49) coincided with the internal impedance of the ultrasonic transducer used. That is, when the output resistance value and the input resistance value in the ultrasonic transmission circuit unit 39 and the reception circuit unit 40 of the present invention are matched with the internal impedance of the ultrasonic transducer to be used, a relatively large reception voltage is obtained. It is done. For this reason, ultrasonic propagation time can be measured with good S / N.

以上のように、本発明によれば、超音波送信側の出力抵抗43と受信側の入力抵抗45とを一致させて、なおかつ超音波変換器の内部抵抗と一致させることにより、受信電圧を比較的大きくすることができ、超音波伝播時間をS/Nよく計測できるので、より正確な超音波の伝播時間が得られ、高精度な超音波流量計を実現できる。   As described above, according to the present invention, the received voltage is compared by matching the output resistance 43 on the ultrasonic transmission side and the input resistance 45 on the reception side with the internal resistance of the ultrasonic transducer. Since the ultrasonic propagation time can be measured with a good S / N ratio, a more accurate ultrasonic propagation time can be obtained and a highly accurate ultrasonic flowmeter can be realized.

以上のように、本発明による超音波流量計は受信波形が流体の状態により多少変動しても、安定したパケット状に整形し、その整形された受信波形から超音波の伝搬時間を計測するので、家庭用あるいは産業用などの流体流量計としての用途に適用できる。   As described above, the ultrasonic flowmeter according to the present invention shapes the packet into a stable packet and measures the propagation time of the ultrasonic wave from the shaped received waveform even if the received waveform varies somewhat depending on the fluid state. It can be applied to a fluid flow meter for home use or industrial use.

本発明の実施の形態1における超音波流量計のブロック図Block diagram of ultrasonic flowmeter in embodiment 1 of the present invention 本発明の実施の形態1における超音波波形図Ultrasonic waveform diagram according to Embodiment 1 of the present invention 本発明の実施の形態1における超音波のパケット状波形図Ultrasonic packet waveform diagram in Embodiment 1 of the present invention 本発明の実施の形態2における整形部の機能を示したブロック図The block diagram which showed the function of the shaping part in Embodiment 2 of this invention 本発明の実施の形態3における整形部の機能を示したブロック図The block diagram which showed the function of the shaping part in Embodiment 3 of this invention (a)本発明の実施の形態4における全波整流波形図(b)本発明の実施の形態4におけるパケット波形図(A) Full-wave rectified waveform diagram according to the fourth embodiment of the present invention (b) Packet waveform diagram according to the fourth embodiment of the present invention 本発明の実施の形態5における受信点検知部の波形図Waveform diagram of reception point detector in embodiment 5 of the present invention 本発明の実施の形態6における受信点検知部の波形図Waveform diagram of reception point detection unit in Embodiment 6 of the present invention 本発明の実施の形態7におけるパケット状受信波形の微分波形図Differential waveform diagram of packet-like received waveform in the seventh embodiment of the present invention 本発明の実施の形態8における超音波流量計の回路図Circuit diagram of ultrasonic flowmeter according to embodiment 8 of the present invention 本発明の実施の形態9における抵抗と電圧との関係図Relationship diagram between resistance and voltage in the ninth embodiment of the present invention 従来の超音波流量計の断面図Cross section of conventional ultrasonic flowmeter

符号の説明Explanation of symbols

1 超音波流量計
2 流路
3 上流側の超音波送変換器
4 下流側の超音波送変換器
7 送信波
8 受信波
10 整形部
11 時間計測部
12 流量演算部
13 送信波
14 受信波
16 参照レベル
19 パケット状に整形された受信波
21 ローパスフィルタ
23 全波整流
39 駆動回路部
40 受信回路部
DESCRIPTION OF SYMBOLS 1 Ultrasonic flow meter 2 Flow path 3 Upstream ultrasonic transmitter / converter 4 Downstream ultrasonic transmitter / receiver 7 Transmitted wave 8 Received wave 10 Shaping unit 11 Time measuring unit 12 Flow rate calculating unit 13 Transmitted wave 14 Received wave 16 Reference level 19 Packet-shaped reception wave 21 Low-pass filter 23 Full-wave rectification 39 Drive circuit section 40 Reception circuit section

Claims (9)

超音波を送受信する一対の超音波振動子を有し、前記一方の超音波振動子から超音波を送信し、他方の超音波振動子で受信し、受信した超音波信号の高周波成分をカットしパケット状に受信波形を整形する整形部と、前記パケット状に整形された受信波形から受信点を検知する受信点検知部と、超音波の送信から前記受信点までの超音波の伝播時間を計測する伝播時間計測部とを備え、前記超音波の伝播時間から流量を演算する超音波流量計。 It has a pair of ultrasonic transducers that transmit and receive ultrasonic waves, transmits ultrasonic waves from the one ultrasonic transducer, receives them by the other ultrasonic transducer, and cuts the high-frequency component of the received ultrasonic signal A shaping unit that shapes a received waveform in a packet shape, a reception point detection unit that detects a reception point from the received waveform shaped in a packet shape, and measures the propagation time of ultrasonic waves from transmission of ultrasonic waves to the reception point An ultrasonic flowmeter that calculates a flow rate from the propagation time of the ultrasonic wave. ローパスフィルタを用いて受信波形を整形する請求項1に記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein the received waveform is shaped using a low-pass filter. 受信波形を全波整形した後に、整形する請求項2に記載の超音波流量計。 The ultrasonic flowmeter according to claim 2, wherein the received waveform is shaped after full wave shaping. 受信波形を全波整形した後に、受信波形の各ピーク値からパケット状に受信波形を整形する請求項1に記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein the received waveform is shaped into a packet shape from each peak value of the received waveform after the received waveform is fully wave-shaped. パケット状に整形された受信波形のピークから受信点を検知する請求項1に記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein a reception point is detected from a peak of a reception waveform shaped into a packet. パケット状に整形された受信波形が所定の参照レベルと交差する2点から受信点を検知する請求項1に記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein a reception point is detected from two points where a reception waveform shaped in a packet shape intersects a predetermined reference level. パケット状に整形された受信波形を微分し、前記微分波形のゼロクロス点から受信点を検知する請求項1に記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein a received waveform shaped into a packet is differentiated, and a received point is detected from a zero cross point of the differentiated waveform. 超音波変換器の駆動回路と、受信回路とをインピ−ダンスを等しくした対称型回路とする請求項1または7記載の超音波流量計。 8. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic transducer drive circuit and the receiving circuit are symmetrical circuits with equal impedance. インピ−ダンスを超音波変換器のインピ−ダンスに合致させた対称型回路とする請求項8記載の超音波流量計。 9. The ultrasonic flowmeter according to claim 8, wherein the impedance is a symmetric circuit in which the impedance is matched with the impedance of the ultrasonic transducer.
JP2005035587A 2005-02-14 2005-02-14 Ultrasonic flow meter Pending JP2006220583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035587A JP2006220583A (en) 2005-02-14 2005-02-14 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035587A JP2006220583A (en) 2005-02-14 2005-02-14 Ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JP2006220583A true JP2006220583A (en) 2006-08-24

Family

ID=36983002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035587A Pending JP2006220583A (en) 2005-02-14 2005-02-14 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2006220583A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217851A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Super sonic transfer time measurement device
JPH0599713A (en) * 1991-10-04 1993-04-23 Yokogawa Electric Corp Vortex flowmeter
JPH1151726A (en) * 1997-08-06 1999-02-26 Yazaki Corp Propagation time measuring device, supersonic type flow meter, method for measuring propagation time and controlling supersonic type flow meter
JP2005009959A (en) * 2003-06-18 2005-01-13 Teijin Ltd Ultrasonic flowmeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217851A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Super sonic transfer time measurement device
JPH0599713A (en) * 1991-10-04 1993-04-23 Yokogawa Electric Corp Vortex flowmeter
JPH1151726A (en) * 1997-08-06 1999-02-26 Yazaki Corp Propagation time measuring device, supersonic type flow meter, method for measuring propagation time and controlling supersonic type flow meter
JP2005009959A (en) * 2003-06-18 2005-01-13 Teijin Ltd Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
US7437948B2 (en) Ultrasonic flowmeter and ultrasonic flow rate measurement method
US9097567B2 (en) Ultrasonic, flow measuring device
US9140594B2 (en) Ultrasonic, flow measuring device
CN104501889B (en) Detection method based on cross-correlation Time-difference Ultrasonic Flow
US8234933B2 (en) Ultrasonic meter for determining physical quantity of a fluid based on a determined plurality of correlation coefficients
JP4976287B2 (en) Detection of ultrasonic signal reception point by pulse waveform detection
JPWO2005083372A1 (en) Ultrasonic flowmeter compatible with both pulse Doppler method and propagation time difference method, method and program for automatically selecting measurement method in the flowmeter, and electronic device for the flowmeter
JP4904289B2 (en) Ultrasonic flow sensor using modulo 2pi residue tracking
US7806003B2 (en) Doppler type ultrasonic flow meter
JP2007187506A (en) Ultrasonic flowmeter
JPH06249690A (en) Ultrasonic flowmeter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JP2006220583A (en) Ultrasonic flow meter
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP2007064792A (en) Ultrasonic flow measuring instrument
JP4572547B2 (en) Ultrasonic fluid measuring device
JP4561071B2 (en) Flow measuring device
JP6767628B2 (en) Flow measuring device
JP4059733B2 (en) Ultrasonic meter device
JP4926660B2 (en) Ultrasonic meter device
JPH01134213A (en) Flowmeter
JP2000035353A (en) Method and apparatus for measurement of propagation time as well as ultrasonic flowmeter
JP4239106B2 (en) Phase difference type ultrasonic flowmeter
JP2010151583A (en) Ultrasonic flow measuring device
JP2012026864A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726