JP2006220284A - Pressure vessel and design method thereof - Google Patents

Pressure vessel and design method thereof Download PDF

Info

Publication number
JP2006220284A
JP2006220284A JP2005036505A JP2005036505A JP2006220284A JP 2006220284 A JP2006220284 A JP 2006220284A JP 2005036505 A JP2005036505 A JP 2005036505A JP 2005036505 A JP2005036505 A JP 2005036505A JP 2006220284 A JP2006220284 A JP 2006220284A
Authority
JP
Japan
Prior art keywords
tubular body
wall thickness
pressure vessel
stress
calculation section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005036505A
Other languages
Japanese (ja)
Inventor
Naoki Tsuji
直樹 辻
Shinsaku Matsuda
晋作 松田
Iton Chiyou
惟敦 張
Takaomi Inada
貴臣 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Tokyo R&D Co Ltd
Original Assignee
IHI Corp
Tokyo R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Tokyo R&D Co Ltd filed Critical IHI Corp
Priority to JP2005036505A priority Critical patent/JP2006220284A/en
Publication of JP2006220284A publication Critical patent/JP2006220284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a pressure vessel which is constituted more rationally so as to ensure pressure resistance and realize effective utilization of an installation space. <P>SOLUTION: The invention provides the pressure vessel including a tubular body 10 for storing a stored object therein which has a non-circular cross-sectional peripheral shape, the tubular body having a wall thickness varied according to the part so that the stress generated in the tubular body can be equalized, and also provides a method of manufacturing the pressure vessel. For the purpose of equalizing the stress generated in the tubular body, a certain wall thickness calculation zone corresponding to the cross-sectional shape of the tubular body is determined so as to calculate an external stress and an internal stress generated in the wall thickness calculation zone by the internal pressure and to set the wall thickness of the tubular body in the wall thickness calculation zone at a value corresponding to a larger one of the external and internal stresses. Further, in the pressure vessel having the tubular body with a polygonal cross-sectional peripheral shape, the tubular body is provided with internal walls 12 directly connecting intermediate portions of two sides constituting each corner of the polygonal tubular body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、その内側に被収容物を収容する管状体を備えた圧力容器に関する。 The present invention relates to a pressure vessel including a tubular body that accommodates an object to be contained therein.

高圧の被収容物(液体、気体、粉体、水素貯蔵合金等)を充填する圧力容器としては、管状体の両端を閉鎖してなるものが知られている。被収容物は、管状体の内側に収容される。管状体の横断面形状は、一般的には円形である。管状体の壁厚は均一に設定される。特許文献1には、横断面形状が円形を呈する管状体を備えた圧力容器が記載されている。特許文献1に記載された圧力容器は、円形の管状体の外周に補強が施されたものである。   As a pressure vessel filled with a high-pressure object (liquid, gas, powder, hydrogen storage alloy, etc.), a container formed by closing both ends of a tubular body is known. The object to be accommodated is accommodated inside the tubular body. The cross-sectional shape of the tubular body is generally circular. The wall thickness of the tubular body is set uniformly. Patent Document 1 describes a pressure vessel provided with a tubular body having a circular cross-sectional shape. The pressure vessel described in Patent Document 1 is obtained by reinforcing the outer periphery of a circular tubular body.

また、圧力容器の限られた設置場所における大容量化を考慮すると、横断面形状が円形を呈する管状体は、デッドスペースが生じるという不利がある。この点、特許文献2及び3には、横断面外周形状が四角形を呈する管状体を用いてなる圧力容器が記載されている。このような圧力容器によれば、デッドスペースの問題に対処することが可能である。
特開平9−42595号公報 特許第3030269号明細書 特開2004−225772号公報
Moreover, considering the increase in capacity at a limited installation location of the pressure vessel, a tubular body having a circular cross-sectional shape has a disadvantage that a dead space is generated. In this regard, Patent Documents 2 and 3 describe a pressure vessel using a tubular body having a rectangular cross-sectional outer periphery. According to such a pressure vessel, it is possible to cope with the problem of dead space.
Japanese Patent Laid-Open No. 9-42595 Japanese Patent No. 3030269 JP 2004-225772 A

さて、圧力容器は、少ないスペースにより多くの容積を確保することが重要とされ、前述した管状体にも更なる工夫が必要とされている。   Now, it is important to secure a large volume of the pressure vessel in a small space, and further contrivance is required for the tubular body described above.

特に近年では、排ガスの低減を目指すべく燃料電池車の実用化が推し進められており、燃料電池用の水素タンクとして利用する圧力容器についても、一層の合理化が求められている。例えば、水素タンクについては、安全性を確保すべく過度の高圧化ができないという事情がある。特に、法令で圧力の上限が定められている場合もある。この点、特許文献1のように、横断面形状が円形の管状体の外周に補強を施すことによれば、耐圧性は向上するものの、その容積には圧力の制限からくる限界がある。また、製造コストも割高となる。つまるところ、前述したデッドスペースを利用して容積を増加することが、現状における大きな課題の一つであるといえる。   In particular, in recent years, fuel cell vehicles have been put into practical use in order to reduce exhaust gas, and further rationalization of pressure vessels used as hydrogen tanks for fuel cells is required. For example, there is a circumstance that a hydrogen tank cannot be excessively pressurized to ensure safety. In particular, there are cases where the upper limit of pressure is set by law. In this regard, as in Patent Document 1, by reinforcing the outer periphery of a tubular body having a circular cross-sectional shape, the pressure resistance is improved, but the volume has a limit due to pressure limitation. In addition, the manufacturing cost is high. After all, it can be said that increasing the volume by using the above-described dead space is one of the major problems at present.

本発明は、かかる諸事情に鑑みてなされたものであり、その目的は、耐圧性の確保及び設置スペースの有効利用を達成すべくより合理的に構成された圧力容器を提供することである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a pressure vessel that is more rationally configured to achieve pressure resistance and to effectively use an installation space.

本願第1請求項に記載した発明は、その内側に被収容物を収容する管状体を備え、前記管状体の横断面外周形状が非円形を呈する圧力容器において、前記管状体に生じる応力が均等化するように、前記管状体の壁厚をその部位に応じて異なる厚さに設定した構成の圧力容器である。   The invention described in claim 1 of the present application includes a tubular body that accommodates an object to be contained therein, and in a pressure vessel in which the outer peripheral shape of the cross section of the tubular body is non-circular, the stress generated in the tubular body is uniform. The pressure vessel has a configuration in which the wall thickness of the tubular body is set to a different thickness depending on the part.

本願第2請求項に記載した発明は、請求項1において、前記管状体に生じる応力を均等化するにあたり、前記管状体の横断面形状に対応する所定の壁厚計算区間を設定し、内圧によって前記壁厚計算区間に生じる外面応力と内面応力を求め、前記壁厚計算区間における前記管状体の壁厚は、前記外面応力と前記内面応力のうちの大きい方の値に対応する厚さに設定した構成の圧力容器である。   In the invention described in claim 2 of the present application, in order to equalize the stress generated in the tubular body in claim 1, a predetermined wall thickness calculation section corresponding to the cross-sectional shape of the tubular body is set and The outer surface stress and the inner surface stress generated in the wall thickness calculation section are obtained, and the wall thickness of the tubular body in the wall thickness calculation section is set to a thickness corresponding to the larger value of the outer surface stress and the inner surface stress. This is a pressure vessel having the structure described above.

本願第3請求項に記載した発明は、請求項1又は2において、前記管状体の内部を複数に区画した構成の圧力容器である。   The invention described in claim 3 of the present application is the pressure vessel according to claim 1 or 2, wherein the tubular body is partitioned into a plurality of parts.

本願第4請求項に記載した発明は、その内側に被収容物を収容する管状体を備え、前記管状体の横断面外周形状が多角形を呈する圧力容器において、前記管状体は、前記多角形の角を形成する2辺の中間部位同士を直結する内部壁を備えた構成の圧力容器である。   The invention described in claim 4 of the present application includes a tubular body that accommodates an object to be contained therein, and a pressure vessel in which a cross-sectional outer peripheral shape of the tubular body exhibits a polygon, wherein the tubular body is the polygon. It is the pressure vessel of the structure provided with the internal wall which connects directly the intermediate part of 2 sides which form the corner | angular of this.

本願第5請求項に記載した発明は、請求項4において、前記管状体に生じる応力が均等化するように、前記管状体の壁厚をその部位に応じて異なる厚さに設定した構成の圧力容器である。   The invention described in claim 5 of the present application is the pressure according to claim 4, wherein the wall thickness of the tubular body is set to a different thickness depending on the part so that the stress generated in the tubular body is equalized. It is a container.

本願第6請求項に記載した発明は、請求項5において、前記管状体に生じる応力を均等化するにあたり、前記管状体の横断面形状に対応する所定の壁厚計算区間を設定し、内圧によって前記壁厚計算区間に生じる外面応力と内面応力を求め、前記壁厚計算区間における前記管状体の壁厚は、前記外面応力と前記内面応力のうちの大きい方の値に対応する厚さに設定した構成の圧力容器である。   In the invention described in claim 6 of the present application, in order to equalize the stress generated in the tubular body in claim 5, a predetermined wall thickness calculation section corresponding to the cross-sectional shape of the tubular body is set and The outer surface stress and the inner surface stress generated in the wall thickness calculation section are obtained, and the wall thickness of the tubular body in the wall thickness calculation section is set to a thickness corresponding to the larger value of the outer surface stress and the inner surface stress. This is a pressure vessel having the structure described above.

本願第7請求項に記載した発明は、請求項1乃至6のいずれかにおいて、前記管状体の外周に補強手段を設けた構成の圧力容器である。   The invention described in claim 7 of the present application is the pressure vessel according to any one of claims 1 to 6, wherein a reinforcing means is provided on the outer periphery of the tubular body.

本願第8請求項は、その内側に被収容物を収容する管状体を備え、前記管状体の横断面外周形状が非円形を呈する圧力容器の設計方法において、前記管状体に生じる応力が均等化するように、前記管状体の壁厚をその部位に応じて異なる厚さに設定する方法であり、前記管状体の横断面形状に対応する所定の壁厚計算区間を設定し、内圧によって前記壁厚計算区間に生じる外面応力と内面応力を求め、前記壁厚計算区間における前記管状体の壁厚は、前記外面応力と前記内面応力のうちの大きい方の値に対応する厚さに設定する構成の圧力容器の設計方法である。   The eighth aspect of the present application provides a tubular body that accommodates an object to be contained therein, and in a method for designing a pressure vessel in which a cross-sectional outer peripheral shape of the tubular body exhibits a non-circular shape, stress generated in the tubular body is equalized In this method, the wall thickness of the tubular body is set to a different thickness depending on the site, a predetermined wall thickness calculation section corresponding to the cross-sectional shape of the tubular body is set, and the wall is determined by internal pressure. The outer surface stress and the inner surface stress generated in the thickness calculation section are obtained, and the wall thickness of the tubular body in the wall thickness calculation section is set to a thickness corresponding to the larger value of the outer surface stress and the inner surface stress. This is a pressure vessel design method.

本発明によれば、耐圧性を確保しつつ設置スペースを有効利用することによってその容積を増大した圧力容器を得ることができる。   According to the present invention, it is possible to obtain a pressure vessel whose volume is increased by effectively using the installation space while ensuring pressure resistance.

以下に、本発明の第1実施例を図面に基づいて説明する。図1に示す本例の圧力容器1は、その内側に被収容物たる圧縮ガスを収容する管状体10と、管状体10の両端にそれぞれ装着された端部部材20とを備えたものである。本例の管状体10は、アルミニウム合金を押出し成形してなるものである。端部部材20は、管状体10の両端部を閉鎖するものであり、その形態は特に限定しない。圧縮ガスの出入口は、端部部材20に設けられている。   A first embodiment of the present invention will be described below with reference to the drawings. A pressure vessel 1 of this example shown in FIG. 1 includes a tubular body 10 that accommodates compressed gas that is an object to be contained therein, and end members 20 that are respectively attached to both ends of the tubular body 10. . The tubular body 10 of this example is formed by extruding an aluminum alloy. The end member 20 closes both ends of the tubular body 10, and its form is not particularly limited. A compressed gas inlet / outlet port is provided in the end member 20.

図2は、図1のX−X断面矢視図であって、管状体10の横断面形状を示す説明図である。同図に示すように、本例の管状体10は、その横断面外周形状が正四角形を呈するものである。図中の11は、圧縮ガスの収容部である。即ち、圧力容器1の設置スペースに対し、デッドスペースの少ない非円形とすることにより、圧縮ガスの容積を確保する構成となっている。   FIG. 2 is a cross-sectional view taken along the line XX in FIG. 1 and is an explanatory diagram showing the cross-sectional shape of the tubular body 10. As shown in the figure, the tubular body 10 of the present example has an outer peripheral shape of a cross section of a square. Reference numeral 11 in the figure denotes a compressed gas storage unit. That is, the volume of the compressed gas is ensured by making the installation space of the pressure vessel 1 noncircular with little dead space.

ここで、非円形の場合に問題となるのは、耐圧性を確保した場合壁厚が厚くなり、一定の壁厚では重く、また容積が減少してしまうことである。本例では、管状体10に生じる応力が均等化するように、管状体10の壁厚をその部位に応じて異なる厚さに設定することにより、内圧に対する十分な耐圧性を確保しつつ、駄肉を排して容積の増大および軽量化を果たしている。具体的には、管状体10に生じる応力を均等化するにあたり、管状体10の横断面形状に対応する所定の壁厚計算区間を設定し、内圧によってその壁厚計算区間に生じる外面応力と内面応力を求めている。そして、壁厚計算区間における管状体10の壁厚は、外面応力と内面応力のうちの大きい方の値に対応する厚さに設定している。本願において、壁厚計算区間とは、管状体10の内側と外側とを隔てる壁の厚さを算出するために設定する区間のことをいう。管状体10の壁厚は、内外の差圧によって生じる荷重を想定して算出される。本例の場合、壁厚計算区間は、図中の矢印Aで示した範囲であり、正四角形の4辺にそれぞれ対応するように設定している。   Here, the problem in the case of a non-circular shape is that the wall thickness becomes thick when the pressure resistance is secured, the wall thickness becomes heavy at a constant wall thickness, and the volume decreases. In this example, the wall thickness of the tubular body 10 is set to a different thickness depending on the part so that the stress generated in the tubular body 10 is equalized, while ensuring sufficient pressure resistance against internal pressure, Meat is removed to increase volume and reduce weight. Specifically, when equalizing the stress generated in the tubular body 10, a predetermined wall thickness calculation section corresponding to the cross-sectional shape of the tubular body 10 is set, and the external surface stress and the internal surface generated in the wall thickness calculation section by the internal pressure I'm looking for stress. The wall thickness of the tubular body 10 in the wall thickness calculation section is set to a thickness corresponding to the larger value of the outer surface stress and the inner surface stress. In the present application, the wall thickness calculation section refers to a section set in order to calculate the thickness of the wall separating the inner side and the outer side of the tubular body 10. The wall thickness of the tubular body 10 is calculated on the assumption of a load generated by the internal and external differential pressure. In the case of this example, the wall thickness calculation section is a range indicated by an arrow A in the figure, and is set to correspond to each of the four sides of a regular square.

壁厚計算区間には、図3に示すような荷重分布が生じると想定できる。そして、これらの荷重による合応力の分布中、最大値が許容応力となるように壁厚を設定すれば耐圧性を確保できる。しかし、従来のように前記の最大応力に対応した一定の壁厚では、応力が小さく強度に余裕がある部位ができる。よって、全ての部位での合応力が許容応力に対して均等となるように管状体10の壁厚を設定すれば、耐圧性を確保しつつ、無駄のない構成となる訳である。前記、合応力の分布は、外面から内面にかけて厚み方向で差異を生じるが、外面または内面何れかにおいて最大となるため、周方向の各部位において外面応力と内面応力を算出し、何れか大きい方の値に対応するように壁厚を設定すればよい。   It can be assumed that a load distribution as shown in FIG. 3 occurs in the wall thickness calculation section. In addition, in the distribution of the resultant stress due to these loads, the pressure resistance can be ensured by setting the wall thickness so that the maximum value is the allowable stress. However, with a constant wall thickness corresponding to the maximum stress as in the prior art, there is a portion where the stress is small and the strength is sufficient. Therefore, if the wall thickness of the tubular body 10 is set so that the combined stress in all parts is equal to the allowable stress, the pressure resistance is ensured and the structure is not wasted. The distribution of the resultant stress varies in the thickness direction from the outer surface to the inner surface, but since it is the maximum on either the outer surface or the inner surface, the outer surface stress and the inner surface stress are calculated for each part in the circumferential direction, whichever is greater The wall thickness may be set so as to correspond to the value of.

図4は、壁厚計算区間に生じる外面応力と内面応力に対応する壁厚を示すグラフである。管状体10の壁厚は、外面応力と内面応力のうちの大きい方の値に対応する厚さに設定する。すなわち、管状体10の外周側を平坦とするのであれば、収容部11側の断面形状は、同グラフに丸印で示した曲線形状となる。収容部11の横断面輪郭は、かかる曲線形状を環状に連続してなる形状となっている。このような構成によれば、圧力容器1の耐圧性を確保しつつ、管状体10の肉厚を無駄なく設定することができる。尚、管状体に生じる応力は、角部や外壁と内部壁との交差部など、形状変化の大きい部分では完全に均等になることはなく、耐圧性を優先して適宜、余裕を持たせることが望ましい。収容部11の横断面輪郭の形状については、更にFEM解析等を行い、計算結果の確認・補正を行うとよい。   FIG. 4 is a graph showing the wall thickness corresponding to the outer surface stress and the inner surface stress generated in the wall thickness calculation section. The wall thickness of the tubular body 10 is set to a thickness corresponding to the larger value of the outer surface stress and the inner surface stress. That is, if the outer peripheral side of the tubular body 10 is flattened, the cross-sectional shape on the side of the accommodating portion 11 is a curved shape indicated by a circle in the graph. The cross-sectional contour of the accommodating portion 11 has a shape formed by continuously forming such a curved shape in an annular shape. According to such a configuration, the thickness of the tubular body 10 can be set without waste while ensuring the pressure resistance of the pressure vessel 1. In addition, the stress generated in the tubular body is not completely equal in a portion where the shape change is large, such as a corner portion or an intersection between the outer wall and the inner wall, and an appropriate margin should be given with priority given to pressure resistance. Is desirable. About the shape of the cross-sectional outline of the accommodating part 11, it is good to perform further FEM analysis etc. and to confirm and correct | amend a calculation result.

本例における各部の構成は、特許請求の範囲に記載した技術的範囲において適宜に設計変更が可能であり、図例説明したものに限定されないことは勿論である。また、本例の管状体10は、押出し成形にて作成したものであるが、その製法も特に限定はしない。例えば、圧力容器1の性能・用途に応じて、射出成形された樹脂製の管状体を用いることも可能である。   The configuration of each part in the present example can be appropriately changed in design within the technical scope described in the claims, and of course is not limited to that illustrated in the drawings. Moreover, although the tubular body 10 of this example is produced by extrusion molding, the manufacturing method is not particularly limited. For example, an injection-molded resin tubular body can be used according to the performance and application of the pressure vessel 1.

次に、本発明の第2実施例を図5に基づいて説明する。同図に示すように、本例の管状体10は、その収容部11を複数に区画してなるものである。壁厚計算区間は、各収容部毎にそれぞれ設定している。その他の基本構成は、前述した実施例と同様である。このように収容部11を区画すれば、圧力容器1の耐圧性を確保しつつ壁厚を薄く設定することができ、その結果、容積を増大し、軽量化することが可能である。   Next, a second embodiment of the present invention will be described with reference to FIG. As shown in the figure, the tubular body 10 of the present example is formed by dividing the accommodating portion 11 into a plurality of portions. The wall thickness calculation section is set for each storage unit. Other basic configurations are the same as those in the above-described embodiment. By partitioning the accommodating portion 11 in this way, the wall thickness can be set thin while ensuring the pressure resistance of the pressure vessel 1, and as a result, the volume can be increased and the weight can be reduced.

次に、本発明の第3実施例を図6に基づいて説明する。本例の管状体10は、収容部11を更に細分化したものである。その他の基本構成は、前述した実施例と同様である。このような構成によると、更に容積を増大し、軽量化することが可能である。   Next, a third embodiment of the present invention will be described with reference to FIG. The tubular body 10 of this example is obtained by further subdividing the accommodating portion 11. Other basic configurations are the same as those in the above-described embodiment. According to such a configuration, the volume can be further increased and the weight can be reduced.

次に、本発明の第4実施例を図7及び図8に基づいて説明する。本例の管状体10は、正四角形の角を形成する2辺の中間部位同士を直結する内部壁12を備えたものである。図例の内部壁12は、2辺の中間部位同士を直線的に連結している。このような内部壁12によれば、管状体10の横断面における内部壁の総延長を短くできるため、圧力容器1の容積を増大し、軽量化することが可能である。尚、押出し成形が困難となる場合は、図8に示すように、それぞれ押出し成形された管状体構成部材10aを接合して管状体10を構成するとよい。このような構成によると、複雑な形状の管状体を比較的容易に製造することが可能となる。   Next, a fourth embodiment of the present invention will be described with reference to FIGS. The tubular body 10 of the present example includes an inner wall 12 that directly connects intermediate portions of two sides forming a square corner. In the illustrated example, the inner wall 12 linearly connects two intermediate portions. According to such an inner wall 12, since the total extension of the inner wall in the cross section of the tubular body 10 can be shortened, the volume of the pressure vessel 1 can be increased and the weight can be reduced. In addition, when extrusion molding becomes difficult, as shown in FIG. 8, it is good to join the tubular body structural member 10a each extruded and to comprise the tubular body 10. FIG. According to such a configuration, it is possible to manufacture a tubular body having a complicated shape relatively easily.

次に、本発明の第5実施例を図9に基づいて説明する。第4実施例で示した管状体10において、図中の矢印A、B、Cで示した範囲を壁厚計算区間として、管状体10に生じる応力が均等化するように、管状体10の壁厚をその部位に応じて異なる厚さに設定したものである。このように管状体10の駄肉を排することで更に容積を増大し、軽量化することが可能である。   Next, a fifth embodiment of the present invention will be described with reference to FIG. In the tubular body 10 shown in the fourth embodiment, the walls of the tubular body 10 are equalized so that the stresses generated in the tubular body 10 are equalized with the ranges indicated by arrows A, B, and C in the figure as the wall thickness calculation section. The thickness is set to a different thickness depending on the part. In this way, by eliminating the waste of the tubular body 10, the volume can be further increased and the weight can be reduced.

次に、本発明の第6実施例を図10に基づいて説明する。本例の管状体10は、その外周に補強手段を設けてなるものである。本例の補強手段は、管状体10の外周面に高強度部材を装着して設けられている。高強度部材13としては、カーボン繊維を束ねてなるものを採用している。或は、鉄板等を採用することも可能である。その他の基本構成は、前述した実施例と同様である。このような構成によると、圧力容器1の耐圧性を一層向上することができる。特に、管状体10の壁厚をより薄型化することが可能となる。   Next, a sixth embodiment of the present invention will be described with reference to FIG. The tubular body 10 of this example is provided with reinforcing means on the outer periphery thereof. The reinforcing means of this example is provided by attaching a high-strength member to the outer peripheral surface of the tubular body 10. As the high-strength member 13, a member obtained by bundling carbon fibers is employed. Or an iron plate etc. is also employable. Other basic configurations are the same as those in the above-described embodiment. According to such a configuration, the pressure resistance of the pressure vessel 1 can be further improved. In particular, the wall thickness of the tubular body 10 can be further reduced.

本願発明者は、前述した各実施例の圧力容器1について、図11乃至図13に示す比較サンプルとともに性能を検証した。図14及び図15は、その検証データを示すグラフである。図14は、圧力容器1のスペース効率を示すグラフである。スペース効率とは、圧力容器1が占める設置スペースにどれだけの圧縮ガスを収容できるかを表す効率である。同図の縦軸は、単位スペース当りの充填量、すなわち比スペース充填量であり、この値が大きい程、スペース効率が高く、より大きな容積を確保することが可能となる。また、図15は、圧力容器1の重量効率を示すグラフである。重量効率とは、圧力容器1の重量に対してどれだけの圧縮ガスを収容できるかを表す効率である。同図の縦軸は、単位重量当りの充填量、すなわち比重量充填量であり、この値が大きい程、重量効率が高く、より軽量化することが可能となる。尚、かかる検証は、200mm×200mm×800mmの設置スペースを想定して行ったものである。すなわち、圧力容器1の設計は、所定の設置スペースに基づいて行うとよい。無論、設置スペースの大きさ・形は、これに限定されるものではない。   The inventor of the present application verified the performance of the pressure vessel 1 of each example described above together with the comparative samples shown in FIGS. 14 and 15 are graphs showing the verification data. FIG. 14 is a graph showing the space efficiency of the pressure vessel 1. The space efficiency is an efficiency representing how much compressed gas can be accommodated in the installation space occupied by the pressure vessel 1. The vertical axis in the figure is the filling amount per unit space, that is, the specific space filling amount, and the larger this value, the higher the space efficiency and the larger the volume can be secured. FIG. 15 is a graph showing the weight efficiency of the pressure vessel 1. The weight efficiency is an efficiency representing how much compressed gas can be accommodated with respect to the weight of the pressure vessel 1. The vertical axis of the figure is the filling amount per unit weight, that is, the specific weight filling amount, and the larger this value, the higher the weight efficiency and the lighter the weight. This verification was performed assuming an installation space of 200 mm × 200 mm × 800 mm. That is, the design of the pressure vessel 1 may be performed based on a predetermined installation space. Of course, the size and shape of the installation space are not limited to this.

比較サンプルとする図11の管状体100は、横断面形状が円形のものである。その外径直径は、前述した第1実施例における正四角形の1辺の長さと等しく設定されている。収容部101は円形である。また、図12の管状体100は、外周にカーボン繊維102を設けてなるものである。その他の構成は図11に示すものと同様である。更に図13は、その横断面外周形状が正四角形を呈するものであり、且つ、管状体100の壁厚を均一に設定してなるものである。   The tubular body 100 in FIG. 11 as a comparative sample has a circular cross-sectional shape. The outer diameter is set equal to the length of one side of the regular square in the first embodiment described above. The accommodating part 101 is circular. Moreover, the tubular body 100 of FIG. 12 is formed by providing carbon fibers 102 on the outer periphery. Other configurations are the same as those shown in FIG. Further, in FIG. 13, the outer peripheral shape of the cross section is a regular square, and the wall thickness of the tubular body 100 is set to be uniform.

尚、各グラフにおいては、図11に示す比較サンプルの実施例を「円形アルミ」、図12に示す比較サンプルの実施例を「円形複合」、図13に示す比較サンプルの実施例を「角型定肉厚」、図2に示す本願発明の第1実施例を「角型肉厚最適化」、図5に示す本願発明の第2実施例を「角型縦横リブ2分割」、図6に示す本願発明の第3実施例を「角型縦横リブ3分割」、図9に示す本願発明の第5実施例を「角型斜めリブアルミ」、図10に示す本願発明の第6実施例を「角型斜めリブ複合」と称する。   In each graph, the example of the comparative sample shown in FIG. 11 is “circular aluminum”, the example of the comparative sample shown in FIG. 12 is “circular composite”, and the example of the comparative sample shown in FIG. The first embodiment of the present invention shown in FIG. 2 is “Square wall thickness optimization”, the second embodiment of the present invention shown in FIG. 5 is “Square vertical and horizontal ribs divided into two”, and FIG. The third embodiment of the present invention shown is "square vertical and horizontal ribs divided into three", the fifth embodiment of the present invention shown in FIG. 9 is "square diagonal rib aluminum", and the sixth embodiment of the present invention shown in FIG. It is referred to as “square diagonal rib composite”.

図11に示すように、アルミニウム合金のみで円形の管状体を構成すると、低圧で使用するには重量効率は良いが、高圧に耐えようとするとスペース効率及び重量効率ともに低下する。すなわち容積は少なくなり、重量がかさむことになる。   As shown in FIG. 11, when a circular tubular body is composed of only an aluminum alloy, the weight efficiency is good for use at a low pressure, but both the space efficiency and the weight efficiency are lowered when trying to withstand the high pressure. That is, the volume is reduced and the weight is increased.

これに対し、図12に示すように、カーボン繊維にて補強を施せば、スペース効率及び重量効率ともに向上し、また高圧にも適したものとなる。特に重量効率の向上は顕著であり軽量化への効果が大きい。   On the other hand, as shown in FIG. 12, if the carbon fiber is used for reinforcement, both space efficiency and weight efficiency are improved, and it is also suitable for high pressure. In particular, the improvement in weight efficiency is remarkable, and the effect on weight reduction is great.

一方、図13に示すように、円形による無駄な空間を利用すべく管状体を角型の均等な壁厚にしたところ、耐圧性を確保するためには壁厚が厚くなってしまい、スペース効率及び重量効率ともに低くなり、結果的に、円形のものよりも容積は小さく重量がかさむものとなってしまった。   On the other hand, as shown in FIG. 13, when the tubular body is made to have a uniform square wall thickness in order to use a wasteful space due to a circle, the wall thickness becomes thick in order to ensure pressure resistance. As a result, both the weight efficiency and the volume are smaller and the weight is heavier than the circular one.

図2に示す本願発明の第1実施例によれば、図13に示すものよりスペース効率及び重量効率ともに向上し、高圧になると図11に示すものよりスペース効率及び重量効率ともに向上し、容積が大きく、且つ軽量になるという利点が得られた。   According to the first embodiment of the present invention shown in FIG. 2, both space efficiency and weight efficiency are improved from those shown in FIG. 13, and both space efficiency and weight efficiency are improved as shown in FIG. The advantage of being large and lightweight was obtained.

図5に示す本願発明の第2実施例によれば、図2に示すものと比較して、スペース効率及び重量効率ともに更に向上し、容積が大きく、且つ軽量になるという利点が得られた。   According to the second embodiment of the present invention shown in FIG. 5, the space efficiency and the weight efficiency are further improved as compared with those shown in FIG.

図6に示す本発明の第3実施例によれば、図5に示すものと比較すると、スペース効率及び重量効率ともに更に向上しており、収容部11を細分化するほど容積が大きく、且つ軽量になるという利点が得られるが、その性能向上の度合は小さい。   According to the third embodiment of the present invention shown in FIG. 6, both space efficiency and weight efficiency are further improved as compared with that shown in FIG. 5, and the volume is larger and lighter as the accommodating portion 11 is subdivided. However, the degree of performance improvement is small.

図9に示す本発明の第5実施例によれば、図6に示すものと比較して、顕著な性能向上が達成された。スペース効率では図11に示すものを上回るのみでなく、低圧において図12に示すものをも上回っている。重量効率では極低圧を除いて図11に示すものを上回っている。すなわち、より容積が大きく、且つ軽量になるという利点が得られた。   According to the fifth embodiment of the present invention shown in FIG. 9, a remarkable performance improvement is achieved as compared with that shown in FIG. The space efficiency not only exceeds that shown in FIG. 11, but also exceeds that shown in FIG. 12 at low pressure. The weight efficiency is higher than that shown in FIG. 11 except for extremely low pressure. In other words, the advantages of larger volume and light weight were obtained.

図10に示す本発明の第6実施例によれば、図9に示すものに対し、更なる性能向上が達成された。スペース効率では図12に示すものを上回っており、実施例のうち最大となる。重量効率では低圧でも図11に示すものを上回っている。また高圧でも効率の低下がなく高圧での使用に適した特性となっている。   According to the sixth embodiment of the present invention shown in FIG. 10, further performance improvement is achieved with respect to that shown in FIG. The space efficiency exceeds that shown in FIG. 12, and is the largest of the embodiments. The weight efficiency exceeds that shown in FIG. 11 even at low pressure. In addition, there is no reduction in efficiency even at high pressure, and the characteristics are suitable for use at high pressure.

管状体10は、その使用条件を踏まえつつ、このような検証データに基づく各構成の利点を考慮して設計するとよい。その効果として、より優れた圧力容器を得ることができ、製造コストの低減も可能となる。特に、圧力容器の使用形態によっては、その放熱性も重要となる場合がある。この点、管状体10の壁厚をその部位に応じて異なる厚さに設定したり、管状体10の内部を区画したりすることによれば、管状体10と被収容物との接触面積が増大するので、放熱性にも優れた圧力容器となる利点がある。   The tubular body 10 may be designed in consideration of the advantages of each configuration based on such verification data while taking into account the use conditions. As its effect, a more excellent pressure vessel can be obtained, and the manufacturing cost can be reduced. In particular, depending on how the pressure vessel is used, its heat dissipation may be important. In this regard, by setting the wall thickness of the tubular body 10 to a different thickness depending on the part, or by dividing the inside of the tubular body 10, the contact area between the tubular body 10 and the object to be accommodated is increased. Since it increases, there exists an advantage used as the pressure vessel excellent also in heat dissipation.

本発明の圧力容器は、燃料電池車に搭載する水素タンクとして好適に利用することが可能である。また、CNG車に搭載されるCNG貯蔵タンク、水素スタンドの貯蔵タンク、家庭用のLPGタンク、消火器等として利用することも可能である。   The pressure vessel of the present invention can be suitably used as a hydrogen tank mounted on a fuel cell vehicle. It can also be used as a CNG storage tank mounted on a CNG vehicle, a hydrogen stand storage tank, a household LPG tank, a fire extinguisher, or the like.

本発明の実施例に係り、圧力容器の縦断面を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the longitudinal cross-section of a pressure vessel. 本発明の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the cross-sectional shape of a tubular body. 本発明の実施例に係り、壁厚計算区間に生じる荷重分布を示すグラフである。It is a graph which concerns on the Example of this invention and shows the load distribution which arises in a wall thickness calculation area. 本発明の実施例に係り、壁厚計算区間に生じる外面応力と内面応力に対応する壁厚を示すグラフである。It is a graph which shows the wall thickness which concerns on the Example of this invention and respond | corresponds to the external surface stress and internal surface stress which arise in a wall thickness calculation area. 本発明の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the cross-sectional shape of a tubular body. 本発明の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the cross-sectional shape of a tubular body. 本発明の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the cross-sectional shape of a tubular body. 本発明の実施例に係り、管状体構成部材の横断面形状を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the cross-sectional shape of a tubular body structural member. 本発明の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the cross-sectional shape of a tubular body. 本発明の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the Example of this invention and shows the cross-sectional shape of a tubular body. 本発明とは異なる他の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the other Example different from this invention, and shows the cross-sectional shape of a tubular body. 本発明とは異なる他の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the other Example different from this invention, and shows the cross-sectional shape of a tubular body. 本発明とは異なる他の実施例に係り、管状体の横断面形状を示す説明図である。It is explanatory drawing which concerns on the other Example different from this invention, and shows the cross-sectional shape of a tubular body. 本発明の実施例に係り、許容内圧−比スペース充填量の特性グラフである。It is a characteristic graph of the allowable internal pressure-specific space filling amount according to the embodiment of the present invention. 本発明の実施例に係り、許容内圧−比重量充填量の特性グラフである。It is a characteristic graph of the allowable internal pressure-specific weight filling amount according to the embodiment of the present invention.

符号の説明Explanation of symbols

1 圧力容器
10 管状体
10a 管状体構成部材
11 収容部
12 内部壁
13 高強度部材
20 端部部材
DESCRIPTION OF SYMBOLS 1 Pressure vessel 10 Tubular body 10a Tubular body structural member 11 Accommodating part 12 Internal wall 13 High-strength member 20 End member

Claims (8)

その内側に被収容物を収容する管状体を備え、前記管状体の横断面外周形状が非円形を呈する圧力容器において、
前記管状体に生じる応力が均等化するように、前記管状体の壁厚をその部位に応じて異なる厚さに設定したことを特徴とする圧力容器。
In a pressure vessel comprising a tubular body that accommodates an object to be contained therein, wherein the tubular body has a non-circular cross-sectional outer peripheral shape,
A pressure vessel characterized in that the wall thickness of the tubular body is set to a different thickness depending on the site so that the stress generated in the tubular body is equalized.
前記管状体に生じる応力を均等化するにあたり、前記管状体の横断面形状に対応する所定の壁厚計算区間を設定し、内圧によって前記壁厚計算区間に生じる外面応力と内面応力を求め、前記壁厚計算区間における前記管状体の壁厚は、前記外面応力と前記内面応力のうちの大きい方の値に対応する厚さに設定したことを特徴とする請求項1記載の圧力容器。   In equalizing the stress generated in the tubular body, a predetermined wall thickness calculation section corresponding to the cross-sectional shape of the tubular body is set, and external stress and internal stress generated in the wall thickness calculation section by internal pressure are obtained, The pressure vessel according to claim 1, wherein the wall thickness of the tubular body in the wall thickness calculation section is set to a thickness corresponding to a larger value of the outer surface stress and the inner surface stress. 前記管状体の内部を複数に区画したことを特徴とする請求項1又は2記載の圧力容器。   The pressure vessel according to claim 1 or 2, wherein the inside of the tubular body is divided into a plurality of sections. その内側に被収容物を収容する管状体を備え、前記管状体の横断面外周形状が多角形を呈する圧力容器において、
前記管状体は、前記多角形の角を形成する2辺の中間部位同士を直結する内部壁を備えたことを特徴とする圧力容器。
In the pressure vessel comprising a tubular body that accommodates an object to be contained therein, and the outer circumferential shape of the tubular body having a polygonal shape,
The pressure vessel according to claim 1, wherein the tubular body includes an inner wall that directly connects intermediate portions of two sides forming the corners of the polygon.
前記管状体に生じる応力が均等化するように、前記管状体の壁厚をその部位に応じて異なる厚さに設定したことを特徴とする請求項4記載の圧力容器。   The pressure vessel according to claim 4, wherein the wall thickness of the tubular body is set to a different thickness depending on the site so that the stress generated in the tubular body is equalized. 前記管状体に生じる応力を均等化するにあたり、前記管状体の横断面形状に対応する所定の壁厚計算区間を設定し、内圧によって前記壁厚計算区間に生じる外面応力と内面応力を求め、前記壁厚計算区間における前記管状体の壁厚は、前記外面応力と前記内面応力のうちの大きい方の値に対応する厚さに設定したことを特徴とする請求項5記載の圧力容器。   In equalizing the stress generated in the tubular body, a predetermined wall thickness calculation section corresponding to the cross-sectional shape of the tubular body is set, and external stress and internal stress generated in the wall thickness calculation section by internal pressure are obtained, 6. The pressure vessel according to claim 5, wherein a wall thickness of the tubular body in a wall thickness calculation section is set to a thickness corresponding to a larger value of the outer surface stress and the inner surface stress. 前記管状体の外周に補強手段を設けたことを特徴とする請求項1乃至6のいずれか記載の圧力容器。   The pressure vessel according to any one of claims 1 to 6, wherein reinforcing means is provided on an outer periphery of the tubular body. その内側に被収容物を収容する管状体を備え、前記管状体の横断面外周形状が非円形を呈する圧力容器の設計方法において、
前記管状体に生じる応力が均等化するように、前記管状体の壁厚をその部位に応じて異なる厚さに設定する方法であり、
前記管状体の横断面形状に対応する所定の壁厚計算区間を設定し、内圧によって前記壁厚計算区間に生じる外面応力と内面応力を求め、前記壁厚計算区間における前記管状体の壁厚は、前記外面応力と前記内面応力のうちの大きい方の値に対応する厚さに設定することを特徴とする圧力容器の設計方法。
In the method for designing a pressure vessel, comprising a tubular body that accommodates an object to be contained therein, and the tubular body has a non-circular cross-sectional outer peripheral shape.
The method is to set the wall thickness of the tubular body to a different thickness depending on the part so that the stress generated in the tubular body is equalized,
A predetermined wall thickness calculation section corresponding to the cross-sectional shape of the tubular body is set, an external stress and an internal stress generated in the wall thickness calculation section by internal pressure are obtained, and the wall thickness of the tubular body in the wall thickness calculation section is A method of designing a pressure vessel, wherein the thickness is set to a thickness corresponding to a larger value of the outer surface stress and the inner surface stress.
JP2005036505A 2005-02-14 2005-02-14 Pressure vessel and design method thereof Pending JP2006220284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036505A JP2006220284A (en) 2005-02-14 2005-02-14 Pressure vessel and design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036505A JP2006220284A (en) 2005-02-14 2005-02-14 Pressure vessel and design method thereof

Publications (1)

Publication Number Publication Date
JP2006220284A true JP2006220284A (en) 2006-08-24

Family

ID=36982740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036505A Pending JP2006220284A (en) 2005-02-14 2005-02-14 Pressure vessel and design method thereof

Country Status (1)

Country Link
JP (1) JP2006220284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105508600A (en) * 2016-01-07 2016-04-20 湖南师范大学 Low-temperature prestress internal-pressure internal-heating pressure vessel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525293Y1 (en) * 1969-04-14 1977-02-03
JPS5986753A (en) * 1982-11-10 1984-05-19 Nissan Motor Co Ltd Spherical pressure vessel
JPH0532870U (en) * 1991-10-07 1993-04-30 日新電機株式会社 Reinforcement structure of pressure vessel
JP2000205496A (en) * 1999-01-21 2000-07-25 Japan Metals & Chem Co Ltd Container for hydrogen storage alloy
JP2001502265A (en) * 1996-09-16 2001-02-20 マリネックス インターナショナル インコーポレーテッド LNG tanks and containment systems
JP2003065437A (en) * 2001-08-27 2003-03-05 Denso Corp Pressure vessel
JP2004270842A (en) * 2003-03-10 2004-09-30 Jfe Engineering Kk Adsorption type gas storage container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525293Y1 (en) * 1969-04-14 1977-02-03
JPS5986753A (en) * 1982-11-10 1984-05-19 Nissan Motor Co Ltd Spherical pressure vessel
JPH0532870U (en) * 1991-10-07 1993-04-30 日新電機株式会社 Reinforcement structure of pressure vessel
JP2001502265A (en) * 1996-09-16 2001-02-20 マリネックス インターナショナル インコーポレーテッド LNG tanks and containment systems
JP2000205496A (en) * 1999-01-21 2000-07-25 Japan Metals & Chem Co Ltd Container for hydrogen storage alloy
JP2003065437A (en) * 2001-08-27 2003-03-05 Denso Corp Pressure vessel
JP2004270842A (en) * 2003-03-10 2004-09-30 Jfe Engineering Kk Adsorption type gas storage container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105508600A (en) * 2016-01-07 2016-04-20 湖南师范大学 Low-temperature prestress internal-pressure internal-heating pressure vessel

Similar Documents

Publication Publication Date Title
US7971740B2 (en) Pressure vessel
USRE41142E1 (en) Composite conformable pressure vessel
Roh et al. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles
US9618157B2 (en) Concentric shells for compressed gas storage
EP3066380B1 (en) High conformal pressure vessel
EP3204683B1 (en) Pressure vessel fluid manifold assembly
US20090090726A1 (en) Pressure container
US20140166664A1 (en) Conformal Tank For Adsorbant Natural Gas Storage
US20180172208A1 (en) High pressure tank having reinforced boss part
KR102322371B1 (en) Pressure vessel including reinforced cylinder part
JP2006220284A (en) Pressure vessel and design method thereof
JP4774244B2 (en) Pressure vessel
EP3380777B1 (en) Composite pressure vessel assembly and method of manufacturing
JP2006038156A (en) Pressure vessel
JPH05240400A (en) Tank for compressed natural gas
JP4332475B2 (en) Pressure vessel
KR102440677B1 (en) High pressure tank
KR102098018B1 (en) Pressure vessel
US20180347757A1 (en) Composite pressure vessel assembly with an integrated heating element
Gheshlaghi et al. Analysis of composite pressure vessels
US9366203B2 (en) Conformable high pressure gaseous fuel storage system having a gas storage vessel with fractal geometry
JP2008057632A (en) Fluid storage tank
JP4317798B2 (en) Pressure vessel
Ahluwalia et al. Pressurized System
CN115973457A (en) Common bottom surface tension storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100607