JP2006219754A - Method for manufacturing metallic material and method for manufacturing electromagnetic wave absorber - Google Patents

Method for manufacturing metallic material and method for manufacturing electromagnetic wave absorber Download PDF

Info

Publication number
JP2006219754A
JP2006219754A JP2005036905A JP2005036905A JP2006219754A JP 2006219754 A JP2006219754 A JP 2006219754A JP 2005036905 A JP2005036905 A JP 2005036905A JP 2005036905 A JP2005036905 A JP 2005036905A JP 2006219754 A JP2006219754 A JP 2006219754A
Authority
JP
Japan
Prior art keywords
metal
carbonyl
reaction
decomposition
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005036905A
Other languages
Japanese (ja)
Inventor
Kenichi Machida
憲一 町田
Masahiro Ito
正浩 伊東
Akitsugu Miura
晃嗣 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2005036905A priority Critical patent/JP2006219754A/en
Publication of JP2006219754A publication Critical patent/JP2006219754A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a metallic material by which the recoverability of the metallic material as a manufacture can be improved and a reaction system containing harmful CO and carbonyl compounds can be easily formed into a closed system. <P>SOLUTION: A reactant-holding section where a reactant which reacts with metal carbonyl to accelerate the decomposition of the metal carbonyl is held is disposed in a reaction space composed of a CO atmosphere under a pressure higher than atmospheric pressure. The following steps are cyclically performed in the reaction space by means of a transporting action using, as a medium, a vapor phase concerned with the reaction system for the formation and decomposition of the metal carbonyl: a metal carbonyl formation step where, in the reaction space, a metal or a metal-containing substance as a starting raw material is allowed to react with CO to form the metal carbonyl and fluidize it; a carbonyl decomposition step where the metal carbonyl is fed to the reactant-holding section and the metal carbonyl is decomposed by reaction with the reactant to form a metallic material as a decomposition product derived from the metal carbonyl and CO gas; and a CO feedback step where the CO gas resulting from the decomposition is fed back to the CO atmosphere in the reaction space. Then, the metallic material as a decomposition product is recovered as a manufacture from the reaction space. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属カルボニルを出発原料として製造される有用な金属系材料を、クローズした製造システムを用いて、系外に取り出すことなく有用な金属材料を定常的に製造する金属系材料の製造方法と、それを応用した電波吸収体の製造方法に関する。   The present invention relates to a method for producing a metal-based material, in which a useful metal-based material produced using metal carbonyl as a starting material is steadily produced without taking it out of the system using a closed production system. And a method of manufacturing a radio wave absorber using the same.

特開2004−124199JP 2004-124199 A ドイツ特許公報DE483603German Patent Publication DE483603 米国特許公報US2710797US Patent Publication US2710797

金属カルボニル化合物は従来、モンド法等により、該金属と一酸化炭素との直接反応により、CO加圧条件下で製造されている。しかしながら、反応が非効率であることに加え、原料となるCOガスやNi(CO)などの金属カルボニルは一般に有害であり、環境ならびに健康被害の観点から我が国での製造は減少する方向にある。 Metal carbonyl compounds are conventionally produced under CO pressure conditions by direct reaction of the metal with carbon monoxide by the Mondo method or the like. However, in addition to the inefficient reaction, metal carbonyls such as CO gas and Ni (CO) 4 as raw materials are generally harmful, and production in Japan tends to decrease from the viewpoint of environmental and health damage. .

他方、金属カルボニルは分解により原子状またはクラスター状金属を生成し、これをもとに任意のサイズの薄膜や微粒子の製造が容易であり(ビルドアップ法)、近年、該金属カルボニル化合物が危険で高価であるにも関わらず、その用途は拡大する傾向にある。また、金属カルボニルの形成と熱分解作用を利用して、該金属精製することが可能となる。このような方法は、特許文献1に記載されている。   On the other hand, metal carbonyl produces atomic or cluster metal by decomposition, and it is easy to produce thin films and fine particles of any size based on this (build-up method). In recent years, the metal carbonyl compounds have become dangerous. Despite being expensive, its applications tend to expand. Further, the metal can be purified by utilizing the formation of metal carbonyl and the thermal decomposition action. Such a method is described in Patent Document 1.

特許文献1の方法は、反応系からのカルボニル化合物や金属の取出側が開放されており、有毒なCOガスやカルボニル化合物の回収系を完全にクローズ化するのが難しい難点がある。また、爆轟を用いて局所的に高圧発生させるので、均一な反応が期待しにくく、また、反応物が爆轟で飛散したり、容器壁面にこびりついたりしやすいので、製品金属の回収性にも難がある。また、特許文献2、3においてはカルボニル化反応を鉄、ニッケル、コバルトなどの遷移金属の単離・回収に用いたものであり、金属カルボニルとして該金属を回収した後、同一反応ラインにて熱分解により金属粉末を得るため、そのシステム構成は特許文献1と概ね同様である。   In the method of Patent Document 1, the carbonyl compound or metal extraction side from the reaction system is open, and it is difficult to completely close the toxic CO gas or carbonyl compound recovery system. In addition, since a high pressure is generated locally using detonation, it is difficult to expect a uniform reaction, and the reaction product is easily scattered by detonation or stuck to the wall of the container, which improves the recoverability of the product metal. There are also difficulties. In Patent Documents 2 and 3, the carbonylation reaction is used for the isolation and recovery of transition metals such as iron, nickel, and cobalt. After recovering the metal as metal carbonyl, heat is generated in the same reaction line. In order to obtain metal powder by decomposition, the system configuration is substantially the same as that of Patent Document 1.

本発明の課題は、製造物たる金属系材料の回収性に優れ、また、有害なCOやカルボニル化合物を含んだ反応系のクローズ化も図りやすい金属系材料の製造方法と、それを用いた電波吸収材料の製造方法とを提供することにある。   An object of the present invention is to provide a method for producing a metal-based material that is excellent in recoverability of a metal-based material as a product and that can easily close a reaction system containing harmful CO and carbonyl compounds, and a radio wave using the method. It is in providing the manufacturing method of an absorbent material.

課題を解決するための手段及発明の効果Means for solving the problems and effects of the invention

上記の課題を解決するために、本発明の金属系材料の製造方法は、
常圧よりも加圧したCO雰囲気からなる反応空間内に金属カルボニルと反応して該金属カルボニルの分解を促進する反応剤を保持した反応剤保持部を配置するとともに、
反応空間内で、出発原料となる金属又は金属含有物質とCOとを反応させて金属カルボニルを生成し流体化する金属カルボニル生成ステップと、生成した金属カルボニルを該反応剤保持部に供給し、金属カルボニルを反応剤と反応させて分解することにより、当該金属カルボニルに由来した分解生成金属系材料とCOガスとを生成するカルボニル分解ステップと、該分解により生成したCOガスを反応空間内のCO雰囲気にフィードバックするCOフィードバックステップとを、金属カルボニルの生成及び分解の反応系に関与する気相を媒介とした輸送作用により反応空間内にて循環実施し、分解生成金属系材料を反応空間より製造物として回収することを特徴とする。
In order to solve the above problems, a method for producing a metal-based material of the present invention includes:
A reaction agent holding part holding a reaction agent that reacts with metal carbonyl and promotes decomposition of the metal carbonyl in a reaction space consisting of a CO atmosphere pressurized from normal pressure is disposed,
In the reaction space, a metal or metal-containing substance as a starting material is reacted with CO to generate metal carbonyl and fluidize it, and the generated metal carbonyl is supplied to the reactant holding unit, A carbonyl decomposition step in which carbonyl is reacted with a reactant and decomposed to generate a decomposition-derived metal material derived from the metal carbonyl and CO gas, and CO gas generated by the decomposition is converted into a CO atmosphere in the reaction space. A CO feedback step that feeds back to the reaction space is circulated in the reaction space by a gas phase-mediated transport action involved in the reaction system for the formation and decomposition of metal carbonyl, and the metal product of decomposition product is produced from the reaction space. It is characterized by collect | recovering as.

上記本発明によると、金属カルボニルが生成するCO加圧の適当な温度条件下でも、該金属カルボニルと反応し、合金あるいは該金属の化合物への分解を促す反応剤を共存させることで、該金属または金属含有物質よりその金属成分を継続的にカルボニル化し、反応剤と化合して金属系材料を効率よく定常的に生成することになる。上記本発明の金属系材料の製造方法によると、上記で想起した技術に基づき、金属および金属含有物質を原料として該金属を成分とするカルボニル化合物を形成させ、さらには反応剤と反応せしめ、該金属の合金または化合物として分解補足することでCO成分を気相に再放出し、カルボニル化反応を限られたCOガス導入量でも効率的に循環利用することが可能となる。   According to the present invention, the metal carbonyl reacts with the metal carbonyl even under an appropriate temperature condition of CO pressurization to form a metal carbonyl. Alternatively, the metal component is continuously carbonylated from the metal-containing substance and combined with the reactant to efficiently and constantly produce a metal-based material. According to the method for producing a metal-based material of the present invention, based on the technique conceived above, a carbonyl compound containing the metal as a component is formed using a metal and a metal-containing substance as a raw material, and further reacted with a reactant. By decomposing and capturing as a metal alloy or compound, the CO component is re-released into the gas phase, and the carbonylation reaction can be efficiently circulated even with a limited CO gas introduction amount.

そして、一旦形成された金属カルボニルを、熱分解あるいは反応剤との反応による分解で、CO成分が再度気相に戻ることになり、長時間にわたる反応後でもCO圧を高圧に維持することができ、従来の密封系では不可能であった定常的なカルボニル化を、限られた充填量のCOでも行うことができる。生成した金属カルボニルは密封した容器内でほぼ大半が分解され、無害な金属系材料に変換されるため、有害な金属カルボニルに基づく健康被害や環境汚染を効果的に避けることができる。また、加圧したCOと出発原料中の金属成分との反応が、閉じた反応空間内で比較的静的な環境下で進行するため、特許文献1のごとき爆轟による反応物の飛散も生じず、製造物の回収も容易である。また、爆轟を発生させるための燃料や支燃性ガスの供給も不要である。   Then, once formed metal carbonyl is decomposed by thermal decomposition or reaction with a reactant, the CO component returns to the gas phase again, and the CO pressure can be maintained at a high pressure even after long-time reaction. Thus, steady carbonylation, which is impossible with a conventional sealed system, can be performed even with a limited amount of CO. Almost all of the produced metal carbonyl is decomposed in a sealed container and converted into a harmless metal-based material. Therefore, it is possible to effectively avoid health damage and environmental pollution due to harmful metal carbonyl. In addition, since the reaction between pressurized CO and the metal component in the starting material proceeds in a relatively static environment within a closed reaction space, scattering of reactants due to detonation as in Patent Document 1 also occurs. In addition, the product can be easily recovered. In addition, it is not necessary to supply fuel or combustion-supporting gas for generating detonation.

金属カルボニルは、設定したCO圧力および温度の条件下で、該金属とCOガスとの平衡に従って生成する。すなわち、一般にCO圧が高いほど反応は金属カルボニルが生成する方向に進行する。これに対し、金属カルボニルは温度の上昇と共に不安定となり金属とCOに分解する。しかしながら、この分解温度はCO圧に依存し、一般にこの温度はCO圧と共に上昇する。この性質を利用すれば、金属カルボニルを原料として、低圧(一般的に常圧)、高温(〜1000℃)で分解し、金属または合金、金属間化合物の薄膜または微粒子を製造できる。   Metal carbonyls are produced according to the equilibrium of the metal and CO gas under conditions of set CO pressure and temperature. That is, generally, the higher the CO pressure is, the more the reaction proceeds in the direction in which metal carbonyl is generated. On the other hand, metal carbonyl becomes unstable as the temperature rises and decomposes into metal and CO. However, this decomposition temperature depends on the CO pressure, and generally this temperature increases with the CO pressure. By utilizing this property, metal carbonyl can be used as a raw material, and it can be decomposed at low pressure (generally normal pressure) and high temperature (up to 1000 ° C.) to produce a thin film or fine particles of metal or alloy, intermetallic compound.

図1Aは、上記本発明の金属系材料の製造方法を実現するための装置の一例を示すものである。この装置1では、反応空間をなす容器内に出発原料を配置して、該容器内に加圧したCOガスを封入し、該容器内にて第一のヒーターにより出発原料をCOガスとの反応により金属カルボニルを生成する温度まで局所加熱することにより金属カルボニルを生成するようにしている。COを常圧よりも高圧に加圧しているために、局所加熱による比較的低温でもカルボニル化を促進できる。反応容器の軽量化と取り扱いの容易性を考慮すれば、反応空間内のCO圧力を大気圧より高くかつ500気圧以下とするのが適当であり、金属カルボニルの生成に係る反応温度は室温以上500℃以下とするのがよい。   FIG. 1A shows an example of an apparatus for realizing the method for producing a metal-based material of the present invention. In this apparatus 1, a starting material is placed in a container forming a reaction space, pressurized CO gas is sealed in the container, and the starting material is reacted with CO gas by a first heater in the container. Thus, metal carbonyl is produced by local heating to a temperature at which metal carbonyl is produced. Since CO is pressurized to a pressure higher than normal pressure, carbonylation can be promoted even at a relatively low temperature by local heating. Considering the weight reduction of the reaction vessel and the ease of handling, it is appropriate that the CO pressure in the reaction space is higher than atmospheric pressure and 500 atmospheres or lower, and the reaction temperature for the formation of metal carbonyl is from room temperature to 500 atmospheres. It is good to set it as below ℃.

図1Aの装置1では、カルボニル化用の空間と、その分解用の空間とが個別に設けられ、それぞれ第一ヒーター3及び第二ヒーター8にて独立に加熱されるようになっている。具体的には、カルボニル化用空間形成容器2と分解用空間形成容器7とが、両者を連結する連結部5により接続された構造を有し、各容器2,7を壁部外側から取り囲むように第一ヒーター3及び第二ヒーター8が設けられている。カルボニル化用空間形成容器2内には、内部のCOとの接触が許容された状態で出発原料SMを収容する出発原料保持部4が配置されている。他方、分解用空間形成容器7内には反応剤9を収容した反応剤保持部10が配置されている。また、連結部5には、残滓などの固形物が分解用空間形成容器7側に漏れ出すことを防止するために、気体の通過は許容し、所定粒径以上の固形物の通過は許容しないフィルタ部として、セラミック等からなる多孔質仕切板6を設けている。   In the apparatus 1 of FIG. 1A, a carbonylation space and a decomposition space are provided separately, and are heated independently by the first heater 3 and the second heater 8, respectively. Specifically, the carbonylation space forming container 2 and the decomposition space forming container 7 have a structure connected by a connecting portion 5 that connects them, and surround each container 2, 7 from the outside of the wall portion. The first heater 3 and the second heater 8 are provided. In the carbonylation space forming container 2, a starting material holding part 4 for storing the starting material SM in a state in which contact with the internal CO is allowed is arranged. On the other hand, a reactant holding part 10 containing a reactant 9 is disposed in the decomposition space forming container 7. Further, in order to prevent solids such as residue from leaking out to the decomposition space forming container 7 side, the connecting part 5 is allowed to pass through gas and not allowed to pass through solids having a predetermined particle diameter or more. As the filter portion, a porous partition plate 6 made of ceramic or the like is provided.

図1Aの装置にて、第一ヒーター3によるカルボニル化用空間形成容器2内の加熱温度Tは、出発原料SM中の金属成分のカルボニル生成温度よりも高く、かつ生成した金属カルボニルの積極的な分解が生じないよう、500℃以下に設定されている。他方、第二ヒーター8による分解用空間形成容器7内の加熱温度Tは、反応剤9中にて金属カルボニルの積極的な分解が生ずるように、前記温度Tよりも高温(かつ、反応剤の自発的な分解温度以下)に設定され、また、対流作用で容器内(特に、カルボニル化用空間形成容器2と分解用空間形成容器7と間)の気体が循環し易いように工夫されている。これにより、出発原料SM中の金属成分は、上記のように、個別のヒーターにより互いに異なる温度にて局所加熱される2つの容器間、すなわちカルボニル化用空間形成容器2から分解用空間形成容器7へ気相輸送される形で、分解生成金属系材料PMとして精製されることとなる。 In apparatus of FIG. 1A, the heating temperature T A of the first heater 3 by the carbonylation space formation vessel 2 is higher than the carbonyl product temperature of the metal components in the starting material SM, and aggressive formed metal carbonyl The temperature is set to 500 ° C. or lower so as not to cause proper decomposition. On the other hand, the heating temperature T B in the decomposition space formed container 7 according to the second heater 8, as aggressive decomposition of the metal carbonyl is generated at the reaction agent 9, the hot (and than the temperature T A, the reaction Devised so that the gas in the container (especially, between the carbonylation space forming container 2 and the decomposition space forming container 7) easily circulates by convection. ing. As a result, the metal component in the starting material SM is, as described above, between two containers that are locally heated by individual heaters at different temperatures, that is, from the carbonylation space formation container 2 to the decomposition space formation container 7. It is refined as a decomposition product metal material PM in a form that is vapor-phase transported.

反応剤9としては、金属ハロゲン化物又は有機金属化合物を用いることが、金属カルボニルの分解を促進しやすく、本発明に好適である。図8Aでは、反応剤9として液状反応剤を反応剤保持部10をなす容器中に保持し、カルボニルを該液状反応剤と接触させるとともに、分解生成金属系材料PMを該液状反応剤9中で沈殿回収するようにしている。液相を介した反応なので固形反応剤よりも効率がよく、また分解生成金属系材料が沈殿するので回収も容易である。また、有機金属化合物中の金属元素が分解反応によりカルボニル由来の金属元素と合金化するので、合金形態で有機金属化合物を回収したい場合にはとくに好都合である。   Use of a metal halide or an organometallic compound as the reactant 9 facilitates the decomposition of the metal carbonyl and is suitable for the present invention. In FIG. 8A, the liquid reactant is held as a reactant 9 in a container that forms the reactant holding unit 10, carbonyl is brought into contact with the liquid reactant, and the decomposition product metal material PM is contained in the liquid reactant 9. The precipitate is collected. Since the reaction is via a liquid phase, it is more efficient than a solid reactant, and the decomposition-generated metal material is precipitated, so that it can be easily recovered. Further, since the metal element in the organometallic compound is alloyed with the carbonyl-derived metal element by the decomposition reaction, it is particularly advantageous when it is desired to recover the organometallic compound in the form of an alloy.

金属ハロゲン化物としては、特に貴金属(特にPt族金属)のハロゲン化物を用いるのが、該金属元素より貴な元素であるため、金属カルボニルの還元剤となり、貴金属元素が還元され、更に該金属との合金または金属間化合物が生成する点でよい。また、有機金属化合物としては、ホウ素、アルミニウム、ケイ素、ガリウム、インジウム、ゲルマニウム、錫、パラジウム及び白金のいずれかのアルキル化合物を用いるのが、金属カルボニルの分解を発し、容易にM−B、M−Al、M−Si(Mはカルボニルを構成する金属元素であり、該金属とB、AlあるいはSiとの合金又は化合物を意味する)などの物質を生成する点で好適である。特に、金属ハロゲン化物または有機金属化合物を、ドデカン等の炭化水素系またはシリコーン系溶媒に分散または溶解させたものが好適である。反応剤を、上記のような高沸点の有機溶媒等に溶解させた溶液状とすることで、金属カルボニルと該反応剤との反応により生成する金属材料を、粒径の揃った微粒子状として製造することが可能となる。具体的には、分解生成金属系材料を、粒径10nm以上200μm以下の粉末形態にて回収することができる。   As the metal halide, a halide of a noble metal (especially a Pt group metal) is used, which is an element more noble than the metal element. Therefore, it becomes a metal carbonyl reducing agent, and the noble metal element is reduced. The alloy or the intermetallic compound may be formed. Further, as the organometallic compound, use of any alkyl compound of boron, aluminum, silicon, gallium, indium, germanium, tin, palladium and platinum causes the decomposition of the metal carbonyl, so that MB, M -Al, M-Si (M is a metal element constituting carbonyl, which means an alloy or a compound of the metal and B, Al, or Si) is preferable in that it produces a substance. In particular, a dispersion obtained by dispersing or dissolving a metal halide or an organometallic compound in a hydrocarbon-based or silicone-based solvent such as dodecane is preferable. By making the reactant into a solution in which the reactant is dissolved in an organic solvent having a high boiling point as described above, the metal material produced by the reaction between the metal carbonyl and the reactant is produced as fine particles having a uniform particle size. It becomes possible to do. Specifically, the decomposition-generated metal material can be recovered in the form of a powder having a particle size of 10 nm to 200 μm.

また、金属カルボニル生成ステップにおいて、金属カルボニルの生成反応を促進するためには、出発原料に適量の硫黄を添加することが効果的である。この目的における出発原料への硫黄添加量は、4重量%以上7重量%以下が好適である。   In addition, in the metal carbonyl production step, it is effective to add an appropriate amount of sulfur to the starting material in order to promote the metal carbonyl production reaction. For this purpose, the amount of sulfur added to the starting material is preferably 4 to 7% by weight.

出発原料に含まれる金属(被回収金属成分)は、カルボニル化が容易な遷移金属とすることが本発明において特に有利である。この場合、分解生成金属系材料は、出発原料よりも遷移金属の含有量が高められたものとなる。本発明では、金属カルボニル化合物の形成を経由して金属材料を製造するため、使用する金属および金属を含む物質が不純物を含む場合であっても、高純度の金属からなる材料を製造することができる。   It is particularly advantageous in the present invention that the metal (metal to be recovered) contained in the starting material is a transition metal that can be easily carbonylated. In this case, the decomposition-generated metal material has a higher transition metal content than the starting material. In the present invention, since a metal material is manufactured through formation of a metal carbonyl compound, a material made of a high-purity metal can be manufactured even when the metal and the substance containing the metal contain impurities. it can.

遷移金属は、特に、鉄、ニッケル及びコバルトのいずれかであることがカルボニル化反応が高く、高い製造効率が期待できる。この場合、分解生成金属系材料は、鉄、ニッケル及びコバルトのいずれかを主成分とする金属、合金または金属間化合物の形で回収することができる。   In particular, the transition metal is one of iron, nickel, and cobalt, which has a high carbonylation reaction, and high production efficiency can be expected. In this case, the decomposition-generated metal-based material can be recovered in the form of a metal, alloy, or intermetallic compound containing iron, nickel, or cobalt as a main component.

より具体的な適用形態としては、出発原料として、希土類系磁石の製造プロセスより発生する固形または粉末屑、使用済み電子機器から回収される該希土類系磁石廃棄物、使用済みで電池のリサイクル工程で回収される鉄、ニッケルおよびコバルト含有廃棄物のいずれかを使用する態様を例示できる。本発明の適用により、希土類磁石や水素吸蔵合金の製造ないし廃棄に伴い発生する希土類−遷移金属系スクラップを、より安価にかつ有効にリサイクルすることが可能となる。   More specific forms of application include, as a starting material, solid or powder waste generated from a rare earth magnet manufacturing process, the rare earth magnet waste recovered from used electronic equipment, and a recycling process of used batteries. The aspect which uses either the iron, nickel, and cobalt containing wastes collect | recovered can be illustrated. By applying the present invention, it becomes possible to recycle rare earth-transition metal scrap generated with the production or disposal of rare earth magnets and hydrogen storage alloys at lower cost and more effectively.

特に出発原料が希土類元素を含有するものである場合、希土類元素は遷移金属と比較してカルボニル化はほとんど進まないため、カルボニル化の進行により遷移金属成分等が飛び去った後の出発原料の残滓には、出発原料に含有されていた希土類原料が濃縮される。したがって、この残滓を利用すれば高濃度の希土類元素を効率的に回収することができる。   In particular, when the starting material contains a rare earth element, the rare earth element hardly undergoes carbonylation as compared with the transition metal, so that the residue of the starting material after the transition metal component and the like have jumped away by the progress of carbonylation. The rare earth material contained in the starting material is concentrated. Therefore, if this residue is utilized, a high concentration rare earth element can be efficiently recovered.

図1Bは、本発明の金属系材料の製造方法に係る全体の処理流れを模式的に示すフロー図である。出発原料(M金属含有物質)をカルボニル化してM金属カルボニルM(CO)nを生成し、これを分解して、精製された金属系材料(分解生成金属系材料)を得る。金属系反応剤との反応によりカルボニル分解する場合は、その反応剤に由来した金属成分と、出発原料の金属成分との合金系材料として回収することも可能である。分解により生じたCOは、容器内にて循環し、再び出発原料のカルボニル化に供される。カルボニル化に寄与しない出発原料中の有用成分(例えば、希土類元素等)は、その残渣に濃縮されるので、運搬や後処理が容易な形で回収することができる。   FIG. 1B is a flowchart schematically showing the entire processing flow according to the method for producing a metal-based material of the present invention. The starting material (M metal-containing substance) is carbonylated to produce M metal carbonyl M (CO) n, which is decomposed to obtain a purified metal material (decomposition product metal material). When carbonyl decomposition is performed by reaction with a metal-based reactant, it can be recovered as an alloy-based material of a metal component derived from the reactant and a starting metal component. The CO generated by the decomposition is circulated in the vessel and again used for carbonylation of the starting material. Since useful components (for example, rare earth elements) in the starting material that do not contribute to carbonylation are concentrated in the residue, they can be recovered in a form that can be easily transported and worked up.

上記本発明の方法により得られた分解生成金属系材料を原料として使用すれば、高性能の電波吸収材料を製造することができる。   If the decomposition-generated metal material obtained by the method of the present invention is used as a raw material, a high-performance radio wave absorbing material can be produced.

以下、本発明を実施例に従って詳細に説明する。
(実施例1)
Nd−Fe−B系焼結磁石研磨屑1.38gを50mlのオートクレーブ容器に投入した後、156気圧の一酸化炭素を充填し、反応温度200℃で24時間処理することでカルボニル化反応を行った。また、比較として鉄粉末1gに対しても同様の操作を施した。また、同一の研磨屑を水素気流中、600℃で3時間処理することで不均化分解させ、これについてもカルボニル化反応を試みた。反応後の残渣について重量変化およびEDXによる組成分析から金属カルボニルの生成量を見積もった。
Hereinafter, the present invention will be described in detail according to examples.
Example 1
After putting 1.38 g of Nd-Fe-B sintered magnet polishing scraps into a 50 ml autoclave container, carbon monoxide is filled with 156 atmospheres and treated at a reaction temperature of 200 ° C. for 24 hours to carry out a carbonylation reaction. It was. For comparison, the same operation was performed on 1 g of iron powder. Further, the same polishing waste was disproportionated and decomposed by treating it at 600 ° C. for 3 hours in a hydrogen stream, and a carbonylation reaction was also attempted. About the residue after reaction, the production amount of metal carbonyl was estimated from the weight change and the composition analysis by EDX.

カルボニル化反応後の試料について、重量変化およびEDXの元素分析より見積もった反応率の結果を下記表1に示す。   Table 1 below shows the results of the reaction rate estimated from the weight change and EDX elemental analysis of the sample after the carbonylation reaction.

鉄、ホウ素化鉄、研磨屑と全ての試料について一酸化炭素との直接反応では、目的とする金属カルボニルがほとんど得られなかった。そこで、鉄に対し触媒として硫黄を鉄/硫黄=93/7の重量比で添加し、同条件化で反応を行った。その結果、重量変化から見積もって約90%の鉄が反応して金属カルボニルとなることが確認された。   In the direct reaction of iron, boron boride, polishing scraps, and carbon monoxide for all samples, the target metal carbonyl was hardly obtained. Therefore, sulfur was added to iron as a catalyst at a weight ratio of iron / sulfur = 93/7, and the reaction was performed under the same conditions. As a result, it was confirmed that about 90% of iron reacted with metal carbonyl as estimated from the change in weight.

次に、同様の条件で未処理の研磨屑に対し反応を行ったところ、ここでも硫黄の添加によりカルボニル化の反応が促進されたが、その生成速度は鉄単独に比べて遅いことから、研磨屑の水素化不均化処理により鉄を析出させた試料についてもカルボニル化反応を実施した。また、その際に重量比として、鉄/硫黄=96/4、93/7、87/13、81/19と変化させカルボニル化を行った。結果も図2に併せて示す。水素化分解した研磨屑において鉄/硫黄=93/7の比で硫黄を添加したところ、鉄単独の場合とほぼ同等の速度で反応が進行することが確認された。また、鉄/硫黄=96/4の比で硫黄を添加した場合において、最も高い反応速度が得られた。   Next, when a reaction was performed on untreated polishing scraps under the same conditions, the carbonylation reaction was also promoted by the addition of sulfur here, but the rate of formation was slower than that of iron alone. A carbonylation reaction was also performed on a sample in which iron was deposited by the hydrogenation disproportionation treatment of scrap. At that time, carbonylation was carried out by changing the weight ratio of iron / sulfur = 96/4, 93/7, 87/13, and 81/19. The results are also shown in FIG. When sulfur was added to the hydrocracked abrasive scraps at a ratio of iron / sulfur = 93/7, it was confirmed that the reaction proceeded at almost the same rate as in the case of iron alone. In addition, when sulfur was added at a ratio of iron / sulfur = 96/4, the highest reaction rate was obtained.

水素化処理、未処理の試料における反応率の違いは、図3のXRD測定結果に示すように水素化分解後の試料は、鉄と水素化ネオジムの相からなっていることから、この鉄相の析出によりカルボニル化反応が容易に進行したものと思われる。この結果から、一酸化炭素との反応性は、未処理の研磨屑(主にNdFe14B相)に比べ鉄が高いことがわかった。 As shown in the XRD measurement results in FIG. 3, the difference in reaction rate between the hydrotreated and untreated samples is that the hydrocracked sample is composed of a phase of iron and neodymium hydride. It appears that the carbonylation reaction proceeded easily due to the precipitation of. From this result, it was found that the reactivity with carbon monoxide was higher for iron than untreated polishing scraps (mainly Nd 2 Fe 14 B phase).

水素化処理した研磨屑について、硫黄の添加量を増やし反応を行った結果、添加量の増加に伴い反応率は減少した。図3に示した反応後の試料のXRD測定結果から、鉄/硫黄=93/7の時には見られなかった硫化鉄の相が出現し、そのピーク強度の増加と共に反応率も減少していることから、上記の硫化鉄の生成がカルボニル化反応を阻害することが考えられる。   As a result of the reaction of increasing the amount of sulfur added to the hydrogenated polishing scrap, the reaction rate decreased with the increase of the amount added. From the XRD measurement result of the sample after the reaction shown in FIG. 3, an iron sulfide phase that was not observed when iron / sulfur = 93/7 appeared, and the reaction rate decreased as the peak intensity increased. From the above, it is considered that the production of iron sulfide inhibits the carbonylation reaction.

上で得られた鉄カルボニル錯体についてFT−IRにより解析を行った結果を図4に示す。比較として、市販のFe(CO)との比較を行ったところ、両試料に共に2000cm−1付近にC=Oの伸縮運動に帰属されるピークが見られたことから、研磨屑のカルボニル化によりFe(CO)が生成したことが確認された。 FIG. 4 shows the results obtained by analyzing the iron carbonyl complex obtained above by FT-IR. As a comparison, when compared with commercially available Fe (CO) 5 , both samples showed a peak attributed to C = O stretching motion in the vicinity of 2000 cm −1 . As a result, it was confirmed that Fe (CO) 5 was produced.

上記のカルボニル錯体とジフェニルシランとをデカンに溶解し、これを200℃で5時間、加熱処理することで鉄−ケイ素系微粉末を作製した。得られた鉄微粉末をXRDおよびSEMにより評価した。図5に示したSEM写真から、得られた粉末は直径10μm前後の球状粒子であり、また、同時に行ったEDX測定の結果から、生成した金属微粒子は鉄とケイ素の組成比が80:20の合金相を形成し、反応に供した硫黄などの不純物が含まれていないことが確認された。   The above carbonyl complex and diphenylsilane were dissolved in decane, and this was heat-treated at 200 ° C. for 5 hours to produce an iron-silicon fine powder. The obtained iron fine powder was evaluated by XRD and SEM. From the SEM photograph shown in FIG. 5, the obtained powder is spherical particles having a diameter of about 10 μm. From the results of EDX measurement performed simultaneously, the generated metal fine particles have a composition ratio of iron and silicon of 80:20. It was confirmed that the alloy phase was formed and impurities such as sulfur subjected to the reaction were not included.

また、この鉄−ケイ素合金微粉末のXRD測定を行ったところ、ブロードなピークのみで明確な回折ピークが得られなかったことから、アモルファスの形態を有していることが認められた。この試料について、アルゴン雰囲気中、600℃で1時間加熱処理を行ったが、XRDパターンに変化は見られず、アモルファスの状態を維持していることが明らかとなった。   Moreover, when XRD measurement of this iron-silicon alloy fine powder was performed, it was recognized that it had an amorphous form since a clear diffraction peak was not obtained only by a broad peak. This sample was heat-treated at 600 ° C. for 1 hour in an argon atmosphere, but no change was observed in the XRD pattern, and it was revealed that the amorphous state was maintained.

鉄カルボニルとジフェニルシランの熱分解により得られた粉末に20重量%のエポキシ樹脂を混合し、150℃で30分間加熱硬化処理することで成形体とし、その電波吸収特性をネットワークアナライザ(S−パラメーター法)を用いて0.05〜18GHzの領域で評価した。作製した成形体の電波吸収特性を図6に示す。得られた成形体は1.6〜4.3GHzの領域で−20dB以下の良好な電波吸収特性を示した。つまり、電波吸収材料が製造されていることがわかる。   A powder obtained by thermal decomposition of iron carbonyl and diphenylsilane is mixed with 20% by weight of an epoxy resin and heat-cured at 150 ° C. for 30 minutes to form a molded product. Method) was evaluated in the region of 0.05 to 18 GHz. The radio wave absorption characteristics of the produced molded body are shown in FIG. The obtained molded product showed good radio wave absorption characteristics of −20 dB or less in the region of 1.6 to 4.3 GHz. That is, it can be seen that the radio wave absorbing material is manufactured.

上にも述べたとおり、本発明で作製した合金微粉末はアモルファスの形態を有しており、鉄の場合では、アモルファスの電気比抵抗は結晶のそれに比べ1〜2桁高いことが知られている。このことから、アモルファス粉末の電気比抵抗が高いために、電磁界により誘起される渦電流損が効果的に抑制されることで、上記の良好な電波吸収特性が得られたものと思われる。   As mentioned above, the alloy fine powder produced in the present invention has an amorphous form, and in the case of iron, it is known that the amorphous electrical resistivity is 1 to 2 orders of magnitude higher than that of the crystal. Yes. From this, since the electrical resistivity of amorphous powder is high, it is considered that the eddy current loss induced by the electromagnetic field is effectively suppressed, and thus the above-mentioned good radio wave absorption characteristics are obtained.

(実施例2)
実施例1で見出されたカルボニル化反応の条件を基に、図7に示すように反応容器の改良を行い、Nd−Fe−B系焼結磁石研磨屑スクラップを、CO加圧、所定温度(低温)条件下で加熱することで金属カルボニルを形成させ、この生成した金属カルボニルの気相輸送により高温部において金属として回収するプロセスを検討した。まず、カルボニル化の反応部を実施例1と同じく200℃とし、分解温度(高温部)を300℃で10時間反応を行ったところ、高温部側に粉末の析出が見られた。図8に示す、この析出物のXRD測定の結果から、析出物が鉄であることが確認された。また、表2に示すように、この粉末についてのEDX測定から、高純度の鉄が得られることがわかった。
(Example 2)
Based on the carbonylation reaction conditions found in Example 1, the reaction vessel was improved as shown in FIG. 7, and the Nd—Fe—B sintered magnet polishing scraps were subjected to CO pressurization at a predetermined temperature. The process of forming metal carbonyl by heating under (low temperature) conditions and recovering it as a metal in the high temperature part by vapor transport of the generated metal carbonyl was examined. First, the reaction part of carbonylation was set to 200 ° C. as in Example 1, and the reaction was carried out at a decomposition temperature (high temperature part) of 300 ° C. for 10 hours. From the result of XRD measurement of this precipitate shown in FIG. 8, it was confirmed that the precipitate was iron. Moreover, as shown in Table 2, it was found from the EDX measurement on this powder that high-purity iron was obtained.

他方、高温(400℃)にした場合、反応が速やかに進行する反面、平衡反応が生成物側に移行するため、低温(300℃)域での場合と比較して、逆に反応効率は低下する。   On the other hand, when the temperature is high (400 ° C.), the reaction proceeds rapidly, but the equilibrium reaction shifts to the product side. Therefore, the reaction efficiency is lower than that in the low temperature (300 ° C.) region. To do.

(実施例3)
生成した金属カルボニル蒸気をCOガスの溶解度の低い溶媒に拡散移動させ、沸点の高い有機溶媒にAl(C(b.p194℃)、Si(C(b.p.154℃)などの有機金属化合物を反応剤として溶解させた溶液に金属カルボニル蒸気を補足し、該金属カルボニルと該有機金属化合物との間で分解反応を行わせることで、上記のカルボニル化合物中の金属成分と反応剤との反応で生成した合金または金属間化合物を得た(反応温度は200℃、圧力は300気圧)。反応器の概略を図9に示す(図1の装置とほぼ同様であるが、くびれ形態の連結部が容器に形成されていない)。鉄カルボニルとジフェニルシランとの反応により得られた合金微粉末のSEM像を図10に示す。
(Example 3)
The produced metal carbonyl vapor is diffused and transferred to a solvent having low CO gas solubility, and Al (C 2 H 5 ) 3 (b.p194 ° C.), Si (C 2 H 5 ) 4 (b. p.154 ° C.) or the like is added as a reaction agent, and a metal carbonyl vapor is supplemented to cause a decomposition reaction between the metal carbonyl and the organometallic compound. An alloy or an intermetallic compound produced by the reaction between the metal component therein and the reactant was obtained (reaction temperature was 200 ° C., pressure was 300 atmospheres). The outline of the reactor is shown in FIG. 9 (similar to the apparatus of FIG. 1, but the constricted connecting portion is not formed in the container). FIG. 10 shows an SEM image of the alloy fine powder obtained by the reaction between iron carbonyl and diphenylsilane.

用いる溶媒としては、例えば、デカンのような一酸化炭素の溶解度が低く、分解析出した鉄等の再カルボニル化を防ぎ、かつ、上記の有機金属化合物の溶解度が高いものが好ましい。   As the solvent to be used, for example, a solvent having low solubility of carbon monoxide such as decane, preventing recarbonylation of iron and the like which has been decomposed and precipitated, and having high solubility of the organometallic compound is preferable.

ここでのメリットは、気相(カルボニル化合物)−液相(溶媒)間の反応により生成した金属カルボニル錯体が溶液中に補足され、金属カルボニルと反応剤との反応により該金属成分の合金あるいは化合物とCOガスとに分解し、再度溶液外に放出されたCOガスが、循環して金属カルボニルの生成に活用できる点にある。反応速度は、実施例2と同様に生成した金属カルボニルが逐次合金あるいは金属間化合物として分解し、COガスが循環使用できるため実施例1に比べて速く、また、本反応において得られる合金は、Fe−Si(ケイ素鋼)、Fe−Al−Si(センダスト)、等として、優れた電波吸収材料用磁性粉末として利用することができる。なお、ケイ素鋼については実施例1での実証があるためアモルファス様となる。   The merit here is that the metal carbonyl complex formed by the reaction between the gas phase (carbonyl compound) and the liquid phase (solvent) is captured in the solution, and the alloy or compound of the metal component by the reaction of the metal carbonyl and the reactant. The CO gas decomposed into CO gas and released again out of the solution can be circulated and used for the production of metal carbonyl. The reaction rate is higher than that of Example 1 because the metal carbonyl produced in the same manner as in Example 2 decomposes as a sequential alloy or an intermetallic compound, and CO gas can be circulated, and the alloy obtained in this reaction is As Fe-Si (silicon steel), Fe-Al-Si (Sendust), etc., it can be used as an excellent magnetic powder for radio wave absorption materials. Since silicon steel has been demonstrated in Example 1, it becomes amorphous.

他方、蒸気の反応剤として白金等の貴金属塩化物をシリコーン系の溶媒に解かし、同様に金属カルボニルをCO加圧下で生成させることで、PtFe、PtFeなど金属間化合物微粒子とすることが可能となる。得られたPtFe微粒子は高密度磁気記録材料としての応用される。 On the other hand, it is possible to form intermetallic compound fine particles such as PtFe and PtFe 3 by dissolving noble metal chloride such as platinum in a silicone solvent as a vapor reactant and similarly generating metal carbonyl under CO pressure. Become. The obtained PtFe 3 fine particles are applied as a high-density magnetic recording material.

本発明における金属系材料製造反応器の概略図。Schematic of the metal-based material production reactor in the present invention. 本発明の作用説明フロー図。FIG. 3 is a flowchart illustrating the operation of the present invention. 硫黄の添加量に対する鉄の反応率依存性を示す図。The figure which shows the reaction rate dependence of iron with respect to the addition amount of sulfur. 研磨屑、水素化処理研磨屑、およびこれをカルボニル化処理した試料のXRDパターンを示す図。The figure which shows the XRD pattern of the grinding | polishing waste, the hydrogenation-process grinding | polishing waste, and the sample which processed this carbonylation. 得られたカルボニル錯体のFT−IRデータを示す図。The figure which shows the FT-IR data of the obtained carbonyl complex. 熱分解より作製した微粉末のSEM像を示す画像。The image which shows the SEM image of the fine powder produced by thermal decomposition. 作製した樹脂成形体の電波吸収特性を示す図。The figure which shows the electromagnetic wave absorption characteristic of the produced resin molding. 温度勾配を設けた反応器の概略図。The schematic of the reactor which provided the temperature gradient. 高温部に析出した粉末のXRDパターンを示す図。The figure which shows the XRD pattern of the powder which precipitated in the high temperature part. 気−液反応を用いた反応器の概略図。Schematic of reactor using gas-liquid reaction. 得られた微粉末のSEM像。The SEM image of the obtained fine powder.

Claims (18)

常圧よりも加圧したCO雰囲気からなる反応空間内に金属カルボニルと反応して該金属カルボニルの分解を促進する反応剤を保持した反応剤保持部を配置するとともに、
前記反応空間内で、出発原料となる金属又は金属含有物質とCOとを反応させて金属カルボニルを生成し流体化する金属カルボニル生成ステップと、生成した金属カルボニルを該反応剤保持部に供給し、前記金属カルボニルを前記反応剤と反応させて分解することにより、当該金属カルボニルに由来した分解生成金属系材料とCOガスとを生成するカルボニル分解ステップと、該分解により生成した前記COガスを前記反応空間内のCO雰囲気にフィードバックするCOフィードバックステップとを、前記金属カルボニルの生成及び分解の反応系に関与する気相を媒介とした輸送作用により前記反応空間内にて循環実施し、前記分解生成金属系材料を前記反応空間より製造物として回収することを特徴とする金属系材料の製造方法。
A reaction agent holding part holding a reaction agent that reacts with metal carbonyl and promotes decomposition of the metal carbonyl in a reaction space consisting of a CO atmosphere pressurized from normal pressure is disposed,
In the reaction space, a metal carbonyl generating step of reacting a metal or a metal-containing material as a starting material with CO to generate metal carbonyl and fluidizing it, and supplying the generated metal carbonyl to the reactant holding unit, A carbonyl decomposition step in which a metal product derived from the metal carbonyl and CO gas are decomposed by reacting the metal carbonyl with the reactant to decompose, and the CO gas generated by the decomposition is reacted. A CO feedback step for feeding back to the CO atmosphere in the space is circulated in the reaction space by a gas phase-mediated transport action involved in the reaction system for the production and decomposition of the metal carbonyl, A method for producing a metal-based material, wherein the system material is recovered as a product from the reaction space.
前記反応空間をなす容器内に前記出発原料を配置して、該容器内に加圧したCOガスを封入し、該容器内にて第一のヒーターにより前記出発原料を前記COガスとの反応により前記金属カルボニルを生成する温度まで局所加熱することにより前記金属カルボニルを生成する請求項1記載の金属系材料の製造方法。 The starting material is placed in a container forming the reaction space, pressurized CO gas is sealed in the container, and the starting material is reacted with the CO gas by a first heater in the container. The method for producing a metal-based material according to claim 1, wherein the metal carbonyl is generated by locally heating to a temperature at which the metal carbonyl is generated. 前記反応剤として液状反応剤を前記反応剤保持部をなす容器中に保持し、前記カルボニルを該液状反応剤と接触させるとともに、前記分解生成金属系材料を該液状反応剤中で沈殿回収する請求項1又は請求項2に記載の金属系材料の製造方法。 A liquid reactant as the reactant is held in a container forming the reactant holding portion, the carbonyl is brought into contact with the liquid reactant, and the decomposition-generated metal material is precipitated and recovered in the liquid reactant. The manufacturing method of the metal type material of Claim 1 or Claim 2. 前記反応剤として、金属ハロゲン化物又は有機金属化合物を用いる請求項2又は請求項3に記載の金属系材料の製造方法。 The method for producing a metal-based material according to claim 2 or 3, wherein a metal halide or an organometallic compound is used as the reactant. 前記金属ハロゲン化物として貴金属のハロゲン化物を用いる請求項4記載の金属系材料の製造方法。 The method for producing a metal-based material according to claim 4, wherein a noble metal halide is used as the metal halide. 前記有機金属化合物として、ホウ素、アルミニウム、ケイ素、ガリウム、インジウム、ゲルマニウム、錫、パラジウム、及び白金のいずれかのアルキル化合物を用いる請求項4記載の金属系材料の製造方法。 The method for producing a metal-based material according to claim 4, wherein an alkyl compound of any one of boron, aluminum, silicon, gallium, indium, germanium, tin, palladium, and platinum is used as the organometallic compound. 前記金属ハロゲン化物または前記有機金属化合物を、炭化水素系またはシリコーン系溶媒に分散または溶解させて請求項5に記載の前記液状反応剤とする請求項4ないし請求項6のいずれか1項に記載の金属系材料の製造方法。 7. The liquid reactant according to claim 5, wherein the metal halide or the organometallic compound is dispersed or dissolved in a hydrocarbon or silicone solvent to form the liquid reactant according to claim 5. A method for producing a metallic material. 前記出発原料に含まれる金属が遷移金属である請求項1ないし請求項7のいずれか1項に記載の金属系材料の製造方法。 The method for producing a metal-based material according to any one of claims 1 to 7, wherein a metal contained in the starting material is a transition metal. 前記分解生成金属系材料は、前記出発原料よりも前記遷移金属の含有量が高められたものである請求項8記載の金属系材料の製造方法。 The method for producing a metal-based material according to claim 8, wherein the decomposition-generated metal-based material has a content of the transition metal higher than that of the starting material. 前記遷移金属が、鉄、ニッケル及びコバルトのいずれかである請求項8又は請求項9に記載の金属系材料の製造方法。 The method for producing a metal-based material according to claim 8 or 9, wherein the transition metal is any one of iron, nickel, and cobalt. 前記分解生成金属系材料を、鉄、ニッケル及びコバルトのいずれかを主成分とする金属、合金または金属間化合物の形で回収する請求項10記載の金属系材料の製造方法。 The method for producing a metal-based material according to claim 10, wherein the decomposition-generated metal-based material is recovered in the form of a metal, an alloy, or an intermetallic compound containing iron, nickel, or cobalt as a main component. 前記出発原料として、希土類系磁石の製造プロセスより発生する固形または粉末屑、使用済み電子機器から回収される該希土類系磁石廃棄物、使用済み電池のリサイクル工程で回収される鉄、ニッケルおよびコバルト含有廃棄物のいずれかを使用する請求項10又は請求項11に記載の金属系材料の製造方法。 As the starting material, solid or powder waste generated from the rare earth magnet manufacturing process, the rare earth magnet waste recovered from used electronic equipment, iron, nickel and cobalt recovered in the recycling process of used batteries The method for producing a metal-based material according to claim 10 or 11, wherein any one of wastes is used. 前記反応空間内における前記出発原料の金属カルボニル生成後の残滓に、前記出発原料に含有されていた希土類原料を濃縮して、これを回収する請求項12記載の金属系材料の製造方法。 The method for producing a metal-based material according to claim 12, wherein the rare earth material contained in the starting material is concentrated in the residue after the metal carbonyl formation of the starting material in the reaction space and recovered. 前記反応空間内のCO圧力を大気圧より高くかつ500気圧以下とし、前記金属カルボニルの生成に係る反応温度を室温以上500℃以下とする請求項1ないし請求項13のいずれか1項に記載の金属系材料の製造方法。 The CO pressure in the reaction space is higher than atmospheric pressure and 500 atmospheric pressure or lower, and the reaction temperature related to the formation of the metal carbonyl is room temperature or higher and 500 ° C. or lower. A method for producing a metal-based material. 前記金属カルボニル生成ステップにおいて、前記金属カルボニルの生成反応を促進するために、前記出発原料に硫黄を添加する請求項1ないし請求項14のいずれか1項に記載の金属系材料の製造方法。 The method for producing a metal-based material according to any one of claims 1 to 14, wherein, in the metal carbonyl production step, sulfur is added to the starting material in order to promote a production reaction of the metal carbonyl. 前記金属カルボニル生成ステップにおいて、前記金属カルボニルの生成反応を促進するために、前記出発原料を水素化処理することで不均化処理した請求項1ないし請求項14のいずれか1項に記載の金属系材料の製造方法。 The metal according to any one of claims 1 to 14, wherein in the metal carbonyl production step, the starting material is subjected to a disproportionation treatment by hydrogenation treatment in order to promote a production reaction of the metal carbonyl. A method for manufacturing a system material. 前記分解生成金属系材料を、粒径10nm以上200μm以下の粉末形態にて回収する請求項1ないし請求項15のいずれか1項に記載の金属系材料の製造方法。 The method for producing a metal-based material according to any one of claims 1 to 15, wherein the decomposition-generated metal-based material is recovered in a powder form having a particle size of 10 nm or more and 200 µm or less. 請求項1ないし請求項17のいずれか1項に記載の方法により得られた前記分解生成金属系材料を原料として使用して、電波吸収材料を製造することを特徴とする電波吸収材料の製造方法。 A method for producing a radio wave absorbing material, characterized in that a radio wave absorbing material is produced using the decomposition-generated metal material obtained by the method according to any one of claims 1 to 17 as a raw material. .
JP2005036905A 2005-02-14 2005-02-14 Method for manufacturing metallic material and method for manufacturing electromagnetic wave absorber Pending JP2006219754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036905A JP2006219754A (en) 2005-02-14 2005-02-14 Method for manufacturing metallic material and method for manufacturing electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036905A JP2006219754A (en) 2005-02-14 2005-02-14 Method for manufacturing metallic material and method for manufacturing electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2006219754A true JP2006219754A (en) 2006-08-24

Family

ID=36982268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036905A Pending JP2006219754A (en) 2005-02-14 2005-02-14 Method for manufacturing metallic material and method for manufacturing electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2006219754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885458A1 (en) * 2020-03-23 2021-09-29 Basf Se Battery recycling by reduction and carbonylation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885458A1 (en) * 2020-03-23 2021-09-29 Basf Se Battery recycling by reduction and carbonylation
WO2021191211A1 (en) * 2020-03-23 2021-09-30 Basf Se Battery recycling by reduction and carbonylation

Similar Documents

Publication Publication Date Title
Zhao et al. Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron–water reaction
US11198923B2 (en) Aluminum based nanogalvanic compositions useful for generating hydrogen gas and low temperature processing thereof
Xu et al. Solution‐based evolution and enhanced methanol oxidation activity of monodisperse platinum–copper nanocubes
Haber et al. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth
Gandha et al. High energy product developed from cobalt nanowires
Yang et al. Recovery of ultrafine copper particles from metal components of waste printed circuit boards
JP5367207B2 (en) Method for making a metal article having other additive components without melting
Abbas et al. Effect of grain size on the electrical conductivity of copper–iron alloys
Kumar et al. Preparation and characterization of nickel–polystyrene nanocomposite by ultrasound irradiation
JP2008117855A (en) Manufacturing method of nano-composite magnet
Ebin Simple preparation of Ni and NiO nanoparticles using raffinate solution originated from spent NiMH battery recycling
Maroufi et al. Thermal isolation of rare earth oxides from Nd–Fe–B magnets using carbon from waste tyres
WO2011080685A2 (en) Method of treating a diamond containing body
Li et al. Highly efficient hydrogen generation from methanolysis of ammonia borane on CuPd alloy nanoparticles
Valle-Orta et al. Instantaneous synthesis of stable zerovalent metal nanoparticles under standard reaction conditions
Cerchier et al. Green synthesis of copper nanoparticles with ultrasound assistance
Zhao et al. Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate
CN101345108B (en) Preparation method of full-compact nanometer compound rare earth permanent magnetic material
Ali et al. Preparation and oxidation of aluminum powders with surface alumina replaced by iron coating
Sabat Formation of CuCo alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma
Shah A versatile route for the synthesis of nickel oxide nanostructures without organics at low temperature
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
JP2006219754A (en) Method for manufacturing metallic material and method for manufacturing electromagnetic wave absorber
Sugawara et al. Facile synthesis of silver‐nanobeadwire transparent conductive film by organic‐precursor paint reduction
JP6281900B2 (en) Method for forming functional sintered dense film and method for synthesizing nanoparticles