JP2006219560A - Method for producing olefin polymer - Google Patents

Method for producing olefin polymer Download PDF

Info

Publication number
JP2006219560A
JP2006219560A JP2005033134A JP2005033134A JP2006219560A JP 2006219560 A JP2006219560 A JP 2006219560A JP 2005033134 A JP2005033134 A JP 2005033134A JP 2005033134 A JP2005033134 A JP 2005033134A JP 2006219560 A JP2006219560 A JP 2006219560A
Authority
JP
Japan
Prior art keywords
olefin
olefin polymer
mass
producing
acid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005033134A
Other languages
Japanese (ja)
Other versions
JP4863186B2 (en
Inventor
Shinichiro Yanagawa
真一朗 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2005033134A priority Critical patent/JP4863186B2/en
Publication of JP2006219560A publication Critical patent/JP2006219560A/en
Application granted granted Critical
Publication of JP4863186B2 publication Critical patent/JP4863186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving catalytic efficiency, with which influence by an extractive solvent is reduced or eliminated in producing an olefin polymer by using a liquid hydrocarbon mainly containing a 4C olefin obtained from a raffinate of an extractive distillation comprising a diene-based hydrocarbon as an extract in the presence of a granular solid acid catalyst. <P>SOLUTION: A liquid raw material hydrocarbon is brought into contact with an aluminum atom-containing treatment agent and polymerized in the presence of a granular solid acid catalyst containing ≥60% by mass of particles having <1,400 μm particle diameters. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ジエン系炭化水素を抽出蒸留法で製造する際のラフィネートから得られる、主として炭素数4のオレフィンを含む液状の炭化水素原料を原料としてオレフィン重合体を得る方法に関するものである。   The present invention relates to a method for obtaining an olefin polymer from a liquid hydrocarbon raw material mainly containing a olefin having 4 carbon atoms, which is obtained from a raffinate when a diene hydrocarbon is produced by an extractive distillation method.

石油類の分解生成物等の、ジエン、オレフィンおよび飽和脂肪族炭化水素を含む炭化水素混合物から、ブタジエン等のジエンを分離することは、多くの化合物の沸点が近接していることおよび共沸混合物が形成されることから単蒸留では不可能である。そのため、溶剤を用い抽出蒸留によってジエンを得ることが広く行われている。ジエン系炭化水素をエキストラクトとする抽出蒸留法によってジエン類を製造する際のラフィネート中に含まれる主として炭素数4のオレフィンを含む液状の炭化水素を固体酸触媒の存在下オレフィン重合体を得ることが従来行われている。一般には固体触媒は有機溶剤に懸濁させて重合反応槽に注入される。固体酸触媒がオレフィン重合体中にそのまま残存した場合に、長期的には製品の透明性等の特性を変化させる。また、固体酸触媒として塩化アルミニウム(AlCl)等のハロゲン含有触媒を使用した場合には、重合体中の残存触媒はハロゲン系不純物として商品価値を低下させる。そこで、通常、重合後に反語に該触媒を失活処理および除去処理するが、これらの処理工程は、アルカリ性水溶液等による抽出、分離、精製、ろ過等の工程を含む煩雑な工程である。 Separation of dienes such as butadiene from hydrocarbon mixtures containing dienes, olefins and saturated aliphatic hydrocarbons, such as petroleum cracking products, is due to the close boiling points of many compounds and azeotropes Is not possible with simple distillation. Therefore, diene is widely obtained by extractive distillation using a solvent. To obtain an olefin polymer in the presence of a solid acid catalyst, a liquid hydrocarbon mainly containing olefins having 4 carbon atoms contained in raffinate when producing dienes by extractive distillation using diene hydrocarbon as an extract. Has been done in the past. In general, the solid catalyst is suspended in an organic solvent and injected into the polymerization reaction tank. When the solid acid catalyst remains in the olefin polymer as it is, characteristics such as transparency of the product are changed in the long term. In addition, when a halogen-containing catalyst such as aluminum chloride (AlCl 3 ) is used as the solid acid catalyst, the residual catalyst in the polymer decreases the commercial value as a halogen-based impurity. Therefore, the catalyst is usually deactivated and removed after the polymerization, but these treatment steps are complicated steps including extraction, separation, purification, filtration and the like with an alkaline aqueous solution.

固体酸触媒の効率を高めて使用量を低下させることは、触媒コストの低減のみならず、触媒の失活工程および除去工程の負担が軽減されることになるので、根本的解決のひとつとなる。このためには、触媒の単位体積当たりの表面積を増加させるために小粒径の固体酸触媒を使用することが有効である。しかしながら、本発明者の検討によれば、固体酸触媒は粒径が減少すると、反応系内の不純物を表面に吸着する能力が増加し、原料中の不純物を吸着するために、単位体積当たりの表面積増加等の効果が十分に得られていないことが分かった。   Increasing the efficiency of the solid acid catalyst and reducing the amount of use is not only a catalyst cost reduction, but also reduces the burden of the catalyst deactivation process and removal process, which is one of the fundamental solutions. . For this purpose, it is effective to use a solid acid catalyst having a small particle diameter in order to increase the surface area per unit volume of the catalyst. However, according to the study of the present inventor, when the particle size of the solid acid catalyst is decreased, the ability to adsorb impurities in the reaction system to the surface increases, and in order to adsorb impurities in the raw material, It turned out that effects, such as a surface area increase, are not fully acquired.

この問題を解決するためには、重合反応前に原料中に含まれる固体酸触媒に吸着される不純物(化合物)を除去することが考えられる。しかしながら、どのような不純物を除去すべきかは明らかではなく、当然のことながらその具体的手段も不明である。関連技術として、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートを原料として、該ラフィネート中のイソブチレンから第3級ブタノールを製造する方法において、原料中の残存ジメチルホルムアミドを強酸性イオン交換樹脂を用いて吸着処理する方法がある(例えば、特許文献1参照。)。しかし、本発明に係るオレフィンは強酸性イオン交換樹脂との接触下で重合反応するので、この提案手段を、上述のようなオレフィンの重合技術上の問題を解決するために転用するとはできない。
特開2000−34242
In order to solve this problem, it is conceivable to remove impurities (compounds) adsorbed on the solid acid catalyst contained in the raw material before the polymerization reaction. However, it is not clear what impurities should be removed, and the specific means of course is not clear. As a related technique, in a method for producing tertiary butanol from isobutylene in raffinate by using a raffinate of extractive distillation method using diene hydrocarbon as an extract, the residual dimethylformamide in the raw material is a strongly acidic ion exchange resin. There is a method of carrying out an adsorption treatment using a material (for example, see Patent Document 1). However, since the olefin according to the present invention undergoes a polymerization reaction in contact with a strongly acidic ion exchange resin, this proposed means cannot be diverted in order to solve the above-mentioned problems in olefin polymerization technology.
JP 2000-34242 A

本発明の課題は、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートであって、オレフィンとして主に炭素数4のオレフィンを含んでなる液状炭化水素を原料とし、小粒径の固体酸触媒を使用してオレフィン重合体を製造する方法において、ラフィネート中の抽出蒸留溶剤等の触媒に吸着して触媒効率を低下させる化合物を吸着除去し、触媒効率を高く保持させることにより固体酸触媒の添加量を低減させ、かつ、該触媒の失活処理および除去処理におけるアルカリ性水溶液等による抽出負担を低減する方法を提供することである。   An object of the present invention is a raffinate of an extractive distillation method using a diene hydrocarbon as an extract, the raw material being a liquid hydrocarbon mainly containing an olefin having 4 carbon atoms as an olefin, and a solid acid having a small particle size. In a method for producing an olefin polymer using a catalyst, a compound that decreases the catalyst efficiency by adsorbing to a catalyst such as an extractive distillation solvent in raffinate is adsorbed and removed, and the solid acid catalyst is maintained by maintaining a high catalyst efficiency. It is to provide a method of reducing the amount of addition and reducing the extraction burden due to an alkaline aqueous solution or the like in the deactivation treatment and removal treatment of the catalyst.

本発明の第1は、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートから得られる炭化水素を含む、主として炭素数4のオレフィンを含むオレフィン5〜95質量%と主として炭素数4の飽和脂肪族炭化水素を含む飽和脂肪族炭化水素95〜5質量%(両者を合わせて100質量%とする。)からなる液状炭化水素を、アルミニウム原子含有処理剤に接触させた後に、粒径1400μm未満の粒子を60質量%以上含む粒状固体酸触媒の存在下にオレフィンを重合させることを特徴とするオレフィン重合体の製造方法に関するものである。   The first aspect of the present invention is a saturated olefin mainly containing 5 to 95% by mass of olefin containing mainly olefins having 4 carbon atoms, including hydrocarbons obtained from raffinate of extractive distillation method using diene hydrocarbon as an extract. After contacting a liquid hydrocarbon comprising 95 to 5% by mass of a saturated aliphatic hydrocarbon containing an aliphatic hydrocarbon (the total is 100% by mass) with an aluminum atom-containing treatment agent, the particle size is less than 1400 μm. The present invention relates to a method for producing an olefin polymer, characterized by polymerizing an olefin in the presence of a granular solid acid catalyst containing 60% by mass or more of the above particles.

本発明の第2は、本発明の第1において、前記粒状固体酸触媒が塩化アルミニウムであることを特徴とするオレフィン重合体の製造方法に関するものである。   A second aspect of the present invention relates to a method for producing an olefin polymer according to the first aspect of the present invention, wherein the particulate solid acid catalyst is aluminum chloride.

本発明の第3は、本発明の第1または第2のいずれかにおいて、前記粒状固体酸触媒が粒径850μm未満の粒子を60質量%以上含むものであることを特徴とするオレフィン重合体の製造方法に関するものである。   A third aspect of the present invention is the method for producing an olefin polymer according to any one of the first and second aspects of the present invention, wherein the granular solid acid catalyst contains 60% by mass or more of particles having a particle size of less than 850 μm. It is about.

本発明の第4は、本発明の第1〜3のいずれかにおいて、前記炭素数4のオレフィンがイソブテンであることを特徴とするオレフィン重合体の製造方法に関するものである。   A fourth aspect of the present invention relates to a method for producing an olefin polymer according to any one of the first to third aspects of the present invention, wherein the olefin having 4 carbon atoms is isobutene.

本発明の第5は、本発明の第1〜4のいずれかにおいて、前記アルミニウム原子含有処理剤が組成式AlOで表される成分を含む無機固体処理剤であることを特徴とするオレフィン重合体の製造方法に関するものである。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the aluminum atom-containing treatment agent is an inorganic solid treatment agent containing a component represented by the composition formula Al 2 O 3. The present invention relates to a method for producing an olefin polymer.

本発明の第6は、本発明の第1〜5のいずれかにおいて、前記アルミニウム原子含有処理剤がアルミナを含むことを特徴とするオレフィン重合体の製造方法に関するものである。   A sixth aspect of the present invention relates to a method for producing an olefin polymer according to any one of the first to fifth aspects of the present invention, wherein the aluminum atom-containing treatment agent contains alumina.

本発明の第7は、本発明の第1〜6のいずれかにおいて、前記抽出蒸留に使用される有機溶剤がジメチルホルムアミドであることを特徴とするオレフィン重合体の製造方法に関するものである。   A seventh aspect of the present invention relates to a method for producing an olefin polymer according to any one of the first to sixth aspects of the present invention, wherein the organic solvent used for the extractive distillation is dimethylformamide.

本発明の方法によれば、抽出蒸留のラフィネートから得られる炭素数4のオレフィンを含有する脂肪族炭化水素を原料とし、粒子径1400μm未満の粒子を60質量%以上含む粒状固体酸触媒の存在下でオレフィン重合体を製造する方法において、当該触媒の効率を高め、その使用量を低減することができ、触媒に係る生産コストを低減し、かつ、その後の触媒失活および/あるいは除去工程を簡素化あるいは省略することができる。また、得られたオレフィン重合体中の触媒残渣が小さい。特に、ハロゲン含有触媒を使用した場合においては、その誘導体からなる清浄剤等の潤滑油添加物を燃焼する場合においても、大気中へのハロゲンの放出が少なく、従って環境保全の面においても有用である。   According to the method of the present invention, an aliphatic hydrocarbon containing a olefin having 4 carbon atoms obtained from extractive raffinate is used as a raw material, and in the presence of a granular solid acid catalyst containing 60% by mass or more of particles having a particle diameter of less than 1400 μm. In the method for producing an olefin polymer, the efficiency of the catalyst can be increased, the amount of the catalyst used can be reduced, the production cost for the catalyst can be reduced, and the subsequent catalyst deactivation and / or removal process can be simplified. Or can be omitted. Moreover, the catalyst residue in the obtained olefin polymer is small. In particular, when a halogen-containing catalyst is used, even when a lubricating oil additive such as a detergent composed of the derivative is burned, the release of halogen into the atmosphere is small, and thus it is useful in terms of environmental conservation. is there.

以下、本発明を詳細に説明する。
本発明のオレフィン重合体は、末端に二重結合を有する炭素数4のオレフィンを主たる構成成分とする重合体を意味する。本発明において、オレフィン重合体を得るための出発原料として、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートから得られる、主として炭素数4のオレフィンを含むオレフィン5〜95質量%および主として炭素数4の飽和脂肪族炭化水素を含む飽和脂肪族炭化水素95〜5質量%(両者を合わせて100質量%とする。)からなる液状炭化水素を用いる。ここで「主として」とは、50質量%以上を意味する。すなわち、オレフィン中に炭素数4のオレフィンを50質量%以上含むこと、および飽和炭化水素中に炭素数4の飽和炭化水素を50質量%以上含むことを意味する。
Hereinafter, the present invention will be described in detail.
The olefin polymer of the present invention means a polymer containing a C4 olefin having a double bond at the terminal as a main constituent component. In the present invention, as a starting material for obtaining an olefin polymer, 5 to 95% by mass of olefin mainly containing carbon 4 olefin obtained from raffinate of extraction distillation method using diene hydrocarbon as an extract and mainly carbon A liquid hydrocarbon composed of 95 to 5% by mass of a saturated aliphatic hydrocarbon containing a saturated aliphatic hydrocarbon of formula 4 (both are 100% by mass in total) is used. Here, “mainly” means 50% by mass or more. That is, it means that 50 mass% or more of olefins having 4 carbon atoms are contained in the olefin, and 50 mass% or more of saturated hydrocarbons having 4 carbon atoms in the saturated hydrocarbon.

抽出蒸留の原料としては、石油精製または石油化学工業で得られるジエン、オレフィンおよび飽和脂肪族炭化水素の混合物が挙げられる。たとえば、ブタジエンを得る場合の原料としては、ナフサ分解によりエチレン・プロピレン等を製造する際に生成する主として炭素数4の留分(C4留分、粗ブタジエン、B−B留分等と称されている)が好ましい。この外に、ガスオイルの高温分解によって得られる同様の留分、あるいは流動接触分解(FCC)による石油類の分解生成物、ブタン、ブテンの接触脱水素反応生成物等から得られるものを使用できる。炭素数5のジエンであるイソプレンを得る場合には、炭素数5の原料留分を使用する。   Examples of the raw material for extractive distillation include a mixture of diene, olefin and saturated aliphatic hydrocarbon obtained in the petroleum refining or petrochemical industry. For example, as a raw material for obtaining butadiene, it is mainly referred to as a C4 fraction (C4 fraction, crude butadiene, BB fraction, etc.) produced when ethylene / propylene or the like is produced by naphtha decomposition. Are preferred). In addition to this, the same fraction obtained by high-temperature cracking of gas oil, or the one obtained from cracked products of petroleum by fluid catalytic cracking (FCC), the catalytic dehydrogenation reaction product of butane, butene, etc. can be used. . When obtaining isoprene which is a diene having 5 carbon atoms, a raw material fraction having 5 carbon atoms is used.

本発明に用いられる抽出蒸留法には特に制限はなく、ジエン系炭化水素をエキストラクトとする公知の抽出蒸留法がいずれも好ましく使用できる。ブタジエンを製造する場合の抽出蒸留法の具体例を以下に挙げるが、イソプレンの場合もほぼ同様に行われる。   The extractive distillation method used in the present invention is not particularly limited, and any known extractive distillation method using a diene hydrocarbon as an extract can be preferably used. Specific examples of the extractive distillation method for producing butadiene will be given below, but isoprene is also carried out in the same manner.

気化したC4留分を抽出塔下部から送入し、抽出溶剤を同塔上部から加えると、当該溶剤とブタジエンの相互作用によりブタジエンの見かけ上の沸点が上昇し塔底部へ移行し、オレフィンを含有する炭化水素が塔頂部から抽出溶剤を含有するラフィネートとして流出し、塔底部からブタジエン等を含有するエキストラクトが流出する。ラフィネートに同伴している抽出溶剤は水洗塔で散水水洗などの方法によりラフィネートから回収される。しかし、このような処理後も、ラフィネート中には抽出溶剤および当該抽出溶剤の酸化物等の劣化物が微量含有されることが通常である。含有量は、通常、数十質量ppb〜十質量ppmオーダーである。さらに、ラフィネート中に微量含有するジエン類、アセチレン結合を有する炭化水素類を、所望により公知の方法により水素添加して除去することを適宜行うことが好ましい。以下、本明細書においてラフィネートという場合は、特に記載のある場合を除き、抽出蒸留塔から得られた後、抽出溶剤の分離工程および所望による水素添加工程を経たものを意味する。   When the vaporized C4 fraction is fed from the bottom of the extraction tower and the extraction solvent is added from the top of the tower, the apparent boiling point of butadiene rises due to the interaction between the solvent and butadiene and moves to the bottom of the tower, containing olefins. The hydrocarbon to be discharged flows out from the top of the column as raffinate containing the extraction solvent, and the extract containing butadiene and the like flows out from the bottom of the column. The extraction solvent that accompanies the raffinate is recovered from the raffinate by a method such as washing with water in a water washing tower. However, even after such treatment, the raffinate usually contains a trace amount of a degradation product such as an extraction solvent and an oxide of the extraction solvent. The content is usually on the order of several tens of mass ppb to 10 mass ppm. Further, it is preferable to appropriately remove dienes and hydrocarbons having an acetylene bond contained in a small amount in the raffinate by hydrogenation by a known method if desired. Hereinafter, in the present specification, the term “raffinate” means a product obtained from an extractive distillation column and then subjected to an extraction solvent separation step and a desired hydrogenation step, unless otherwise specified.

本発明の抽出蒸留における好ましい抽出溶剤としては、フルフラール、アセトニトリル、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン等がある。抽出効率は、オレフィン等と相互作用の小さい極性の高い有機溶剤となる窒素が含有されるものが好ましく、また、炭化水素と溶剤の分離の容易さから沸点がラフィネート中の炭化水素に比べて十分に高いことが好ましい。したがって、これらの中でも、ジメチルホルムアミド、N−メチルピロリドンが最も好ましい。   Preferred extraction solvents in the extractive distillation of the present invention include furfural, acetonitrile, dimethylacetamide, dimethylformamide, N-methylpyrrolidone and the like. The extraction efficiency is preferably one that contains nitrogen, which is a highly polar organic solvent that has little interaction with olefins, etc., and its boiling point is sufficient compared to hydrocarbons in raffinate because of the ease of separation of hydrocarbons and solvents. Is preferably high. Therefore, among these, dimethylformamide and N-methylpyrrolidone are most preferable.

オレフィンとしては、ビニル基を有するもの、すなわち末端に二重結合を有するものが特に好ましい。たとえば炭素数4のオレフィンとして1−ブテン、2−メチル−1−プロペン(イソブテン)が、好ましい。炭素数4のオレフィンの内、特にイソブテンが好ましい。本発明おいては、炭素数4のオレフィンのほかに、炭素数5のオレフィンを含むことを妨げない。炭素数5のオレフィンとして3−メチル−1―ブテン、1−ペンテン、1−ヘキセンが、その外にビニルシクロヘキサン、4−メチル−1−ペンテン、2,4,4-トリメチル−1−ペンテン、1−デセン、1−ドデセンなどが挙げられる。生成重合体および原料炭化水素を含む反応系を液状に保つことの容易さ、オレフィンの反応性などから、炭素数4のオレフィンが最も好ましい。   As the olefin, those having a vinyl group, that is, those having a double bond at the terminal are particularly preferred. For example, 1-butene and 2-methyl-1-propene (isobutene) are preferable as the olefin having 4 carbon atoms. Of the olefins having 4 carbon atoms, isobutene is particularly preferable. In the present invention, it is not prohibited to contain an olefin having 5 carbon atoms in addition to the olefin having 4 carbon atoms. As olefins having 5 carbon atoms, 3-methyl-1-butene, 1-pentene, 1-hexene, vinylcyclohexane, 4-methyl-1-pentene, 2,4,4-trimethyl-1-pentene, 1 -Decene, 1-dodecene and the like. The olefin having 4 carbon atoms is most preferable from the viewpoint of easiness of keeping the reaction system containing the produced polymer and the raw material hydrocarbon in a liquid state and the reactivity of the olefin.

オレフィンの含有率が5質量%未満であるとオレフィン重合体の製造効率が商業的でなく、95質量%を越えると、特に分子量が大きいオレフィン重合体の製造時に、反応系の粘度が高くなりすぎて、工程が円滑に行われないことがある。オレフィンの含有量は、例えば、炭素数4のオレフィンであるイソブテンを含む炭化水素から数平均分子量1500〜30000の炭素数4のオレフィンの重合体(ポリブテン)を製造する工程では、イソブテン濃度は20〜80質量%の範囲にあることが好ましく、25〜60質量%の範囲にあることがさらに好ましい。   When the olefin content is less than 5% by mass, the production efficiency of the olefin polymer is not commercial, and when it exceeds 95% by mass, the viscosity of the reaction system becomes too high particularly when producing an olefin polymer having a large molecular weight. Therefore, the process may not be performed smoothly. The content of olefin is, for example, in the step of producing a polymer of polyolefin having 4 to 3500 carbon atoms (polybutene) from hydrocarbon containing isobutene which is olefin having 4 carbon atoms, the isobutene concentration is 20 to 20%. It is preferably in the range of 80% by mass, and more preferably in the range of 25-60% by mass.

炭素数4のオレフィンを主として含有する炭化水素は、エチレンやプロピレン等の低級オレフィンを製造するナフサクラッキング装置から留出するC4留分からブタジエンを抽出蒸留法により製造した際のラフィネートとして市場から容易に入手することができる。当該ラフィネートは通常、オレフィンとして40〜55質量%の範囲のイソブテンと20〜35質量%の範囲の1−ブテンとを含み、その外に7〜8質量%の2−ブテンを含む。ブタジエンは0.5質量%以下であり、微量の抽出溶剤を含んでいる。残余はブタン、イソブタン等の飽和炭化水素である。もちろん、当該ラフィネートに他のオレフィンまたは飽和炭化水素を追加しても使用できる。   Hydrocarbons mainly containing olefins with 4 carbon atoms are easily obtained from the market as raffinates when butadiene is produced by extractive distillation from C4 fractions distilled from naphtha cracking equipment that produces lower olefins such as ethylene and propylene. can do. The raffinate usually contains as olefin 40 to 55% by weight of isobutene and 20 to 35% by weight of 1-butene, and additionally 7 to 8% by weight of 2-butene. Butadiene is 0.5 mass% or less and contains a trace amount of extraction solvent. The balance is saturated hydrocarbons such as butane and isobutane. Of course, other raffinates or saturated hydrocarbons can be added to the raffinate.

本発明の重合原料は、ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートをから得られる炭化水素を含むので、抽出溶剤除去工程を経ていても微量の抽出溶剤の同伴が避けられない。抽出溶剤は重合反応系内に存在するすべての化合物と相互作用を生じる可能性がある。特に、抽出溶剤として好ましい窒素を含有するもの、例えば、ジメチルホルムアミド、N−メチルピロリドン等は塩基性が強いため、固体酸触媒と優先的にかつ強い相互作用を生じる可能性が高い。本発明者は、1400μm未満の粒子を60質量%以上含む粒状固体酸触媒は、特にこれら抽出溶剤に対する吸着能力が高く、これら吸着物が触媒効率を低下させていることを見出した。   Since the polymerization raw material of the present invention contains a hydrocarbon obtained from a raffinate of an extractive distillation method using a diene hydrocarbon as an extract, a small amount of extraction solvent is inevitably accompanied even through the extraction solvent removal step. The extraction solvent can interact with any compound present in the polymerization reaction system. In particular, those containing nitrogen which is preferable as an extraction solvent, such as dimethylformamide, N-methylpyrrolidone and the like, have strong basicity, and therefore are highly likely to cause preferential and strong interaction with the solid acid catalyst. The present inventor has found that a particulate solid acid catalyst containing 60% by mass or more of particles having a particle size of less than 1400 μm has a particularly high adsorption ability with respect to these extraction solvents, and these adsorbates reduce the catalyst efficiency.

本発明においては、原料炭化水素を、重合工程前にアルミニウム原子を含む処理剤に接触させ、抽出溶剤を当該処理剤に吸着させる。アルミニウム原子を含む処理剤は、好ましくは組成式AlOで表される成分を含む無機固体処理剤である。AlOで表される成分を含む限り、天然または合成の無機物を用いることができる。具体的な無機固体処理剤としては、活性アルミナ、シリカ・アルミナ、モレキュラーシーブなどを例示することができる。好ましくは活性アルミナである。これらは適宜のバインダーを用いて成型したものでもよい。 In the present invention, the raw material hydrocarbon is brought into contact with a treatment agent containing aluminum atoms before the polymerization step, and the extraction solvent is adsorbed on the treatment agent. The treatment agent containing an aluminum atom is preferably an inorganic solid treatment agent containing a component represented by the composition formula Al 2 O 3 . As long as the component represented by Al 2 O 3 is included, a natural or synthetic inorganic substance can be used. Specific examples of the inorganic solid treatment agent include activated alumina, silica / alumina, molecular sieve and the like. Preferably it is activated alumina. These may be molded using an appropriate binder.

例えば、市販のアルミナを適宜に粉砕し、分級して用いることができる。固体処理剤としての比表面積は特に限定されないが、通常は1〜500m2/gの範囲である。また、本発明の効果を阻害しない限り、アルミナに適宜アルカリ金属、アルカリ土類金属またはその他の金属を、酸化物、水酸化物あるいはその他の形態で含浸あるいはその他の方法により適宜担持させて変性したものを用いることもできる。しかしながら、通常は、特にこのような担持・変性は必要なく、ナトリウム等のアルカリ金属またはアルカリ土類金属の含有量が0.5質量%以下のアルミナが用いられる。このように担持・変性をまったくまたは殆ど行なわないアルミナは安価であり、この点においても本発明は有利な方法である。なお、本発明において好ましく使用できるアルミナは、活性アルミナ、特に、塩素吸着能の高いアルミナが好ましい。である。また、AlOで表される成分を含む化合物は両性化合物としての性質を有することが知られている。 For example, commercially available alumina can be appropriately pulverized and classified for use. Although the specific surface area as a solid processing agent is not specifically limited, Usually, it is the range of 1-500 m < 2 > / g. In addition, as long as the effects of the present invention are not impaired, the alumina is appropriately modified with an alkali metal, alkaline earth metal or other metal impregnated in an oxide, hydroxide or other form or appropriately supported by other methods. Things can also be used. However, usually, such support / modification is not particularly necessary, and alumina having an alkali metal or alkaline earth metal content such as sodium of 0.5% by mass or less is used. Thus, alumina with little or no loading / modification is inexpensive, and the present invention is an advantageous method also in this respect. In addition, the alumina which can be preferably used in the present invention is preferably activated alumina, particularly alumina having high chlorine adsorption ability. It is. Further, a compound containing a component represented by Al 2 O 3 is known to have the properties of amphoteric compound.

本発明者は、本発明におけるアルミニウム原子含有処理剤は、アルミニウム化合物としての両性化合物の特性および吸着剤としての吸着力を有しており、この独特の特性により、オレフィンを実質的に重合させることなく原料中の残存抽出溶剤を物理的に吸着するか、特に、抽出溶剤である化合物中の孤立電子対と配位化合物を形成する等の作用により吸着除去しているものと考えている。すなわち、特開2000−34242で提案された強酸性イオン交換樹脂による吸着除去と比較すれば、オレフィンの重合反応を実質的に進行させることなしに残存抽出溶剤を吸着除去することできる。   The present inventor has found that the treatment agent containing an aluminum atom in the present invention has the characteristics of an amphoteric compound as an aluminum compound and the adsorptive power as an adsorbent. By this unique property, the olefin is substantially polymerized. It is considered that the residual extraction solvent in the raw material is physically adsorbed, or is adsorbed and removed particularly by the action of forming a coordination compound with a lone electron pair in the compound as the extraction solvent. That is, the residual extraction solvent can be adsorbed and removed without substantially proceeding with the polymerization reaction of olefins as compared with the adsorption removal by the strongly acidic ion exchange resin proposed in Japanese Patent Application Laid-Open No. 2000-34242.

アルミニウム原子含有処理剤と液状炭化水素原料を接触させる際の温度は、該処理剤と原料炭化水素中のオレフィンの種類との組み合わせよって異なる。処理温度が高過ぎる場合はオレフィンの重合反応が進行する可能性があり、低すぎると処理効果が十分に発揮できないこと、および後続する重合プロセス温度も考慮して、−30℃〜100℃とすることが好ましく、さらに−10℃〜50℃の範囲とすることが好ましい。また、本発明の効果を十分に得るためには、液相にて原料炭化水素をアルミニウム原子含有処理剤に接触させることが好ましく、必要に応じて加圧しながら処理を行う。   The temperature at which the aluminum atom-containing treatment agent is brought into contact with the liquid hydrocarbon raw material varies depending on the combination of the treatment agent and the type of olefin in the raw material hydrocarbon. If the treatment temperature is too high, the olefin polymerization reaction may proceed. If it is too low, the treatment effect cannot be sufficiently exhibited, and the subsequent polymerization process temperature is taken into consideration, and the temperature is set to -30 ° C to 100 ° C. It is preferable that the temperature is in the range of −10 ° C. to 50 ° C. In order to sufficiently obtain the effects of the present invention, it is preferable to bring the raw material hydrocarbon into contact with the aluminum atom-containing treatment agent in the liquid phase, and the treatment is performed while applying pressure as necessary.

アルミニウム原子含有処理剤と原料炭化水素の接触時間は、抽出溶剤の除去が達成される限り特に制限されないが、通常約1分〜10時間の範囲が好ましい。この範囲より短い場合は接触が一般に不十分なため抽出溶剤が十分除去されず、長い場合は設備費が増大して好ましくない。接触のための方法としては、回分式または連続式のいずれも可能である。連続式の場合は、固定床式、流動床式などの方法によることができる。流れの方向もアップフローおよびダウンフローのいずれも採用することができる。   The contact time between the aluminum atom-containing treatment agent and the raw material hydrocarbon is not particularly limited as long as the removal of the extraction solvent is achieved, but a range of usually about 1 minute to 10 hours is preferable. When the length is shorter than this range, the contact is generally insufficient, and thus the extraction solvent is not sufficiently removed. As a method for contacting, either a batch type or a continuous type is possible. In the case of a continuous type, a fixed bed type, a fluidized bed type or the like can be used. As the flow direction, either an upflow or a downflow can be adopted.

本発明者は先に、酸触媒によるオレフィン重合の前処理としてアルミニウム原子含有処理剤による原料オレフィンの処理が、酸触媒の効率向上に効果を有することを見出して特許出願を行っているが(特開2004−245716)、本出願は、粒径1400μm未満の粒子を60質量%以上含む粒状固体酸触媒において、この効果が極めて顕著に現れることを見出したことに基づくものである。すなわち、粒径1400μm未満の粒子を60質量%以上含む粒状体の固体酸触媒は、触媒効率に優れるが、吸着能力が大きいために原料中に抽出溶媒等が存在する場合には、その影響を大きく受けるため、本発明の工程の組み合わせによる効果が顕著に得られる。特に、粒径850μm未満の固体酸触媒(20メッシュ篩通過粒子)は吸着剤としての能力が高いため、これらを60質量%より多く含む固体酸触媒においては本発明の効果が顕著である。粒径1400μm以上の固体酸触媒(12メッシュ篩不通過粒子)は、吸着能力が低すぎて、本発明の効果は得られるが相対的に低いものとなる。本発明における固体酸触媒は、公知のオレフィンの重合用固体酸触媒であれば特に制限はないが、触媒活性の点から塩化アルミニウム(AlCl)が好ましい。
なお、本発明における粒状体の大きさは、JISZ8801(ISO3310)「試験用ふるい」で規定されている網目の目開き寸法を基準としている。具体的には、12メッシュ篩不通過粒子が粒径1400μm以上の粒子であり、12メッシュ篩を通過する粒子が粒径1400μm未満の粒子である。同様に、20メッシュ篩通過粒子が粒径850μm未満である。
The present inventor has previously filed a patent application by finding that the treatment of the raw material olefin with an aluminum atom-containing treating agent as a pretreatment of olefin polymerization with an acid catalyst has an effect on improving the efficiency of the acid catalyst. No. 2004-245716), the present application is based on the finding that this effect is very remarkable in a granular solid acid catalyst containing 60% by mass or more of particles having a particle size of less than 1400 μm. That is, the solid acid catalyst in a granular form containing particles having a particle size of less than 1400 μm is 60% by mass or more, and has excellent catalytic efficiency. Since it receives greatly, the effect by the combination of the process of this invention is acquired notably. In particular, since the solid acid catalyst having a particle diameter of less than 850 μm (20-mesh sieve particles) has a high ability as an adsorbent, the effect of the present invention is remarkable in a solid acid catalyst containing more than 60% by mass of these. A solid acid catalyst (12 mesh sieve impervious particles) having a particle size of 1400 μm or more has a relatively low adsorption capability, and the effect of the present invention is obtained, but is relatively low. The solid acid catalyst in the present invention is not particularly limited as long as it is a known solid acid catalyst for olefin polymerization, but aluminum chloride (AlCl 3 ) is preferable from the viewpoint of catalytic activity.
The size of the granular material in the present invention is based on the mesh opening size defined in JISZ8801 (ISO3310) “Test sieve”. Specifically, the 12 mesh sieve impervious particles are particles having a particle size of 1400 μm or more, and the particles passing through the 12 mesh sieve are particles having a particle size of less than 1400 μm. Similarly, 20-mesh sieve particles have a particle size of less than 850 μm.

上記固体酸触媒は、通常、適当な溶剤、例えばノルマルヘキサン、ノルマルへプタン、イソオクタン、シクロヘキサン、シクロドデカン、トルエン、ベンゼン、ジクロロメタン、メチルクロリド、エチルクロリド中に投入し、攪拌して懸濁状態にして反応槽に注入する。公知のリガンドとなる化合物を使用して錯体として併用してもよい。また、必要に応じ、活性化剤として例えばHCl、t-ブチルクロライド、水などを供給してもよい。使用量は原料中の末端二重結合を有するオレフィンに対し0.5×10−5〜1.0×10−2 (mol/mol)がよい。 The above-mentioned solid acid catalyst is usually put into a suitable solvent such as normal hexane, normal heptane, isooctane, cyclohexane, cyclododecane, toluene, benzene, dichloromethane, methyl chloride, ethyl chloride, and stirred to be suspended. Pour into the reaction vessel. You may use together as a complex using the compound used as a well-known ligand. If necessary, for example, HCl, t-butyl chloride, water or the like may be supplied as an activator. The amount used is preferably 0.5 × 10 −5 to 1.0 × 10 −2 (mol / mol) with respect to the olefin having a terminal double bond in the raw material.

重合反応はアルミニウム原子含有処理剤による処理を経た原料炭化水素および触媒を使用して、液相で行う。反応は回分式、連続式いずれの方法での行うことができるが、連続式が好ましい。反応装置は、公知のものを使用することができる。原料炭化水素および触媒の供給は公知の方法で行う。重合温度および圧力は、反応系が液相に保たれる条件であれば特に制限はないが、好ましい温度は−100〜+10℃、圧力は0.1〜2MPaである。   The polymerization reaction is carried out in a liquid phase using raw material hydrocarbons and catalyst that have been treated with an aluminum atom-containing treating agent. The reaction can be carried out by either a batch method or a continuous method, but a continuous method is preferred. A well-known thing can be used for a reaction apparatus. The raw material hydrocarbon and catalyst are supplied by a known method. The polymerization temperature and pressure are not particularly limited as long as the reaction system is maintained in a liquid phase, but a preferred temperature is −100 to + 10 ° C. and a pressure is 0.1 to 2 MPa.

オレフィン重合体の数平均分子量には、特に制限はない。すまわち、オレフィン重合体が、重合反応系内において、未反応のオレフィンおよび飽和脂肪族炭化水素に溶解しており、また、該未反応のオレフィンおよび飽和脂肪族炭化水素から蒸留等で分離できる範囲あれば、例えば、2量体、3量体から数平均分子量500以下の範囲にあるオリゴマー、数平均分子量1,500〜50,000の範囲にある粘性重合体、さらに、数平均分子量100,000以上のポリマー状重合体のイソブテン重合体を、すべて得ることができる。   There is no restriction | limiting in particular in the number average molecular weight of an olefin polymer. That is, the olefin polymer is dissolved in the unreacted olefin and saturated aliphatic hydrocarbon in the polymerization reaction system, and can be separated from the unreacted olefin and saturated aliphatic hydrocarbon by distillation or the like. If there is a range, for example, a dimer, a trimer to an oligomer having a number average molecular weight of 500 or less, a viscous polymer having a number average molecular weight in the range of 1,500 to 50,000, and a number average molecular weight of 100, All isobutene polymers of more than 000 polymeric polymers can be obtained.

重合後は、公知の方法に従って、触媒の失活工程および/あるいは触媒の抽出除去工程等が行われるが、触媒添加量が低減されているために、これらの工程の負荷は従来の方法に比べて小さくなる。また、これら工程の前後に適宜に蒸留して未反応のオレフィン等を除去して目的の重合体を得る。またこのようにして得た重合体は、さらに適宜蒸留して所望の数平均分子量を有するオレフィン重合体に分離することができる。なお、本発明においては、触媒添加量が低減されているから、脱ハロゲン処理塔(例えばアルミナ充填塔)を設置すれば、ハロゲン濃度が5質量ppm以下である重合体を容易に得ることができる。   After the polymerization, a catalyst deactivation step and / or a catalyst extraction / removal step is performed according to a known method. However, since the amount of the catalyst added is reduced, the load of these steps is larger than that of the conventional method. Become smaller. In addition, the target polymer is obtained by appropriately distilling before and after these steps to remove unreacted olefins and the like. Further, the polymer thus obtained can be further appropriately distilled to be separated into an olefin polymer having a desired number average molecular weight. In the present invention, since the catalyst addition amount is reduced, a polymer having a halogen concentration of 5 mass ppm or less can be easily obtained by installing a dehalogenation tower (for example, an alumina packed tower). .

以上、主としてブテン系のオレフィン重合体を例にとって説明したが、本発明に係る効果はブテン系オレフィン重合体に限られるものではない。   As mentioned above, although the explanation has been given mainly using the butene-based olefin polymer as an example, the effect according to the present invention is not limited to the butene-based olefin polymer.

以下、実施例を挙げて説明するが、本発明は実施例に限定されるものではない。
<原料Aの調整、製造>
エチレンクラッカーからのC4留分から、ブタジエンをエキストラクトとする抽出蒸留法(抽出溶剤:ジメチルホルムアミド)のラフィネートを用意した。以下、「原料A」という。原料Aの炭化水素組成を表1に示す。原料A中のジメチルホルムアミド濃度は0.7質量ppmであった。なお、原料中のジメチルホルムアミドの濃度は、原料中のジメチルホルムアミドを水を用いて抽出しエバポレートにより濃縮した後に、GC−FTD(熱イオン化検出器)を用いて測定し、その結果から逆算して求めた。
Hereinafter, although an example is given and explained, the present invention is not limited to an example.
<Preparation and production of raw material A>
A raffinate of an extractive distillation method (extraction solvent: dimethylformamide) using butadiene as an extract was prepared from a C4 fraction from an ethylene cracker. Hereinafter, it is referred to as “raw material A”. Table 1 shows the hydrocarbon composition of the raw material A. The dimethylformamide concentration in the raw material A was 0.7 mass ppm. The concentration of dimethylformamide in the raw material was measured using a GC-FTD (thermal ionization detector) after extracting the dimethylformamide in the raw material with water and concentrating it by evaporation. Asked.

<原料Bの調整、製造>
「原料A」と同一の炭化水素組成のC4混合物(ただし、ジメチルホルムアミドを含まない)を市販の特級試薬から調製し、これにN−メチルピロリドンを1.5質量ppm加えたものを調製した。以下、「原料B」という。
<Preparation and production of raw material B>
A C4 mixture (but not containing dimethylformamide) having the same hydrocarbon composition as that of “Raw material A” was prepared from a commercially available special grade reagent, and 1.5 mass ppm of N-methylpyrrolidone was added thereto. Hereinafter, it is referred to as “raw material B”.

<アルミニウム原子含有処理剤>
活性アルミナ(UOP LLC社、商品名:A203−CL)を粉砕して粒径を0.5mm0から1.0mmに分級したものを、アルミニウム原子含有処理剤として用いた。これを、内容積15mlの固定床容器に10g充填した。比較の目的で、同一形状容器に、試薬特級塩化カルシウム(東京化成(株)製)を粉砕し粒径を0.5〜1.0mmに分級したものを充填したものを作成した。
<Aluminum atom-containing treatment agent>
Activated alumina (UOP LLC, trade name: A203-CL) was pulverized and the particle size was classified from 0.5 mm0 to 1.0 mm as an aluminum atom-containing treatment agent. 10 g of this was filled in a fixed bed container having an internal volume of 15 ml. For the purpose of comparison, a container having the same shape filled with a reagent-grade calcium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) and classified to a particle size of 0.5 to 1.0 mm was prepared.

<触媒>
粒状固体酸触媒として塩化アルミニウムを使用した。表2に示すように粒径分布によって7種類の触媒を使用した。触媒1〜5は本発明の触媒である。参考触媒1、2は粒径分布が本発明の範囲を外れるものである。
<Catalyst>
Aluminum chloride was used as the particulate solid acid catalyst. As shown in Table 2, seven types of catalysts were used depending on the particle size distribution. Catalysts 1 to 5 are the catalysts of the present invention. Reference catalysts 1 and 2 have particle size distributions outside the scope of the present invention.

<原料の前処理>
0.3MPaの加圧下に液状に保たれた原料Aおよび原料Bをそれぞれ別個に、前記アルミニウム原子含有処理剤を充填した容器に注入し、+20℃、WHSV=1h−1の条件で60分間、前処理した。
<Pretreatment of raw materials>
The raw material A and the raw material B maintained in a liquid state under a pressure of 0.3 MPa are separately injected into a container filled with the aluminum atom-containing treatment agent, and the conditions are + 20 ° C. and WHSV = 1h −1 for 60 minutes. Pre-processed.

<重合反応>
内容積200mlのオートクレーブに、上記の前処理済の原料を240g/hrで、粒状固体酸触媒として表2に示す粒径分布を有する塩化アルミニウムをヘキサンに懸濁させて、それぞれ別にフィードし、反応温度−15℃、0.19MPaで連続的に120分間重合を行った。触媒の添加量は、各原料中のイソブテン1molに対して0.5mmolとした。
<Polymerization reaction>
In an autoclave with an internal volume of 200 ml, the above pretreated raw material is 240 g / hr, and aluminum chloride having a particle size distribution shown in Table 2 as a granular solid acid catalyst is suspended in hexane and fed separately. Polymerization was continuously performed for 120 minutes at a temperature of -15 ° C and 0.19 MPa. The addition amount of the catalyst was 0.5 mmol with respect to 1 mol of isobutene in each raw material.

<イソブテンのポリイソブテンへの転化率の算出>
重合反応前原料および重合反応後の後の重合体(ポリイソブテン)をそれぞれ密閉容器にサンプリングし水酸化ナトリウム水溶液で中和処理して触媒を失活し、常温常圧に保った後、蒸発気体成分中のイソブテンmol%をガスクロマトグラフィーで分析した。蒸発気体成分中のイソブテン減少分をイソブテンのポリイソブテンへの転化率(%)とした。結果を表3に示した。
<Calculation of conversion of isobutene to polyisobutene>
The raw material before the polymerization reaction and the polymer after the polymerization reaction (polyisobutene) are sampled in sealed containers, neutralized with an aqueous sodium hydroxide solution to deactivate the catalyst, and kept at room temperature and normal pressure. The isobutene mol% was analyzed by gas chromatography. The reduced amount of isobutene in the evaporated gas component was defined as the conversion rate (%) of isobutene to polyisobutene. The results are shown in Table 3.

まず、活性アルミナで前処理を行った各原料においては、当該前処理を行わない場合、および、塩化カルシウム、モレキュラーシーブで同様の処理を行った場合に比較して、原料A、原料Bの両者において、同一の触媒添加量でも高い転化率が得られていることが分かる。また、原料Aにおける転化率の増加割合と原料Bにおける増加割合とを比較すると、原料Aにおける増加割合がより大きく、本発明がジメチルホルムアミドを抽出溶剤とするラフィネートに対してより効果的であることが分かる。   First, in each raw material pretreated with activated alumina, both the raw material A and the raw material B are compared with the case where the pretreatment is not performed and the case where the same treatment is performed with calcium chloride and molecular sieve. It can be seen that a high conversion was obtained even with the same catalyst addition amount. Moreover, when the increase rate of the conversion rate in the raw material A and the increase rate in the raw material B are compared, the increase rate in the raw material A is larger, and this invention is more effective with respect to the raffinate which uses dimethylformamide as an extraction solvent. I understand.

つぎに、原料Aについて活性アルミナで前処理を行った場合の転化率の増加割合(%)を、触媒の粒径との関係でみると、2000μm以上2800μm未満のみの塩化アルミからなる参考触媒1、1400μm以上2000μm未満のみの塩化アルミからなる参考触媒2においては、その増加割合は200%でほぼ同一であるが、本発明の実施態様である1400μm未満の粒子を60質量%以上含む触媒1〜5では、増加率は300%以上に増加し、当該範囲で顕著な効果が得られることがわかる。特に、850μm未満の粒子を60質量%以上含む触媒3、触媒4の増加率は370%、400%以上と顕著である。   Next, the rate of increase (%) in the conversion rate when the raw material A was pretreated with activated alumina, in relation to the particle size of the catalyst, is a reference catalyst 1 consisting of aluminum chloride of 2000 μm or more and less than 2800 μm. In the reference catalyst 2 made of aluminum chloride of only 1400 μm or more and less than 2000 μm, the increase rate is almost the same at 200%, but the catalyst 1 containing 60% by mass or more of particles less than 1400 μm according to the embodiment of the present invention. 5, the increase rate increases to 300% or more, and it can be seen that a remarkable effect is obtained in this range. In particular, the increase rates of the catalyst 3 and the catalyst 4 containing 60% by mass or more of particles less than 850 μm are remarkable at 370% and 400% or more.

Figure 2006219560
Figure 2006219560

Figure 2006219560
Figure 2006219560

Figure 2006219560
Figure 2006219560

Claims (7)

ジエン系炭化水素をエキストラクトとする抽出蒸留法のラフィネートから得られる炭化水素を含む、主として炭素数4のオレフィンを含むオレフィン5〜95質量%と主として炭素数4の飽和脂肪族炭化水素を含む飽和脂肪族炭化水素95〜5質量%(両者を合わせて100質量%とする。)からなる液状炭化水素を、アルミニウム原子含有処理剤に接触させた後に、粒径1400μm未満の粒子を60質量%以上含む粒状固体酸触媒の存在下にオレフィンを重合させることを特徴とするオレフィン重合体の製造方法。   Saturation mainly containing 5 to 95% by mass of olefins mainly containing 4 olefins and saturated aliphatic hydrocarbons having 4 carbons, including hydrocarbons obtained from raffinate of extractive distillation method using diene hydrocarbon as an extract After contacting liquid hydrocarbons composed of 95 to 5% by mass of aliphatic hydrocarbons (100% by mass together) with an aluminum atom-containing treatment agent, particles having a particle size of less than 1400 μm are 60% by mass or more. A method for producing an olefin polymer, comprising polymerizing an olefin in the presence of a granular solid acid catalyst. 前記粒状固体酸触媒が塩化アルミニウムであることを特徴とする請求項1に記載のオレフィン重合体の製造方法。   The method for producing an olefin polymer according to claim 1, wherein the particulate solid acid catalyst is aluminum chloride. 前記粒状固体酸触媒が粒径850μm未満の粒子を60質量%以上含むものであることを特徴とする請求項1または2のいずれかに記載のオレフィン重合体の製造方法。   3. The method for producing an olefin polymer according to claim 1, wherein the particulate solid acid catalyst contains 60% by mass or more of particles having a particle size of less than 850 μm. 前記炭素数4のオレフィンがイソブテンであることを特徴とする請求項1〜3のいずれかに記載のオレフィン重合体の製造方法。   The method for producing an olefin polymer according to any one of claims 1 to 3, wherein the olefin having 4 carbon atoms is isobutene. 前記アルミニウム原子含有処理剤が組成式AlOで表される成分を含む無機固体処理剤であることを特徴とする請求項1〜4のいずれかに記載のオレフィン重合体の製造方法。 Process for producing an olefin polymer according to claim 1, wherein the aluminum atom-containing treatment agent is an inorganic solid treating agent containing a component represented by the compositional formula Al 2 O 3. 前記アルミニウム原子含有処理剤がアルミナを含むことを特徴とする請求項1〜5のいずれかに記載のオレフィン重合体の製造方法。   The said aluminum atom containing processing agent contains an alumina, The manufacturing method of the olefin polymer in any one of Claims 1-5 characterized by the above-mentioned. 前記抽出蒸留に使用される有機溶剤がジメチルホルムアミドであることを特徴とする請求項1〜6のいずれかに記載のオレフィン重合体の製造方法。   The method for producing an olefin polymer according to any one of claims 1 to 6, wherein the organic solvent used for the extractive distillation is dimethylformamide.
JP2005033134A 2005-02-09 2005-02-09 Process for producing olefin polymer Active JP4863186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033134A JP4863186B2 (en) 2005-02-09 2005-02-09 Process for producing olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033134A JP4863186B2 (en) 2005-02-09 2005-02-09 Process for producing olefin polymer

Publications (2)

Publication Number Publication Date
JP2006219560A true JP2006219560A (en) 2006-08-24
JP4863186B2 JP4863186B2 (en) 2012-01-25

Family

ID=36982085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033134A Active JP4863186B2 (en) 2005-02-09 2005-02-09 Process for producing olefin polymer

Country Status (1)

Country Link
JP (1) JP4863186B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001670A (en) * 2010-06-18 2012-01-05 Jx Nippon Oil & Energy Corp Manufacturing method of olefin polymer
JP2017039631A (en) * 2015-08-21 2017-02-23 Jfeスチール株式会社 Method for producing mixed gas
CN114956425A (en) * 2022-05-31 2022-08-30 昆山三一环保科技有限公司 Treatment system and treatment method for waste lithium battery recovery wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126820A (en) * 1982-01-22 1983-07-28 Nippon Zeon Co Ltd Separation method for butene-1 of high purity or butene-1/ isobutene mixture from 4c hydrocarbon fraction
JPS6136006B2 (en) * 1977-10-07 1986-08-15 Nippon Petrochemicals Co Ltd
JP2004123714A (en) * 2002-08-06 2004-04-22 Oxeno Olefinchemie Gmbh METHOD FOR OLIGOMERIZING ISOBUTENE IN HYDROCARBON FLOW CONTAINING n-BUTENE
WO2004039757A2 (en) * 2002-10-30 2004-05-13 Basf Aktiengesellschaft Method for producing oligomers derived from butenes
JP2006063151A (en) * 2004-08-25 2006-03-09 Nippon Petrochemicals Co Ltd Method for producing olefin polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136006B2 (en) * 1977-10-07 1986-08-15 Nippon Petrochemicals Co Ltd
JPS58126820A (en) * 1982-01-22 1983-07-28 Nippon Zeon Co Ltd Separation method for butene-1 of high purity or butene-1/ isobutene mixture from 4c hydrocarbon fraction
JP2004123714A (en) * 2002-08-06 2004-04-22 Oxeno Olefinchemie Gmbh METHOD FOR OLIGOMERIZING ISOBUTENE IN HYDROCARBON FLOW CONTAINING n-BUTENE
WO2004039757A2 (en) * 2002-10-30 2004-05-13 Basf Aktiengesellschaft Method for producing oligomers derived from butenes
JP2006063151A (en) * 2004-08-25 2006-03-09 Nippon Petrochemicals Co Ltd Method for producing olefin polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001670A (en) * 2010-06-18 2012-01-05 Jx Nippon Oil & Energy Corp Manufacturing method of olefin polymer
JP2017039631A (en) * 2015-08-21 2017-02-23 Jfeスチール株式会社 Method for producing mixed gas
CN114956425A (en) * 2022-05-31 2022-08-30 昆山三一环保科技有限公司 Treatment system and treatment method for waste lithium battery recovery wastewater

Also Published As

Publication number Publication date
JP4863186B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
EP1739101B1 (en) Method for producing an alpha-olefin polymer
TW213898B (en)
KR20140009165A (en) Polymers of isobutene from renewable sources
US2906795A (en) Recovery and utilization of normally gaseous olefins
KR20070107070A (en) Metathesis method for purifying starting products
JP6073818B2 (en) Method and system for recycling a solvent used during an ethylene-based polymerization reaction
TW201000444A (en) Elimination of chlorine compounds from hydrocarbon cuts
US3832418A (en) Isobutylene dimerization process
US3864243A (en) Removal of chemically combined chlorine and other impurities from hydrocarbons
TWI532706B (en) A method for producing diisobutylene with mixed C4 fraction as raw material
JP4863186B2 (en) Process for producing olefin polymer
JP5005337B2 (en) Process for producing &#34;FCC&#34; C5 fraction rich in isoprene and selective polymerization of isoprene derived from this fraction
JPH0323566B2 (en)
CA1083612A (en) Method of reducing the alpha-acetylene content of hydrocarbon
JP5227490B2 (en) Process for producing olefin polymer
JP2012001670A (en) Manufacturing method of olefin polymer
JP2819178B2 (en) Purification method of dicyclopentadiene
Coleto et al. Transformation of α-olefins over Pt–M (M= Re, Sn, Ge) supported chlorinated alumina
JP2000239319A (en) Production of butene polymer
KR20180047941A (en) Polyisobutene feed pretreatment method
CA1096326A (en) Method of reducing alpha-acetylene content of hydrocarbons using an alkali amide
US2698351A (en) Purification of phosphoric acid polymer feed stock
KR101090578B1 (en) Reduction of the content of compounds containing oxygen and/or nitrogen in material flows containing isobutene
US2631996A (en) Bf3-iodine polymerization of unsaturated hydrocarbon mixtures
WO2024013340A1 (en) Production of ethylene and propylene from pyrolysis plastic oil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250