JP2006218407A - Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound - Google Patents

Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound Download PDF

Info

Publication number
JP2006218407A
JP2006218407A JP2005034564A JP2005034564A JP2006218407A JP 2006218407 A JP2006218407 A JP 2006218407A JP 2005034564 A JP2005034564 A JP 2005034564A JP 2005034564 A JP2005034564 A JP 2005034564A JP 2006218407 A JP2006218407 A JP 2006218407A
Authority
JP
Japan
Prior art keywords
nitrogen
waste liquid
toc
hardly decomposable
nitrogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005034564A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzugaki
裕志 鈴垣
Taro Oe
太郎 大江
Shinji Ito
新治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005034564A priority Critical patent/JP2006218407A/en
Publication of JP2006218407A publication Critical patent/JP2006218407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating a waste liquid which can efficiently decompose a hardly decomposable hazardous substance while suppressing the formation of nitric acid derived from a nitrogen compound when the waste liquid containing both the hardly decomposable hazardous substance and the nitrogen compound is treated. <P>SOLUTION: The method for treating the waste liquid containing the hardly decomposable hazardous substance and the nitrogen compound comprises setting a molar ratio (TOC/TN) of organic carbon (TOC) to total nitrogen (TN) in the waste liquid at a fixed value or lower to react at temperature required to decompose the hardly decomposable hazardous substance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、PCB(ポリ塩素化ビフェニル)やダイオキシンに代表される難分解性有害物質と窒素化合物の両方を含む廃液の処理方法に関し、とくに、窒素化合物からの硝酸生成を抑制しつつ、難分解性有害物質を効率よく分解処理できるようにした、難分解性有害物質および窒素化合物を含む廃液の処理方法に関する。   The present invention relates to a method for treating a waste liquid containing both a hardly decomposable hazardous substance typified by PCB (polychlorinated biphenyl) and dioxin and a nitrogen compound, and in particular, hardly decomposed while suppressing nitric acid production from the nitrogen compound. The present invention relates to a method for treating a waste liquid containing a hardly decomposable harmful substance and a nitrogen compound, which can efficiently decompose a harmful substance.

近年、高温高圧水、とくに超臨界水の存在下での水熱酸化反応を利用して、環境汚染物質等を分解、無害化する試みが注目されている。とくに、超臨界水の高い反応性を利用した超臨界水酸化により、従来技術では分解することが難しかった有害な難分解性の有機物、例えば、PCB、ダイオキシン、有機塩素系有機物等を分解して、二酸化炭素、水、無機塩などの無害な生成物に転化する試みが注目されている。この超臨界水とは、超臨界状態にある水、すなわち、水の臨界点を越えた状態にある水を言い、詳しくは、374.1℃以上の温度で、かつ22.04MPa以上の圧力下にある状態の水を言う。超臨界水は、有機物を溶解する溶解能が高く、有機化合物に多い非極性物質をも完全に溶解することができる一方、逆に、金属、塩等の無機物に対する溶解能は著しく低い。また、超臨界水は、空気や酸素、窒素などの気体と任意の割合で混合して単一相を構成することができる。   In recent years, attention has been paid to attempts to decompose and detoxify environmental pollutants using a hydrothermal oxidation reaction in the presence of high-temperature and high-pressure water, particularly supercritical water. In particular, supercritical water oxidation utilizing the high reactivity of supercritical water decomposes harmful and hardly decomposable organic substances, such as PCB, dioxin, and organic chlorinated organic substances, which were difficult to be decomposed by the prior art. Attempts to convert to harmless products such as carbon dioxide, water and inorganic salts are drawing attention. The supercritical water means water in a supercritical state, that is, water in a state exceeding the critical point of water. Specifically, it is at a temperature of 374.1 ° C. or higher and under a pressure of 22.04 MPa or higher. Says water in a state. Supercritical water has a high ability to dissolve organic substances, and can completely dissolve non-polar substances that are abundant in organic compounds. Conversely, the ability to dissolve inorganic substances such as metals and salts is extremely low. Supercritical water can be mixed with a gas such as air, oxygen, or nitrogen at an arbitrary ratio to form a single phase.

このような有機物の超臨界水酸化において、酸化剤を空気や酸素として窒素化合物を処理する場合において、反応温度が高いと硝酸が生成し、装置腐食が懸念される。そのため、反応温度を580〜620℃として硝酸の生成を抑制する手段が特許文献1に開示されている。   In such supercritical water oxidation of organic matter, when a nitrogen compound is treated using air or oxygen as an oxidant, nitric acid is generated at a high reaction temperature, and there is a concern about apparatus corrosion. Therefore, Patent Document 1 discloses means for suppressing the production of nitric acid by setting the reaction temperature to 580 to 620 ° C.

一方、PCBやダイオキシンに代表される難分解性有害物質を超臨界水酸化処理するに当たっては、超臨界水酸化の利点である反応速度の速さを生かしつつ、確実な処理を行うため、反応温度630℃程度で処理されている事例がある(非特許文献1)。
特開平11-226583号公報 化学工学会 第34回秋季大会 研究発表講演要旨集、2001年
On the other hand, in the supercritical water oxidation treatment of refractory hazardous substances represented by PCB and dioxin, the reaction temperature is used in order to perform the reliable treatment while taking advantage of the high reaction rate that is the advantage of supercritical water oxidation. There is a case where it is processed at about 630 ° C. (Non-patent Document 1).
Japanese Patent Laid-Open No. 11-226583 Annual Meeting of Chemical Engineering Society 34th Autumn Meeting, 2001, 2001

しかし、難分解性有害物質が混入した窒素化合物を含有する廃液を超臨界水酸化処理するに当たって、難分解性有害物質を確実に処理するために反応温度を630℃程度にすると、窒素化合物由来の硝酸が生成し、装置腐食を引き起こす恐れがある。この場合、耐食性を持たせるような構造、材料を採用することで、装置腐食を抑制できる場合もあるが、そうすると、設備費が嵩むという問題を招く。さらに、設備費が嵩むことを許容した場合でも、生成した硝酸を処理しなければならないという問題は残る。一方、硝酸生成を抑制するために反応温度を低くすると、未分解の難分解性有害物質が残存してしまうという問題が生じる。   However, when supercritical water oxidation treatment is performed on a waste liquid containing nitrogen compounds mixed with hardly decomposable harmful substances, if the reaction temperature is set to about 630 ° C. in order to reliably treat the hardly decomposable harmful substances, the nitrogen compound-derived Nitric acid may be generated, causing equipment corrosion. In this case, the corrosion of the apparatus may be suppressed by adopting a structure and material that give corrosion resistance, but this causes a problem that the equipment cost increases. Further, even when the equipment cost is allowed to increase, the problem that the generated nitric acid must be processed remains. On the other hand, if the reaction temperature is lowered in order to suppress nitric acid production, there arises a problem that undecomposed and hardly decomposable harmful substances remain.

そこで本発明の課題は、難分解性有害物質と窒素化合物の両方を含む廃液を処理するに際し、窒素化合物由来の硝酸の生成を抑制しつつ、難分解性有害物質を効率よく分解処理できるようにした廃液の処理方法を提供することにある。   Accordingly, an object of the present invention is to efficiently decompose a hardly decomposable harmful substance while suppressing the production of nitric acid derived from the nitrogen compound when treating a waste liquid containing both the hardly decomposable harmful substance and the nitrogen compound. Another object of the present invention is to provide a method for treating the waste liquid.

上記課題を解決するために、本発明完成に至る経過で、まず、高温での超臨界水酸化反応において硝酸生成を抑制する方法がないかを検討した。これまでの超臨界水酸化における空気酸化の結果では、高濃度、すなわち高発熱量の廃液を処理しているため、測定部の温度は600℃前後であるが、反応中心部の温度は発熱反応によって測定温度よりも高温であることが予想された。そこで、反応中心部温度の影響を検討するため、最終的な制御温度は630℃で一定として、処理対象廃液の発熱量を変更して実験を行なったところ、表1のような結果が得られた。   In order to solve the above problems, in the course of completing the present invention, first, it was examined whether there is a method for suppressing nitric acid production in a supercritical water oxidation reaction at a high temperature. As a result of air oxidation in supercritical water oxidation so far, waste liquid with high concentration, that is, high calorific value, is treated, so the temperature of the measuring part is around 600 ° C, but the temperature of the reaction center is exothermic reaction. It was expected that the temperature was higher than the measured temperature. Therefore, in order to examine the influence of the reaction center temperature, the final control temperature was constant at 630 ° C., and the experiment was performed by changing the heat generation amount of the waste liquid to be treated. The results shown in Table 1 were obtained. It was.

Figure 2006218407
Figure 2006218407

表1において、反応中心部想定到達温度とは、400℃から超臨界水酸化反応が開始し、全量が酸化した時の発熱量により到達する流体温度である。表1からは、発熱量と反応中心部想定到達温度の関係も分かる。このように、廃液の発熱量が異なることにより、硝酸転換率が大きく変わることが確認された。その結果、反応中心部の到達温度が高温であることが硝酸生成に影響しているものと考えられた。   In Table 1, the reaction center assumed temperature is the fluid temperature reached by the amount of heat generated when the supercritical water oxidation reaction starts at 400 ° C. and the entire amount is oxidized. Table 1 also shows the relationship between the amount of heat generated and the expected reaction center temperature. As described above, it was confirmed that the nitric acid conversion rate greatly changed due to the different calorific value of the waste liquid. As a result, it was considered that the temperature reached at the reaction center was high, affecting the nitric acid production.

ここで、上記の各実験において最終的な到達温度は630℃となっており、硝酸が生成していた実験番号1−2の反応中心部想定到達温度より高いにも関わらず、実験番号1−1では実質的に硝酸が生成していない。この原因として、以下のように考えられた。
(1)一般的なTOC(全有機体炭素)成分は、比較的速やかに反応が起こるため、反応中心部想定到達温度にてほぼ消失するが、窒素化合物については当該温度が低いと残存するものがある。
(2)高温での窒素化合物の単独反応ではなく、窒素化合物とTOC成分との複合反応により硝酸が生成する。
そこで、共存するTOC成分が硝酸生成に影響があるか否かを確認するために、TOC/TN(全窒素)の値を変更して実験を行なったところ、表2のような結果が得られた。
Here, in each of the experiments described above, the final reached temperature was 630 ° C., and although it was higher than the expected reaction center portion reached temperature in Experiment No. 1-2 where nitric acid was generated, Experiment No. 1- In 1, no nitric acid was substantially generated. This was considered as follows.
(1) The general TOC (total organic carbon) component disappears at the reaction center expected temperature because the reaction occurs relatively quickly, but the nitrogen compound remains when the temperature is low. There is.
(2) Nitric acid is generated not by a single reaction of the nitrogen compound at a high temperature but by a combined reaction of the nitrogen compound and the TOC component.
Then, in order to confirm whether or not the coexisting TOC component has an influence on the nitric acid production, an experiment was conducted by changing the value of TOC / TN (total nitrogen), and the results shown in Table 2 were obtained. It was.

Figure 2006218407
Figure 2006218407

表2に示すように、前述の硝酸が生成したような反応中心部想定到達温度以上であるにも関わらず、TOC/TNの値(表2では、C/Nモル比と表記)が低い実験番号2−1から2−3では実質的に硝酸が生成しておらず、硝酸生成にはTOC成分の存在が関与していることが確認できた。   As shown in Table 2, the TOC / TN value (shown as C / N molar ratio in Table 2) is low even though the reaction center temperature is higher than the expected temperature at which the nitric acid is generated. In numbers 2-1 to 2-3, nitric acid was not substantially produced, and it was confirmed that the presence of the TOC component was involved in the nitric acid production.

以上の結果より、超臨界水酸化反応における窒素化合物からの硝酸生成は、以下の要件が重なっている時に起こるという結論が導き出された。
(1)窒素化合物存在下で、有機体炭素が多量に存在する。
(2)温度が高温である。
つまり、通常の廃液では、窒素化合物に比べて有機体炭素の量が多い。したがって、高温で処理すると硝酸が生成する。しかし、このような廃液に、例えば、硝酸・亜硝酸態窒素(酸化態窒素)を除く、化合物中の窒素原子数が炭素原子数よりも大きい窒素化合物(アンモニア塩、尿素等の非酸化態窒素)を混入すると、窒素化合物に比べて有機体炭素量が少なくなる。その結果、上記(1)の条件が満たされなくなり、硝酸生成を抑制可能となることを突き止め、本発明を完成するに至った。
From the above results, it was concluded that nitric acid generation from nitrogen compounds in the supercritical water oxidation reaction occurs when the following requirements overlap.
(1) A large amount of organic carbon exists in the presence of a nitrogen compound.
(2) The temperature is high.
That is, the amount of organic carbon is larger in a normal waste liquid than in a nitrogen compound. Therefore, nitric acid is produced when treated at high temperatures. However, for example, non-oxidized nitrogen such as ammonia salts and urea such as ammonia salts and urea in which the number of nitrogen atoms in the compound is larger than the number of carbon atoms, excluding nitric acid and nitrite nitrogen (oxidized nitrogen). ) Reduces the amount of organic carbon compared to nitrogen compounds. As a result, it has been found that the condition (1) is not satisfied and nitric acid production can be suppressed, and the present invention has been completed.

すなわち、本発明に係る難分解性有害物質および窒素化合物を含有する廃液の処理方法は、廃液中の有機体炭素(TOC)と全窒素(TN)のモル比、TOC/TNを一定値以下とし、難分解性有害物質分解必要温度で反応させることを特徴とする方法からなる。   That is, according to the present invention, the method for treating a waste liquid containing a hardly decomposable harmful substance and a nitrogen compound sets the molar ratio of organic carbon (TOC) to total nitrogen (TN) in the waste liquid, and TOC / TN to a certain value or less. The method comprises reacting at a temperature required to decompose a hardly decomposable harmful substance.

この廃液の処理方法においては、上記TOC/TNが、比率が、全窒素(TN)から酸化態窒素の2倍の量を差し引いた窒素量である見かけ非酸化態窒素の量を用いた、(TOC/見かけ非酸化態窒素)がモル比にて、2以下であることが好ましい。上記TOC/TNについては、窒素原子数が有機炭素原子数よりも大きい窒素化合物(例えば、アンモニア塩、尿素等)を加えることにより、上記一定値以下にすることが可能である。   In this waste liquid treatment method, the amount of apparent non-oxidized nitrogen in which the TOC / TN was a nitrogen amount obtained by subtracting twice the amount of oxidized nitrogen from total nitrogen (TN) was used. (TOC / apparent non-oxidized nitrogen) is preferably 2 or less in terms of molar ratio. The TOC / TN can be reduced to a certain value or less by adding a nitrogen compound (for example, ammonia salt, urea, etc.) having a larger number of nitrogen atoms than the number of organic carbon atoms.

上記難分解性有害物質分解必要温度としては、600℃以上であることが好ましい。   The temperature required for decomposition of the hardly decomposable harmful substance is preferably 600 ° C. or higher.

本発明に係る難分解性有害物質および窒素化合物を含有する廃液の処理方法によれば、廃液のTOC/TNを一定値以下として、高温の難分解性有害物質分解必要温度で超臨界水酸化反応を行わせるようにしたので、難分解性有害物質を完全に分解できるとともに、硝酸生成を抑制することで、装置の腐食を抑制することができる。   According to the method for treating a waste liquid containing a hardly decomposable hazardous substance and a nitrogen compound according to the present invention, the supercritical water oxidation reaction is performed at a high temperature necessary for decomposing the hardly decomposable harmful substance with the TOC / TN of the waste liquid being a predetermined value or less. Therefore, the hardly decomposable harmful substance can be completely decomposed, and the production of nitric acid can be suppressed, whereby the corrosion of the apparatus can be suppressed.

以下に、本発明について、望ましい実施の形態とともに、詳細に説明する。
従来の水熱酸化反応では、窒素化合物を空気により高温(600℃前後)で酸化させると硝酸が生成すると考えられていた。しかし、前述したように、実際には、高温(600℃前後)で有機体炭素と窒素化合物が共存する場合にのみ硝酸が生成することが確認された。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
In the conventional hydrothermal oxidation reaction, it was thought that nitric acid was produced when a nitrogen compound was oxidized with air at a high temperature (around 600 ° C.). However, as described above, it was actually confirmed that nitric acid was generated only when organic carbon and a nitrogen compound coexist at a high temperature (around 600 ° C.).

ここで、硝酸生成のメカニズムとしては、以下のように考えられる。
(1)例えばアンモニア単体から硝酸が生成する速度は、硝酸とアンモニアの反応による窒素ガスの生成速度に比べてはるかに小さい。
(2)高温において、アンモニアや窒素化合物が有機体炭素と中間生成物を形成し、当該中間生成物を経由して硝酸が生成するまでの全体反応速度は、硝酸とアンモニアの反応による窒素ガスの生成速度に比べて大きい。ここでの高温とは、窒素化合物の種類にもよるが、概ね550℃以上であると考えられる。さらに、上記(2)において、硝酸が残存するほどの中間生成物を形成するためには、窒素化合物の量に対して、一定以上の有機体炭素がなければならないことも判明した。
Here, the nitric acid production mechanism is considered as follows.
(1) For example, the rate at which nitric acid is produced from ammonia alone is much smaller than the rate at which nitrogen gas is produced by the reaction between nitric acid and ammonia.
(2) At high temperatures, ammonia and nitrogen compounds form an intermediate product with organic carbon, and the overall reaction rate until nitric acid is generated via the intermediate product is determined by the reaction of nitrogen gas due to the reaction of nitric acid and ammonia. Greater than the production rate. The high temperature here is considered to be approximately 550 ° C. or higher although it depends on the type of nitrogen compound. Furthermore, in the above (2), it has also been found that in order to form an intermediate product such that nitric acid remains, there must be a certain amount or more of organic carbon relative to the amount of nitrogen compound.

このような知見を得た結果、硝酸生成を抑制するために、有機体炭素(TOC)と全窒素(TN)のモル比を一定値以下とすることにより、硝酸の生成を抑制しつつ、難分解性有害物質を良好に分解できるようにした、本発明を完成するに至った。さらに詳細には、処理対象廃液により異なるが、全窒素(TN)から酸化態窒素の2倍の量を差し引いた窒素量(見かけ非酸化態窒素)において、(TOC/見かけ非酸化態窒素)がモル比にて2以下であることが必要であり、モル比1.5以下とすることが好ましい。すなわち、ここで、酸化態窒素は非酸化態窒素化合物と迅速に反応し、窒素ガスを生成する特徴があると考えられるため、全窒素(TN)から酸化態窒素量を引くだけでなく、酸化態窒素と反応して迅速に消失する非酸化態窒素量も併せて引くことにより、当該反応場で硝酸生成に寄与する実質のTOCと見かけ非酸化態窒素の比率で硝酸生成抑制を検討することが必要であると考えられる。   As a result of obtaining such knowledge, in order to suppress nitric acid production, the molar ratio of organic carbon (TOC) and total nitrogen (TN) is set to a certain value or less, thereby suppressing the production of nitric acid. The present invention has been completed in which the decomposable harmful substances can be satisfactorily decomposed. More specifically, although depending on the waste liquid to be treated, in the amount of nitrogen (apparent non-oxidized nitrogen) obtained by subtracting twice the amount of oxidized nitrogen from total nitrogen (TN), (TOC / apparent non-oxidized nitrogen) is It is necessary that the molar ratio is 2 or less, and the molar ratio is preferably 1.5 or less. That is, the oxidized nitrogen reacts quickly with the non-oxidized nitrogen compound to generate nitrogen gas, so that not only the amount of oxidized nitrogen is subtracted from the total nitrogen (TN) but also oxidized. By examining the amount of non-oxidized nitrogen that reacts with the nitrogen and disappears rapidly, the suppression of nitric acid production is examined at the ratio of the real TOC that contributes to nitric acid production and the apparent non-oxidized nitrogen in the reaction field. Is considered necessary.

通常の廃液では、TNに比べてTOCが多量に存在していることが多い。したがって、上記ように、TOCとTNのモル比を一定値以下にするためには、有機体炭素を含まないかあるいは有機体炭素の比率が窒素の比率より小さい化合物を廃液に加えることが有効である。これらのTOC/TN調整用薬剤としては、アンモニア水、炭酸アンモニウム、尿素等が挙げられる。特に、炭酸アンモニウムは有機体炭素を含まず、固形物の状態で廃液に添加でき、処理水量を増やさず、pHの変動も抑制できることから好ましい。   In ordinary waste liquid, TOC is often present in a larger amount than TN. Therefore, as described above, in order to keep the molar ratio of TOC and TN below a certain value, it is effective to add a compound that does not contain organic carbon or has a ratio of organic carbon smaller than that of nitrogen to the waste liquid. is there. Examples of these TOC / TN adjusting agents include aqueous ammonia, ammonium carbonate, urea and the like. In particular, ammonium carbonate is preferable because it does not contain organic carbon, can be added to the waste liquid in a solid state, does not increase the amount of treated water, and can suppress fluctuations in pH.

このようにTOCとTNの比率を変化させて水熱酸化反応を行なった結果を表3に示す。ここでは、TOCとTNのモル比を調整するためのTN源として、アンモニア水を使用した。表3に示すように、モル比、TOC/TNが1.6程度では、硝酸の生成はほとんどない。しかし、TOC/TNが3程度になると、処理水pHは1.4程度まで減少し、装置腐食の恐れが高くなった。なお、表3におけるTOC/TNは、前述の(TOC/見かけ非酸化態窒素)のモル比を示している。   Table 3 shows the results of the hydrothermal oxidation reaction by changing the ratio of TOC and TN. Here, ammonia water was used as a TN source for adjusting the molar ratio of TOC and TN. As shown in Table 3, when the molar ratio, TOC / TN is about 1.6, nitric acid is hardly generated. However, when TOC / TN was about 3, the pH of the treated water decreased to about 1.4, and the risk of equipment corrosion increased. In Table 3, TOC / TN indicates the molar ratio of (TOC / apparent non-oxidized nitrogen) described above.

Figure 2006218407
Figure 2006218407

表3に示すように、廃液のTOC/TNを一定値以下、とくに2以下にすることにより、硝酸濃度を実用上問題が生じない程度に抑えることができ、装置腐食の恐れを除去できることが明らかになった。   As shown in Table 3, it is clear that by setting the TOC / TN of the waste liquid to a certain value or less, particularly 2 or less, the nitric acid concentration can be suppressed to a level that does not cause practical problems, and the risk of corrosion of the apparatus can be eliminated. Became.

本発明は、難分解性有害物質および窒素化合物を含む廃液の処理が要求されるものであれば、あらゆる分野における処理に適用できる。   The present invention can be applied to treatment in all fields as long as treatment of waste liquid containing a hardly decomposable harmful substance and a nitrogen compound is required.

Claims (4)

廃液中の有機体炭素(TOC)と全窒素(TN)のモル比、TOC/TNを一定値以下とし、難分解性有害物質分解必要温度で反応させることを特徴とする、難分解性有害物質および窒素化合物を含有する廃液の処理方法。   Refractory hazardous substance, characterized by reacting at the temperature required for decomposition of refractory hazardous substances, with a molar ratio of organic carbon (TOC) to total nitrogen (TN) in the waste liquid, TOC / TN not exceeding a certain value And a method for treating a waste liquid containing a nitrogen compound. 前記TOC/TNが、比率が、全窒素(TN)から酸化態窒素の2倍の量を差し引いた窒素量である見かけ非酸化態窒素の量を用いた、(TOC/見かけ非酸化態窒素)がモル比にて、2以下である、請求項1に記載の廃液の処理方法。   The amount of apparent non-oxidized nitrogen in which the TOC / TN is a nitrogen amount obtained by subtracting twice the amount of oxidized nitrogen from total nitrogen (TN) was used (TOC / apparent non-oxidized nitrogen) The processing method of the waste liquid of Claim 1 whose is 2 or less in molar ratio. 前記TOC/TNを、窒素原子数が有機炭素原子数よりも大きい窒素化合物を加えることにより、前記一定値以下にする、請求項1または2に記載の廃液の処理方法。   The waste liquid treatment method according to claim 1 or 2, wherein the TOC / TN is made equal to or less than the predetermined value by adding a nitrogen compound having a larger number of nitrogen atoms than the number of organic carbon atoms. 前記難分解性有害物質分解必要温度が600℃以上である、請求項1〜3のいずれかに記載の廃液の処理方法。   The method for treating a waste liquid according to any one of claims 1 to 3, wherein the temperature required for decomposition of the hardly decomposable harmful substance is 600 ° C or higher.
JP2005034564A 2005-02-10 2005-02-10 Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound Pending JP2006218407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034564A JP2006218407A (en) 2005-02-10 2005-02-10 Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034564A JP2006218407A (en) 2005-02-10 2005-02-10 Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound

Publications (1)

Publication Number Publication Date
JP2006218407A true JP2006218407A (en) 2006-08-24

Family

ID=36981065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034564A Pending JP2006218407A (en) 2005-02-10 2005-02-10 Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound

Country Status (1)

Country Link
JP (1) JP2006218407A (en)

Similar Documents

Publication Publication Date Title
JP5817718B2 (en) Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same
JP2015511152A (en) Decomposition of non-volatile halogenated organic compounds
JP6145682B2 (en) Method of treating complex cyanide-containing wastewater and treating agent used therefor
JP2011020108A (en) Method and apparatus for treating chemical substance contamination
JP2008272590A (en) Heavy metal treating agent and stabilization treatment method of heavy metal contaminant using the same
CN105110518A (en) Treatment method for acidic organic wastewater
JP2006326121A (en) Chemical substance decomposition agent and cleaning method using thereof
JP6146499B2 (en) Treatment of ammonia-containing wastewater
JP2006299068A (en) Chemical substance-decomposing agent and cleaning method using the same
JP2006218407A (en) Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound
JP2006306736A (en) Method of hydrothermally decomposing fluorinated organic compound
JP2006218406A (en) Method for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound
JP2018030104A (en) Agent for treating cyan-containing wastewater, and method for treating cyan-containing wastewater using the same
US6124519A (en) Method of decomposing polychlorobiphenyls
JP2010162521A (en) Method and apparatus for treating hardly degradable organic compound
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
JP2006218405A (en) Method and apparatus for treating waste liquid containing hardly decomposable hazardous substance and nitrogen compound
JP2005313112A (en) Method for treating waste water containing cyanogen
JP2007237064A (en) Method and device for treating waste liquid
JPH0780479A (en) Treatment of organic compound-containing waste liquid
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
TW201605744A (en) Method for treating wastewater containing ammonia
JP2005329304A (en) Method for treating nitric acid waste solution
JPH11253795A (en) Method for decomposition of pcb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Effective date: 20091113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100305