JP2006218141A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2006218141A
JP2006218141A JP2005035519A JP2005035519A JP2006218141A JP 2006218141 A JP2006218141 A JP 2006218141A JP 2005035519 A JP2005035519 A JP 2005035519A JP 2005035519 A JP2005035519 A JP 2005035519A JP 2006218141 A JP2006218141 A JP 2006218141A
Authority
JP
Japan
Prior art keywords
magnetic field
generating means
static magnetic
resonance imaging
static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035519A
Other languages
Japanese (ja)
Other versions
JP4648722B2 (en
Inventor
Kenji Sakakibara
健二 榊原
Hiroyuki Takeuchi
博幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005035519A priority Critical patent/JP4648722B2/en
Publication of JP2006218141A publication Critical patent/JP2006218141A/en
Application granted granted Critical
Publication of JP4648722B2 publication Critical patent/JP4648722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal magnetic field type MRI apparatus improving the openness by shortening the axial length and suitably improving a static magnetic field uniformity. <P>SOLUTION: This magnetic resonance imaging apparatus is provided with cylindrical magnets 33-36 generating the static magnetic field along the Z axis 3 in a uniform space 32 inside an approximately cylindrical gantry, gradient magnetic field coils 37 disposed along the cylinder in the side of the uniform space 32 of a static magnetic field generating means and generating a gradient magnetic field in the uniform space 32, and irradiation coils disposed along the cylinder in the side of the uniform space 32 of the gradient magnetic field coils 37 and generating a high frequency magnetic field in the uniform space. This magnetic resonance imaging apparatus is disposed with internal circumference compensating members 38 comprising ferromagnetic bodies and/or permanent magnets in the Z-directional outside of the gradient magnetic field coils and/or the irradiation coils 37. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁気共鳴イメージング装置(以下、MRI装置という。)に係り、特に軸長を短くして開放性を高くした水平磁場方式MRI装置の静磁場均一度向上技術に関する。   The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and more particularly to a technique for improving the uniformity of a static magnetic field of a horizontal magnetic field type MRI apparatus having a short axial length and high openness.

MRI装置は、均一な静磁場内に置かれた被検体に電磁波を照射したときに、被検体を構成する原子の原子核に生じる核磁気共鳴現象を利用し、被検体からの核磁気共鳴信号(以下、NMR信号という。)を検出し、このNMR信号を使って画像を再構成することにより、被検体の物理的性質をあらわす磁気共鳴画像(以下、MR画像という。)を得るものである。   The MRI system utilizes the nuclear magnetic resonance phenomenon that occurs in the nuclei of the atoms that make up the subject when the subject is placed in a uniform static magnetic field and radiates electromagnetic waves. Hereinafter, an NMR signal is detected, and an image is reconstructed using the NMR signal, thereby obtaining a magnetic resonance image (hereinafter referred to as an MR image) representing the physical properties of the subject.

MRI装置は一般的に、撮像空間に静磁場を所定な方向へ発生させる静磁場発生用磁石と、前記静磁場発生用磁石の前記撮像空間側に配置され、前記撮像空間へ傾斜磁場を発生する傾斜磁場コイルと、前記傾斜磁場コイルの前記撮像空間側に配置され、前記撮像空間へ高周波磁場を発生する照射コイル等より構成されている。ただし、MRI装置は横たわらせた患者の周りに、どのような構成の磁石を配置してどちらの方向から静磁場を発生させるか等に応じて、水平磁場方式のトンネル型MRI装置と、垂直磁場方式のオープン型MRI装置とに大別される。   The MRI apparatus is generally arranged on the imaging space side of the static magnetic field generating magnet for generating a static magnetic field in a predetermined direction in the imaging space, and generates a gradient magnetic field in the imaging space. A gradient magnetic field coil and an irradiation coil that is disposed on the imaging space side of the gradient magnetic field coil and generates a high-frequency magnetic field in the imaging space are configured. However, the MRI device is a tunnel type MRI device of the horizontal magnetic field type, depending on which configuration the magnet is arranged around and the static magnetic field is generated from which direction, etc. It can be broadly divided into vertical magnetic field type open MRI systems.

ここで、水平磁場方式のトンネル型MRI装置とは、概ね円筒形状のガントリ内に前記円筒の中心軸に沿って静磁場を発生させて、ガントリ内の撮像空間に配置された被検体のMR画像を得るMRI装置のことである。また、垂直磁場方式のオープン型MRI装置とは、撮像空間を挟んで上下、又は左右等に対向して配置された静磁場発生用磁石の前記対向方向に静磁場を発生させて、前記撮像空間に配置された患者のMR画像を得るMRI装置である。   Here, the horizontal magnetic field type tunnel MRI apparatus is an MR image of a subject placed in an imaging space in a gantry by generating a static magnetic field along a central axis of the cylinder in a substantially cylindrical gantry. It is an MRI device that obtains. Also, the vertical magnetic field type open MRI apparatus refers to the imaging space by generating a static magnetic field in the opposing direction of a static magnetic field generating magnet arranged facing the top and bottom or the left and right sides of the imaging space. It is an MRI apparatus which acquires the MR image of the patient arrange | positioned in.

MRI装置では、撮像空間に横たわらせる患者の閉所恐怖感を低減するために、オープン性を向上させることが重要である。そして、オープン性を向上させるためには、水平磁場方式のトンネル型MRI装置では円筒形状のボア径を大きくすること、円筒形状のガントリの軸長を短くすることが有効である。一方、MRI装置では質の良い画像を得るために、静磁場均一度も向上させることも必要であるが、水平磁場方式のトンネル型MRI装置においてガントリの軸長を短くすると、超電動コイルが軸方向より外側に配置できないので、特に撮像空間内軸方向静磁場の中心から離れた領域において、Z軸方向の磁場が弱くなるという問題があった。   In an MRI apparatus, it is important to improve openness in order to reduce the feeling of claustrophobia of a patient lying in an imaging space. In order to improve openness, it is effective to increase the cylindrical bore diameter and shorten the axial length of the cylindrical gantry in the horizontal magnetic field type tunnel MRI apparatus. On the other hand, in order to obtain a high-quality image in the MRI apparatus, it is necessary to improve the static magnetic field uniformity. However, if the axial length of the gantry is shortened in the horizontal magnetic field type tunneling MRI apparatus, the super-electric coil becomes the axis. Since it cannot be arranged outside the direction, there is a problem that the magnetic field in the Z-axis direction becomes weak, particularly in a region away from the center of the axial static magnetic field in the imaging space.

水平磁場方式のMRI装置において、静磁場の均一度を向上させる技術に特許文献1記載の従来技術がある。特許文献1の従来技術では図6において、内部空間内において周縁領域に比較的大きい受動的な補正部材を有する磁石が開示されている。
特開平8−38457号公報
A conventional technique described in Patent Document 1 is a technique for improving the uniformity of a static magnetic field in a horizontal magnetic field type MRI apparatus. In the prior art of Patent Document 1, FIG. 6 discloses a magnet having a relatively large passive correction member in the peripheral region in the internal space.
JP-A-8-38457

また、特許文献2でも、強磁性リングを用いて静磁場均一度を向上させる技術が開示されている。
米国5594401号公報
Patent Document 2 also discloses a technique for improving the static magnetic field uniformity using a ferromagnetic ring.
US 5594401

本発明者は、上記従来技術を検討した結果、以下の問題点を見い出した。
すなわち、特許文献1記載の従来技術では比較的大きい受動的な補助部材の被検ボリューム側に1次及び2次の勾配コイルを配置しているが、本従来技術では勾配コイルを配置するスペースだけ、ボア径が短くなるという問題があった。また、特許文献2記載の従来技術では、強磁性リングを用いて静磁場の歪みを補正する技術が開示されているが、傾斜磁場コイルと強磁性リングとの位置関係については開示されていなかった。
The present inventor has found the following problems as a result of studying the above prior art.
That is, in the prior art described in Patent Document 1, the primary and secondary gradient coils are arranged on the test volume side of the relatively large passive auxiliary member, but in this prior art, only the space for arranging the gradient coils is provided. There was a problem that the bore diameter was shortened. Further, in the prior art described in Patent Document 2, a technique for correcting the distortion of the static magnetic field using a ferromagnetic ring is disclosed, but the positional relationship between the gradient coil and the ferromagnetic ring has not been disclosed. .

本発明の目的は、軸長を短くして開放性を高くする一方で、好適に静磁場均一度を向上することが可能な水平磁場方式MRI装置を提供することにある。   An object of the present invention is to provide a horizontal magnetic field type MRI apparatus that can improve the static magnetic field uniformity suitably while shortening the axial length to increase the openness.

本発明の第1の特徴によれば、概ね円筒形状のガントリの内部の撮像空間に、前記円筒の中心軸に沿って静磁場を発生させる静磁場発生手段と、前記静磁場発生手段の前記撮像空間側に前記円筒に沿って配置され、前記撮像空間に傾斜磁場を発生する傾斜磁場発生手段と、前記傾斜磁場発生手段の前記撮像空間側に前記円筒に沿って配置され、前記撮像空間に高周波磁場を発生する高周波磁場発生手段を備えた磁気共鳴イメージング装置において、前記傾斜磁場発生手段及び/または前記高周波磁場発生手段の前記中心軸方向外側に強磁性体及び/または永久磁石から成る静磁場補正部材が配置されていることを特徴とする磁気共鳴イメージング装置が提供される。   According to the first feature of the present invention, a static magnetic field generating means for generating a static magnetic field along a central axis of the cylinder in an imaging space inside a substantially cylindrical gantry, and the imaging of the static magnetic field generating means A gradient magnetic field generating means for generating a gradient magnetic field in the imaging space on the space side; a gradient magnetic field generating means for generating a gradient magnetic field in the imaging space; In a magnetic resonance imaging apparatus comprising a high-frequency magnetic field generating means for generating a magnetic field, a static magnetic field correction comprising a ferromagnetic material and / or a permanent magnet outside the gradient magnetic field generating means and / or the high-frequency magnetic field generating means in the central axis direction A magnetic resonance imaging apparatus is provided in which a member is disposed.

本発明の第2の特徴によれば、前記静磁場補正部材は、前記静磁場発生手段の前記中心軸方向外側の面にも配置されていることを特徴とする本発明の第1の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to the second feature of the present invention, the static magnetic field correction member is also arranged on the outer surface in the central axis direction of the static magnetic field generating means. A magnetic resonance imaging apparatus is also provided.

本発明の第3の特徴によれば、前記傾斜磁場発生手段及び/または前記高周波磁場発生手段と前記静磁場補正部材の間には、前記傾斜磁場発生手段によって発生された傾斜磁場が前記静磁場補正手段に侵入することを遮蔽する遮蔽手段が備えられていることを特徴とする本発明の第1〜2の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to the third aspect of the present invention, the gradient magnetic field generated by the gradient magnetic field generating means is between the gradient magnetic field generating means and / or the high frequency magnetic field generating means and the static magnetic field correcting member. Provided is a magnetic resonance imaging apparatus having the first and second features of the present invention, characterized in that shielding means for shielding entry into the correction means is provided.

本発明の第4の特徴によれば、前記静磁場補正部材は、前記中心軸に対して径方向及び/または周方向に分割されて配置されていることを特徴とする本発明の第1〜3の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to a fourth feature of the present invention, the static magnetic field correction member is divided and arranged in a radial direction and / or a circumferential direction with respect to the central axis. A magnetic resonance imaging apparatus having the three features is provided.

本発明の第5の特徴によれば、前記静磁場補正部材の温度を一定に保つために温度制御手段が備えられていることを特徴とする本発明の第1〜4の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to a fifth aspect of the present invention, there is provided the magnetic resonance combined with the first to fourth aspects of the present invention, characterized in that a temperature control means is provided to keep the temperature of the static magnetic field correction member constant. An imaging device is provided.

本発明の第6の特徴によれば、前記静磁場補正部材は、着脱可能及び/または移動可能に取り付けられる着脱可動部が備えられていることを特徴とする本発明の第1〜5の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to a sixth feature of the present invention, the static magnetic field correction member includes a detachable movable portion that is detachably and / or movably attached. A magnetic resonance imaging apparatus is also provided.

本発明の第7の特徴によれば、前記静磁場補正部材は、前記傾斜磁場発生手段及び/または前記高周波磁場発生手段の固定支持部材及び/または前記静磁場発生手段に固定されていることを特徴とする本発明の第1〜6の特徴を併せ持つ磁気共鳴イメージング装置が提供される。   According to a seventh aspect of the present invention, the static magnetic field correcting member is fixed to the gradient magnetic field generating means and / or the fixed support member of the high frequency magnetic field generating means and / or the static magnetic field generating means. A magnetic resonance imaging apparatus having the features of the first to sixth features of the present invention is provided.

本発明によれば、軸長を短くして開放性を高くする一方で、好適に静磁場均一度を向上することが可能な水平磁場方式MRI装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, while shortening axial length and making openness high, the horizontal magnetic field type | system | group MRI apparatus which can improve a static magnetic field uniformity suitably is provided.

以下、一般的なMRI装置のシステム構成を図1により詳細に説明する。
MRI装置は大別して、中央処理装置(以下、CPUと略称する)1と、シーケンサ2と、送信系3と、静磁場発生用磁石4と、受信系5と、傾斜磁場発生系21と、信号処理系6とから構成されている。
Hereinafter, a system configuration of a general MRI apparatus will be described in detail with reference to FIG.
The MRI apparatus is roughly classified into a central processing unit (hereinafter abbreviated as CPU) 1, a sequencer 2, a transmission system 3, a static magnetic field generating magnet 4, a receiving system 5, a gradient magnetic field generating system 21, and a signal. It consists of a processing system 6.

CPU1は、予め定められたプログラムに従って、シーケンサ2、送信系3、受信系5、信号処理系6を制御するようになっている。シーケンサ2は、CPU1からの制御指令に基づいて動作し、被検体7の断層面の画像データ収集に必要な種々の命令を送信系3、傾斜磁場発生系21、受信系5に送るようになっている。   The CPU 1 controls the sequencer 2, the transmission system 3, the reception system 5, and the signal processing system 6 according to a predetermined program. The sequencer 2 operates based on a control command from the CPU 1, and sends various commands necessary for collecting image data of the tomographic plane of the subject 7 to the transmission system 3, the gradient magnetic field generation system 21, and the reception system 5. ing.

送信系3は、高周波発振器8と、変調器9と、照射コイル11とを備え、シーケンサ2の指令により高周波発振器8からの基準高周波パルスを変調器9で振幅変調し、この振幅変調された高周波パルスを高周波増幅器10を介して増幅して照射コイル11に供給することにより、所定のパルス状の電磁波を被検体7に照射するようになっている。   The transmission system 3 includes a high-frequency oscillator 8, a modulator 9, and an irradiation coil 11. The reference high-frequency pulse from the high-frequency oscillator 8 is amplitude-modulated by the modulator 9 according to a command from the sequencer 2, and the amplitude-modulated high-frequency signal is transmitted. The subject 7 is irradiated with a predetermined pulsed electromagnetic wave by amplifying the pulse via the high-frequency amplifier 10 and supplying the amplified pulse to the irradiation coil 11.

静磁場発生用磁石4は、被検体7の周りの所定の方向に均一な静磁場を発生させるためのものである。この静磁場発生用磁石4の内部には、照射コイル11と、傾斜磁場コイル13と、受信コイル14とが配置されている。傾斜磁場コイル13は傾斜磁場発生系21に含まれ、傾斜磁場電源12より電流の供給を受け、シーケンサ2の制御のもとに傾斜磁場を発生させる。   The static magnetic field generating magnet 4 is for generating a uniform static magnetic field in a predetermined direction around the subject 7. In the static magnetic field generating magnet 4, an irradiation coil 11, a gradient magnetic field coil 13, and a receiving coil 14 are arranged. The gradient magnetic field coil 13 is included in the gradient magnetic field generation system 21 and receives a current supplied from the gradient magnetic field power supply 12 and generates a gradient magnetic field under the control of the sequencer 2.

受信系5は、被検体の生体組織の原子核の核磁気共鳴により放出される高周波信号(NMR信号)を検出するもので、受信コイル14と増幅器15と直交位相検波器16とA/D変換器17とを有しており、上記照射コイル14から照射された電磁波による被検体の応答の高周波信号(NMR信号)は被検体に近接して配置された受信コイル14で検出され、増幅器15及び直交位相検波器16を介してA/D変換器17に入力され、ディジタル量に変換され、その信号がCPU1に送られるようになっている。   The receiving system 5 detects a high-frequency signal (NMR signal) emitted by nuclear magnetic resonance of the nucleus of the biological tissue of the subject, and includes a receiving coil 14, an amplifier 15, a quadrature detector 16, and an A / D converter. The high frequency signal (NMR signal) of the response of the subject due to the electromagnetic wave irradiated from the irradiation coil 14 is detected by the receiving coil 14 disposed close to the subject, and the amplifier 15 and the orthogonal The signal is input to the A / D converter 17 via the phase detector 16, converted into a digital quantity, and the signal is sent to the CPU 1.

信号処理系6は、磁気ディスク20、光ディスク19などの外部記憶装置と、CRTなどからなるディスプレイ18とを備え、受信系5からのデータがCPU1に入力されると、CPU1が信号処理、画像再構成などの処理を実行し、その結果である被検体7の所望の断層面の画像をディスプレイ18で表示すると共に、外部記憶装置の磁気ディスク20などに記憶するようになっている。   The signal processing system 6 includes an external storage device such as a magnetic disk 20 and an optical disk 19 and a display 18 such as a CRT. When data from the reception system 5 is input to the CPU 1, the CPU 1 performs signal processing and image re-processing. Processing such as configuration is executed, and the resulting image of a desired tomographic plane of the subject 7 is displayed on the display 18 and stored in the magnetic disk 20 of the external storage device or the like.

図2は、本発明の実施例1に係る水平磁場方式MRI装置を水平方向から見た断面図である。ただし、本実施例における静磁場発生源は、超電導コイルを使用した円筒型磁石であり、次に説明する33〜36より構成される。図2において、31は静磁場を発生させる方向であるZ軸、32は静磁場を発生させる撮像空間、33は内部を真空にして断熱するための真空容器、34は液体ヘリウムなどの極低温の寒剤とともに超電導コイルを収納するヘリウム槽、35はボア内部の撮像空間に、均一な静磁場を発生させる主コイル群の超電導コイル、36は外部への漏洩磁場を抑制するためのシールドコイル群の超電導コイル、37は撮像空間に傾斜磁場や高周波磁場を発生させるための傾斜磁場コイルやRFコイル、38は静磁場の歪みを補償するための内周補償部材、39は円筒型磁石における開放性・アクセス性を決定するパラメータである磁場中心から見た開口内面端部(磁石ボア内面端部あるいは傾斜磁場コイル、RFコイルの内面端部)の仰角である。   FIG. 2 is a cross-sectional view of the horizontal magnetic field type MRI apparatus according to Embodiment 1 of the present invention viewed from the horizontal direction. However, the static magnetic field generation source in the present embodiment is a cylindrical magnet using a superconducting coil, and is composed of 33 to 36 described below. In FIG. 2, 31 is a Z-axis which is a direction for generating a static magnetic field, 32 is an imaging space for generating a static magnetic field, 33 is a vacuum container for heat insulation by evacuating the inside, and 34 is a cryogenic temperature such as liquid helium. A helium tank that houses the superconducting coil together with the cryogen, 35 is the superconducting coil of the main coil group that generates a uniform static magnetic field in the imaging space inside the bore, and 36 is the superconducting shield group to suppress the leakage magnetic field to the outside Coil, 37 is a gradient magnetic field coil or RF coil for generating a gradient magnetic field or a high frequency magnetic field in the imaging space, 38 is an inner circumference compensation member for compensating for the distortion of the static magnetic field, and 39 is the openness / access in the cylindrical magnet It is the elevation angle of the inner surface edge of the opening (magnet bore inner surface edge or gradient magnetic field coil, RF coil inner surface edge) viewed from the magnetic field center, which is a parameter that determines the property.

一般的に、主コイル群の超電導コイル35は、Z軸方向両端に配置されるコイル程、高い起磁力が必要とされる。すなわち、ターン数の多いコイルあるいは流す電流値の大きいコイルを配置する必要がある。また、円筒磁石のボア内面側と撮像空間の間には、撮像空間に傾斜磁場を発生させるための傾斜磁場コイルと高周波磁場を発生するためのRFコイルが配置される。このとき、円筒型磁石の開放性・アクセス性は、磁場中心から見た開口内面端部(磁石ボア内面端部あるいは傾斜磁場コイル、RFコイルの内面端部)の仰角によって決定され、仰角が大きいほど、開放性・アクセス性が良好となる。仰角を高めるには、円筒磁石の軸長を短くするか、ボア径を広げることが有効である。この際、磁石の短軸化やボア径の拡大化をすると、撮像空間における両極端部(開口側端部)40a及び40bの磁場強度を低下させるので、撮像空間の磁場均一性は悪化するという問題があった。その例を図11の磁束線の流れを示した図によって説明する。先ず、図11(a)はZ軸31方向の長さが長い場合の水平磁場方式のトンネル型MRI装置の例であるが、この例では最も軸31方向外側の超電導コイル35aがZ軸31方向静磁場の中心から離れた位置まであるので、撮像空間32における磁束線がZ軸31方向に揃っている。ところが、Z軸31方向の長さ(軸長)の短い水平磁場方式のトンネル型MRI装置ショートボアでは図11(b)に示すように最も軸31方向外側の超電導コイル35aがZ軸31方向静磁場の中心から離れた位置までないので、撮像空間32における磁束線がZ軸31方向に揃いにくいという問題があった。   In general, the superconducting coil 35 of the main coil group requires a higher magnetomotive force as the coils arranged at both ends in the Z-axis direction. That is, it is necessary to arrange a coil with a large number of turns or a coil with a large current value. Further, a gradient coil for generating a gradient magnetic field in the imaging space and an RF coil for generating a high-frequency magnetic field are arranged between the bore inner surface side of the cylindrical magnet and the imaging space. At this time, the openness / accessibility of the cylindrical magnet is determined by the elevation angle of the inner surface edge of the opening (magnet bore inner surface edge or gradient magnetic field coil, RF coil inner surface edge) viewed from the center of the magnetic field, and the elevation angle is large. The more open and accessible the better. In order to increase the elevation angle, it is effective to shorten the axial length of the cylindrical magnet or widen the bore diameter. At this time, if the short axis of the magnet or the bore diameter is enlarged, the magnetic field strength of both extreme portions (opening side end portions) 40a and 40b in the imaging space is lowered, so that the magnetic field uniformity in the imaging space is deteriorated. was there. An example of this will be described with reference to FIG. 11 showing the flow of magnetic flux lines. First, FIG. 11 (a) is an example of a horizontal magnetic field type tunneling MRI apparatus when the length in the Z-axis 31 direction is long. In this example, the superconducting coil 35a on the outermost side in the axis 31 direction is in the Z-axis 31 direction. Since there is a position away from the center of the static magnetic field, the magnetic flux lines in the imaging space 32 are aligned in the Z-axis 31 direction. However, in the horizontal bore type tunnel MRI apparatus short bore with a short length in the Z-axis 31 direction (axial length), as shown in FIG. There is a problem that the magnetic flux lines in the imaging space 32 are difficult to align in the Z-axis 31 direction because there is no position away from the center of the magnetic field.

本実施例では、円筒磁石のボア内面側に配置する傾斜磁場コイル(やRFコイル)のZ軸方向外側のスペース(傾斜磁場コイルの外縁部)に、撮像空間の両極端部の磁場を補償するための内周補償部材38を配置する。この構成により、撮像空間における両極端部(開口側端部)の磁場強度は補償され、撮像空間の磁場均一性を向上させることができる。具体的に磁束線の流れで示すと図11(c)のようになり、撮像空間32内のZ軸方向の成分が内周補償部材38が磁化される影響を受けて均一になる。内周補償部材は、磁場中心からの開口内面端の仰角を小さくすることがないような配置位置・形状であることが望ましいと考えられる。ただし、本実施例では、内周補償部材を配置するスペースを確保するために、円筒型磁石のZ軸方向の長さ(軸長)より、傾斜磁場コイルやRFコイルのZ軸方向の長さが短くなっている。また、内周補償部材38は、傾斜磁場コイル(やRFコイル)を固定するための部材に固定しても良いし、円筒型磁石を構成する真空容器33にネジ等で固定しても良い。   In this embodiment, in order to compensate the magnetic field at the extreme portions of the imaging space in the outer space (outer edge of the gradient magnetic field coil) in the Z-axis direction of the gradient magnetic field coil (or RF coil) disposed on the bore inner surface side of the cylindrical magnet. The inner circumference compensating member 38 is arranged. With this configuration, the magnetic field strength at both extremes (opening side end) in the imaging space is compensated, and the magnetic field uniformity in the imaging space can be improved. Specifically, the flow of magnetic flux lines is as shown in FIG. 11C, and the component in the Z-axis direction in the imaging space 32 becomes uniform due to the influence of the inner circumference compensation member 38 being magnetized. It is considered that the inner circumference compensating member is desirably in an arrangement position and shape that does not reduce the elevation angle of the inner surface edge of the opening from the magnetic field center. However, in this embodiment, in order to secure a space for arranging the inner periphery compensation member, the length of the gradient magnetic field coil and the RF coil in the Z-axis direction is longer than the length (axial length) of the cylindrical magnet in the Z-axis direction. Is shorter. Further, the inner periphery compensation member 38 may be fixed to a member for fixing the gradient magnetic field coil (or RF coil), or may be fixed to the vacuum vessel 33 constituting the cylindrical magnet with a screw or the like.

図3は、本発明の実施例2に係る水平磁場方式MRI装置を水平方向から見た断面図である。本実施例では、環状補償部材41を円筒型磁石のZ軸方向外側の面(外端面)にネジ等で固定して配置することによって、実施例1の場合より更に有効に磁場強度の補償を行っている。この場合の磁束線の流れの変化を図で示すと、図12(a)及び図12(b)のようである。ただし、図12(a)は環状補償部材41を置かない場合、図12(b)は環状補償部材41を置いた場合である。図12(a)及び図12(b)によれば、環状補償部材41を置くことにより、磁束線の向きが超電導コイル35aの近くで、よりZ軸31方向外側を流れるので、撮像空間32内のZ軸方向の磁場成分がより均一になる。ここで、傾斜磁場コイルの外縁部及び円筒型磁石の外端面に配置する内周補償部材38及び環状補償部材41の材質は、強磁性体であればどのようなものでも良いが、特に純鉄や、珪素鋼板であれば透磁率も高く飽和磁化も高いので、より効率的に磁場強度の補償を行うことができる。   FIG. 3 is a cross-sectional view of a horizontal magnetic field MRI apparatus according to Embodiment 2 of the present invention viewed from the horizontal direction. In this embodiment, the annular compensation member 41 is fixed to the outer surface (outer end surface) in the Z-axis direction of the cylindrical magnet with a screw or the like, so that the magnetic field strength can be compensated more effectively than in the first embodiment. Is going. The change in the flow of magnetic flux lines in this case is shown in FIG. 12 (a) and FIG. 12 (b). However, FIG. 12A shows a case where the annular compensation member 41 is not placed, and FIG. 12B shows a case where the annular compensation member 41 is placed. According to FIGS. 12 (a) and 12 (b), by placing the annular compensation member 41, the direction of the magnetic flux lines flows closer to the outer side in the Z-axis 31 direction near the superconducting coil 35a. The magnetic field component in the Z-axis direction becomes more uniform. Here, the material of the inner periphery compensation member 38 and the annular compensation member 41 disposed on the outer edge portion of the gradient magnetic field coil and the outer end face of the cylindrical magnet may be any material as long as it is a ferromagnetic material. In addition, since a silicon steel plate has a high magnetic permeability and a high saturation magnetization, the magnetic field strength can be compensated more efficiently.

図4は、本発明の実施例3に係る水平磁場方式MRI装置を水平方向から見た断面図である。本実施例は、内周補償部材38及び環状補償部材41の材質として永久磁石を用いた場合の例である。図4のように永久磁石の作る磁束の向きを矢印で示したように配置すれば、実施例1及び実施例2と同様に磁場強度の補償効果があるが、本実施例では特に永久磁石により磁場を積極的に発生させる方法であるので、実施例1及び実施例2の場合より磁場強度の補償効果が高いと考えられる。   FIG. 4 is a cross-sectional view of a horizontal magnetic field MRI apparatus according to Example 3 of the present invention as seen from the horizontal direction. In this embodiment, a permanent magnet is used as the material of the inner circumference compensation member 38 and the annular compensation member 41. If the direction of the magnetic flux created by the permanent magnet is arranged as shown by the arrow as shown in FIG. 4, there is a compensation effect of the magnetic field strength in the same manner as in the first and second embodiments. Since the magnetic field is generated actively, it is considered that the effect of compensating the magnetic field strength is higher than in the case of the first and second embodiments.

図5は、本発明の実施例4に係る水平磁場方式MRI装置を水平方向から見た断面図である。本実施例では、内周補償部材38として強磁性体38aと永久磁石38bを組み合わせたものを用いている。本実施例では実施例3の場合のように永久磁石のみを使う場合と比べて磁場強度の補償効果は低減すると考えられるが、コスト的には永久磁石のみを使う場合より安くなると考えられる。   FIG. 5 is a cross-sectional view of a horizontal magnetic field MRI apparatus according to Example 4 of the present invention when viewed from the horizontal direction. In the present embodiment, a combination of a ferromagnetic body 38a and a permanent magnet 38b is used as the inner circumference compensating member 38. In this embodiment, it is considered that the compensation effect of the magnetic field strength is reduced as compared with the case where only the permanent magnet is used as in the case of Embodiment 3, but the cost is considered to be lower than the case where only the permanent magnet is used.

図6(a)は、本発明の実施例5に係る水平磁場方式MRI装置を水平方向から見た断面図、図6(b)は、本発明の実施例5をZ軸の方向から見た図である。ただし、本実施例は撮像空間の磁場均一性を調整するためのシミング部材を配置するためのシムトレイ42を備えた場合の例である。この場合、シムトレイ42は磁石の開口方向(Z軸方向)から挿入される。本実施例では傾斜磁場コイルの外縁部に配置する内周補償部材38を分割構造にしている。このように分割構造にすることにより、製作も容易になり、設置性も容易になる。本実施例では、分割された内周補償部材38の谷間からシムトレイを引き出す構造にしても良いし、分割された内周補償部材38の谷間にシミング部材(シムトレイ)を配置する構造にしても良い。   FIG. 6 (a) is a cross-sectional view of the horizontal magnetic field type MRI apparatus according to the fifth embodiment of the present invention when viewed from the horizontal direction, and FIG. 6 (b) is a fifth embodiment of the present invention when viewed from the Z-axis direction. FIG. However, this embodiment is an example in which a shim tray 42 for arranging shimming members for adjusting the magnetic field uniformity of the imaging space is provided. In this case, the shim tray 42 is inserted from the magnet opening direction (Z-axis direction). In the present embodiment, the inner periphery compensating member 38 disposed at the outer edge of the gradient magnetic field coil has a divided structure. By making such a divided structure, the manufacture becomes easy and the installation property becomes easy. In this embodiment, the shim tray may be pulled out from the valley of the divided inner circumference compensation member 38, or a shimming member (shim tray) may be arranged in the valley of the divided inner circumference compensation member 38. .

図7は、本発明の実施例6に係る水平磁場方式MRI装置を水平方向から見た断面図である。本実施例では、傾斜磁場コイルにより発生されたパルス状傾斜磁場が、強磁性体あるいは永久磁石である内周補償部材38に侵入してヒシテリシスに磁化され、撮像空間に生成される傾斜磁場に非線形な悪影響が起きることを防ぐためにパルス磁場遮蔽材43が設けられている。本実施例においてパルス磁場遮蔽材43の材料としては、アルミニウム等の非磁性良電体、または方向性珪素鋼板等の方向性強磁性体が望ましい。   FIG. 7 is a cross-sectional view of a horizontal magnetic field MRI apparatus according to Embodiment 6 of the present invention when viewed from the horizontal direction. In the present embodiment, the pulsed gradient magnetic field generated by the gradient magnetic field coil penetrates into the inner periphery compensation member 38, which is a ferromagnetic or permanent magnet, and is magnetized hysterically, and is nonlinear to the gradient magnetic field generated in the imaging space. A pulse magnetic field shielding material 43 is provided in order to prevent such adverse effects. In the present embodiment, the material of the pulse magnetic field shielding material 43 is preferably a nonmagnetic good electrical material such as aluminum or a directional ferromagnetic material such as a directional silicon steel plate.

図8は、本発明の実施例7に係る水平磁場方式MRI装置の断面図である。本実施例では、強磁性体から成っている内周補償部材38が、短冊形状となっている。このようにすることで、短冊形状から成る内周補償部材38が磁気飽和しやすくなり、ヒシテリシスに磁化され非線形な悪影響が起きることを防ぐことができる。   FIG. 8 is a cross-sectional view of a horizontal magnetic field type MRI apparatus according to Embodiment 7 of the present invention. In this embodiment, the inner periphery compensation member 38 made of a ferromagnetic material has a strip shape. By doing so, the inner periphery compensating member 38 having a strip shape is likely to be magnetically saturated and can be prevented from being magnetized by hysteresis and having a non-linear adverse effect.

図9は、本発明の実施例8に係る水平磁場方式MRI装置の断面図である。本実施例では、強磁性体から成っている環状補償部材41に着脱・可動機構41cを設けている。このようにすることで、着脱・可動機構41cを用いて撮像空間の磁場調整(シミング)を行うことができる。具体的な設置方法としては、環状補償部材41にネジ穴を設け、そこに強磁性体から成るネジを嵌めて位置を調整する等の方法が考えられる。ただし、着脱・可動機構は強磁性体でなくても良く、永久磁石でも良い。   FIG. 9 is a cross-sectional view of a horizontal magnetic field type MRI apparatus according to Example 8 of the present invention. In this embodiment, an attaching / detaching / moving mechanism 41c is provided on an annular compensation member 41 made of a ferromagnetic material. In this way, the magnetic field adjustment (shimming) of the imaging space can be performed using the detachable / movable mechanism 41c. As a specific installation method, a method is conceivable in which a screw hole is provided in the annular compensation member 41, and a screw made of a ferromagnetic material is fitted therein to adjust the position. However, the attaching / detaching / moving mechanism may not be a ferromagnetic material, and may be a permanent magnet.

図10は、本発明の実施例9に係る水平磁場方式MRI装置の断面図である。ただし本実施例では、円筒型磁石のZ軸方向外側の面(外端面)に配置した環状補償部材41を、円筒型磁石の最外殻である真空容器の一部として構成している。このようにすることで、円筒型磁石の外形寸法を小さくすることができ、よりコンパクトな水平磁場方式MRI装置を提供できる。   FIG. 10 is a cross-sectional view of a horizontal magnetic field MRI apparatus according to Embodiment 9 of the present invention. However, in this embodiment, the annular compensation member 41 disposed on the outer surface (outer end surface) in the Z-axis direction of the cylindrical magnet is configured as a part of the vacuum vessel that is the outermost shell of the cylindrical magnet. By doing in this way, the external dimension of a cylindrical magnet can be made small and a more compact horizontal magnetic field type | system | group MRI apparatus can be provided.

本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々に変形して実施できる。例えば、上記実施例において、強磁性体や永久磁石の磁化特性は、温度の変化に依存するので、上記実施例では内周補償部材38及び環状補償部材41の周りに保温部材やヒータなどを配置し、温度を一定に保つための機構を設けることが望ましい。また、内周補償部材38及び環状補償部材41の固定方法については、真空容器に直接溶接するかあるいはボルトで締結するなどの方法により、強固に固定する等の方法が考えられる。また、上記実施例では静磁場の補正のために、内周補償部材38及び環状補償部材41として強磁性体や永久磁石を用いる場合を例示したが、同様の効果は、上記内周補償部材38や環状補償部材41を配置した位置に常伝導コイルを配置することによっても得られる。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the magnetization characteristics of the ferromagnetic material and the permanent magnet depend on the change in temperature. Therefore, in the above embodiment, a heat retaining member, a heater, and the like are arranged around the inner circumference compensation member 38 and the annular compensation member 41. It is desirable to provide a mechanism for keeping the temperature constant. In addition, as a method for fixing the inner circumference compensation member 38 and the annular compensation member 41, a method of firmly fixing the inner circumference compensation member 38 and the annular compensation member 41 by a method such as direct welding to the vacuum vessel or fastening with a bolt can be considered. Further, in the above embodiment, the case where a ferromagnetic material or a permanent magnet is used as the inner circumference compensation member 38 and the annular compensation member 41 for correcting the static magnetic field is exemplified, but the same effect is obtained by the inner circumference compensation member 38. It can also be obtained by arranging a normal conducting coil at the position where the annular compensation member 41 is arranged.

一般的なMRI装置のシステム構成を示す図。The figure which shows the system configuration | structure of a general MRI apparatus. 本発明の実施例1に係る水平磁場方式MRI装置の断面図。1 is a cross-sectional view of a horizontal magnetic field type MRI apparatus according to Embodiment 1 of the present invention. 本発明の実施例2に係る水平磁場方式MRI装置の断面図。Sectional drawing of the horizontal magnetic field type | system | group MRI apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る水平磁場方式MRI装置の断面図。Sectional drawing of the horizontal magnetic field type | mold MRI apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る水平磁場方式MRI装置の断面図。Sectional drawing of the horizontal magnetic field type MRI apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係る水平磁場方式MRI装置をZ軸の方向から見た図。The figure which looked at the horizontal magnetic field type MRI apparatus which concerns on Example 5 of this invention from the direction of the Z-axis. 本発明の実施例6に係る水平磁場方式MRI装置の断面図。Sectional drawing of the horizontal magnetic field type | system | group MRI apparatus which concerns on Example 6 of this invention. 本発明の実施例7に係る水平磁場方式MRI装置の断面図。Sectional drawing of the horizontal magnetic field type | system | group MRI apparatus which concerns on Example 7 of this invention. 本発明の実施例8に係る水平磁場方式MRI装置の断面図。Sectional drawing of the horizontal magnetic field type | system | group MRI apparatus which concerns on Example 8 of this invention. 本発明の実施例9に係る水平磁場方式MRI装置の断面図。Sectional drawing of the horizontal magnetic field type | system | group MRI apparatus which concerns on Example 9 of this invention.

符号の説明Explanation of symbols

31 Z軸、32 均一空間、33 真空容器、34 ヘリウム槽、35 主コイル群の超電導コイル、36 シールドコイル群の超電導コイル、37 傾斜磁場コイルやRFコイル、38 内部補償部材、39 開口内面端部の仰角   31 Z-axis, 32 uniform space, 33 vacuum vessel, 34 helium tank, 35 superconducting coil of main coil group, 36 superconducting coil of shield coil group, 37 gradient magnetic field coil and RF coil, 38 internal compensation member, 39 inner end of opening Elevation angle

Claims (7)

概ね円筒形状のガントリの内部の撮像空間に、前記円筒の中心軸に沿って静磁場を発生させる静磁場発生手段と、前記静磁場発生手段の前記撮像空間側に前記円筒に沿って配置され、前記撮像空間に傾斜磁場を発生する傾斜磁場発生手段と、前記傾斜磁場発生手段の前記撮像空間側に前記円筒に沿って配置され、前記撮像空間に高周波磁場を発生する高周波磁場発生手段を備えた磁気共鳴イメージング装置において、前記傾斜磁場発生手段及び/または前記高周波磁場発生手段の前記中心軸方向外側に強磁性体及び/または永久磁石から成る静磁場補正部材が配置されていることを特徴とする磁気共鳴イメージング装置。   A static magnetic field generating means for generating a static magnetic field along a central axis of the cylinder in an imaging space inside a substantially cylindrical gantry, and being arranged along the cylinder on the imaging space side of the static magnetic field generating means, Gradient magnetic field generating means for generating a gradient magnetic field in the imaging space, and high frequency magnetic field generating means for generating a high frequency magnetic field in the imaging space, arranged along the cylinder on the imaging space side of the gradient magnetic field generating means. In the magnetic resonance imaging apparatus, a static magnetic field correction member made of a ferromagnetic material and / or a permanent magnet is disposed outside the gradient magnetic field generating means and / or the high-frequency magnetic field generating means in the central axis direction. Magnetic resonance imaging device. 前記静磁場補正部材は、前記静磁場発生手段の前記中心軸方向外側の面にも配置されていることを特徴とする請求項1記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 1, wherein the static magnetic field correction member is also disposed on an outer surface in the central axis direction of the static magnetic field generation unit. 前記傾斜磁場発生手段及び/または前記高周波磁場発生手段と前記静磁場補正部材の間には、前記傾斜磁場発生手段によって発生された傾斜磁場が前記静磁場補正手段に侵入することを遮蔽する遮蔽手段が備えられていることを特徴とする請求項1〜2記載の磁気共鳴イメージング装置。   Shielding means for shielding the gradient magnetic field generated by the gradient magnetic field generating means from entering the static magnetic field correction means between the gradient magnetic field generating means and / or the high frequency magnetic field generating means and the static magnetic field correcting member. The magnetic resonance imaging apparatus according to claim 1, further comprising: 前記静磁場補正部材は、前記中心軸に対して径方向及び/または周方向に分割されて配置されていることを特徴とする請求項1〜3記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 1, wherein the static magnetic field correction member is divided and arranged in a radial direction and / or a circumferential direction with respect to the central axis. 前記静磁場補正部材の温度を一定に保つために温度制御手段が備えられていることを特徴とする請求項1〜4記載の磁気共鳴イメージング装置。   5. The magnetic resonance imaging apparatus according to claim 1, further comprising a temperature control unit for keeping the temperature of the static magnetic field correction member constant. 前記静磁場補正部材は、着脱可能及び/または移動可能に取り付けられる着脱可動部が備えられていることを特徴とする請求項1〜5記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 1, wherein the static magnetic field correction member includes a detachable movable part that is detachably and / or movably attached. 前記静磁場補正部材は、前記傾斜磁場発生手段及び/または前記高周波磁場発生手段の固定支持部材及び/または前記静磁場発生手段に固定されていることを特徴とする請求項1〜6記載の磁気共鳴イメージング装置。   7. The magnetism according to claim 1, wherein the static magnetic field correcting member is fixed to a fixed support member and / or the static magnetic field generating means of the gradient magnetic field generating means and / or the high frequency magnetic field generating means. Resonance imaging device.
JP2005035519A 2005-02-14 2005-02-14 Magnetic resonance imaging system Expired - Fee Related JP4648722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035519A JP4648722B2 (en) 2005-02-14 2005-02-14 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035519A JP4648722B2 (en) 2005-02-14 2005-02-14 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2006218141A true JP2006218141A (en) 2006-08-24
JP4648722B2 JP4648722B2 (en) 2011-03-09

Family

ID=36980836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035519A Expired - Fee Related JP4648722B2 (en) 2005-02-14 2005-02-14 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4648722B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220923A (en) * 2007-02-13 2008-09-25 Toshiba Corp Magnetic resonance imaging apparatus, nuclear magnetic resonance analysis apparatus, and rack
JP2008259558A (en) * 2007-04-10 2008-10-30 Hitachi Ltd Magnetic homogeneity adjuster, superconductive magnet unit using it and magnetic resonance imaging device
DE102007047023A1 (en) * 2007-10-01 2009-01-22 Siemens Ag Magnetic resonance apparatus, with a scanning tunnel for the patient, has a shim iron to act on the main magnet generating the static magnetic field
US7541812B2 (en) 2007-02-13 2009-06-02 Kabushiki Kaisha Toshiba MRI apparatus, NMR analyzer, and gantry
US9709647B2 (en) 2013-06-03 2017-07-18 Siemens Aktiengesellschaft Mobile magnetic resonance tomography
JP2021089911A (en) * 2019-12-02 2021-06-10 学校法人 芝浦工業大学 Magnetic field generating device, nuclear magnetic resonance device and magnetic field generating method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114007U (en) * 1984-07-02 1986-01-27 シーメンス、アクチエンゲゼルシヤフト Nuclear spin resonance tomography device
JPS6343649A (en) * 1986-08-08 1988-02-24 株式会社日立メディコ Nuclear magnetic resonance imaging apparatus
JPS6373908U (en) * 1986-10-31 1988-05-17
JPH0838457A (en) * 1994-06-29 1996-02-13 Siemens Ag Transversal gradient coil device with active shield for nuclear spin tomography device
US5594401A (en) * 1996-02-20 1997-01-14 General Electric Company Closed superconductive magnet with uniform imaging volume
JPH09120912A (en) * 1995-07-31 1997-05-06 General Electric Co <Ge> Open structure conductive cooling magnetic resonance imagingmagnet
JPH10155765A (en) * 1996-08-26 1998-06-16 General Electric Co <Ge> Close structured magnetic resonance imaging magnet
US5786695A (en) * 1997-03-21 1998-07-28 Picker International, Inc. Shim tray with reduced heat conduction and forced cooling
US20040070396A1 (en) * 2002-10-15 2004-04-15 Koninklijke Philips Electronics N.V. Method and apparatus for aligning a magnetic field modifying structure in a magnetic resonance imaging scanner
JP2004351207A (en) * 2003-05-28 2004-12-16 Ge Medical Systems Global Technology Co Llc Imaging system using homogeneous magnetic field

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114007U (en) * 1984-07-02 1986-01-27 シーメンス、アクチエンゲゼルシヤフト Nuclear spin resonance tomography device
JPS6343649A (en) * 1986-08-08 1988-02-24 株式会社日立メディコ Nuclear magnetic resonance imaging apparatus
JPS6373908U (en) * 1986-10-31 1988-05-17
JPH0838457A (en) * 1994-06-29 1996-02-13 Siemens Ag Transversal gradient coil device with active shield for nuclear spin tomography device
JPH09120912A (en) * 1995-07-31 1997-05-06 General Electric Co <Ge> Open structure conductive cooling magnetic resonance imagingmagnet
US5594401A (en) * 1996-02-20 1997-01-14 General Electric Company Closed superconductive magnet with uniform imaging volume
JPH10155765A (en) * 1996-08-26 1998-06-16 General Electric Co <Ge> Close structured magnetic resonance imaging magnet
US5786695A (en) * 1997-03-21 1998-07-28 Picker International, Inc. Shim tray with reduced heat conduction and forced cooling
US20040070396A1 (en) * 2002-10-15 2004-04-15 Koninklijke Philips Electronics N.V. Method and apparatus for aligning a magnetic field modifying structure in a magnetic resonance imaging scanner
JP2004351207A (en) * 2003-05-28 2004-12-16 Ge Medical Systems Global Technology Co Llc Imaging system using homogeneous magnetic field

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220923A (en) * 2007-02-13 2008-09-25 Toshiba Corp Magnetic resonance imaging apparatus, nuclear magnetic resonance analysis apparatus, and rack
US7541812B2 (en) 2007-02-13 2009-06-02 Kabushiki Kaisha Toshiba MRI apparatus, NMR analyzer, and gantry
JP2008259558A (en) * 2007-04-10 2008-10-30 Hitachi Ltd Magnetic homogeneity adjuster, superconductive magnet unit using it and magnetic resonance imaging device
DE102007047023A1 (en) * 2007-10-01 2009-01-22 Siemens Ag Magnetic resonance apparatus, with a scanning tunnel for the patient, has a shim iron to act on the main magnet generating the static magnetic field
US9709647B2 (en) 2013-06-03 2017-07-18 Siemens Aktiengesellschaft Mobile magnetic resonance tomography
JP2021089911A (en) * 2019-12-02 2021-06-10 学校法人 芝浦工業大学 Magnetic field generating device, nuclear magnetic resonance device and magnetic field generating method

Also Published As

Publication number Publication date
JP4648722B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP5203682B2 (en) MRI apparatus, NMR analyzer, and static magnetic field generator
US5600245A (en) Inspection apparatus using magnetic resonance
US5936498A (en) Superconducting magnet apparatus and magnetic resonance imaging system using the same
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
US7541812B2 (en) MRI apparatus, NMR analyzer, and gantry
JP4648722B2 (en) Magnetic resonance imaging system
JP4856430B2 (en) Electromagnet device
US7135948B2 (en) Dipole shim coil for external field adjustment of a shielded superconducting magnet
US20090085567A1 (en) Magnetic resonance apparatus with shim arrangement
WO2015133352A1 (en) Magnetic resonance imaging system, system for adjusting uniformity of static magnetic field, method for adjusting uniformity of magnetic field, and program for adjusting uniformity of magnetic field
US9835702B2 (en) Magnetic resonance imaging apparatus, magnetic field adjustment implement for magnetic resonance imaging apparatus, magnetic resonance imaging method, and method of adjusting magnetic field for magnetic resonance imaging apparatus
US6812700B2 (en) Correction of local field inhomogeneity in magnetic resonance imaging apparatus
Lopez et al. Passive shim design and a shimming approach for biplanar permanent magnetic resonance imaging magnets
US20050110491A1 (en) MRI System Utilizing Supplemental Static Field-Shaping Coils
US6856223B1 (en) Open-type magnet device for MRI
US7224167B2 (en) Magnetic field generating apparatus and method for magnetic resonance imaging
JP2007526067A (en) Magnetic resonance imaging scanner with booster iron
JP3737636B2 (en) Superconducting magnet device
Wang Hardware of MRI System
JP4886482B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP2002017705A (en) Magnetic resonance imaging device
US7538648B2 (en) MRT device
JP4331322B2 (en) MRI equipment
JP4749699B2 (en) Magnetic resonance imaging system
Wen et al. Shimming with permanent magnets for the x‐ray detector in a hybrid x‐ray/MR system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees