JP2006216876A - Compound semiconductor epitaxial substrate and its manufacturing method - Google Patents

Compound semiconductor epitaxial substrate and its manufacturing method Download PDF

Info

Publication number
JP2006216876A
JP2006216876A JP2005030047A JP2005030047A JP2006216876A JP 2006216876 A JP2006216876 A JP 2006216876A JP 2005030047 A JP2005030047 A JP 2005030047A JP 2005030047 A JP2005030047 A JP 2005030047A JP 2006216876 A JP2006216876 A JP 2006216876A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
manufacturing
epitaxial substrate
semiconductor epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005030047A
Other languages
Japanese (ja)
Inventor
Takenori Osada
剛規 長田
Junya Hata
淳也 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005030047A priority Critical patent/JP2006216876A/en
Publication of JP2006216876A publication Critical patent/JP2006216876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epitaxial substrate having a high electron mobility p-HEMT structure, and to provide a method for manufacturing it. <P>SOLUTION: When a compound semiconductor epitaxial substrate used for a high electron mobility field effect transistor, having an InGaAs layer as a channel layer 6 and an AlGaAs layer containing n-type impurities as electron supply layers 3 and 9 in an MOVPE method is manufactured, by using a triethyl gallium as a gallium raw material, the InGaAs layer is subjected to crystal-growing, under growing temperature conditions where the temperature of substrate is in a range of 450-490°C to make a channel layer 6 formed. Consequently, a HEMT manufacturing compound semiconductor epitaxial substrate of very high electron mobility is manufactured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高電子移動度電界効果型トランジスタ(以下、HEMTという)製造用の化合物半導体エピタキシャル基板及びその製造方法に関する。   The present invention relates to a compound semiconductor epitaxial substrate for manufacturing a high electron mobility field effect transistor (hereinafter referred to as HEMT) and a manufacturing method thereof.

GaAs系3−5族化合物半導体を用いた素子であるHEMTは、携帯電話等の高周波通信機器の部品として用いられている。   HEMT, which is an element using a GaAs-based group 3-5 compound semiconductor, is used as a component of high-frequency communication equipment such as a mobile phone.

このHEMT製造用の化合物半導体エピタキシャル基板は、半絶縁性GaAs成長基板の温度を550〜700℃程度の温度で保持し、この成長基板上にGaAs及びAlGaAsからなる多層のバッファ層、InGaAsからなるチャネル層(その上及び下にi−GaAsからなるスペーサ層を成長させることがある)、n−AlGaAsからなる電子供給層(キャリア層)、n+ −InGaAsからなるコンタクト層を有機金属気相成長(MOVPE)法により、順次成長させて製造されている。 In this compound semiconductor epitaxial substrate for manufacturing HEMT, the temperature of a semi-insulating GaAs growth substrate is maintained at a temperature of about 550 to 700 ° C., a multilayer buffer layer made of GaAs and AlGaAs, and a channel made of InGaAs on the growth substrate. Metal organic vapor phase epitaxy (a spacer layer made of i-GaAs may be grown thereon and below), an electron supply layer (carrier layer) made of n-AlGaAs, and a contact layer made of n + -InGaAs ( The MOVPE method is used for sequential growth.

上述の如くして製造されるHEMT製造用の化合物半導体エピタキシャル基板には、高い電子移動度を示すことが求められている。従来より高い電子移動度を示す前記化合物半導体エピタキシャル基板の製造方法として、成長基板の温度を従来より低い550℃で保持する製造方法が提案されており、3200cm2 /V・sの高い電子移動度を示す化合物半導体エピタキシャル基板が得られている(例えば、特許文献1参照)。しかし、この値は十分ではなく、HEMT製造用のさらに高い電子移動度を示す化合物半導体エピタキシャル基板及びその製造方法が求められていた。
特開2001−44127号公報
A compound semiconductor epitaxial substrate for HEMT manufacturing manufactured as described above is required to exhibit high electron mobility. As a method for producing the compound semiconductor epitaxial substrate exhibiting higher electron mobility than before, a production method for maintaining the temperature of the growth substrate at 550 ° C., which is lower than the conventional temperature, has been proposed, and high electron mobility of 3200 cm 2 / V · s. The compound semiconductor epitaxial substrate which shows is obtained (for example, refer patent document 1). However, this value is not sufficient, and there has been a demand for a compound semiconductor epitaxial substrate and a method for producing the same, which exhibit higher electron mobility for HEMT production.
JP 2001-44127 A

本発明の目的は、HEMT製造用の、従来より高い電子電動度を示す化合物半導体エピタキシャル基板及びその製造方法を提供することにある。   An object of the present invention is to provide a compound semiconductor epitaxial substrate and a method for manufacturing the same, which are used for HEMT manufacturing and exhibit higher electronic power than conventional ones.

本発明者らは、上記課題を解決するために、HEMT製造用の化合物半導体エピタキシャル基板の製造方法について鋭意検討を行った結果、InGaAs層をチャネル層とするHEMT製造用の化合物半導体エピタキシャル基板をMOVPE法により製造する方法において、該InGaAs層の結晶成長時における出発原料として特定の化合物を用い、且つ成長温度を所定範囲内とすることにより、従来より高い電子電動度を示すHEMT製造用の化合物半導体エピタキシャル基板を製造することができることを見出し、本発明を完成させるに到った。   In order to solve the above-mentioned problems, the present inventors have intensively studied a method for producing a compound semiconductor epitaxial substrate for producing HEMT. As a result, the compound semiconductor epitaxial substrate for producing HEMT having an InGaAs layer as a channel layer is converted into MOVPE. A compound semiconductor for HEMT production that exhibits a higher electric power than the conventional one by using a specific compound as a starting material during crystal growth of the InGaAs layer and keeping the growth temperature within a predetermined range. The inventors have found that an epitaxial substrate can be manufactured and have completed the present invention.

請求項1の発明によれば、有機金属気相成長法により、成長基板上に、バッファ層、InGaAsからなるチャネル層、n−AlGaAsからなる電子供給層、コンタクト層を順次成長させるHEMT製造用化合物半導体エピタキシャル基板の製造方法において、前記InGaAs層を、ガリウム原料としてトリエチルガリウムを用い、成長基板の温度を450℃以上490℃以下の範囲として成長させることを特徴とするHEMT製造用化合物半導体エピタキシャル基板の製造方法が提案される。   According to the first aspect of the present invention, a HEMT manufacturing compound is formed by sequentially growing a buffer layer, a channel layer made of InGaAs, an electron supply layer made of n-AlGaAs, and a contact layer on a growth substrate by metal organic vapor phase epitaxy. In a method for manufacturing a semiconductor epitaxial substrate, the InGaAs layer is grown using triethylgallium as a gallium raw material and the growth substrate temperature is in the range of 450 ° C. or higher and 490 ° C. or lower. A manufacturing method is proposed.

請求項2の発明によれば、請求項1の方法により製造されたHEMT製造用化合物半導体エピタキシャル基板が提案される。   According to invention of Claim 2, the compound semiconductor epitaxial substrate for HEMT manufacture manufactured by the method of Claim 1 is proposed.

請求項3の発明によれば、請求項2において、電子移動度が8500cm2 /V・s以上であるHEMT製造用化合物半導体エピタキシャル基板が提案される。 According to the invention of claim 3, in claim 2, a compound semiconductor epitaxial substrate for manufacturing a HEMT having an electron mobility of 8500 cm 2 / V · s or more is proposed.

本発明により製造される化合物半導体エピタキシャル基板を用いれば、電子移動度が大きく、良好な電気的特性を有するHEMTを製造することができる。   If the compound semiconductor epitaxial substrate manufactured according to the present invention is used, a HEMT having high electron mobility and good electrical characteristics can be manufactured.

本発明によるHEMT製造用化合物半導体エピタキシャル基板の製造方法は、有機金属気相成長法により、半絶縁性GaAs成長基板上に、バッファ層、InGaAsからなるチャネル層、n−AlGaAsからなる電子供給層、コンタクト層を順次成長させる製造方法において、前記InGaAs層を、ガリウム原料としてトリエチルガリウムを用い、成長基板の温度を450℃以上490℃以下の範囲として成長させるようにしたものである。   A method of manufacturing a compound semiconductor epitaxial substrate for HEMT manufacturing according to the present invention includes a buffer layer, a channel layer made of InGaAs, an electron supply layer made of n-AlGaAs on a semi-insulating GaAs growth substrate by metal organic vapor phase epitaxy. In the manufacturing method of sequentially growing contact layers, the InGaAs layer is grown using triethylgallium as a gallium source and the temperature of the growth substrate is in the range of 450 ° C. to 490 ° C.

本発明の製造方法においては、先ず、高抵抗の半絶縁性GaAs単結晶などからなる成長基板を用意する。成長基板としては、LEC(Liquid Encapsulated Czochralski )法、VB(Vertical Bridgman)法、VGF(Vertical Gradient Freezing)法等で製造されたGaAs基板が好適であるが、これらに限定されない。そして、いずれの方法で製造された成長基板であっても、1つの結晶学的面方位から0.05°〜10°程度の傾きを有した基板を用意する。   In the manufacturing method of the present invention, first, a growth substrate made of a high resistance semi-insulating GaAs single crystal or the like is prepared. As the growth substrate, a GaAs substrate manufactured by a LEC (Liquid Encapsulated Czochralski) method, a VB (Vertical Bridgman) method, a VGF (Vertical Gradient Freezing) method or the like is preferable, but not limited thereto. And even if it is the growth substrate manufactured by any method, the board | substrate which has the inclination of about 0.05 degrees-10 degrees from one crystallographic plane orientation is prepared.

この成長基板の表面の異物を除去するために、脱脂洗浄、エッチング、水洗、乾燥処理を行ってもよい。そして成長基板を公知の結晶成長炉の加熱台上に載置して加熱を開始する。加熱開始前に炉内を高純度水素等で置換してもよい。適度な温度に安定したところで、通常は成長炉内に砒素原料ガスを導入する。バッファ層として例えばGaAs層を成長する際には、続いてガリウム原料ガスを導入する。また、InGaAsからなるチャネル層を成長する際には、砒素原料ガスの導入に加えて、トリエチルガリウム及びインジウム原料ガスを導入する。また、n−AlGaAsからなる電子供給層を成長する際には、砒素原料ガスの導入に加えて、前記ガリウム原料ガス、アルミニウム原料ガス及びn型ドーパント原料ガスを導入する。バッファ層の場合も同様にして成長することができる。各原料の供給量と時間を制御することにより、成長基板上に、少なくともバッファ層、InGaAsからなるチャネル層、n−AlGaAsからなる電子供給層、コンタクト層等の所望の化合物半導体層を順次成長させていく。   In order to remove foreign matter on the surface of the growth substrate, degreasing cleaning, etching, water washing, and drying treatment may be performed. Then, the growth substrate is placed on a heating stage of a known crystal growth furnace and heating is started. Prior to the start of heating, the inside of the furnace may be replaced with high-purity hydrogen or the like. When the temperature is stabilized at an appropriate temperature, an arsenic source gas is usually introduced into the growth furnace. For example, when a GaAs layer is grown as a buffer layer, a gallium source gas is subsequently introduced. Further, when growing a channel layer made of InGaAs, triethylgallium and indium source gases are introduced in addition to the introduction of the arsenic source gas. Further, when growing an electron supply layer made of n-AlGaAs, the gallium source gas, the aluminum source gas, and the n-type dopant source gas are introduced in addition to the introduction of the arsenic source gas. The buffer layer can be grown in the same manner. By controlling the supply amount and time of each raw material, desired compound semiconductor layers such as at least a buffer layer, a channel layer made of InGaAs, an electron supply layer made of n-AlGaAs, and a contact layer are sequentially grown on the growth substrate. To go.

ここで、本発明の製造方法においては、チャネル層を形成する際に、ガリウム原料ガスとしてトリエチルガリウムを用い、成長基板であるGaAs単結晶基板の温度を450℃以上490℃以下の範囲とし、InGaAs層を形成する。このInGaAs層の厚さは、通常は1〜20nm程度であればよい。従来は、成長基板の温度は600℃程度であり、トリメチルガリウムをガリウム原料ガスとして用いている。この従来の場合は、成長基板温度を450℃以上490℃以下という低い温度とすると、ガリウム原料ガスの熱分解が充分でなく、InGaAs層の結晶性が低下するためHEMT用化合物半導体基板として用いることができないほど電子移動度は低下してしまう。しかし、ガリウム原料ガスとしてトリエチルガリウムを用い、450℃以上490℃以下の温度範囲でInGaAs層を成長させることにより、理由は明らかではないが、電子移動度が極めて高いHEMT製造用化合物半導体エピタキシャル基板が得られるのである。   Here, in the manufacturing method of the present invention, when forming the channel layer, triethylgallium is used as the gallium source gas, the temperature of the GaAs single crystal substrate as the growth substrate is set in the range of 450 ° C. to 490 ° C., and InGaAs Form a layer. The thickness of this InGaAs layer is usually about 1 to 20 nm. Conventionally, the temperature of the growth substrate is about 600 ° C., and trimethylgallium is used as the gallium source gas. In this conventional case, if the growth substrate temperature is as low as 450 ° C. or higher and 490 ° C. or lower, the thermal decomposition of the gallium source gas is not sufficient, and the crystallinity of the InGaAs layer is lowered, so that it is used as a compound semiconductor substrate for HEMT. The electron mobility will fall to such an extent that it cannot be performed. However, by using triethylgallium as a gallium source gas and growing an InGaAs layer in a temperature range of 450 ° C. or more and 490 ° C. or less, the reason is not clear, but a compound semiconductor epitaxial substrate for HEMT manufacturing with extremely high electron mobility It is obtained.

なお、InGaAs層(チャネル層)以外の層を成長させる場合は、従来同様550℃〜700℃の範囲に成長基板を保持して成長させてもよい。   When a layer other than the InGaAs layer (channel layer) is grown, the growth substrate may be held in the range of 550 ° C. to 700 ° C. as in the conventional case.

また、砒素原料ガスとして、一般に三水素化砒素(アルシン)を用いることが多いが、アルシンの水素を炭素数が1から4のアルキル基で置換したアルキルアルシンを用いることもできる。アルミニウム、及びインジウムの原料ガスとしては、各金属原子に炭素数が1から3のアルキル基もしくは水素が結合したトリアルキル化物もしくは三水素化物が一般に用いられる。   As the arsenic source gas, arsenic trihydride (arsine) is generally used in many cases, but alkylarsine in which hydrogen of arsine is substituted with an alkyl group having 1 to 4 carbon atoms can also be used. As the source gas for aluminum and indium, a trialkylate or trihydride in which an alkyl group having 1 to 3 carbon atoms or hydrogen is bonded to each metal atom is generally used.

n型ドーパント原料ガスとしては、シリコン、ゲルマニウム、スズ、硫黄、セレン等の水素化物または炭素数が1から3のアルキル基を有するアルキル化物を用いることができる。   As the n-type dopant source gas, hydrides such as silicon, germanium, tin, sulfur, and selenium, or alkylates having an alkyl group having 1 to 3 carbon atoms can be used.

このようにして成長基板上に全ての層を成長させた後、各原料の供給を停止して結晶成長を停止し、冷却後、積層したエピタキシャル基板を成長炉内から取り出して結晶成長を完了する。   After all layers are grown on the growth substrate in this way, the supply of each raw material is stopped to stop crystal growth, and after cooling, the stacked epitaxial substrate is taken out from the growth furnace to complete crystal growth. .

こうして得られたHEMT製造用化合物半導体エピタキシャル基板は、従来のものより高い電子移動度を示す。さらに、InGaAsからなるチャネル層のInの含有量を多くしたり、チャネル層の厚さを厚くすることにより電子移動度をさらに高めることができる場合がある。上述の如くに製造した本発明によるHEMT製造用化合物半導体エピタキシャル基板の示す電子移動度は、8500cm2 /V・s以上とすることができる。 The compound semiconductor epitaxial substrate for HEMT production thus obtained shows higher electron mobility than the conventional one. Furthermore, there are cases where the electron mobility can be further increased by increasing the In content in the channel layer made of InGaAs or increasing the thickness of the channel layer. The electron mobility exhibited by the compound semiconductor epitaxial substrate for HEMT production according to the present invention produced as described above can be 8500 cm 2 / V · s or more.

上述した方法を用いて得られた本発明によるHEMT製造用化合物半導体エピタキシャル基板の構造の例が図1に層構造図として示されている。   An example of the structure of a compound semiconductor epitaxial substrate for HEMT production according to the present invention obtained by using the above-described method is shown as a layer structure diagram in FIG.

図1において、1は単結晶基板であるGaAs単結晶からなる成長基板、2は成長基板1上に積層されたバッファ層である。   In FIG. 1, reference numeral 1 denotes a growth substrate made of GaAs single crystal which is a single crystal substrate, and 2 denotes a buffer layer laminated on the growth substrate 1.

3は、4nm厚のn−Al0.24Ga0.76As層として形成され、n型不純物を3×1018/cm3 をドープしたバック側電子供給層であり、バック側電子供給層3の上には、バック側スペーサ層4、5がこの順序で積層されている。ここでは、バック側スペーサ層4は3nm厚のi−Al0.24Ga0.76As層、バック側スペーサ層5は4nm厚のi−GaAs層となっている。6は二次元電子を流すための二次元電子ガスが形成されるチャネル層であり、7.5nm厚のi−In0.30Ga0.70As層からなっている。 3 is a back-side electron supply layer formed as an n-Al 0.24 Ga 0.76 As layer having a thickness of 4 nm and doped with an n-type impurity of 3 × 10 18 / cm 3. The back side spacer layers 4 and 5 are laminated in this order. Here, the back side spacer layer 4 is a 3 nm thick i-Al 0.24 Ga 0.76 As layer, and the back side spacer layer 5 is a 4 nm thick i-GaAs layer. Reference numeral 6 denotes a channel layer in which a two-dimensional electron gas for flowing two-dimensional electrons is formed, and is composed of an i-In 0.30 Ga 0.70 As layer having a thickness of 7.5 nm.

7、8はそれぞれがフロント側スペーサ層であり、フロント側スペーサ層7は4nm厚のi−GaAs層、フロント側スペーサ層8は3nm厚のi−Al0.24Ga0.76As層である。 Reference numerals 7 and 8 each denote a front spacer layer, the front spacer layer 7 is a 4 nm thick i-GaAs layer, and the front spacer layer 8 is a 3 nm thick i-Al 0.24 Ga 0.76 As layer.

9はフロント側電子供給層で、10nm厚のn−Al0.24Ga0.76As層として形成され、n型不純物が3×1018/cm3 の濃度にドープされている。10、11はいずれもアンドープ層で、それぞれ、5nm厚のi−Al0.22Ga0.78As層、20nm厚のi−GaAs層として積層されている。 Reference numeral 9 denotes a front-side electron supply layer, which is formed as an n-Al 0.24 Ga 0.76 As layer having a thickness of 10 nm, and is doped with n-type impurities at a concentration of 3 × 10 18 / cm 3 . Reference numerals 10 and 11 denote undoped layers, which are stacked as an i-Al 0.22 Ga 0.78 As layer having a thickness of 5 nm and an i-GaAs layer having a thickness of 20 nm, respectively.

以下、本発明について、実施例と比較例とを基に、より詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to these Examples.

(実施例1)
図1に示した層構造のHEMT製造用化合物半導体エピタキシャル基板を、減圧バレル型MOVPE法用反応炉を用い、以下に示すようにして作製した。VGF法で製造された半絶縁性GaAs単結晶板を用意し、それを成長基板1として、その上に各層をエピタキシャル成長させた。3族の原料としては、トリエチルガリウム(TEG)、トリメチルアルミニウム(TMA)及びトリメチルインジウム(TMI)を用い、5族の原料としては、アルシン(AsH3 )を用いた。n型ドーパントとしては、シリコン(Si)を用いた。原料のキャリアガスとしては、高純度水素を用い、反応炉内圧力0.1atm、成長速度3〜1μm/hrの成長条件でエピタキシャル成長を行った。ここで、成長温度条件は、チャネル層6の成長の場合には成長基板温度を490℃とし、チャネル層6以外の層を成長させる場合には650℃とした。
Example 1
A compound semiconductor epitaxial substrate for HEMT production having the layer structure shown in FIG. 1 was prepared as follows using a reactor for a reduced pressure barrel type MOVPE method. A semi-insulating GaAs single crystal plate manufactured by the VGF method was prepared, and this was used as a growth substrate 1, and each layer was epitaxially grown thereon. Triethylgallium (TEG), trimethylaluminum (TMA), and trimethylindium (TMI) were used as Group 3 materials, and arsine (AsH 3 ) was used as Group 5 materials. Silicon (Si) was used as the n-type dopant. As a raw material carrier gas, high-purity hydrogen was used, and epitaxial growth was performed under growth conditions of a reactor pressure of 0.1 atm and a growth rate of 3 to 1 μm / hr. Here, the growth temperature conditions were a growth substrate temperature of 490 ° C. when the channel layer 6 was grown and 650 ° C. when a layer other than the channel layer 6 was grown.

図1に示した通り、電子を走行させるチャネル層6のIn組成は0.30、その膜厚は7.5nmとした。チャネル層6に用いたi−InGaAs層の上下には、スペーサ層6、8としてi−GaAs層を上下各4.0nmずつ、エピタキシャル成長させた。   As shown in FIG. 1, the In composition of the channel layer 6 for running electrons was 0.30, and the film thickness was 7.5 nm. On the upper and lower sides of the i-InGaAs layer used for the channel layer 6, the i-GaAs layers as the spacer layers 6 and 8 were epitaxially grown by 4.0 nm on the upper and lower sides, respectively.

上記のようにして製造して得られたエピタキシャル基板において、Van der Pauw法によるホール測定を行った結果、室温(300K)での二次元電子ガス濃度が2.40×1012/cm2 、室温(300K)での電子移動度が8840cm2 /V・s、77Kでの二次元電子ガス濃度が2.65×1012/cm2 、77Kでの電子移動度が39300cm2 /V・sと高い値を得た。 As a result of hole measurement by the Van der Pauw method in the epitaxial substrate obtained by manufacturing as described above, the two-dimensional electron gas concentration at room temperature (300 K) is 2.40 × 10 12 / cm 2 , room temperature. The electron mobility at (300 K) is 8840 cm 2 / V · s, the two-dimensional electron gas concentration at 77 K is 2.65 × 10 12 / cm 2 , and the electron mobility at 77 K is as high as 39300 cm 2 / V · s. Got the value.

(比較例1)
チャネル層6の形成温度を520℃とした以外は実施例1と同様にして図1に示す層構造のエピタキシャル基板を作製した。実施例1と同様にしてホール測定を行った結果、室温(300K)での二次元電子ガス濃度が2.40×1012/cm2 、室温(300K)での電子移動度が8240cm2 /V・s、77Kでの二次元電子ガス濃度が2.65×1012/cm2 、77Kでの電子移動度が28000cm2 /V・sであった。
(Comparative Example 1)
An epitaxial substrate having the layer structure shown in FIG. 1 was produced in the same manner as in Example 1 except that the channel layer 6 was formed at 520 ° C. As a result of measuring the Hall in the same manner as in Example 1, the two-dimensional electron gas concentration at room temperature (300 K) is 2.40 × 10 12 / cm 2 , and the electron mobility at room temperature (300 K) is 8240 cm 2 / V. The two-dimensional electron gas concentration at s and 77K was 2.65 × 10 12 / cm 2 , and the electron mobility at 77K was 28000 cm 2 / V · s.

(比較例2)
チャネル層6の形成温度を550℃とした以外は実施例1と同様にして図1に示す層構造のエピタキシャル基板を作製した。実施例1と同様にしてホール測定を行った結果、室温(300K)での二次元電子ガス濃度が2.32×1012/cm2 、室温(300K)での電子移動度が8070cm2 /V・s、77Kでの二次元電子ガス濃度が2.54×1012/cm2 、77Kでの電子移動度が27200cm2 /V・sであった。
(Comparative Example 2)
An epitaxial substrate having the layer structure shown in FIG. 1 was produced in the same manner as in Example 1 except that the channel layer 6 was formed at a temperature of 550.degree. As a result of performing the hole measurement in the same manner as in Example 1, the two-dimensional electron gas concentration at room temperature (300 K) was 2.32 × 10 12 / cm 2 , and the electron mobility at room temperature (300 K) was 8070 cm 2 / V. The two-dimensional electron gas concentration at s and 77K was 2.54 × 10 12 / cm 2 , and the electron mobility at 77K was 27200 cm 2 / V · s.

(比較例3)
チャネル層6の形成温度を580℃とした以外は実施例1と同様にして図1に示す層構造のエピタキシャル基板を作製した。実施例1と同様にしてホール測定を行った結果、室温(300K)での二次元電子ガス濃度が2.40×1012/cm2 、室温(300K)での電子移動度が7980cm2 /V・s、77Kでの二次元電子ガス濃度が2.62×1012/cm2 、77Kでの電子移動度が25000cm2 /V・sであった。
(Comparative Example 3)
An epitaxial substrate having the layer structure shown in FIG. 1 was produced in the same manner as in Example 1 except that the channel layer 6 was formed at a temperature of 580 ° C. As a result of performing the hole measurement in the same manner as in Example 1, the two-dimensional electron gas concentration at room temperature (300 K) was 2.40 × 10 12 / cm 2 , and the electron mobility at room temperature (300 K) was 7980 cm 2 / V. The two-dimensional electron gas concentration at s and 77K was 2.62 × 10 12 / cm 2 , and the electron mobility at 77K was 25000 cm 2 / V · s.

図2は上記実施例1及び比較例1〜3におけるチャネル層6の成長時の基板温度と室温(300K)及び77Kにおける電子移動度との間の関係を示すグラフである。   FIG. 2 is a graph showing the relationship between the substrate temperature during the growth of the channel layer 6 in Example 1 and Comparative Examples 1 to 3 and the electron mobility at room temperature (300K) and 77K.

本発明による化合物半導体エピタキシャル基板の一実施形態の層構造図。The layer structure figure of one Embodiment of the compound semiconductor epitaxial substrate by this invention. 本発明の実施例と比較例との各測定結果に基づく成長基板温度とチャネル層の電子移動度との間の関係を示すグラフ。The graph which shows the relationship between the growth substrate temperature based on each measurement result of the Example of this invention, and the electron mobility of a channel layer.

符号の説明Explanation of symbols

1 成長基板
2 バッファ層
3 バック側電子供給層
4、5 バック側スペーサ層
6 チャネル層
7、8 フロント側スペーサ層
9 フロント側電子供給層
10、11 アンドープ層
DESCRIPTION OF SYMBOLS 1 Growth substrate 2 Buffer layer 3 Back side electron supply layer 4, 5 Back side spacer layer 6 Channel layer 7, 8 Front side spacer layer 9 Front side electron supply layer 10, 11 Undoped layer

Claims (3)

有機金属気相成長法により、成長基板上に、バッファ層、InGaAsからなるチャネル層、n−AlGaAsからなる電子供給層、コンタクト層を順次成長させるHEMT製造用化合物半導体エピタキシャル基板の製造方法において、前記InGaAs層を、ガリウム原料としてトリエチルガリウムを用い、成長基板の温度を450℃以上490℃以下の範囲として成長させることを特徴とするHEMT製造用化合物半導体エピタキシャル基板の製造方法。   In the method of manufacturing a compound semiconductor epitaxial substrate for manufacturing HEMT, a buffer layer, a channel layer made of InGaAs, an electron supply layer made of n-AlGaAs, and a contact layer are sequentially grown on a growth substrate by metal organic vapor phase epitaxy. A method of manufacturing a compound semiconductor epitaxial substrate for HEMT manufacturing, wherein an InGaAs layer is grown using triethylgallium as a gallium source and the temperature of the growth substrate is in the range of 450 ° C. or higher and 490 ° C. or lower. 請求項1の方法により製造されたHEMT製造用化合物半導体エピタキシャル基板。   A compound semiconductor epitaxial substrate for HEMT manufacturing manufactured by the method of claim 1. 請求項2において、電子移動度が8500cm2/V・s以上であるHEMT製造用化合物半導体エピタキシャル基板。   3. The compound semiconductor epitaxial substrate for manufacturing HEMT according to claim 2, wherein the electron mobility is 8500 cm <2> /V.s or more.
JP2005030047A 2005-02-07 2005-02-07 Compound semiconductor epitaxial substrate and its manufacturing method Pending JP2006216876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030047A JP2006216876A (en) 2005-02-07 2005-02-07 Compound semiconductor epitaxial substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030047A JP2006216876A (en) 2005-02-07 2005-02-07 Compound semiconductor epitaxial substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006216876A true JP2006216876A (en) 2006-08-17

Family

ID=36979809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030047A Pending JP2006216876A (en) 2005-02-07 2005-02-07 Compound semiconductor epitaxial substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006216876A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275540A (en) * 1993-03-24 1994-09-30 Fujitsu Ltd Growth method of thin film and manufacture of semiconductor device
JP2004128415A (en) * 2002-10-07 2004-04-22 Toshiba Corp Transistor, wafer, manufacturing method of transistor, manufacturing method of wafer, and forming method of semiconductor layer
JP2004207473A (en) * 2002-12-25 2004-07-22 Sumitomo Chem Co Ltd High electron mobility epitaxial substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275540A (en) * 1993-03-24 1994-09-30 Fujitsu Ltd Growth method of thin film and manufacture of semiconductor device
JP2004128415A (en) * 2002-10-07 2004-04-22 Toshiba Corp Transistor, wafer, manufacturing method of transistor, manufacturing method of wafer, and forming method of semiconductor layer
JP2004207473A (en) * 2002-12-25 2004-07-22 Sumitomo Chem Co Ltd High electron mobility epitaxial substrate

Similar Documents

Publication Publication Date Title
JP5073968B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
KR101151933B1 (en) Compound semiconductor epitaxial substrate and process for producing the same
JP5792209B2 (en) Method for heteroepitaxial growth of high quality N-plane GaN, InN and AlN and their alloys by metalorganic chemical vapor deposition
US8395187B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
JP2010225870A (en) Semiconductor element
KR101069571B1 (en) High electron mobility epitaxial substrate
KR101032010B1 (en) Compound semiconductor epitaxial substrate and method for manufacturing same
JP4940562B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
JP2006216876A (en) Compound semiconductor epitaxial substrate and its manufacturing method
JP4717318B2 (en) Compound semiconductor epitaxial substrate
JPH0714785A (en) Semiconductor epitaxial substrate and production thereof
US10665752B2 (en) Air void structures for semiconductor fabrication
JP5301507B2 (en) Compound semiconductor epitaxial substrate
KR100839224B1 (en) Method for manufacturing thick film of gan
JP2004241676A (en) Method of manufacturing compound semiconductor, semiconductor material, and semiconductor device
JPH03266421A (en) Compound semiconductor growth and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Effective date: 20110527

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A02 Decision of refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A02