JP2006216806A - Heat transfer unit using thermoelectroc element and heat transfer device - Google Patents

Heat transfer unit using thermoelectroc element and heat transfer device Download PDF

Info

Publication number
JP2006216806A
JP2006216806A JP2005028462A JP2005028462A JP2006216806A JP 2006216806 A JP2006216806 A JP 2006216806A JP 2005028462 A JP2005028462 A JP 2005028462A JP 2005028462 A JP2005028462 A JP 2005028462A JP 2006216806 A JP2006216806 A JP 2006216806A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
cooling
transfer unit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005028462A
Other languages
Japanese (ja)
Other versions
JP4542443B2 (en
Inventor
Kazuhisa Tanigawa
和久 谷川
Toshimi Kaijima
登志巳 槐島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005028462A priority Critical patent/JP4542443B2/en
Publication of JP2006216806A publication Critical patent/JP2006216806A/en
Application granted granted Critical
Publication of JP4542443B2 publication Critical patent/JP4542443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer unit for highly efficiently radiating the heat generated in an electronic equipment and transferred to the heat radiating part. <P>SOLUTION: The heat transfer unit comprises: a thermoelectric element 3; a heat transfer substrate 5 for cooling fixed to the surface 3a for absorbing and transferring heat of the element 3; and a heat transfer substrate 7 for radiating heat fixed to the surface 3b for radiating and transferring heat of the element 3. A transducer 20 is provided at least either of the substrate 5 or the substrate 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ペルチェ効果を有する熱電素子を使用した伝熱ユニット及び該ユニットを所定の支持基体に取り付けた伝熱装置に関するものであり、特に、電子機器の内部で発生し放熱部まで輸送された熱を効率良く放熱するための伝熱ユニット及び装置に関するものである。   The present invention relates to a heat transfer unit using a thermoelectric element having a Peltier effect, and a heat transfer device in which the unit is attached to a predetermined support base, and particularly generated inside an electronic device and transported to a heat dissipation part. The present invention relates to a heat transfer unit and a device for efficiently radiating heat.

ポータブルコンピュータのような携帯形電子機器は、文字、音声および画像のような多用のマルチメディア情報を処理するためのMPU (Micro Processing Unit)を装備している。この種のMPUは、情報の処理速度の高速化や多機能化に伴って消費電力が増加の一途を辿り、動作中の発熱量もこれに比例して急速に増加する傾向にある。さらに、ディスプレイ装置を有するデスクトップ型コンピュータなどでは、高機能化に加えて、小型化、薄型化が要求されており、電子機器の発熱密度は増加の一途をたどっている。   A portable electronic device such as a portable computer is equipped with an MPU (Micro Processing Unit) for processing a variety of multimedia information such as characters, sounds and images. With this type of MPU, the power consumption continues to increase as the information processing speed increases and the number of functions increases, and the amount of heat generated during operation tends to increase in proportion to this. Further, desktop computers having display devices are required to be smaller and thinner in addition to higher functionality, and the heat generation density of electronic devices is steadily increasing.

そのため、MPUの安定した動作を保証するためには、MPUの放熱性を高める必要があり、それ故、ヒートシンクやヒートパイプのような様々な放熱・冷却手段が必要不可欠な存在となる。   Therefore, in order to guarantee stable operation of the MPU, it is necessary to improve the heat dissipation of the MPU, and therefore various heat dissipation / cooling means such as a heat sink and a heat pipe are indispensable.

これらの問題に対応するため、近年では、空気よりも遥かに高い比熱を有する液体を熱輸送流体(冷却液)として利用し、MPUの冷却効率を改善しようとする、いわゆる液冷による冷却方式が試されている。   In order to cope with these problems, in recent years, there is a so-called liquid cooling cooling method that uses a liquid having a specific heat much higher than that of air as a heat transport fluid (cooling liquid) to improve the cooling efficiency of the MPU. Has been tried.

例えば、特許文献1には、ディスプレイ一体型コンピュータのMPUを冷却する手段として、マザーボードなどの発熱部に受熱部を固定し、冷却液が循環供給される冷却チューブを受熱部に接続し、この冷却チューブを、液晶ディスプレイの背面に隙間をおいて配されたシャシーの表面に固定することにより、発熱部での発生熱をシャシー表面に固定したチューブ及びシャシーを通して放熱する液冷冷却方式が提案されている。   For example, in Patent Document 1, as a means for cooling an MPU of a display-integrated computer, a heat receiving portion is fixed to a heat generating portion such as a mother board, a cooling tube through which a coolant is circulated is connected to the heat receiving portion, and this cooling is performed. A liquid cooling cooling method has been proposed in which the tube is fixed to the surface of the chassis that is placed behind the liquid crystal display with a gap so that the heat generated in the heat generating part is dissipated through the tube and the chassis fixed to the chassis surface. Yes.

また、特許文献2には、MPUに熱的に接続された受熱部と、ディスプレイユニットに熱的に接続された放熱部とを設け、この受熱部の内部及び放熱部の内部に、液状の冷却液が流れる流路が形成されている電子機器が提案されている。かかる電子機器の液冷却方式では、受熱部の冷却液流路と放熱部の冷却液流路とは、冷却液を循環させる循環経路を介して互いに接続されており、MPUの熱は、受熱部から冷却液に伝えられた後、この冷却液の流れに乗じて放熱部に移送され、放熱部に移された熱は、冷却液が流路を流れる過程で熱伝導により拡散され、この放熱部からディスプレイユニットを通じて大気中に放出されるようになっている。
特開2002−182796号公報 特開2002−374084号公報
Further, Patent Document 2 includes a heat receiving part thermally connected to the MPU and a heat radiating part thermally connected to the display unit. Liquid cooling is provided inside the heat receiving part and inside the heat radiating part. There has been proposed an electronic device in which a flow path through which a liquid flows is formed. In such a liquid cooling system for electronic devices, the coolant flow path of the heat receiving part and the coolant flow path of the heat radiating part are connected to each other via a circulation path for circulating the coolant, and the heat of the MPU is received by the heat receiving part. After being transferred to the coolant, it is multiplied by the flow of the coolant and transferred to the heat radiating section, and the heat transferred to the heat radiating section is diffused by heat conduction while the coolant flows through the flow path. Is released into the atmosphere through the display unit.
JP 2002-182796 A JP 2002-374084 A

しかしながら、従来の液冷冷却方法では、熱輸送流体である冷却液に蓄えられた熱を放熱部で雰囲気に効率的に放出させるため、伝熱面積を確保するためにチューブ状の細い流路を用いている。このため、流路での圧力損失によって、冷却液の循環装置に負荷がかかり、循環させる冷却液の流量が制限されていた。冷却液の循環装置を大型化し、冷却液の流量を増加して必要流量を確保することも可能であるが、電子機器そのものの大型化や消費電力の増加を招くため、適用することは困難である。   However, in the conventional liquid cooling cooling method, in order to efficiently release the heat stored in the cooling liquid, which is a heat transport fluid, to the atmosphere at the heat radiating part, a thin tube-like flow path is used to secure the heat transfer area. Used. For this reason, due to the pressure loss in the flow path, a load is applied to the cooling liquid circulation device, and the flow rate of the circulating cooling liquid is limited. It is possible to increase the coolant circulation system and increase the coolant flow rate to ensure the required flow rate, but this increases the size of the electronic equipment itself and increases the power consumption. is there.

さらに、従来の方法では、放熱部は雰囲気(空気)の自然対流や送風機を付加した強制対流によって放熱しているため、冷却液の温度を雰囲気温度以下に下げてMPUを強制的に冷却し、電子機器の温度上昇を抑えることが原理的に不可能であった。   Furthermore, in the conventional method, the heat radiating part dissipates heat by natural convection of the atmosphere (air) or forced convection with a blower added, so the MPU is forcibly cooled by lowering the coolant temperature below the ambient temperature, In principle, it was impossible to suppress the temperature rise of electronic devices.

従って本発明の目的は、特に電子機器の内部で発生し放熱部まで輸送された熱を効率良く放熱することが可能な伝熱ユニット及び伝熱装置を提供することにある。   Accordingly, an object of the present invention is to provide a heat transfer unit and a heat transfer device that can efficiently dissipate heat generated inside an electronic device and transported to a heat radiating portion.

本発明者らは上記課題を解決するために、放熱部における熱輸送流体と雰囲気との間の伝熱方法について種々の検討をしていたところ、伝熱面を振動することで放熱部の表面に生じる熱輸送流体の温度境界層を効果的に除去し、伝熱効率を向上させることができることを見出し、さらに、熱伝素子を用いることで一層伝熱効率を向上させることができることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have made various studies on the heat transfer method between the heat transport fluid and the atmosphere in the heat dissipating part. The surface of the heat dissipating part is vibrated by vibrating the heat transfer surface. It is found that the temperature boundary layer of the heat transport fluid generated in the heat transfer fluid can be effectively removed and the heat transfer efficiency can be improved, and further that the heat transfer efficiency can be further improved by using the heat transfer element, and the present invention. Reached.

本発明によれば、熱電素子と、該熱電素子の吸熱伝熱面に取り付けられた冷却用伝熱基板と、該熱電素子の放熱伝熱面に取り付けられた放熱用伝熱基板とから成り、前記冷却用伝熱基板及び前記放熱用伝熱基板の少なくとも何れかに振動子が設けられていることを特徴とする伝熱ユニットが提供される。   According to the present invention, it comprises a thermoelectric element, a cooling heat transfer substrate attached to the heat absorption heat transfer surface of the thermoelectric element, and a heat dissipation heat transfer substrate attached to the heat dissipation heat transfer surface of the thermoelectric element, A vibrator is provided on at least one of the cooling heat transfer substrate and the heat dissipation heat transfer substrate.

本発明においては、
(1)前記振動子が圧電素子であること、
(2)前記冷却用伝熱基板及び前記放熱用伝熱基板がセラミックス製基板であること、
が好ましく、かかる伝熱ユニットでは、前記冷却用伝熱基板の表面上に、冷却すべき第1の熱輸送媒体が流され、前記放熱用伝熱基板の表面上に、該基板から放熱される第2の熱輸送媒体が流されることにより、冷却媒体である第1の熱輸送媒体から第2の熱輸送媒体(例えば空気)への放熱が行われる。
In the present invention,
(1) the vibrator is a piezoelectric element;
(2) The cooling heat transfer substrate and the heat dissipation heat transfer substrate are ceramic substrates,
Preferably, in such a heat transfer unit, the first heat transport medium to be cooled is flowed on the surface of the cooling heat transfer substrate, and is radiated from the substrate on the surface of the heat dissipation heat transfer substrate. By flowing the second heat transport medium, heat is radiated from the first heat transport medium that is the cooling medium to the second heat transport medium (for example, air).

また、本発明によれば、支持基体と、該支持基体の一方の面に配置された第1の伝熱ユニットと、該支持基体の他方の面に配置された第2の伝熱ユニットとを有し、第1の伝熱ユニット及び第2の伝熱ユニットは、前記の伝熱ユニットであるとともに、これらの伝熱ユニットは、何れも前記振動子を介して前記支持基体の一方の面或いは他方の面に接合されており、第1の伝熱ユニットの振動子の振動と第2の伝熱ユニットの振動子の振動とは、周波数が同一で且つ振動の位相が逆位相に設定されていることを特徴とする伝熱装置が提供される。   According to the present invention, there is provided a support base, a first heat transfer unit disposed on one surface of the support base, and a second heat transfer unit disposed on the other surface of the support base. And the first heat transfer unit and the second heat transfer unit are the heat transfer units, and each of these heat transfer units has one surface of the support base or The vibration of the vibrator of the first heat transfer unit and the vibration of the vibrator of the second heat transfer unit are bonded to the other surface and have the same frequency and the phase of the vibration is set to the opposite phase. A heat transfer device is provided.

本発明の伝熱ユニットにおいては、冷却媒体である第1の熱輸送媒体に接する冷却用伝熱基板あるいは放熱媒体である第2の熱輸送媒体と接する放熱用伝熱基板を振動子で振動させることにより、伝熱基板の表面に形成される熱輸送媒体の温度境界層を効果的に除去し、第1の熱輸送媒体から第2の熱輸送媒体への伝熱を促進することができる。   In the heat transfer unit of the present invention, the cooling heat transfer substrate in contact with the first heat transport medium as the cooling medium or the heat dissipation heat transfer substrate in contact with the second heat transport medium as the heat dissipation medium is vibrated by the vibrator. Thereby, the temperature boundary layer of the heat transport medium formed on the surface of the heat transfer substrate can be effectively removed, and heat transfer from the first heat transport medium to the second heat transport medium can be promoted.

これにより小型の放熱部で十分な放熱が可能となり、伝熱面積を確保するためのチューブ状の細い流路を用いる必要がなくなる。   As a result, sufficient heat dissipation can be achieved with a small heat radiating portion, and there is no need to use a thin tube-like channel for securing a heat transfer area.

さらに、熱伝素子を用いて伝熱を行っているため、第1の熱輸送媒体を第2の熱輸送流体の平均温度以下に冷却することが可能となり、発熱部の冷却性能を一層向上させことができる。   Furthermore, since heat transfer is performed using a heat transfer element, the first heat transport medium can be cooled below the average temperature of the second heat transport fluid, further improving the cooling performance of the heat generating portion. be able to.

特に、上記振動子として圧電素子を用いた場合には、応答性が良好となり、振動数や振幅、振動の位相を容易に調整できる、また冷却用或いは放熱用伝熱基板としてセラミックス製基板を用いた場合には、腐食性が高い流体であっても熱輸送媒体として安定して用いることができる。   In particular, when a piezoelectric element is used as the vibrator, the responsiveness is good and the frequency, amplitude, and vibration phase can be easily adjusted, and a ceramic substrate is used as a heat transfer substrate for cooling or heat dissipation. In such a case, even a highly corrosive fluid can be stably used as a heat transport medium.

また、前述した伝熱ユニットを、所定の支持基体の両面のそれぞれに設けた伝熱装置では、一方の面に設けられている振動子と他方の面に設けられている振動子とが、その振動の周波数が同一で且つ逆位相に設定されているため、支持基体に生じる振動の反作用を打ち消しあい、振動に伴う騒音を大幅に低減することができる。   Further, in the heat transfer device in which the heat transfer unit described above is provided on each of both surfaces of a predetermined support base, the vibrator provided on one surface and the vibrator provided on the other surface are Since the vibration frequency is set to be the same and opposite in phase, the reaction of the vibration generated in the support base can be canceled out, and the noise accompanying the vibration can be greatly reduced.

以下、本発明を、添付図面に示す具体例に基づいて説明する。
図1は、本発明の伝熱ユニットの構造を示す概略断面図であり、
図2は、図1の電熱ユニットの要部である熱電素子を拡大して示す図であり、
図3は、図1の伝熱ユニットを所定の支持基体に取り付けて使用する伝熱装置の構造を示す概略断面図である。
Hereinafter, the present invention will be described based on specific examples shown in the accompanying drawings.
FIG. 1 is a schematic sectional view showing the structure of the heat transfer unit of the present invention,
FIG. 2 is an enlarged view showing a thermoelectric element which is a main part of the electric heating unit of FIG.
FIG. 3 is a schematic cross-sectional view showing the structure of a heat transfer device that uses the heat transfer unit of FIG. 1 attached to a predetermined support base.

図1を参照して、全体として1で示す本発明の伝熱ユニットは、熱電素子3を備えており、この熱電素子3の吸熱伝熱面3a(高温側伝熱部となる)に冷却用伝熱基板5が設けられ、熱電素子3の放熱伝熱面3b(低温側伝熱部となる)には、放熱用伝熱基板7が設けられている。   Referring to FIG. 1, the heat transfer unit of the present invention indicated by 1 as a whole is provided with a thermoelectric element 3, and a heat absorbing heat transfer surface 3 a (which becomes a high temperature side heat transfer portion) of the thermoelectric element 3 is used for cooling. A heat transfer substrate 5 is provided, and a heat dissipation heat transfer substrate 7 is provided on the heat dissipation heat transfer surface 3 b of the thermoelectric element 3 (which becomes a low temperature side heat transfer portion).

熱電素子3は、ペルチェ素子とも呼ばれ、熱電素子半導体/金属に電流を流すことにより冷却作用(または加熱作用)を示すデバイスであり、それ自体公知である。即ち、この熱電素子3の構造を説明するための図2を参照して、この熱電素子3は、P型半導体素子10とN型半導体素子11とを電極13によって交互に直列に接続した構造を有するものであり、図2に示すように電源15を用いて電流を流すことにより、その下部の接合部で吸熱反応を生じて吸熱伝熱面3aが形成され、この部分に冷却用伝熱基板5が接合され、上部の接合部では発熱反応を生じて放熱伝熱面3bが形成され、この部分に放熱用伝熱基板7が接合される。この場合、電流の流れを逆方向とすると、吸熱伝熱面3aは上部の接合部に形成され、このため、上部に冷却用伝熱基板5が接合され、発熱伝熱面3bは下部の接合部に形成され、下部に放熱用伝熱基板7が接合されることとなる。   The thermoelectric element 3 is also called a Peltier element, and is a device that exhibits a cooling action (or heating action) by flowing a current through the thermoelectric element semiconductor / metal, and is known per se. That is, referring to FIG. 2 for explaining the structure of this thermoelectric element 3, this thermoelectric element 3 has a structure in which P-type semiconductor elements 10 and N-type semiconductor elements 11 are alternately connected in series by electrodes 13. As shown in FIG. 2, when a current is supplied using a power source 15, an endothermic reaction is generated at the lower joint portion to form an endothermic heat transfer surface 3a, and a cooling heat transfer substrate is formed in this portion. 5 is bonded, and an exothermic reaction is generated at the upper bonded portion to form the heat radiating heat transfer surface 3b, and the heat radiating heat transfer substrate 7 is bonded to this portion. In this case, assuming that the current flow is in the reverse direction, the heat absorption heat transfer surface 3a is formed at the upper joint, and therefore, the cooling heat transfer substrate 5 is bonded to the upper portion and the heat generation heat transfer surface 3b is bonded to the lower portion. The heat transfer substrate 7 for heat dissipation is joined to the lower portion.

従って、冷却すべき媒体となる第1の熱輸送媒体Aは、図1において、下部の冷却用伝熱基板5に接するように流され、放熱のための第2の熱輸送媒体Bは、上部の放熱用伝熱基板7に接するようにして流される。この場合、第1の熱輸送媒体Aと第2の熱輸送媒体Bとは互いに接触しないように流される。尚、図1においては、電極13や電源15は省略されている。   Accordingly, the first heat transport medium A that is a medium to be cooled is flowed so as to be in contact with the lower cooling heat transfer substrate 5 in FIG. 1, and the second heat transport medium B for heat dissipation is the upper part. It is made to flow in contact with the heat transfer substrate 7 for heat radiation. In this case, the first heat transport medium A and the second heat transport medium B are caused to flow so as not to contact each other. In FIG. 1, the electrode 13 and the power source 15 are omitted.

上記のような本発明の伝熱ユニット1において、熱電素子3を形成するP型或いはN型半導体としては、それ自体公知のものであってよく、例えばビスマス(Bi)−テルル(Te)に微量のアンチモン(Sb)やセレン(Se)を添加したものなどが使用される。また、電極13としては、銅などが使用され、冷却用伝熱基板5や放熱用伝熱基板7は、半田等の接着材により接合される。   In the heat transfer unit 1 of the present invention as described above, the P-type or N-type semiconductor forming the thermoelectric element 3 may be known per se, for example, a small amount of bismuth (Bi) -tellurium (Te). And antimony (Sb) and selenium (Se) added. Moreover, copper etc. are used as the electrode 13, and the heat-transfer board | substrate 5 for cooling and the heat-transfer board | substrate 7 for thermal radiation are joined by adhesive materials, such as solder.

さらに、冷却用伝熱基板5及び放熱用伝熱基板7は、高熱伝導性の材料、例えば金属などで形成されていてよいが、一般的には、熱伝導性の高いセラミックスで形成されていることが好ましく、特にAlNやSiなどが好適に用いられる。即ち、冷却用伝熱基板5及び放熱用伝熱基板7は、熱輸送媒体A或いはBと接触するため、金属製のものを用いたときには、熱輸送媒体A,Bの種類が限定され、腐食性の高い媒体(例えば水等)は使用することができない。しかし、これらの基板5,7としてセラミックス製基板を用いた場合には、耐腐食性が良好であるため、腐食性の媒体をも熱輸送媒体A,Bとして使用することが可能となるからである。特に冷却用伝熱基板5はセラミックス製基板であることが最も好適である。 Further, the cooling heat transfer substrate 5 and the heat dissipation heat transfer substrate 7 may be formed of a highly heat conductive material such as metal, but are generally formed of ceramics having high heat conductivity. In particular, AlN, Si 3 N 4 and the like are preferably used. That is, since the heat transfer substrate 5 for cooling and the heat transfer substrate 7 for heat dissipation are in contact with the heat transport medium A or B, the types of the heat transport media A and B are limited when the metal one is used, and corrosion is caused. A highly compatible medium (such as water) cannot be used. However, when ceramic substrates are used as these substrates 5 and 7, since corrosion resistance is good, it becomes possible to use corrosive media as the heat transport media A and B. is there. In particular, the cooling heat transfer substrate 5 is most preferably a ceramic substrate.

本発明において、第1の熱輸送媒体Aは、この伝熱ユニット1において冷却される媒体であり、各種電子装置の発熱部の冷却等に使用される冷却媒体、例えば水、エチレングリコールなどが使用される。また第2の熱輸送媒体Bは、放熱に使用される媒体であり、通常、大気(空気)が使用される。   In the present invention, the first heat transport medium A is a medium cooled in the heat transfer unit 1, and a cooling medium used for cooling a heat generating portion of various electronic devices, for example, water, ethylene glycol or the like is used. Is done. The second heat transport medium B is a medium used for heat dissipation, and usually air (air) is used.

また、図1において、冷却用伝熱基板5及び放熱用伝熱基板7は、伝熱面積を大きくするために、熱電素子3に比して大面積に形成されているが、これら基板5,7の間の空間には、通常、ゴム等の電気絶縁性材料17が充填されており、電流のリークを防止し得るようになっている。また、熱電素子3との電気絶縁性が確保されるのであれば、金属のような高熱伝導性材料が充填されていてもよい。   In FIG. 1, the heat transfer substrate 5 for cooling and the heat transfer substrate 7 for heat dissipation are formed in a larger area than the thermoelectric element 3 in order to increase the heat transfer area. The space between 7 is usually filled with an electrically insulating material 17 such as rubber so that current leakage can be prevented. Moreover, as long as electrical insulation with the thermoelectric element 3 is ensured, it may be filled with a highly thermally conductive material such as metal.

このような本発明の伝熱ユニット1では、図1に示されているように、冷却用伝熱基板5に振動子20が半田等の接着材により取り付けられており、この振動子20は、所定の支持基体21に接着固定されていることが重要な特徴である。即ち、このような振動子20を用いて振動を与えながら熱電素子3による冷却及び放熱を行うと、冷却用伝熱基板5の表面に形成される第1の熱輸送媒体Aの温度境界層を効果的に除去することができ、第1の熱輸送媒体Aから第2の熱輸送媒体Bへの伝熱を促進することができるのである。   In such a heat transfer unit 1 of the present invention, as shown in FIG. 1, the vibrator 20 is attached to the cooling heat transfer board 5 with an adhesive such as solder. It is an important feature that it is bonded and fixed to a predetermined support base 21. That is, when cooling and heat dissipation are performed by the thermoelectric element 3 while applying vibration using such a vibrator 20, the temperature boundary layer of the first heat transport medium A formed on the surface of the cooling heat transfer substrate 5 is formed. Therefore, the heat transfer from the first heat transport medium A to the second heat transport medium B can be promoted.

振動子20としては、種々のタイプのものが使用でき、例えば電磁モーターであってもよいが、本発明においては、応答性が高く、振動数、振動の位相を容易に制御できることから、圧電素子を振動子20として用いることが望ましい。このような圧電素子は、例えばペロブスカイト型圧電セラミックスなどからなる圧電体層と電極層とを交互に複数積層した構造を有するものであり、一つの圧電体層の上部の電極層と下部の電極層とに異なる極性の電位を与えることにより、その厚み方向に振動を与えるものである。尚、図1において、このような振動子20を駆動させる電源等は省略されている。尚、電源と熱電素子との電気的接続は、リード線やフレキシブル基板などの柔軟な素材を用いて行うことが望ましい。   Various types of vibrators 20 can be used as the vibrator 20. For example, an electromagnetic motor may be used. However, in the present invention, since the response is high and the frequency and the phase of vibration can be easily controlled, the piezoelectric element Is preferably used as the vibrator 20. Such a piezoelectric element has a structure in which a plurality of piezoelectric layers and electrode layers made of, for example, perovskite-type piezoelectric ceramics are alternately stacked, and an upper electrode layer and a lower electrode layer of one piezoelectric layer. By applying potentials of different polarities to each other, vibration is applied in the thickness direction. In FIG. 1, a power source for driving the vibrator 20 is omitted. The electrical connection between the power source and the thermoelectric element is preferably performed using a flexible material such as a lead wire or a flexible substrate.

上記の振動子20が取り付けられる支持基体21は、例えば電子機器の筐体やマザーボード、放熱部の熱輸送流体溜めとなる放熱部の筐体壁などであってよいが、一般的には、こちらの側に冷却媒体である第1の熱輸送媒体Aが流されることから、マザーボードや放熱部の筐体壁であることが好適である。   The support base 21 to which the vibrator 20 is attached may be, for example, a housing or a motherboard of an electronic device, a housing wall of a heat radiating portion that serves as a heat transport fluid reservoir of the heat radiating portion, etc. Since the 1st heat transport medium A which is a cooling medium is poured by the side of this, it is suitable that it is a housing | casing wall of a motherboard or a thermal radiation part.

また、本発明において、振動子20の数は特に制限されず、1個であってもよいし、図1に示されているように2個であってもよいし、あるいはそれよりも多数であってもよく、用いる冷却用伝熱基板5の大きさ等に応じて、温度境界層を効果的に除去することができるように適宜の数とすればよい。さらに、振動子20は、冷却用伝熱基板5に設ける代わりに放熱用伝熱基板7に設けることもできる。この場合、振動子20が接着固定される支持基体21は、電子機器の筐体とすることが望ましい。勿論、振動子20を冷却用伝熱基板5と放熱用伝熱基板7との両方に設けることも可能である。   In the present invention, the number of vibrators 20 is not particularly limited, and may be one, may be two as shown in FIG. 1, or may be more than that. Depending on the size and the like of the cooling heat transfer substrate 5 to be used, an appropriate number may be used so that the temperature boundary layer can be effectively removed. Further, the vibrator 20 can be provided on the heat transfer substrate 7 for heat radiation instead of being provided on the heat transfer substrate 5 for cooling. In this case, it is desirable that the support base 21 to which the vibrator 20 is bonded and fixed is a casing of the electronic device. Of course, the vibrator 20 may be provided on both the cooling heat transfer substrate 5 and the heat dissipation heat transfer substrate 7.

上述した構造を有する本発明の伝熱ユニット1は、複数個を、各種電子機器の内部に取り付けて伝熱装置として使用することが特に好適である。図3には、このような伝熱装置の概略構造を示した。   It is particularly preferable that a plurality of the heat transfer units 1 of the present invention having the above-described structure are used as a heat transfer device by being attached inside various electronic devices. FIG. 3 shows a schematic structure of such a heat transfer device.

図3において、かかる伝熱装置では、例えば各種電子機器における放熱部の筐体壁などとなる支持基体21の両面に、前述した構造の伝熱ユニット1が設けられる。即ち、支持基体21の両面には、それぞれ、振動子20を介して、上述した伝熱ユニット1の冷却用伝熱基板5が接合された構造となっており、この支持基体21と冷却用伝熱基板5との間に冷却媒体となる第1の熱輸送媒体Aが流され、各伝熱ユニット1の放熱用伝熱基板7側の面に放熱用媒体となる第2の熱輸送媒体Bが流される。   In FIG. 3, in such a heat transfer device, for example, the heat transfer unit 1 having the above-described structure is provided on both surfaces of a support base 21 serving as a housing wall of a heat radiating portion in various electronic devices. That is, both surfaces of the support base 21 are structured such that the cooling heat transfer substrate 5 of the heat transfer unit 1 described above is bonded via the vibrator 20. A first heat transport medium A serving as a cooling medium is caused to flow between the heat substrate 5 and the second heat transport medium B serving as a heat dissipation medium on the surface of the heat transfer unit 1 on the heat dissipation heat transfer substrate 7 side. Will be washed away.

このような本発明の伝熱装置では、支持基体21の一方の面に設けられている伝熱ユニット1(第1の伝熱ユニット)の振動子20aと、支持基体21の他方の面に設けられている伝熱ユニット1(第2の伝熱ユニット)の振動子20bとが、その振動の周波数が同一で且つ位相が逆位相(即ち、位相が180度ずれている)となるように設定される。このように振動子20の振動を制御しておくことにより、支持基体21に生じる振動の反作用が打ち消され、振動に伴う騒音を大幅に低減することが可能となる。   In such a heat transfer device of the present invention, the vibrator 20a of the heat transfer unit 1 (first heat transfer unit) provided on one surface of the support base 21 and the other surface of the support base 21 are provided. The vibrator 20b of the heat transfer unit 1 (second heat transfer unit) is set so that the vibration frequency is the same and the phase is opposite (that is, the phase is shifted by 180 degrees). Is done. By controlling the vibration of the vibrator 20 in this way, the reaction of the vibration generated in the support base 21 is canceled out, and the noise accompanying the vibration can be greatly reduced.

また、支持基体21の一方の面に設けられている振動子20aと他方の面に設けられている振動子20bとは、互いに対面するように、対応する位置に設けることが、支持基体21での振動の反作用を確実に打ち消すために最も好適である。   In addition, the support base 21 may be provided at a corresponding position so that the vibrator 20a provided on one surface of the support base 21 and the vibrator 20b provided on the other face face each other. It is most suitable for surely canceling the reaction of vibration.

さらに、図3の伝熱装置では、支持基体21の両面には、それぞれ、振動子20を介して、冷却用伝熱基板5が接合された構造となっているが、冷却媒体となる第1の熱輸送媒体の流す位置などによっては、支持基体21の両面に、放熱用電熱基板7が振動子20を介して接合された構造とすることも可能である。   Further, in the heat transfer device of FIG. 3, the both surfaces of the support base 21 have a structure in which the cooling heat transfer substrate 5 is bonded via the vibrator 20. Depending on the position where the heat transport medium flows, it is possible to adopt a structure in which the heat-radiating electrothermal substrate 7 is bonded to both surfaces of the support base 21 via the vibrator 20.

さらに、上述した図1及び図3の具体例においては、支持基体21が平板上に示されているが、このような形状に限定される必要はない。   Furthermore, in the specific example of FIG.1 and FIG.3 mentioned above, although the support base 21 is shown on the flat plate, it does not need to be limited to such a shape.

上述した本発明の伝熱ユニット或いは伝熱装置では、熱電素子を用いているため、伝熱面積が大きく、冷却及び放熱効果が極めて大きく、しかも振動子を用いているため、このような冷却及び放熱効果はさらに増大している。このような本発明の伝熱ユニット或いは伝熱装置では、例えば高発熱のMPUを備えた電子機器内部の冷却に好適であるが、発熱密度の大きな他の電子機器、例えば、パワーアンプ等の冷却に適用してもよいことは言うまでもない。   In the heat transfer unit or the heat transfer device of the present invention described above, since the thermoelectric element is used, the heat transfer area is large, the cooling and heat dissipation effect is extremely large, and the vibrator is used. The heat dissipation effect is further increased. In such a heat transfer unit or heat transfer device of the present invention, it is suitable for cooling the inside of an electronic device having a high heat generation MPU, for example, but cooling of another electronic device having a large heat generation density, such as a power amplifier, etc. It goes without saying that it may be applied to.

本発明の伝熱ユニットの構造を示す概略断面図。The schematic sectional drawing which shows the structure of the heat-transfer unit of this invention. 図1の電熱ユニットの要部である熱電素子を拡大して示す図。The figure which expands and shows the thermoelectric element which is the principal part of the electric heating unit of FIG. 図1の伝熱ユニットを所定の支持基体に取り付けて使用する伝熱装置の構造を示す概略断面図。The schematic sectional drawing which shows the structure of the heat-transfer apparatus which attaches and uses the heat-transfer unit of FIG. 1 to a predetermined | prescribed support base | substrate.

符号の説明Explanation of symbols

1:伝熱ユニット
3:熱電素子
3a:吸熱伝熱面
3b:放熱伝熱面
5:冷却用伝熱基板
7:放熱用伝熱基板
20:振動子
21:支持基体
A:第1の熱輸送媒体
B:第2の熱輸送媒体
1: Heat transfer unit 3: Thermoelectric element 3a: Endothermic heat transfer surface 3b: Heat dissipation heat transfer surface 5: Heat transfer substrate for cooling 7: Heat transfer substrate for heat dissipation 20: Vibrator 21: Support base A: First heat transport Medium B: Second heat transport medium

Claims (6)

熱電素子と、該熱電素子の吸熱伝熱面に取り付けられた冷却用伝熱基板と、該熱電素子の放熱伝熱面に取り付けられた放熱用伝熱基板とから成り、前記冷却用伝熱基板及び前記放熱用伝熱基板の少なくとも何れかに振動子が設けられていることを特徴とする伝熱ユニット。   The cooling heat transfer board comprising: a thermoelectric element; a cooling heat transfer board attached to the heat absorption heat transfer surface of the thermoelectric element; and a heat dissipation heat transfer board attached to the heat dissipation heat transfer surface of the thermoelectric element. A vibrator is provided on at least one of the heat radiating heat transfer substrates. 前記振動子が圧電素子である請求項1に記載の伝熱ユニット。   The heat transfer unit according to claim 1, wherein the vibrator is a piezoelectric element. 前記冷却用伝熱基板及び前記放熱用伝熱基板がセラミックス製基板である請求項1または2に記載の伝熱ユニット。   The heat transfer unit according to claim 1 or 2, wherein the cooling heat transfer substrate and the heat dissipation heat transfer substrate are ceramic substrates. 前記冷却用伝熱基板の表面上に、冷却すべき第1の熱輸送媒体が流され、前記放熱用伝熱基板の表面上に、該基板から放熱される第2の熱輸送媒体が流される請求項1乃至3の何れかに記載の伝熱ユニット。   A first heat transport medium to be cooled flows on the surface of the cooling heat transfer substrate, and a second heat transport medium radiated from the substrate flows on the surface of the heat dissipation heat transfer substrate. The heat transfer unit according to any one of claims 1 to 3. 支持基体と、該支持基体の一方の面に配置された第1の伝熱ユニットと、該支持基体の他方の面に配置された第2の伝熱ユニットとを有し、第1の伝熱ユニット及び第2の伝熱ユニットは、請求項1に記載の伝熱ユニットであるとともに、これらの伝熱ユニットは、何れも前記振動子を介して前記支持基体の一方の面或いは他方の面に接合されており、第1の伝熱ユニットの振動子の振動と第2の伝熱ユニットの振動子の振動とは、周波数が同一で且つ振動の位相が逆位相に設定されていることを特徴とする伝熱装置。   A first heat transfer unit having a support base, a first heat transfer unit disposed on one surface of the support base, and a second heat transfer unit disposed on the other surface of the support base; The unit and the second heat transfer unit are the heat transfer units according to claim 1, and both of these heat transfer units are disposed on one surface or the other surface of the support base via the vibrator. The vibration of the vibrator of the first heat transfer unit and the vibration of the vibrator of the second heat transfer unit are joined, and the frequency is the same and the phase of the vibration is set to an opposite phase. Heat transfer device. 第1の伝熱ユニット及び第2の伝熱ユニットは、何れも冷却用伝熱基板が前記振動子を介して前記支持基体に接合されている請求項5に記載の伝熱装置。   The heat transfer device according to claim 5, wherein each of the first heat transfer unit and the second heat transfer unit has a cooling heat transfer substrate joined to the support base via the vibrator.
JP2005028462A 2005-02-04 2005-02-04 Heat transfer device Expired - Fee Related JP4542443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028462A JP4542443B2 (en) 2005-02-04 2005-02-04 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028462A JP4542443B2 (en) 2005-02-04 2005-02-04 Heat transfer device

Publications (2)

Publication Number Publication Date
JP2006216806A true JP2006216806A (en) 2006-08-17
JP4542443B2 JP4542443B2 (en) 2010-09-15

Family

ID=36979755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028462A Expired - Fee Related JP4542443B2 (en) 2005-02-04 2005-02-04 Heat transfer device

Country Status (1)

Country Link
JP (1) JP4542443B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029393A1 (en) * 2007-06-26 2009-01-22 Epcos Ag Transformer arrangement has piezoelectric transformer and thermoelectric components coupled in transformer, and thermoelectric components are electrically controlled
WO2011104772A1 (en) * 2010-02-26 2011-09-01 富士通株式会社 Power generation device, power generation method, and process for production of power generation device
JP2013057410A (en) * 2011-09-06 2013-03-28 Nissan Motor Co Ltd Magnetic air conditioner
US10130008B2 (en) 2016-04-04 2018-11-13 Hamilton Sundstrand Corporation Immersion cooling systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242678A (en) * 1997-02-21 1998-09-11 Fujikura Ltd Structure of heat exchanging fin
JP2000012916A (en) * 1998-06-19 2000-01-14 Seiko Instruments Inc Thermo-element and power-generating device
JP2000088394A (en) * 1998-09-16 2000-03-31 Yamaha Corp Heat exchanger
JP2001082828A (en) * 1999-09-14 2001-03-30 Orion Mach Co Ltd Heat exchanger and heat carrier supply system
JP2002151873A (en) * 2000-11-15 2002-05-24 Alps Electric Co Ltd Electronic equipment and cooling structure and cooling device therefor
JP2003056995A (en) * 2001-08-20 2003-02-26 Komatsu Electronics Inc Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242678A (en) * 1997-02-21 1998-09-11 Fujikura Ltd Structure of heat exchanging fin
JP2000012916A (en) * 1998-06-19 2000-01-14 Seiko Instruments Inc Thermo-element and power-generating device
JP2000088394A (en) * 1998-09-16 2000-03-31 Yamaha Corp Heat exchanger
JP2001082828A (en) * 1999-09-14 2001-03-30 Orion Mach Co Ltd Heat exchanger and heat carrier supply system
JP2002151873A (en) * 2000-11-15 2002-05-24 Alps Electric Co Ltd Electronic equipment and cooling structure and cooling device therefor
JP2003056995A (en) * 2001-08-20 2003-02-26 Komatsu Electronics Inc Heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029393A1 (en) * 2007-06-26 2009-01-22 Epcos Ag Transformer arrangement has piezoelectric transformer and thermoelectric components coupled in transformer, and thermoelectric components are electrically controlled
WO2011104772A1 (en) * 2010-02-26 2011-09-01 富士通株式会社 Power generation device, power generation method, and process for production of power generation device
US8674588B2 (en) 2010-02-26 2014-03-18 Fujitsu Limited Electric power generation device, electric power generation method, and electric power generation device manufacturing method
JP5609967B2 (en) * 2010-02-26 2014-10-22 富士通株式会社 Power generation device, power generation method, and method of manufacturing power generation device
JP2013057410A (en) * 2011-09-06 2013-03-28 Nissan Motor Co Ltd Magnetic air conditioner
US10130008B2 (en) 2016-04-04 2018-11-13 Hamilton Sundstrand Corporation Immersion cooling systems and methods

Also Published As

Publication number Publication date
JP4542443B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
TWI243011B (en) Cooling system or electronic apparatus, and electronic apparatus using the same
JP2015226058A (en) Thermal clamp apparatus for electronic systems
US7978474B2 (en) Liquid-cooled portable computer
JP4466644B2 (en) heatsink
JP2005057088A (en) Heat-conductive member of multilayer structure and electronic apparatus using it
JPH10215094A (en) Device for eliminating heat from pc card array
JP2003188323A (en) Graphite sheet and its manufacturing method
JP2003174203A (en) Thermoelectric conversion device
JP2004282804A (en) Inverter device
WO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
JP2004295718A (en) Liquid cooling system for information processor
JP4034173B2 (en) Semiconductor integrated circuit device and semiconductor integrated circuit chip thereof
JP4542443B2 (en) Heat transfer device
JP2006245356A (en) Cooling apparatus of electronic device
JP2005183676A (en) Electronic cooling unit
JP2005142328A (en) Heat transmission apparatus
JP4391351B2 (en) Cooling system
JP4999071B2 (en) heatsink
JP2006210611A (en) Heat sink equipped with radiation fin, and manufacturing method thereof
JP2009081270A (en) Cooling device with piezoelectric fan
JP2002026214A (en) Electronic component cooling apparatus
JP3969446B2 (en) Electrostatic atomizer
JP4325026B2 (en) Cooling device and electronic equipment
JP2007227413A (en) Electronic device
JP2007088368A (en) Cooling structure of heat-generating member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees