JP2006216441A - Method of designing passage of separator for fuel cell - Google Patents

Method of designing passage of separator for fuel cell Download PDF

Info

Publication number
JP2006216441A
JP2006216441A JP2005029054A JP2005029054A JP2006216441A JP 2006216441 A JP2006216441 A JP 2006216441A JP 2005029054 A JP2005029054 A JP 2005029054A JP 2005029054 A JP2005029054 A JP 2005029054A JP 2006216441 A JP2006216441 A JP 2006216441A
Authority
JP
Japan
Prior art keywords
flow path
flow
gas
fuel cell
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005029054A
Other languages
Japanese (ja)
Other versions
JP5017780B2 (en
Inventor
Kenji Hamaogi
健司 濱荻
Yoshio Taruya
芳男 樽谷
Akira Seki
彰 関
Norifumi Doi
教史 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005029054A priority Critical patent/JP5017780B2/en
Publication of JP2006216441A publication Critical patent/JP2006216441A/en
Application granted granted Critical
Publication of JP5017780B2 publication Critical patent/JP5017780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To simply predict an internal gas flow state in a passage without actually installing the passage in a separator and design a passage shape capable of enhancing the uniformity of flow and distribution of gas in the passage shape of the separator for the fuel cell having a plurality of parallel passages through which fuel or oxidant gas flows. <P>SOLUTION: The variation range of Reynolds number of gas in the passage varying by consumption of fuel or oxidant gas flowing through the passage and production of water during the operation of the fuel cell is decided, and by using the variation range as a boundary condition, formula of conservation of mass, formula of conservation of momentum, and formula of conservation of energy are compounded and analyzed, deviation of indexes indicating the gas flow state in the passage is found every passage, and the passage shape is designed so that the deviation becomes a constant value or lower. As the index indicating the gas flow state, flow rate, flux, flow velocity, and the amount of pressure drop of gas flowing through parallel passages after branching can be used. For example, by using the flow velocity in the vicinity of a passage wall as the index, the passage is designed so as to delete a region decreasing the flow velocity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池のような燃料電池用の(ガス)セパレータに関し、より詳しくは、燃料または酸化剤のガスが流れるセパレータ内の流路を最適に設計する手法と、その手法に基づいて設計された燃料電池用セパレータに関する。   The present invention relates to a (gas) separator for a fuel cell such as a polymer electrolyte fuel cell. More specifically, the present invention relates to a method for optimally designing a flow path in a separator through which a fuel or oxidant gas flows, and the method. It is related with the separator for fuel cells designed based on this.

燃料電池とは、水素を供給するアノード極側で発生するH→2H+2eと、酸素を供給するカソード極側で発生する (1/2) O+2H+2e→HO という電気化学反応を利用して電力を取り出す装置である。燃料電池の電解質として固体高分子を用いた固体高分子型燃料電池は、低温で作動し、簡単なシステムで高出力密度が実現できるため、注目されている。 The fuel cell is H 2 → 2H + + 2e generated on the anode electrode side supplying hydrogen and (1/2) O 2 + 2H + + 2e → H 2 O generated on the cathode electrode side supplying oxygen. It is a device that takes out electric power using an electrochemical reaction. 2. Description of the Related Art A polymer electrolyte fuel cell using a solid polymer as an electrolyte of a fuel cell is attracting attention because it operates at a low temperature and can realize a high output density with a simple system.

燃料電池の基本構造である単セルに関して、図1を参照しながら説明する。単セルは、パーフルオロカーボンスルホン酸膜等の陽イオン伝導性のある高分子電解質膜1の両面を白金等の触媒を担持したカーボン繊維膜2で挟むことにより構成されるMEA(Membrane Electrode Assembly)を中心とする。このMEAを両側から挟み込むように多孔質体の電極3 (カソード極とアノード極) が配置されている。これらの電極は、電気化学反応により発生した電子を集める役割だけではなく、触媒層まで燃料ガス又は酸化剤ガスを拡散させる役割も持つ。そのため、電極は拡散層とも呼ばれ、カーボンペーパーやカーボンクロスが用いられている。この電極の外側には、隣接するセルとのガスの流通を防ぐために、セパレータ4がそれぞれ両側に配される。   A single cell, which is the basic structure of a fuel cell, will be described with reference to FIG. The single cell is an MEA (Membrane Electrode Assembly) constructed by sandwiching both surfaces of a cation-conductive polymer electrolyte membrane 1 such as a perfluorocarbon sulfonic acid membrane with a carbon fiber membrane 2 carrying a catalyst such as platinum. The center. Porous electrodes 3 (cathode electrode and anode electrode) are arranged so as to sandwich the MEA from both sides. These electrodes have not only a role of collecting electrons generated by an electrochemical reaction but also a role of diffusing fuel gas or oxidant gas to the catalyst layer. Therefore, the electrode is also called a diffusion layer, and carbon paper or carbon cloth is used. On the outside of the electrode, separators 4 are arranged on both sides in order to prevent gas from flowing to adjacent cells.

一般に、セパレータは金属又はカーボン材から構成され、セパレータの電極と接する側の表面には、燃料又は酸化剤ガスを流通させるための流路5が溝状に形成されている。このセパレータ4上に形成された流路5には、図2(A)に示すような、独立した多数の直線流路からなり、全ての流路でガスが同じ方向に流れるストレート流路方式と、図2(B)に示すような、一本の流路を蛇行させ、ガス流れが交互に180°反転するのを繰り返す、サーペンタイン流路方式とがある。   In general, the separator is made of a metal or a carbon material, and a flow path 5 for flowing fuel or oxidant gas is formed in a groove shape on the surface of the separator in contact with the electrode. The flow path 5 formed on the separator 4 is composed of a large number of independent straight flow paths as shown in FIG. 2A, and a straight flow path system in which gas flows in the same direction in all flow paths. As shown in FIG. 2B, there is a serpentine channel system in which a single channel is meandered and the gas flow is alternately inverted by 180 °.

ストレート流路方式は、ガス流量が多くなる高電流密度での運転時でも流路内での圧力損失はサーペンタイン流路方式に比べて小さいので、アノード側流路とカソード側流路との圧力差を小さく抑えることが可能であり、単セルの保護、電池効率の面で有利である。しかし、低電流密度での運転では、流路毎の流量が低下するため、電気化学反応に伴って発生する水をガス圧力によって確実に除去することが困難となる。   In the straight channel method, the pressure loss in the channel is small compared to the serpentine channel method even when operating at high current density where the gas flow rate increases, so the pressure difference between the anode side channel and the cathode side channel This is advantageous in terms of protection of single cells and battery efficiency. However, in the operation at a low current density, the flow rate for each flow path is reduced, so that it is difficult to reliably remove water generated by the electrochemical reaction by the gas pressure.

一方、サーペンタイン流路方式では、ガス流量が少なくなる低電流密度での運転時でも、流路毎の流量が維持できるため、生成水を確実に除去することが可能であり、また、内部流速が速くなるため、内部の拡散が促進され、優れた電池特性が実現できる。しかし、高電流密度の運転時には、流量が増大するため圧力損失が大きくなり、アノード側流路とカソード側流路の圧力差を大きくなって、MEAの保護の面、ガス供給の面から問題を抱えることとなる。   On the other hand, in the serpentine channel method, the flow rate of each channel can be maintained even during operation at a low current density at which the gas flow rate is reduced, so that the generated water can be reliably removed and the internal flow rate is reduced. Since it becomes faster, internal diffusion is promoted, and excellent battery characteristics can be realized. However, when operating at a high current density, the flow rate increases, so the pressure loss increases and the pressure difference between the anode side channel and the cathode side channel increases, which causes problems from the point of view of MEA protection and gas supply. It will be held.

このように、ストレート方式とサーペンタイン方式のいずれか単一の流路方式では、広い電池運転範囲において優れた電池特性を実現するのは困難である。そのため、上記両方式の長所を取り込むべく、図2(C)に示すような、複数の直線流路が分岐・合流を繰り返す、ストレート方式とサーペンタイン方式をミックスした流路方式(以下、ミックス流路方式とも呼ぶ)が提案された。このミックス流路方式では、セパレータの一端に導入されたガスは、複数の流路に分岐してセパレータの他端に流れ(この点ではストレート方式と同じ)、そこで合流した後、サーペンタイン方式と同様に180°反転し、また複数の流れに分岐して流れるのを繰り返す。1つの流れから分岐して同じ方向にセパレータを横断して流れ、セパレータの他端で合流する複数の流路を、本発明では並行流路と呼ぶ。   As described above, it is difficult to realize excellent battery characteristics in a wide battery operation range by using any one of the straight type and the serpentine type. Therefore, in order to incorporate the advantages of both the above-mentioned methods, as shown in Fig. 2 (C), a plurality of straight channels repeat branching and merging, a channel method that mixes the straight method and the serpentine method (hereinafter, mixed channel) Was also proposed). In this mixed channel method, the gas introduced into one end of the separator is branched into a plurality of channels and flows to the other end of the separator (this is the same as the straight method). Inverted 180 °, and branched into multiple flows and repeated. A plurality of flow paths that branch from one flow, flow across the separator in the same direction, and merge at the other end of the separator are referred to as parallel flow paths in the present invention.

上記いずれの流路方式においても、セパレータの流路設計にあたっては、流路の主要部分を占める直線流路における流量のバラツキ、反応に伴う生成水の排除等を考慮する必要がある。これらを考慮した設計に基づいて実際にセパレータに流路を構築し、そこに流体を流して検討する方法が従来から用いられてきた。   In any of the above-described flow channel systems, when designing the flow channel of the separator, it is necessary to take into account variations in the flow rate in the straight flow channel that occupies the main part of the flow channel, the elimination of water generated by the reaction, and the like. Conventionally, a method has been used in which a flow path is actually constructed in a separator based on a design that takes these into consideration, and a fluid is allowed to flow through the separator.

この方法には、流路を構築したセパレータを実際に電池として発電可能な構成にして検討する方法と、流路を構築したセパレータにそのまま、電池に対して予測される流動状況(予測されるレイノルズ数域)において流体を流して流動形態を検討する方法とがある。前者の方法は、電池で発生する水の影響を考慮でき、また電池性能を直接捉えられる利点を持つが、試行錯誤を行うためには膨大な費用を要する。後者の方法は、簡便な装置構成で流動形態の概略を把握できるという利点を持つが、内部で生成される水の影響等を全く考慮できない。   This method includes a method in which a separator having a flow path is configured so that it can actually generate electricity as a battery, and a flow state (predicted Reynolds predicted for a battery as it is in a separator having a flow path). There is a method of examining the flow form by flowing a fluid in several regions. The former method can take into account the influence of water generated in the battery and has an advantage of directly capturing the battery performance, but requires a huge amount of money to perform trial and error. The latter method has an advantage that the outline of the flow form can be grasped with a simple apparatus configuration, but the influence of water generated inside cannot be considered at all.

また、いずれの手法に対しても、内部の流動形態を捉え、間接的に電池性能を予測する指標として、流量、圧力、流速等が考えられるが、セパレータ上に構成される流路は微細であるため、これらを精度良く計測するには大きな困難をともなる。   In addition, for any method, the flow rate, pressure, flow rate, etc. can be considered as indicators for capturing the internal flow pattern and indirectly predicting battery performance, but the flow path configured on the separator is fine. Therefore, it is very difficult to measure these with high accuracy.

本発明は、上記問題点を解消し、セパレータに実際に流路を構築することなく、生成水の影響も含めた流路内部のガス流動状況を簡便に予測し、その予測をセパレータの流路形状の設計、特に各流路へのガス分配状態や流量の不均一化が起こり易い、並行流路が分岐する流路分岐部や合流する流路合流部、あるいはその近傍の並行流路端部、の設計に反映できる手段を提供することを課題とする。   The present invention solves the above-mentioned problems, easily predicts the gas flow situation inside the flow path including the influence of generated water without actually constructing the flow path in the separator, and predicts the flow path of the separator. Design of shape, especially gas distribution state to each flow path and flow rate non-uniformity easily occur, flow path branching section where parallel flow paths branch, flow path merge section where the flow paths merge, or parallel flow path end in the vicinity It is an object to provide a means that can be reflected in the design of.

上記課題は、下記の本発明により解決することができる。
(A) 燃料または酸化剤のガスが流れる複数の並行流路を備えた燃料電池用セパレータの流路形状を設計する方法であって、流路内を流れる燃料または酸化剤ガスの燃料電池運転中の消費と水の生成により変動する流路内ガスのレイノルズ数の変動範囲を決定し、この変動範囲を境界条件として、流路形状に対して質量保存の式、運動量保存の式、およびエネルギー保存の式を連成させて解析することによって、流路内のガス流動状況を示す指標の流路ごとの偏差を求め、この偏差が一定値以下になるように流路形状を設計することを特徴とする、燃料電池用セパレータの流路設計方法。
The above problems can be solved by the present invention described below.
(A) A method for designing a flow path shape of a separator for a fuel cell having a plurality of parallel flow paths through which fuel or oxidant gas flows, and during fuel cell operation of fuel or oxidant gas flowing in the flow path The fluctuation range of the Reynolds number of the gas in the flow path, which fluctuates due to the consumption of water and the generation of water, is determined, and with this fluctuation range as the boundary condition, the mass conservation equation, momentum conservation equation, and energy conservation are defined for the flow channel shape By combining and analyzing the above formula, the deviation of each index indicating the gas flow state in the flow path is obtained for each flow path, and the flow path shape is designed so that this deviation is a certain value or less. A fuel cell separator channel design method.

(B) 上記(A)において、複数の並行流路への分岐部の流路形状の設計において、流路内のガス流動状況を示す指標として分岐後の並行流路を流れるガスの流量を用いる。
(C) 上記(B)において、前記指標として、分岐後の並行流路の各流路の流束(単位断面積当たりの流量)を平均流束で除した値を用いる。
(B) In the above (A), in the design of the flow path shape of the branch part to the plurality of parallel flow paths, the flow rate of the gas flowing through the parallel flow paths after branching is used as an index indicating the gas flow status in the flow paths. .
(C) In (B) above, as the index, a value obtained by dividing the flux (flow rate per unit cross-sectional area) of each flow path of the parallel flow paths after branching by the average flux is used.

(D) 上記(C)において、流路の偏差が±0.2以下となるように設計する。
(E) 上記(A)において、複数の並行流路の合流・分岐部および/または直線流路部の流路形状を設計する際に、流路内のガス流動状況を示す指標として流路内のガス圧力降下量を用いる。
(D) In (C) above, the flow path is designed to have a deviation of ± 0.2 or less.
(E) In the above (A), when designing the flow path shape of the merge / branch section and / or the straight flow path section of a plurality of parallel flow paths, The amount of gas pressure drop is used.

(F) 上記(A)において、流路内のガス流動状況を示す指標として流路内のガス流速を用いる。
(G) 上記(A)において、複数の並行流路の合流・分岐部および/または直線流路部の流路形状を設計する際に、流路内のガス流動状況を示す指標として流路壁近傍の流速を用い、流速が低くなる領域を流路形状から削除するように合流・分岐部および/または直線流路部の流路設計を行う。
(F) In (A) above, the gas flow rate in the flow path is used as an index indicating the state of gas flow in the flow path.
(G) In the above (A), when designing the flow path shape of the merging / branching section and / or the straight flow path section of the plurality of parallel flow paths, the flow path wall is used as an index indicating the gas flow status in the flow path. Using the flow velocity in the vicinity, the flow path design of the merging / branching portion and / or the straight flow passage portion is performed so as to delete the region where the flow velocity is low from the flow passage shape.

(H) 上記(G)において、解析による低流速領域の把握および削除後に、削除により更新された流路形状についての解析による低流速領域の把握および削除を繰り返すことにより、合流・分岐部および/または直線流路部の流路形状を流線に沿った形状とする。   (H) In (G) above, after grasping and deleting the low-velocity region by analysis, repeating the grasping and deleting of the low-velocity region by analyzing the flow path shape updated by the deletion, the merge / branch part and / or Alternatively, the flow path shape of the straight flow path portion is a shape along the streamline.

(I) 上記(A)〜(H)のいずれかに記載の方法により設計された複数の並行流路を有する燃料電池用セパレータ。
(J) 上記(A)〜(H)のいずれかに記載の燃料電池用セパレータの流路設計方法を利用した計算式を含む燃料電池用セパレータの流路設計用プログラムを記録した記録媒体。
(I) A fuel cell separator having a plurality of parallel flow paths designed by the method according to any one of (A) to (H).
(J) A recording medium on which a flow path design program for a fuel cell separator including a calculation formula using the flow path design method for a fuel cell separator according to any one of (A) to (H) is recorded.

本発明において、「並行流路」とは、同じ場所から分岐し、かつ同じ場所で合流する、同方向に流れる流路を意味する。   In the present invention, the “parallel flow path” means a flow path that flows in the same direction and branches from the same place and joins at the same place.

本発明によれば、特に複数の並行流路(即ち、並行流路群)の分岐・合流を伴う、前述したミックス流路方式の流路を持つ燃料電池用セパレータにおいて、直線流路における流量の不均一及びこれに伴う生成水の滞留に伴う流路閉塞等を抑制できる。その結果、発電量の大きい条件下においても効率的にガスを触媒層へ供給できるとともに、時間経過による電池性能の劣化を抑制することができる。   According to the present invention, in the fuel cell separator having the above-described mixed flow path type flow path, which particularly involves branching / merging of a plurality of parallel flow paths (that is, parallel flow path groups), It is possible to suppress the non-uniformity and the blockage of the flow path accompanying the retention of the generated water. As a result, gas can be efficiently supplied to the catalyst layer even under conditions with a large amount of power generation, and deterioration of battery performance over time can be suppressed.

以下、添付図面を参照しながら、本発明をより具体的に説明する。以下の説明における数式における各記号の意味は次の通りである。
A:1セルの通電面積(m)、
E:内部エネルギー(J/Kg)、
F:ファラデー定数(C/mol)、
I:セル電流(A)、
N2:供給気体中の窒素モル分率、
O2:供給気体中の酸素モル分率、
Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings. The meaning of each symbol in the mathematical expressions in the following description is as follows.
A: Current-carrying area (m 2 ) of 1 cell,
E: Internal energy (J / Kg),
F: Faraday constant (C / mol),
I: Cell current (A),
K N2 : nitrogen mole fraction in the feed gas,
K O2 : oxygen mole fraction in the feed gas,

H2:1セル当たりの燃料(水素)供給量(mol/sec)、
M’H2:1セル当たりのアノード出口での燃料残留量(mol/sec)、
N2:カソード側のガスを空気としが場合に供給される窒素量(mol/sec)、
O2:1セル当たりの酸化剤(酸素)供給量(mol/sec)、
M'O2:1セル当たりのカソード出口での酸化剤残留量(mol/sec)、
H2O:アノード入口、条件2で供給される水蒸気の流量(mol/sec)、
M'H2O:アノード出口、条件2で排出される水蒸気の流量(mol/sec)、
M''H2O:カソード出口、条件1で排出される水蒸気の流量(mol/sec)、
M'''H2O:カソード出口、条件2で排出される水蒸気の流量(mol/sec)、
MH2 : fuel (hydrogen) supply per cell (mol / sec),
M ′ H2 : Amount of fuel remaining at the anode outlet per cell (mol / sec),
M N2 : amount of nitrogen (mol / sec) supplied when the cathode side gas is air.
M O2 : Oxidant (oxygen) supply amount per cell (mol / sec),
M'O2 : residual amount of oxidant at the cathode outlet per cell (mol / sec),
MH2O : anode inlet, flow rate of water vapor supplied in condition 2 (mol / sec),
M ′ H 2 O : anode outlet, flow rate of water vapor discharged under condition 2 (mol / sec),
M ″ H 2 O : cathode outlet, water vapor flow rate (mol / sec) discharged under condition 1,
M ′ ″ H 2 O : cathode outlet, water vapor flow rate (mol / sec) discharged under condition 2,

H2 :水素の分子量(Kg/mol)、
H2O:水の分子量(Kg/mol)、
N2:窒素の分子量(Kg/mol)、
O2:酸素の分子量(Kg/mol)、
NH2 : molecular weight of hydrogen (Kg / mol),
NH2O : molecular weight of water (Kg / mol),
N N2 : Molecular weight of nitrogen (Kg / mol),
N O2 : Molecular weight of oxygen (Kg / mol),

P:圧力(Pa)、
SAT:温度Tにおける飽和蒸気圧(Pa)、
R:ガス定数(8.314 J/K・mol)、
T:温度(K)、
P: Pressure (Pa)
P SAT : Saturated vapor pressure at temperature T (Pa)
R: Gas constant (8.314 J / K · mol),
T: temperature (K),

ReAlin:アノード入口、条件1でのレイノルズ数、
ReA2in:アノード入口、条件2でのレイノルズ数、
ReAlout:アノード出口、条件1でのレイノルズ数、
ReA2out:アノード出口、条件2でのレイノルズ数、
ReC1in:カソード入口、条件1でのレイノルズ数、
ReC2in:カソード入口、条件2でのレイノルズ数、
ReC1out:カソード出口、条件1でのレイノルズ数、
ReC2out:カソード出口、条件2でのレイノルズ数、
ReAin:アノード入口でのレイノルズ数、
ReAout:アノード出口でのレイノルズ数、
ReCin:カソード入口でのレイノルズ数、
ReCout:カソード出口でのレイノルズ数、
Re Alin : anode inlet, Reynolds number under condition 1,
Re A2in : anode inlet, Reynolds number under condition 2,
Re Alout : Anode outlet, Reynolds number under condition 1,
Re A2out : Anode outlet, Reynolds number under condition 2,
Re C1in : cathode inlet, Reynolds number under condition 1,
Re C2in : cathode inlet, Reynolds number under condition 2,
Re C1out : cathode exit, Reynolds number under condition 1,
Re C2out : cathode exit, Reynolds number under condition 2,
Re Ain : Reynolds number at the anode entrance,
Re Aout : Reynolds number at the anode exit,
Re Cin : Reynolds number at the cathode entrance,
Re Cout : Reynolds number at cathode exit,

VA1in:アノード入口、条件1での体積流量(m/sec)、
VA2in:アノード入口、条件2での体積流量(m/sec)、
VA1out:アノード出口、条件1での体積流量(m/sec)、
VA2out:アノード出口、条件2での体積流量(m/sec)、
VC1in:カソード入口、条件1での体積流量(m/sec)、
VC2in:カソード入口、条件2での体積流量(m/sec)、
VC1out:カソード出口、条件1での体積流量(m/sec)、
VC2out:カソード出口、条件2での体積流量(m/sec)、
V A1in : anode inlet, volumetric flow rate under condition 1 (m 3 / sec),
V A2in : anode inlet, volumetric flow rate under condition 2 (m 3 / sec),
V A1out : anode outlet, volumetric flow rate under condition 1 (m 3 / sec),
V A2out : anode outlet, volumetric flow rate under condition 2 (m 3 / sec),
V C1in : cathode inlet, volumetric flow rate under condition 1 (m 3 / sec),
V C2in : cathode inlet, volumetric flow rate under condition 2 (m 3 / sec),
V C1out : cathode outlet, volumetric flow rate under condition 1 (m 3 / sec),
V C2out : cathode outlet, volumetric flow rate under condition 2 (m 3 / sec),

a:流路断面積(複数流路に分岐・合流する場合は全断面積)(m2)、
i:電流密度(A/m)、
d:代表長さ(m)、
:重力加速度(m/sec2)、
k:熱伝導度(J/m・sec・K)、
H2:1セル当たりの燃料(水素)消費量(mol/sec)、
O2:1セル当たりの酸化剤(酸素)消費量(mol/sec)、
t:時間 (sec)
a: Channel cross-sectional area (total cross-sectional area when branching / merging into multiple channels) (m 2 ),
i: current density (A / m 2 ),
d: representative length (m),
g i : Gravitational acceleration (m / sec 2 ),
k: thermal conductivity (J / m · sec · K),
m H2 : fuel (hydrogen) consumption per cell (mol / sec),
mO2 : oxidant (oxygen) consumption per cell (mol / sec),
t: Time (sec)

A1in:アノード入口、条件1での流路内平均流速(m/sec)、
A2in:アノード入口、条件2での流路内平均流速(m/sec)、
A1out:アノード出口、条件1での流路内平均流速(m/sec)、
A2out:アノード出口、条件2での流路内平均流速(m/sec)、
C1in:カソード入口、条件1での流路内平均流速(m/sec)、
C2in:カソード入口、条件2での流路内平均流速(m/sec)、
C1out:カソード出口、条件1での流路内平均流速(m/sec)、
C2out:カソード出口、条件2での流路内平均流速(m/sec)、
u A1in : anode inlet, average flow velocity in the channel under condition 1 (m / sec),
u A2in : anode inlet, average flow velocity in the channel under condition 2 (m / sec),
u A1out : anode outlet, average flow velocity in the channel under condition 1 (m / sec),
u A2out : anode outlet, average flow velocity in the channel under condition 2 (m / sec),
u C1in : cathode inlet, average flow velocity in the channel under condition 1 (m / sec),
u C2in : cathode inlet, average flow velocity in the channel under condition 2 (m / sec),
u C1out : cathode outlet, average flow velocity in the channel under condition 1 (m / sec),
u C2out : cathode outlet, average flow velocity in the channel under condition 2 (m / sec),

i,uj,ul :i,j,l方向の速度(m/sec)、
i,xj,xl :i,j,l方向の座標(m)、
δij :クロネッカーのδ、
ηH2:燃料(水素)消費率(−)、
ηO:酸化剤(酸素)消費率(−)、
u i , u j , u l : velocity in i, j, l direction (m / sec),
x i , x j , x l : coordinates in the i, j, l direction (m),
δ ij : δ of Kronecker
η H2 : fuel (hydrogen) consumption rate (-),
η O : oxidant (oxygen) consumption rate (−),

ρ:密度(Kg/m3)、
ρH2:温度T、圧力Pにおける水素の密度(Kg/m3)、
ρN2:温度T、圧力Pにおける窒素の密度(Kg/m3)、
ρO2:温度T、圧力Pにおける酸素の密度(Kg/m3)、
ρH2O:温度T、圧力Pにおける水蒸気の密度(Kg/m3)、
ρmA2in:アノード入口、条件2における混合気体の密度(Kg/m3)、
ρmA2out:アノード出口、条件2における混合気体の密度(Kg/m3)、
ρmC2in:カソード入口、条件2における混合気体の密度(Kg/m3)、
ρmC1out:カソード出口、条件1における混合気体の密度(Kg/m3)、
ρmC2out:カソード出口、条件2における混合気体の密度(Kg/m3)、
ρ: Density (Kg / m 3 ),
ρH 2 : density of hydrogen at temperature T and pressure P (Kg / m 3 ),
ρN 2 : density of nitrogen at temperature T and pressure P (Kg / m 3 ),
ρO 2 : density of oxygen at temperature T and pressure P (Kg / m 3 ),
ρH 2 O: density of water vapor at temperature T and pressure P (Kg / m 3 ),
ρ mA2in : anode inlet, density of mixed gas in condition 2 (Kg / m 3 ),
ρ mA2out : anode outlet, mixed gas density in condition 2 (Kg / m 3 ),
ρ mC2in : cathode entrance, density of mixed gas in condition 2 (Kg / m 3 ),
ρ mC1out : cathode outlet, density of mixed gas in condition 1 (Kg / m 3 ),
ρ mC2out : cathode outlet, density of mixed gas in condition 2 (Kg / m 3 ),

μ:粘性係数(Pa・sec)、
μH2:温度Tにおける水素の粘性係数(Pa・sec)、
μN2:温度Tにおける窒素の粘性係数(Pa・sec)、
μO2:温度Tにおける酸素の粘性係数(Pa・sec)、
μH2O:温度Tにおける水蒸気の粘性係数(Pa・sec)、
μ: Viscosity coefficient (Pa · sec),
μH 2 : Viscosity coefficient of hydrogen at temperature T (Pa · sec),
μN 2 : Viscosity coefficient of nitrogen at temperature T (Pa · sec),
μO 2 : Viscosity coefficient of oxygen at temperature T (Pa · sec),
μH 2 O: Viscosity coefficient of water vapor at temperature T (Pa · sec)

μmA2in:アノード入口、条件2における混合気体の粘性係数(Pa・sec)、
μmA2out:アノード出口、条件2における混合気体の粘性係数(Pa・sec)、
μmC2in:カソード入口、条件2における混合気体の粘性係数(Pa・sec)、
μmC1out:カソード出口、条件1における混合気体の粘性係数(Pa・sec)、
μmC2out:カソード出口、条件1における混合気体の粘性係数(Pa・sec)、
τij :剪断応力(Pa)。
μ mA2in : Anode inlet, viscosity coefficient of gas mixture in condition 2 (Pa · sec),
μ mA2out : Anode outlet, viscosity coefficient (Pa · sec) of gas mixture in condition 2
μ mC2in : Cathode inlet, viscosity coefficient of mixed gas in condition 2 (Pa · sec),
μ mC1out : Cathode outlet, viscosity coefficient of gas mixture in condition 1 (Pa · sec),
μ mC2out : Cathode outlet, viscosity coefficient of gas mixture in condition 1 (Pa · sec),
τij: Shear stress (Pa).

上記(A)に記載した本発明に係る流路設計方法では、燃料電池用セパレータに設けられた複数の並行流路内を流れるガスの流動状況を把握するために、いずれも周知の、   In the flow path design method according to the present invention described in the above (A), in order to grasp the flow state of the gas flowing in the plurality of parallel flow paths provided in the fuel cell separator, both are well known,

・内部流体に関する質量保存の式:

Figure 2006216441
-Mass conservation formula for internal fluid:
Figure 2006216441

・運動量保存の式:

Figure 2006216441
・ Momentum conservation formula:
Figure 2006216441

Figure 2006216441
Figure 2006216441

・エネルギー保存の式:

Figure 2006216441
・ Energy conservation formula:
Figure 2006216441

を連成させて解析する。その解析を簡便にするために、以下の手法により解析条件を設定することが好ましい。
燃料電池1セル内での燃料(水素を想定)および酸化剤(酸素)の消費量は、それぞれ
To analyze. In order to simplify the analysis, it is preferable to set analysis conditions by the following method.
The consumption of fuel (assuming hydrogen) and oxidant (oxygen) in one fuel cell is

Figure 2006216441
Figure 2006216441

Figure 2006216441
Figure 2006216441

となる。
通常、燃料電池においては、燃料、酸化剤ともに、実際に消費される量よりも多く供給される。この時の消費率をηH2、ηO2とすれば、1セル当たりに必要とされる燃料および酸化剤の供給量は、それぞれ
It becomes.
Usually, in a fuel cell, both the fuel and the oxidant are supplied more than the amount actually consumed. If the consumption rates at this time are ηH 2 and ηO 2 , the amount of fuel and oxidant supplied per cell is

Figure 2006216441
Figure 2006216441

Figure 2006216441
Figure 2006216441

となる。
上記の燃料、酸化剤の消費量および供給量に基づいて、各単位セルのカソード側、アノード側の入口、出口について、流路内のガス(アノード側では燃料ガス、カソード側では酸化剤ガス)のレイノルズ数に関する流動状況を下記のように推定することできる。
It becomes.
Based on the consumption and supply amount of the fuel and oxidant described above, the gas in the flow path for the cathode side, anode side inlet and outlet of each unit cell (fuel gas on the anode side, oxidant gas on the cathode side) The flow situation regarding the Reynolds number can be estimated as follows.

まず、アノード側の入口においては、燃料として純水素を用いる場合、加湿せずに乾燥状態で供給する状況が、アノード入口においてレイノルズ数が最小である条件(アノード側入口の条件1と称する)となる。一方、セル内の電解質膜の水分布状況を改善するために飽和状態にまで加湿した燃料を供給する状態が、アノード入口においてレイノルズ数が最大である条件(アノード側入口の条件2と称する)となる。   First, when pure hydrogen is used as the fuel at the anode-side inlet, the condition of supplying the fuel in a dry state without being humidified is the condition where the Reynolds number is minimum at the anode inlet (referred to as condition 1 at the anode-side inlet). Become. On the other hand, a state in which the fuel humidified to a saturated state in order to improve the water distribution state of the electrolyte membrane in the cell is a condition in which the Reynolds number is maximum at the anode inlet (referred to as condition 2 at the anode side inlet). Become.

次に、アノード出口においては、燃料が消費されても、入口より供給された水分と逆拡散によりカソードから移動した水分の両者が電気浸透作用よりカソード側へ輸送され、水分がゼロとなった状況が、想定しうるレイノルズ数が最小である条件(アノード側出口の条件1と称する)となる。一方、燃料が消費されて、飽和状態にまで水分を含んでいる状況が、レイノルズ数が最大である条件(アノード側の出口条件2と称する)となる。   Next, at the anode outlet, even when fuel is consumed, both the moisture supplied from the inlet and the moisture moved from the cathode by back diffusion are transported to the cathode side by electroosmosis, resulting in zero moisture. However, this is a condition where the Reynolds number that can be assumed is minimum (referred to as condition 1 at the outlet on the anode side). On the other hand, the situation in which the fuel is consumed and the water is contained up to the saturation state is the condition where the Reynolds number is the maximum (referred to as the outlet condition 2 on the anode side).

カソード側入口では、酸化剤として純酸素を用いた場合が、レイノルズ数が最小である条件(カソード側の入口条件1と称する)となる。一方、空気中に含まれる酸素を酸化剤として利用するためにカソード入口から空気を供給する場合が、カソード側入口においてレイノルズ数が実質的に最大である条件(カソード側の入口条件2と称する)となる。   At the cathode side inlet, when pure oxygen is used as the oxidant, the Reynolds number is minimum (referred to as cathode side inlet condition 1). On the other hand, in the case where air is supplied from the cathode inlet in order to use oxygen contained in the air as an oxidant, the Reynolds number is substantially maximum at the cathode side inlet (referred to as cathode side inlet condition 2). It becomes.

次に、カソード側出口においては、純酸素を用いた状況下で酸素が消費され、反応による生成水により飽和状態になった状況がレイノルズ数が最小である条件(カソード側の出口条件1と称する)となる。一方、酸化剤として空気を供給し、残留したガスが飽和状態にまで加湿された条件(カソード側の出口条件2と称する)が、レイノルズ数が実質的に最大である条件となる。   Next, at the cathode side outlet, oxygen is consumed in a situation where pure oxygen is used, and a situation where the state is saturated by water produced by the reaction is a condition where the Reynolds number is minimum (referred to as cathode side outlet condition 1). ) On the other hand, a condition in which air is supplied as an oxidant and the remaining gas is humidified to a saturated state (referred to as cathode-side outlet condition 2) is a condition in which the Reynolds number is substantially maximum.

以上をまとめると、
アノード入口のレイノルズ数は概ね、
条件1(水素のみ供給)<ReAin<条件2(飽和状態まで加湿した水素の供給)
の範囲となり、
アノード出口のレイノルズ数は概ね、
条件1(残留水素のみ排出)<ReAout<条件2(生成水で飽和した残留水素の排出)
となる。
In summary,
The Reynolds number at the anode entrance is roughly
Condition 1 (Supply only hydrogen) <Re Ain <Condition 2 (Supply of hydrogen humidified to saturation)
It becomes the range of
The Reynolds number at the anode outlet is roughly
Condition 1 (only residual hydrogen is discharged) <Re Aout <Condition 2 (discharge of residual hydrogen saturated with product water)
It becomes.

一方、カソード入口のレイノルズ数は概ね、
条件1(酸素のみ供給)<ReCin<条件2(空気(酸素+窒素)の供給)
の範囲となり、
カソード出口のレイノルズ数は概ね、
条件1(生成水で飽和した残留酸素)<ReCout<条件2(生成水で飽和した残留酸素及び窒素)
の範囲となる。
On the other hand, the Reynolds number at the cathode entrance is roughly
Condition 1 (supplying only oxygen) <Re Cin <condition 2 (supplying air (oxygen + nitrogen))
It becomes the range of
The Reynolds number at the cathode exit is roughly
Condition 1 (residual oxygen saturated with product water) <Re Cout <Condition 2 (residual oxygen and nitrogen saturated with product water)
It becomes the range.

流路全体においても、レイノルズ数はこれらの範囲に収まると考えられ、このレイノルズ数の変動範囲において流動状況を把握できれば、流路内の状況を容易に把握できる。
さらに、ここに示したレイノルズ数の変動範囲は、次のようにして導出することができる。
The Reynolds number is considered to fall within these ranges in the entire flow path, and if the flow state can be grasped in the fluctuation range of the Reynolds number, the state in the flow path can be easily grasped.
Furthermore, the Reynolds number fluctuation range shown here can be derived as follows.

(i) アノード入口
(i−1) 条件1(レイノルズ数が最小となる状況)
この条件においてアノード入口に供給されるのは純水素のみであり、流量は式(7)で示される量である。この際、供給ガスの密度は状態方程式より、
(i) Anode inlet
(i-1) Condition 1 (Situation where Reynolds number is minimized)
Under this condition, only pure hydrogen is supplied to the anode inlet, and the flow rate is an amount represented by equation (7). At this time, the density of the supply gas is

Figure 2006216441
となる。また、粘性係数は温度の関数、
Figure 2006216441
It becomes. The viscosity coefficient is a function of temperature,

Figure 2006216441
であり、例えば、
Figure 2006216441
For example,

Figure 2006216441
により導出される。流路内での流速は、体積流量、
Figure 2006216441
Is derived by The flow velocity in the flow path is the volume flow rate,

Figure 2006216441
を流路部断面積で割ることにより導出される。
Figure 2006216441
Is divided by the cross-sectional area of the flow path.

Figure 2006216441
これらの値を用いれば、アノード入口における条件1のレイノルズ数は、
Figure 2006216441
Using these values, the Reynolds number of condition 1 at the anode inlet is

Figure 2006216441
より得られる。
Figure 2006216441
More obtained.

(i−2) 条件2(レイノルズ数が最大となる状況)
この条件は、供給される燃料が飽和状態にまで加湿された状況を想定している。飽和蒸気圧は温度の関数として表現され、例えば、
(i-2) Condition 2 (Situation where the Reynolds number is maximized)
This condition assumes a situation where the supplied fuel is humidified to a saturated state. Saturated vapor pressure is expressed as a function of temperature, for example

Figure 2006216441
により導出され、これより、アノード入口において燃料と伴に供給される水蒸気の量は、
Figure 2006216441
From this, the amount of water vapor supplied with fuel at the anode inlet is

Figure 2006216441
として得られる。ここで水蒸気の粘性係数は温度の関数であるとし、例えば、
Figure 2006216441
As obtained. Here, the viscosity coefficient of water vapor is a function of temperature.

Figure 2006216441
で導出される。また、密度は状態方程式、
Figure 2006216441
Is derived by The density is the equation of state,

Figure 2006216441
より導出され、供給される気体の粘性係数及び密度は、それぞれ
Figure 2006216441
The viscosity coefficient and density of the gas derived and supplied are respectively

Figure 2006216441
Figure 2006216441

Figure 2006216441
から導出できる。この混合気体の体積流量は、
Figure 2006216441
Can be derived from The volume flow rate of this gas mixture is

Figure 2006216441
で求められ、流路での平均流速は、
Figure 2006216441
The average flow velocity in the flow path is

Figure 2006216441
となり、アノ−ド入口の条件2に対するレイノルズ数は、
Figure 2006216441
And the Reynolds number for condition 2 at the anode entrance is

Figure 2006216441
で与えられる。
Figure 2006216441
Given in.

(ii)アノード側出口
(ii−1) 条件1(レイノルズ数が最小となる状況)
この条件では、流出する気体は反応により水素が消費された後の残留水素のみで、流量は、
(ii) Anode outlet
(ii-1) Condition 1 (Situation where Reynolds number is minimized)
Under this condition, the outflowing gas is only residual hydrogen after hydrogen is consumed by the reaction.

Figure 2006216441
で求められ、体積流量は、
Figure 2006216441
And the volume flow rate is

Figure 2006216441
となる。流速は、
Figure 2006216441
It becomes. The flow rate is

Figure 2006216441
となり、粘性係数を式(11)より、密度を式(9)よりそれぞれ導けば、アノード出口の条件1に対するレイノルズ数は、
Figure 2006216441
If the viscosity coefficient is derived from equation (11) and the density is derived from equation (9), the Reynolds number for condition 1 at the anode outlet is

Figure 2006216441
より求められる。
Figure 2006216441
More demanded.

(ii−2) 条件2(レイノルズ数が最大となる状況)
この条件での気体成分は、アノードの入口条件2(飽和状態の水素)と同一であり、流量のみが減少する条件となる。水素の流量が式(24)で導出され、ここで含まれる水蒸気の量は飽和状態を想定しているので、
(ii-2) Condition 2 (Situation in which the Reynolds number is maximized)
The gas component under this condition is the same as the anode inlet condition 2 (saturated hydrogen), and only the flow rate is reduced. The flow rate of hydrogen is derived from equation (24), and the amount of water vapor contained here assumes a saturated state.

Figure 2006216441
となり、これらの混合気体の体積流量は、
Figure 2006216441
The volume flow rate of these gas mixtures is

Figure 2006216441
となり、これより導出されるアノード出口流速は、
Figure 2006216441
The anode outlet flow velocity derived from this is

Figure 2006216441
となる。ここでの密度及び粘性係数は気体成分が入口条件2と同じであるので、
Figure 2006216441
It becomes. Since the density and viscosity coefficient here are the same as those in the inlet condition 2 for the gas component,

Figure 2006216441
Figure 2006216441

Figure 2006216441
である。よって、アノード入口、条件2のレイノルズ数は、
Figure 2006216441
It is. Therefore, the Reynolds number of the anode inlet and condition 2 is

Figure 2006216441
で定義される。
Figure 2006216441
Defined by

(iii)カソード側入口
(iii−1)条件1(レイノルズ数が最小となる条件)
この条件は、酸化剤として純酸素を用いた状況で、流量は式(8)で示される量となる。この際、供給ガスの密度は、状態方程式より、
(iii) Cathode side inlet
(iii-1) Condition 1 (Condition that minimizes the Reynolds number)
This condition is a situation in which pure oxygen is used as the oxidizing agent, and the flow rate is an amount represented by the equation (8). At this time, the density of the supply gas is

Figure 2006216441
となる。また、粘性係数は温度の関数であり、例えば、
Figure 2006216441
It becomes. The viscosity coefficient is a function of temperature, for example,

Figure 2006216441
で導出される。ここでの体積流量は、
Figure 2006216441
Is derived by The volume flow here is

Figure 2006216441
であり、これより流速は、
Figure 2006216441
From this, the flow rate is

Figure 2006216441
で求められる。これらより、カソード入口、条件1のレイノルズ数は、
Figure 2006216441
Is required. From these, the Reynolds number of the cathode inlet and condition 1 is

Figure 2006216441
で求めることができる。
Figure 2006216441
Can be obtained.

(iii−2) 条件2(レイノルズ数が最大となる条件)
この条件は、酸化剤として空気中の酸素を用いる状況である。このため、流路内には酸素以外に窒素等の気体も流入することとなる。窒素以外の気体は微量であるとすると、酸素以外に供給される気体の供給量は、供給空気中の酸素と窒素のモル分率をKO2、KN2とすれば、流入する窒素の量は、
(iii-2) Condition 2 (Conditions that maximize the Reynolds number)
This condition is a situation where oxygen in the air is used as the oxidant. For this reason, in addition to oxygen, gases such as nitrogen also flow into the flow path. Assuming that the amount of gas other than nitrogen is very small, the amount of gas supplied in addition to oxygen can be calculated as follows: If the mole fraction of oxygen and nitrogen in the supply air is K O2 and K N2 , the amount of nitrogen flowing in is ,

Figure 2006216441
で導出され、これより入口における体積流量は、
Figure 2006216441
From this, the volume flow rate at the inlet is

Figure 2006216441
となる。窒素の粘性係数は、温度の関数であり、例えば、
Figure 2006216441
It becomes. The viscosity coefficient of nitrogen is a function of temperature, for example

Figure 2006216441
から導出される。密度は、状態方程式、
Figure 2006216441
Is derived from Density is the equation of state,

Figure 2006216441
から求める。これらを用いて供給気体の粘性係数及び密度は、混合成分のモル分率から決まるとして、それぞれ
Figure 2006216441
Ask from. Using these, the viscosity coefficient and density of the supply gas are determined from the mole fraction of the mixed components,

Figure 2006216441
Figure 2006216441

Figure 2006216441
となる。流速は式(38)で示される体積流量より次のように導出する。
Figure 2006216441
It becomes. The flow velocity is derived as follows from the volume flow rate represented by equation (38).

Figure 2006216441
これらを用いると、カソード入口、条件2の場合のレイノルズ数は、
Figure 2006216441
When these are used, the Reynolds number for the cathode inlet and condition 2 is

Figure 2006216441
となる。
Figure 2006216441
It becomes.

(iv)カソード側出口
(iv−1) 条件1(レイノルズ数が最小となる条件)
この条件は、入口において酸化剤として純酸素を供給した条件であり、排出されるのは反応による生成水で飽和状態にまで加湿された残留酸素である。この場合の酸素の流量は、反応による消費後の残量であり、
(iv) Cathode side outlet
(iv-1) Condition 1 (Condition that minimizes the Reynolds number)
This condition is a condition in which pure oxygen is supplied as an oxidizing agent at the inlet, and what is discharged is residual oxygen that has been humidified to a saturated state with water produced by the reaction. The flow rate of oxygen in this case is the remaining amount after consumption due to the reaction,

Figure 2006216441
で求められる。ここに含まれる水蒸気の量は、
Figure 2006216441
Is required. The amount of water vapor contained here is

Figure 2006216441
で得られ、出口気体の体積流量は、
Figure 2006216441
And the volume flow rate of the outlet gas is

Figure 2006216441
となり、これより導出されるアノード出口流速は、
Figure 2006216441
The anode outlet flow velocity derived from this is

Figure 2006216441
で求められる。また、飽和状態の気体の粘性係数と密度は、
Figure 2006216441
Is required. The viscosity coefficient and density of the saturated gas are

Figure 2006216441
Figure 2006216441

Figure 2006216441
で求められ、これに基づけば、カソード出口の条件1でのレイノルズ数は、
Figure 2006216441
Based on this, the Reynolds number under condition 1 at the cathode outlet is

Figure 2006216441
となる。
Figure 2006216441
It becomes.

(iv−2) 条件2(レイノルズ数が最大となる条件)
この条件は、取り込んだ空気中の酸素を酸化剤として用い、反応による生成水により飽和状態にまで加湿された条件であり、カソード側出口から排出されるのは残留した酸素、空気に含まれていた窒素及び水蒸気である。含まれる水蒸気量を、
(iv-2) Condition 2 (Condition that maximizes the Reynolds number)
This condition is that oxygen in the taken-in air is used as an oxidant and is humidified to a saturated state by water produced by the reaction, and the oxygen discharged from the cathode side outlet is contained in the residual oxygen and air. Nitrogen and water vapor. The amount of water vapor contained

Figure 2006216441
とすれば、混合気体の体積流量は、
Figure 2006216441
Then, the volume flow rate of the mixed gas is

Figure 2006216441
となり、流速は、
Figure 2006216441
And the flow rate is

Figure 2006216441
で得られる。また、混合された流体の物性はそのモル分率より導出できるとすれば、次式
Figure 2006216441
It is obtained with. If the physical properties of the mixed fluid can be derived from its molar fraction,

Figure 2006216441
Figure 2006216441

Figure 2006216441
で得られ、カソード出口の条件2でのレイノルズ数は、
Figure 2006216441
And the Reynolds number in condition 2 at the cathode exit is

Figure 2006216441
で求められる。
Figure 2006216441
Is required.

以上のようにして求めたアノードおよびカソードの入口および出口での最小および最大レイノルズ数から、アノード側またはカソード側に用いるセパレータの流路内のレイノルズ数の変動範囲を決定する。そして、こうして決定した変動範囲を境界条件として、上記式(1)〜(4)に示した質量保存の式、運動量保存の式、およびエネルギー保存の式を連成させた解析により、ベースとして仮定した複数の各流路ごとに、流路内のガス流動状況を示す指標(例えば、流量、流速、圧力降下量など)の値を導出する。そして、流路ごとの偏差を求め、この偏差が一定値以下になるように流路形状を設計する。こうして、複数の並行流路におけるガス流動状況のバラツキが少ない流路形状を、実験を行わずに計算だけで燃料電池用セパレータの流路設計を行うことができる。   From the minimum and maximum Reynolds numbers at the inlet and outlet of the anode and cathode determined as described above, the fluctuation range of the Reynolds number in the flow path of the separator used on the anode side or the cathode side is determined. Then, assuming the variation range determined in this way as a boundary condition, it is assumed as a base by the analysis that combines the mass conservation formula, the momentum conservation formula, and the energy conservation formula shown in the above formulas (1) to (4). For each of the plurality of flow paths, an index value (for example, a flow rate, a flow rate, a pressure drop amount, etc.) indicating a gas flow state in the flow path is derived. And the deviation for every flow path is calculated | required and a flow path shape is designed so that this deviation may become below a fixed value. In this way, the flow path shape of the fuel cell separator can be designed only by calculating the flow path shape with less variation in the gas flow situation in the plurality of parallel flow paths.

その具体的態様について次に例示する。ただし、これ以外の態様も可能であり、本発明は以下に説明する態様に限られるものではない。
上記(B)に記載した本発明に係る流路設計方法では、図3に示すように、燃料電池用セパレータの流路が複数に分岐する分岐部において、各流路内のガス流量のバランスが維持される流路形状を探索するために、対象となる流路形状(図3)で導出されるレイノルズ数、例えば、
Specific examples thereof will be exemplified below. However, other modes are possible, and the present invention is not limited to the modes described below.
In the flow path design method according to the present invention described in the above (B), as shown in FIG. 3, the balance of the gas flow rate in each flow path is obtained at the branching portion where the flow path of the fuel cell separator branches into a plurality. In order to search for the channel shape to be maintained, the Reynolds number derived from the target channel shape (FIG. 3), for example,

Figure 2006216441
Figure 2006216441

について、上記(A)に記載したようにしてカソードまたはアノードの出入口のレイノルズ数の変動範囲を求め、その変動範囲を境界条件を設定して、上記式(1)〜(4)を連成させて解析することにより、流路1〜Nのそれぞれについての流量Q1〜QN(又は流束:流路単位断面積当たりの流量q1〜qN)を導出する。そして、流量若しくは流束のバランスが十分に確保されるまで(即ち、各流路の流量または流束の偏差が一定値以下になるまで)、図4に示すフローチャートに従って、流路形状(例えば流路断面形状、分岐部の大きさ、角部分の曲率等)を変化させ、最適な流路形状を決定する。こうして、流量バランスの整った流路形状が設計される。 As described in (A) above, the fluctuation range of the Reynolds number at the entrance or exit of the cathode or anode is obtained, the boundary condition is set for the fluctuation range, and the above formulas (1) to (4) are coupled. Thus, flow rates Q 1 to Q N (or flux: flow rates q 1 to q N per channel cross-sectional area) for each of the channels 1 to N are derived. Then, according to the flowchart shown in FIG. 4 (for example, the flow shape) until the flow rate or flux balance is sufficiently secured (that is, until the flow rate or flux deviation of each flow channel becomes a certain value or less). The cross-sectional shape of the road, the size of the branching portion, the curvature of the corner portion, etc.) are changed to determine the optimum flow path shape. In this way, a flow path shape with a well-balanced flow rate is designed.

上記(C)に記載した本発明に係る流路設計方法では、上記(B)において示した流量のバランスを判断する(図4のフローチャート中の条件1)際の指標として、図5に示すガス流動状況における分岐後の各流路の流束(即ち、単位断面積当たりの流量)   In the flow path design method according to the present invention described in (C) above, the gas shown in FIG. 5 is used as an index for determining the flow rate balance shown in (B) (condition 1 in the flowchart of FIG. 4). Flux of each flow path after branching in the flow state (ie, flow rate per unit cross-sectional area)

Figure 2006216441
を、分岐した全流路の平均流束、
Figure 2006216441
The average flux of all branched flow paths,

Figure 2006216441
で除した値、即ち、
Figure 2006216441
The value divided by

Figure 2006216441
を用いる。それにより、簡便に流量バランスを把握でき、セパレータ上の流路設計へ反映させることができる。
Figure 2006216441
Is used. Thereby, the flow rate balance can be easily grasped and reflected in the flow path design on the separator.

上記(D)に記載した本発明に係る流路設計方法では、式(61)に示した流量の指標q'iを用いて、上記(A)に記載したアノード側とカソード側の入口、出口のレイノルズ数の変動範囲において、各流路の上記指標の最大値と最小値の偏差がそれぞれ±0.2以下となるように、上記(B)に記載した手法 (図3のフローチャート) に従って流路形状の改善を繰り返す。それにより、流路内の流量バランスに優れたセパレータの流路形状を設計することができ、高い電池性能の維持が可能となる。 In the flow path design method according to the present invention described in (D) above, the inlet and outlet on the anode side and cathode side described in (A) above are used using the flow rate index q ′ i shown in Formula (61). The flow path shape according to the method described in (B) above (flow chart in FIG. 3) so that the deviation between the maximum value and the minimum value of each of the flow paths in the Reynolds number fluctuation range is ± 0.2 or less. Repeat the improvement. Thereby, the flow path shape of the separator excellent in the flow rate balance in the flow path can be designed, and high battery performance can be maintained.

上記(E)に記載した本発明に係る流路設計方法では、上記(A)に示したレイノルズ数の変動範囲を境界条件として流路内部流動を把握するための解析を実施し、流路の合流・分岐部又は直線流路部分での圧力降下量の偏差を導出し、これを指標として圧力降下量を極小化できる流路形状を選択することにより、燃料電池全体での圧力損失の小さい流路を設計することが可能となる。   In the flow path design method according to the present invention described in (E) above, an analysis for grasping the flow inside the flow path is performed with the fluctuation range of the Reynolds number shown in (A) as a boundary condition. By deriving the pressure drop deviation at the confluence / branch section or straight flow path section and using this as an index to select a flow path shape that can minimize the pressure drop volume, a flow with low pressure loss across the entire fuel cell is selected. The road can be designed.

上記(F)に記載した本発明に係る流路設計方法では、上記(A)で示したレイノルズ数範囲を境界条件として流路内部流動を把握するための解析を実施し、流路の合流・分岐部での流速分布 (最大値と最小値との偏差) を導出する。この流速分布を指標として、流路内の高流速領域、低流速領域の発生を抑制する流路形状とすることにより、MEAの損傷の発生及び凝縮した生成水の滞留を抑制することが可能となる。   In the flow path design method according to the present invention described in (F) above, an analysis for grasping the flow inside the flow path is performed with the Reynolds number range shown in (A) as a boundary condition, and Derive the flow velocity distribution (deviation between the maximum and minimum values) at the bifurcation. Using this flow velocity distribution as an index, it is possible to suppress the occurrence of MEA damage and the retention of condensed product water by adopting a flow channel shape that suppresses the generation of a high flow velocity region and a low flow velocity region in the flow channel. Become.

上記(G)に記載した本発明に係る流路設計方法では、上記(F)に示した流速を指標として流路形状を探索する方法において、特に壁近傍の流速を設計指標とし、図6(a)に示すように、流路中に発生する低流速の領域を流路から削除する。具体的には、図示のように、低流速領域が発生するのは、上流側の並行流路からのガス流が合流し、向きが反転して下流側の並行流路に分岐する部分 (流路合流・分岐部) におけるコーナー部が主である。また、下流側の分岐した直線流路の手前側端部付近、中でも上流側に最も近い流路の端部付近にも、低流速領域が発生する。   In the flow path design method according to the present invention described in (G) above, in the method for searching the flow path shape using the flow velocity shown in (F) as an index, in particular, the flow velocity in the vicinity of the wall is used as a design index, and FIG. As shown in a), the low flow velocity region generated in the flow path is deleted from the flow path. Specifically, as shown in the figure, the low flow velocity region occurs because the gas flow from the upstream parallel flow path merges and the direction reverses and branches to the downstream parallel flow path (flow The corner is mainly at the road junction / branch. Further, a low flow velocity region is also generated in the vicinity of the front end of the branched straight flow path on the downstream side, particularly in the vicinity of the end of the flow path closest to the upstream side.

本発明に従って、このような低流速領域を削除するように設計した流路では、図6(b)に示すように、流路中の低流速領域の発生面積が著しく低減する。そのため、このような領域に滞留する生成水の排除が容易となり、高い電池性能の実現が可能となる。   In the flow channel designed to eliminate such a low flow velocity region according to the present invention, as shown in FIG. 6B, the generation area of the low flow velocity region in the flow channel is remarkably reduced. Therefore, it is easy to eliminate the generated water staying in such a region, and high battery performance can be realized.

上記(H)に記載した本発明に係る流路設計方法では、上記(G)に示した、解析により得られた低速領域を流路上から削除して生成水の滞留を招く低流速領域の発生を抑制する方法において、図7に示すフローチャートのように、ベースとなる流路から解析結果 [図8(a)、図中の黒塗り部分が低速領域示す] に基づいて改善された、新たな流路 (更新された流路) に対して再度解析を実施し、低流速領域の発生を把握する [図8(b)]。この新たに把握された流動特性により再度流路の改良(低流速領域の除去)を実施し、更に同様に解析を実施する [図8(c)]。このように低流速発生領域の把握、流路の改善を繰り返すことにより、滞留水の発生原因となる低流速領域の存在を極小化することが可能となり、より高い発電性能の実現が可能となる。   In the flow path design method according to the present invention described in (H) above, the generation of a low flow velocity area that causes retention of product water by deleting the low speed area obtained by the analysis from the flow path shown in (G) above. As shown in the flowchart of FIG. 7, the new method has been improved based on the analysis result [FIG. 8 (a), the black portion in the figure indicates the low speed region]. Re-analyze the flow path (updated flow path) and grasp the occurrence of the low flow velocity region [Fig. 8 (b)]. The flow path is improved again (removal of the low flow velocity region) based on the newly grasped flow characteristics, and the analysis is performed in the same manner [FIG. 8 (c)]. As described above, by repeatedly grasping the low flow velocity generation region and improving the flow path, it is possible to minimize the existence of the low flow velocity region that causes the generation of accumulated water, and it is possible to realize higher power generation performance. .

本発明は、以上の流路設計方法を利用して設計された複数の並行流路を備えた燃料電池用、特に固体高分子型燃料電池用のセパレータも包含する。並行流路は、好ましくはストレート方式とサーペンタイン方式をミックスしたミックス流路方式である。   The present invention also includes a separator for a fuel cell having a plurality of parallel flow paths designed by using the above flow path design method, particularly for a polymer electrolyte fuel cell. The parallel flow path is preferably a mixed flow path system in which a straight system and a serpentine system are mixed.

本発明はまた、上述した燃料電池用セパレータの流路設計方法において設計に必要な計算式を含む燃料電池用セパレータの流路設計用プログラムを記録した記録媒体をも包含する。   The present invention also includes a recording medium on which a flow path design program for a fuel cell separator including a calculation formula necessary for the design in the flow path design method for a fuel cell separator described above is recorded.

燃料電池用セパレータの材質は、一般に金属またはカーボン素材である。材質が異なると、流路を形成するための加工方法は違ってくるが、適当な加工方法は、当業者であれば容易に決めることができる。例えば、カーボン素材の場合には、一般に切削により加工が行われる。金属の場合は、切削以外に、プレス成形も利用可能となる。いずれの加工方法も本発明により設計された流路の形成に利用できる。   The material of the fuel cell separator is generally a metal or a carbon material. If the material is different, the processing method for forming the flow path is different, but an appropriate processing method can be easily determined by those skilled in the art. For example, in the case of a carbon material, processing is generally performed by cutting. In the case of a metal, press molding can be used in addition to cutting. Any processing method can be used to form the flow path designed according to the present invention.

複数の並行流路からのガスが合流し、流れの向きが反転し、逆向きの並行流路に分岐してガスが流れていく部分の流路である流路の合流・分岐部においては、例えば、図6(a)、(b)に示したように、流路が合流する上流側部分 (合流部) の流路幅より、流路が分岐する下流側部分 (分岐部) の流路幅を大きくしてもよい。それにより、上流側の断面積の小さい合流部で一度ガスの流れをまとめ、分岐部に至る前に断面積が拡大することになり、合流部で発生した偏流の影響が、分岐部に影響することが避けられる。   In the merging / branching part of the channel, which is the part of the channel where the gas flows from the plurality of parallel flow channels, the flow direction is reversed, and the gas flows through the reverse parallel flow channel, For example, as shown in FIGS. 6 (a) and 6 (b), the flow path in the downstream portion (branch section) where the flow path branches from the flow path width of the upstream section (merging section) where the flow paths merge. The width may be increased. As a result, the gas flow is once collected at the confluence portion with a small cross-sectional area on the upstream side, and the cross-sectional area is enlarged before reaching the branch portion, and the influence of the drift generated at the confluence portion affects the branch portion. Can be avoided.

流路の合流・分岐部にガス流の整流作用がある突起を設置することは、従来より知られている。突起は、特に上記のように流路幅を拡大させた流路分岐部のガス流の主流が通過する場所に設置すること好ましい。突起は1個でもよく、1列または複数列の列状に設置してもよい。複数列の場合には千鳥配置とすることが好ましい。   It has been conventionally known that a projection having a gas flow rectifying action is provided at a junction / branch portion of a flow path. It is preferable that the protrusion is installed at a location where the main flow of the gas flow at the flow path branching portion whose flow path width is enlarged as described above passes. The number of the protrusions may be one, or the protrusions may be arranged in a single row or a plurality of rows. In the case of a plurality of rows, a staggered arrangement is preferable.

[実施例1]
固体高分子膜にはパーフルオロカーボンスルホン酸からなる50μm厚さの膜(Dupont社製、Nafion)を用い、拡散層 (電極) には300μmのカーボンペーパーを用いて、固体酸化物型燃料電池の単セルを構築した。実施例に用いた単セルの電極面積は70 mmx100 mmであり、図2(c)にaで示した流路の分岐・合流部に、図9(a)〜(h)に示す各種流路を適用したセパレータについて、本発明の流路設計方法を評価した。いずれのセルでも、アノード側とカソード側とでセパレータの流路形状は同一とした。図9(g)および(h)に見られる直径0.8 mmの円は、分岐・合流部の分岐部位の流れが多い部分に設けた整流用の半球状突起を示す。
[Example 1]
For the solid polymer membrane, a 50 μm thick membrane made of perfluorocarbon sulfonic acid (Dupont, Nafion) is used, and 300 μm carbon paper is used for the diffusion layer (electrode). A cell was built. The electrode area of the single cell used in the example is 70 mm × 100 mm, and the various flow paths shown in FIGS. 9A to 9H are formed at the branching / merging portion of the flow path indicated by a in FIG. With respect to the separator to which is applied, the flow path design method of the present invention was evaluated. In any cell, the flow path shape of the separator was the same on the anode side and the cathode side. Circles having a diameter of 0.8 mm seen in FIGS. 9 (g) and (h) indicate rectifying hemispherical protrusions provided in a portion where the flow at the branching portion of the branching / merging portion is large.

評価に用いたセパレータの流路は、事前に本発明の基づく流動解析による検討を実施している。解析の条件は、アノード極側の燃料ガスとして純水素ガス、カソード側の酸化剤ガスとして空気を用い、内部流体の温度を78℃とし、アノード側ではセル入口で飽和状態にまで加湿し、電池内部の圧力は1気圧とした。   The flow path of the separator used for evaluation has been studied in advance by flow analysis based on the present invention. The analysis conditions are: pure hydrogen gas as the fuel gas on the anode side, air as the oxidant gas on the cathode side, the internal fluid temperature is 78 ° C., and the anode side is humidified to saturation at the cell inlet, and the battery The internal pressure was 1 atm.

この条件下において想定される直線流路内のレイノルズ数は50〜500程度であり、このレイノルズ数の範囲で層流状態を想定した流動解析を行った(解析に用いたレイノルズ数の条件を表1に示す)。この結果を図10に示す。ここでは直線流路から流路屈曲部で合流、分岐した後の各流路の流量偏差を示している。これによると、各流路の流量偏差は流路1→2→4→5→3→6→7→8の順に抑制される傾向にある。   The Reynolds number in the straight channel assumed under these conditions is about 50 to 500, and a flow analysis was performed assuming a laminar flow condition within this Reynolds number range (reynolds number conditions used in the analysis are shown). 1). The results are shown in FIG. Here, the flow rate deviation of each flow path after merging and branching from the straight flow path at the flow path bending portion is shown. According to this, the flow rate deviation of each flow path tends to be suppressed in the order of flow paths 1 → 2 → 4 → 5 → 3 → 6 → 7 → 8.

Figure 2006216441
Figure 2006216441

同様の条件下(燃料ガスには99.999%の水素ガスを使用)で実際に発電を行う評価においては、上と同種の燃料ガス(水素)及び酸化剤ガス(空気)を用い、流量はそれぞれ3.5×10-4 mol/s、10.0×10-4 mol/sの一定値とした。評価中は電池本体の温度を78±2℃に保持すると共に、湿度制御はセル入口で行い、アノード側を飽和状態にまで加湿し、電池内部の圧力は1気圧とした。 In the evaluation of actual power generation under the same conditions (99.999% hydrogen gas is used as the fuel gas), the same type of fuel gas (hydrogen) and oxidant gas (air) as above are used, and the flow rate is 3.5 respectively. The constant values were × 10 −4 mol / s and 10.0 × 10 −4 mol / s. During the evaluation, the temperature of the battery body was maintained at 78 ± 2 ° C., humidity control was performed at the cell inlet, the anode side was humidified to saturation, and the pressure inside the battery was 1 atm.

図11に、電流密度を変化させた場合のセル電圧の変化を示す。これによると、本発明により評価し、流路形状を変化させて合流・分岐部での流動偏差を抑制した流路においては、流路分岐部での流量偏差が発生し難いため、燃料及び酸化剤の消費量が増大し、流量偏差の影響が大きく現れる高電流領域においても性能の劣化が見られず、高い電池電圧を保っている。即ち、図10に示した本発明による解析結果と、実際の発電条件で試験した図11に示す結果とがよく対応しており、本発明に従った流路設計方法が有効であることがわかる。   FIG. 11 shows changes in cell voltage when the current density is changed. According to this, in the flow path evaluated by the present invention and the flow deviation at the merging / branching part is suppressed by changing the flow path shape, the flow deviation at the flow branching part is unlikely to occur. Even in the high current region where the consumption of the agent increases and the influence of the flow rate deviation appears greatly, the performance is not deteriorated and a high battery voltage is maintained. That is, the analysis result according to the present invention shown in FIG. 10 and the result shown in FIG. 11 tested under actual power generation conditions correspond well, and it can be seen that the flow path design method according to the present invention is effective. .

[実施例2]
実施例1と同じ固体高分子膜および拡散層を用いて電池性能の経時劣化の評価を実施した。評価に用いたセパレータ流路形状を図12(a)〜(c)および図13(a)〜(c)に示す。
[Example 2]
Using the same solid polymer membrane and diffusion layer as in Example 1, evaluation of battery performance over time was performed. The separator channel shapes used in the evaluation are shown in FIGS. 12 (a) to (c) and FIGS. 13 (a) to (c).

ここで評価に用いた流路形状は、図12(a)〜(c)に示した流路に対して実施例1と同一条件(表1に示したレイノルズ数の条件)で本発明による流動解析による評価を実施した。その解析において壁面近傍が低流速となる領域を削除することにより得られた図13(a)〜(c)の流路形状に対して、再度解析を実施した。図12(a)〜(c)および図13(a)〜(c)の流路形状に対する解析において発生した低流速領域(壁面から0.1 mmの位置での流速が0.25 m/s以下の領域)を、それぞれ図14(a)〜(c)および図15(a)〜(c)に示す。   The flow path shape used for the evaluation here is the flow according to the present invention under the same conditions as in Example 1 (Reynolds number conditions shown in Table 1) for the flow paths shown in FIGS. 12 (a) to 12 (c). Evaluation by analysis was performed. In the analysis, the analysis was performed again on the channel shapes of FIGS. 13 (a) to (c) obtained by deleting the region where the vicinity of the wall surface has a low flow velocity. Low flow velocity region generated in the analysis of the flow path shapes in Fig. 12 (a) to (c) and Fig. 13 (a) to (c) (region where the flow velocity at a position of 0.1 mm from the wall is 0.25 m / s or less) Are shown in FIGS. 14 (a) to (c) and FIGS. 15 (a) to (c), respectively.

本発明に従った分岐・合流部の低流速領域の削除を行わない図12(a)〜(c)に示した流路における解析では、図14(a)〜(c)に示すように、流路の合流・分岐部のコーナー部分と流路山部の端部に大きな低流速領域が発生している。これに対して、本発明による評価方法に基づいて低流速領域を削除するように流路形状を変化させた図13(a)〜(c)に示した流路の解析では、図15(a)〜(c)に示すように、図14(a)〜(c)に見られた低流速領域の発生は大幅に抑制されている。   In the analysis in the flow path shown in FIGS. 12 (a) to (c) that do not delete the low flow velocity region of the branching / merging portion according to the present invention, as shown in FIGS. 14 (a) to (c), A large low flow velocity region is generated at the corner of the merging / branching portion of the flow path and at the end of the flow path peak. On the other hand, in the flow path analysis shown in FIGS. 13 (a) to 13 (c) in which the flow path shape is changed so as to delete the low flow velocity region based on the evaluation method according to the present invention, FIG. ) To (c), the generation of the low flow velocity region seen in FIGS. 14 (a) to (c) is greatly suppressed.

図12(a)〜(c)および図13(a)〜(c)に示した流路1〜6のそれぞれについて、実施例1と同様の条件下で実際に発電を行う評価においては、実施例1と同種の燃料及び酸化剤を用い、流量はそれぞれ3.5×10-4 mol/s及び10.0×10-4 mol/sの一定値とした。評価中は電池本体の温度を78±2℃に保持すると共に、湿度制御はセル入口で行い、アノード側を飽和状態にまで加湿し、電池内部の圧力は1気圧とした。 In each of the flow paths 1 to 6 shown in FIGS. 12 (a) to 12 (c) and FIGS. 13 (a) to 13 (c), evaluation was performed in actual power generation under the same conditions as in Example 1. The same type of fuel and oxidant as in Example 1 were used, and the flow rates were constant values of 3.5 × 10 −4 mol / s and 10.0 × 10 −4 mol / s, respectively. During the evaluation, the temperature of the battery body was maintained at 78 ± 2 ° C., humidity control was performed at the cell inlet, the anode side was humidified to saturation, and the pressure inside the battery was 1 atm.

図16に、電流密度を変化させた場合のセル電圧の変化を示す。この図から、本発明に従って低流速領域を削除した流路4〜6では、反応による水の発生量が大きくなる高電流密度の条件下では、削除しなかった流路1〜3に比べて、電池性能がやや向上していることが判る。   FIG. 16 shows changes in cell voltage when the current density is changed. From this figure, in the flow paths 4 to 6 in which the low flow velocity region is deleted according to the present invention, compared with the flow paths 1 to 3 that were not deleted under the high current density condition in which the amount of water generated by the reaction is large, It can be seen that the battery performance is slightly improved.

[実施例3]
実施例2と同一のセパレータの流路形状を用いて、単セル状態において燃料及び酸化剤の消費率を調整することにより、初期の電池の発電状態を0.5 A/cm2、0.62 Vとし、電流を一定に維持したまま50時間経過後の電圧降下率、
電圧降下率=1−50時間後のセル電圧/初期電圧
により評価した。この評価の間、電池本体の温度を78±2℃に保持すると共に、湿度制御はセル入口で行い、アノード側を飽和状態にまで加湿し、電池内部の圧力は1気圧とした。また、アノード極側燃料用ガスとしては99.9999%の水素ガスを用い、カソード側酸化剤ガスとしては空気を用いた。
[Example 3]
Using the same separator flow path shape as in Example 2, by adjusting the fuel and oxidant consumption rates in the single cell state, the initial battery power generation state was set to 0.5 A / cm 2 , 0.62 V, and the current Voltage drop rate after 50 hours,
Voltage drop rate = 1 Cell voltage after 1-50 hours / initial voltage was evaluated. During this evaluation, the temperature of the battery body was maintained at 78 ± 2 ° C., humidity control was performed at the cell inlet, the anode side was humidified to saturation, and the pressure inside the battery was 1 atm. Further, 99.9999% hydrogen gas was used as the anode-side fuel gas, and air was used as the cathode-side oxidant gas.

結果を表2に示す。この表から、図14(a)〜(c)に示したような低流速領域が存在する流路1〜3では、比較的大きな時間経過による電池性能劣化が見られる。これは、時間経過に伴って、発電により生成した水が低流速領域の滞留し、燃料及び酸化剤の触媒層への供給が阻害され易くなったことによると考えられる。一方、本発明に従って図15(a)〜(c)に示したように、低流速領域の発生が少なくなる流路形状のセパレータでは、時間経過による顕著な性能劣化は見られなかった。   The results are shown in Table 2. From this table, in the flow paths 1 to 3 in which the low flow velocity regions as shown in FIGS. 14 (a) to (c) exist, battery performance deterioration due to relatively large time passage is observed. This is considered to be due to the fact that water generated by power generation stays in the low flow rate region with time, and the supply of fuel and oxidant to the catalyst layer is likely to be hindered. On the other hand, as shown in FIGS. 15 (a) to 15 (c) in accordance with the present invention, in the separator having the flow path shape in which the generation of the low flow velocity region is reduced, no significant performance deterioration was observed over time.

Figure 2006216441
Figure 2006216441

高分子電解質膜型燃料電池の単セルの構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the single cell of a polymer electrolyte membrane type fuel cell. 図2(A)〜(C)は、燃料電池 (セパレータ) 内の典型的なガス流路の構造を説明する図である。FIGS. 2A to 2C are diagrams for explaining the structure of a typical gas flow path in the fuel cell (separator). 本発明の1態様に従った流路設計を説明するための、並行流路を有する燃料電池用セパレータの流路分岐部付近の流路概略図である。It is a flow path schematic diagram near a flow path branching part of a separator for a fuel cell having parallel flow paths for explaining a flow path design according to one aspect of the present invention. 本発明の1態様に係る流路設計を実施するためのフローチャートである。It is a flowchart for implementing the flow-path design which concerns on 1 aspect of this invention. 本発明の別の態様に係る流路設計を説明する、並行流路を有する燃料電池用セパレータの流路分岐部付近の流動状況を示す概略図である。It is the schematic which shows the flow condition of the flow-path branch part vicinity of the separator for fuel cells which has a parallel flow path explaining the flow-path design which concerns on another aspect of this invention. 図6(a)および(b)は、並行流路の合流・分岐部に発生する低流速領域とその削除を示す概略図である。6 (a) and 6 (b) are schematic views showing a low flow velocity region generated in the merging / branching portion of the parallel flow path and its deletion. 本発明の1態様に従って流路の低流速領域を削減する流路設計を実施するためのフローチャートである。4 is a flow chart for implementing a channel design that reduces the low flow velocity region of the channel in accordance with an aspect of the present invention. 図8(a)〜(c)は、本発明の1態様に従って流路の低流速領域の削減を繰り返す流路設計を説明する概略図である。FIGS. 8A to 8C are schematic diagrams illustrating a flow channel design that repeats the reduction of the low flow velocity region of the flow channel according to one embodiment of the present invention. 実施例1で採用したセパレータの流路形状を示す概略図である。FIG. 3 is a schematic diagram showing a flow path shape of a separator employed in Example 1. 実施例1で採用したセパレータの別の流路形状を示す概略図である。It is the schematic which shows another channel shape of the separator employ | adopted in Example 1. FIG. 実施例1で評価した各流路形状の流量偏差を示す図である。It is a figure which shows the flow volume deviation of each flow path shape evaluated in Example 1. FIG. 実施例1で評価した各流路形状について、燃料電池で発電した際の電池電圧と電流密度との関係を示すグラフである。It is a graph which shows the relationship between the cell voltage at the time of generating electric power with a fuel cell, and current density about each flow path shape evaluated in Example 1. FIG. 図12(a)〜(c)は実施例2において比較に用いた3種類のセパレータ流路形状を示す概略図である。12 (a) to 12 (c) are schematic views showing three types of separator channel shapes used for comparison in Example 2. FIG. 図13(a)〜(c)は、実施例2において本発明による方法で低流速領域を削減するように設計したセパレータ流路形状を示す概略図である。FIGS. 13 (a) to (c) are schematic views showing separator channel shapes designed to reduce the low flow velocity region by the method according to the present invention in Example 2. FIG. 図14(a)〜(c)は、実施例2において比較に用いたセパレータでの低流速領域の発生状況を示す概略図である。14 (a) to 14 (c) are schematic diagrams showing the occurrence of a low flow velocity region in the separator used for comparison in Example 2. FIG. 図15(a)〜(c)は、実施例2において本発明による方法で設計したセパレータでの低流速領域の発生状況を示す概略図である。FIGS. 15 (a) to 15 (c) are schematic views showing the state of occurrence of a low flow velocity region in the separator designed by the method according to the present invention in Example 2. FIG. 実施例2において、各流路について燃料電池で発電した際の電池電圧と電流密度の関係を示すグラフである。In Example 2, it is a graph which shows the relationship between the battery voltage at the time of generating electric power with a fuel cell about each flow path, and current density.

符号の説明Explanation of symbols

1.高分子電解質膜、2.触媒担持カーボン繊維膜、3.多孔質電極 (拡散層)、4.セパレータ、5.流路 1. 1. polymer electrolyte membrane; 2. catalyst-supported carbon fiber membrane; 3. porous electrode (diffusion layer); Separator, 5. Flow path

Claims (10)

燃料または酸化剤のガスが流れる複数の並行流路を備えた燃料電池用セパレータの流路形状を設計する方法であって、流路内を流れる燃料または酸化剤ガスの燃料電池運転中の消費と水の生成により変動する流路内ガスのレイノルズ数の変動範囲を決定し、この変動範囲を境界条件として、流路形状に対して質量保存の式、運動量保存の式、およびエネルギー保存の式を連成させて解析することによって、流路内のガス流動状況を示す指標の流路ごとの最大値と最小値の偏差を求め、この偏差が一定値以下になるように流路形状を設計することを特徴とする、燃料電池用セパレータの流路設計方法。   A method for designing a flow path shape of a fuel cell separator having a plurality of parallel flow paths through which fuel or oxidant gas flows, and consumption of fuel or oxidant gas flowing in the flow path during fuel cell operation The fluctuation range of the Reynolds number of the gas in the flow path that fluctuates due to water generation is determined, and with this fluctuation range as the boundary condition, the mass conservation equation, the momentum conservation equation, and the energy conservation equation are defined for the channel shape. By analyzing coupled, the deviation of the maximum value and the minimum value of each index of the index indicating the gas flow status in the flow path is obtained, and the flow path shape is designed so that this deviation is a certain value or less. A method for designing a flow path of a separator for a fuel cell. 複数の並行流路への分岐部の流路形状の設計において、流路内のガス流動状況を示す指標として分岐後の並行流路を流れるガスの流量を用いる、請求項1に記載の燃料電池用セパレータの流路設計方法。   2. The fuel cell according to claim 1, wherein the flow rate of the gas flowing in the parallel flow path after branching is used as an index indicating a gas flow state in the flow path in the design of the flow path shape of the branch portion to the plurality of parallel flow paths. Separator flow path design method. 前記指標として、分岐後の並行流路の各流路の流束(単位断面積当たりの流量)を平均流束で除した値を用いる、請求項2に記載の燃料電池用セパレータの流路設計方法。   The flow path design of the separator for a fuel cell according to claim 2, wherein a value obtained by dividing the flux (flow rate per unit cross-sectional area) of the parallel flow paths after branching by the average flux is used as the index. Method. 流路の偏差が±0.2以下となるように流路を設計する、請求項3に記載の燃料電池用セパレータの流路設計方法。   The flow path design method for a fuel cell separator according to claim 3, wherein the flow path is designed so that the deviation of the flow path is ± 0.2 or less. 複数の並行流路の合流・分岐部および/または直線流路部の流路形状の設計において、流路内のガス流動状況を示す指標として流路内のガス圧力降下量を用いる、請求項1に記載の燃料電池用セパレータの流路設計方法。   The gas pressure drop amount in the flow path is used as an index indicating the gas flow state in the flow path in the design of the flow path shape of the merge / branch section and / or the straight flow path section of the plurality of parallel flow paths. 2. A flow path design method for a separator for a fuel cell according to 1. 流路内のガス流動状況を示す指標として流路内のガス流速を用いる、請求項1に記載の燃料電池用セパレータの流路設計方法。   The method for designing a flow path of a separator for a fuel cell according to claim 1, wherein a gas flow rate in the flow path is used as an index indicating a gas flow state in the flow path. 複数の並行流路の合流・分岐部および/または直線流路部の流路形状の設計において、流路内のガス流動状況を示す指標として流路壁近傍の流速を用い、流速が低くなる領域を流路形状から削除するように合流・分岐部および/または直線流路部の流路設計を行う、請求項1に記載の燃料電池用セパレータの流路設計方法。   In the design of the flow path shape of the confluence / branch section and / or the straight flow path section of a plurality of parallel flow paths, the flow velocity is reduced by using the flow velocity near the flow passage wall as an indicator of the gas flow status in the flow passage. 2. The flow path design method for a fuel cell separator according to claim 1, wherein the flow path design of the merging / branching section and / or the straight flow path section is performed so as to be removed from the flow path shape. 解析による低流速領域の把握および削除後に、削除により更新された流路形状についての解析による低流速領域の把握および削除を繰り返すことにより、合流・分岐部および/または直線流路部の流路形状を流線に沿った形状とする、請求項7に記載の燃料電池用セパレータの流路設計方法。   After grasping and deleting the low flow velocity region by analysis, by repeatedly grasping and deleting the low flow velocity region by analysis of the flow channel shape updated by deletion, the flow channel shape of the merge / branch part and / or the straight flow channel part The flow path designing method for a fuel cell separator according to claim 7, wherein the shape of the fuel cell separator is a shape along a streamline. 請求項1〜8のいずれか1項に記載の方法により設計された複数の並行流路を有する燃料電池用セパレータ。   A fuel cell separator having a plurality of parallel flow paths designed by the method according to claim 1. 請求項1〜8のいずれか1項に記載の燃料電池用セパレータの流路設計方法で利用される計算式を含む燃料電池用セパレータの流路設計用プログラムを記録した記録媒体。   A recording medium in which a flow path design program for a fuel cell separator including a calculation formula used in the flow path design method for a fuel cell separator according to any one of claims 1 to 8 is recorded.
JP2005029054A 2005-02-04 2005-02-04 Flow path design method for fuel cell separator Active JP5017780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029054A JP5017780B2 (en) 2005-02-04 2005-02-04 Flow path design method for fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029054A JP5017780B2 (en) 2005-02-04 2005-02-04 Flow path design method for fuel cell separator

Publications (2)

Publication Number Publication Date
JP2006216441A true JP2006216441A (en) 2006-08-17
JP5017780B2 JP5017780B2 (en) 2012-09-05

Family

ID=36979471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029054A Active JP5017780B2 (en) 2005-02-04 2005-02-04 Flow path design method for fuel cell separator

Country Status (1)

Country Link
JP (1) JP5017780B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016315A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Technique of analyzing flow distribution performance of reaction gas of fuel cell
WO2008029954A1 (en) * 2006-09-07 2008-03-13 Sumitomo Chemical Company, Limited Method for evaluating durability of unit cell, device for evaluating durability, program for evaluating durability, and unit cell of fuel cell
JP2021077629A (en) * 2019-09-03 2021-05-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Fuel cell bipolar plates with flow uniformity
WO2023084342A1 (en) * 2021-11-10 2023-05-19 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング Data processing apparatus and method for designing electrochemical separator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153395A (en) * 1986-08-22 1988-06-25 Hitachi Ltd Heat exchanger
JPH06267559A (en) * 1993-03-15 1994-09-22 Toshiba Corp Fuel cell
JPH07103400A (en) * 1993-10-07 1995-04-18 Toshiba Corp Modeling method for piping system
JPH0982348A (en) * 1995-09-11 1997-03-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell
JPH11283639A (en) * 1998-03-27 1999-10-15 Toyota Motor Corp Separator for fuel cell and fuel cell
JP2000164230A (en) * 1998-11-27 2000-06-16 Aisin Seiki Co Ltd Separator for fuel cell, and fuel cell
JP2000182636A (en) * 1998-12-14 2000-06-30 Aisin Seiki Co Ltd Fuel cell separator and fuel cell
JP2000294261A (en) * 1999-04-09 2000-10-20 Honda Motor Co Ltd Fuel cell stack
JP2004006087A (en) * 2002-05-31 2004-01-08 Toto Ltd Fuel cell generator
JP2004055220A (en) * 2002-07-17 2004-02-19 Matsushita Electric Ind Co Ltd Separator of fuel cell
JP2004186138A (en) * 2002-11-20 2004-07-02 Honda Motor Co Ltd Fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153395A (en) * 1986-08-22 1988-06-25 Hitachi Ltd Heat exchanger
JPH06267559A (en) * 1993-03-15 1994-09-22 Toshiba Corp Fuel cell
JPH07103400A (en) * 1993-10-07 1995-04-18 Toshiba Corp Modeling method for piping system
JPH0982348A (en) * 1995-09-11 1997-03-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell
JPH11283639A (en) * 1998-03-27 1999-10-15 Toyota Motor Corp Separator for fuel cell and fuel cell
JP2000164230A (en) * 1998-11-27 2000-06-16 Aisin Seiki Co Ltd Separator for fuel cell, and fuel cell
JP2000182636A (en) * 1998-12-14 2000-06-30 Aisin Seiki Co Ltd Fuel cell separator and fuel cell
JP2000294261A (en) * 1999-04-09 2000-10-20 Honda Motor Co Ltd Fuel cell stack
JP2004006087A (en) * 2002-05-31 2004-01-08 Toto Ltd Fuel cell generator
JP2004055220A (en) * 2002-07-17 2004-02-19 Matsushita Electric Ind Co Ltd Separator of fuel cell
JP2004186138A (en) * 2002-11-20 2004-07-02 Honda Motor Co Ltd Fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016315A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Technique of analyzing flow distribution performance of reaction gas of fuel cell
WO2008029954A1 (en) * 2006-09-07 2008-03-13 Sumitomo Chemical Company, Limited Method for evaluating durability of unit cell, device for evaluating durability, program for evaluating durability, and unit cell of fuel cell
JP2021077629A (en) * 2019-09-03 2021-05-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Fuel cell bipolar plates with flow uniformity
JP7208198B2 (en) 2019-09-03 2023-01-18 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Fuel cell bipolar plate with flow uniformity
WO2023084342A1 (en) * 2021-11-10 2023-05-19 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング Data processing apparatus and method for designing electrochemical separator

Also Published As

Publication number Publication date
JP5017780B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US6586128B1 (en) Differential pressure fluid flow fields for fuel cells
US7691511B2 (en) Fuel cell having coolant flow field wall
Rahimi-Esbo et al. Analysis of water management in PEM fuel cell stack at dead-end mode using direct visualization
US9306230B2 (en) Online estimation of cathode inlet and outlet RH from stack average HFR
JP2008502112A (en) Flow area plate for fuel cells
US8722276B2 (en) Multiple transition flow field and method
US20120094208A1 (en) Fuel cell
US9634345B2 (en) Convective flow field for fuel cell stack
JP2011249171A (en) Fuel battery system, method of controlling fuel battery system, and method of determining deterioration of fuel battery stack
JP5017780B2 (en) Flow path design method for fuel cell separator
US20140356763A1 (en) Repeating unit for a fuel cell stack
JP2004039525A (en) Fuel cell
JP2011518415A (en) Fuel cell component with comb-shaped flow field
JP4868095B1 (en) Fuel cell system
AU2010361352B2 (en) Co-flow / counter-flow fuel cell or electrolysis cell
EP2557621A1 (en) Fuel cell
US8771895B2 (en) Online anode pressure bias to maximize bleed velocity while meeting emission constraint
US20050118489A1 (en) Modified gas outlet for improved reactant handling in fuel cell separator plates
JP5969000B2 (en) Long-life fuel cell with proton exchange membrane
Karrar et al. Effect Of Geometric Design Of The Flow Fields Plat On The Performance Of A PEM Fuel Cell. A Review
JP2006236851A (en) Polymer electrolyte fuel cell
JP2010257869A (en) Fuel cell
JP2006114386A (en) Fuel cell
CN100459264C (en) Fuel cell system
JP2007504601A (en) Gas supply panel for fuel cell and fuel cell having gas supply panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5017780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250