JP2006216420A - Membrane electrode composite for fuel cell - Google Patents

Membrane electrode composite for fuel cell Download PDF

Info

Publication number
JP2006216420A
JP2006216420A JP2005028531A JP2005028531A JP2006216420A JP 2006216420 A JP2006216420 A JP 2006216420A JP 2005028531 A JP2005028531 A JP 2005028531A JP 2005028531 A JP2005028531 A JP 2005028531A JP 2006216420 A JP2006216420 A JP 2006216420A
Authority
JP
Japan
Prior art keywords
electrode layer
catalyst electrode
current collector
solid electrolyte
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005028531A
Other languages
Japanese (ja)
Other versions
JP4934967B2 (en
Inventor
Masahiro Imanishi
雅弘 今西
Harumichi Nakanishi
治通 中西
Naruaki Murata
成亮 村田
Yoshihisa Tamura
佳久 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005028531A priority Critical patent/JP4934967B2/en
Publication of JP2006216420A publication Critical patent/JP2006216420A/en
Application granted granted Critical
Publication of JP4934967B2 publication Critical patent/JP4934967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode composite of which the output density per a unit volume is high and of which the current collection efficiency is high. <P>SOLUTION: The membrane electrode composite for a fuel cell comprises at least a tubular solid electrolyte membrane, an outside catalyst electrode layer formed at the outer peripheral face of the solid electrolyte membrane, an inside catalyst electrode layer arranged at the inside of the solid electrolyte membrane, and an inside current collector having a columnar shape arranged at the inside of the inside catalyst electrode layer. The membrane electrode composite for the fuel cell is provided in which a plurality of grooves are formed in the outer peripheral face of the inside current collector in the axial direction, an inside current collector side inside catalyst electrode layer is formed which is the inside catalyst electrode layer formed on a recessed face of the groove of the inside current collector, a solid electrolyte membrane side inside catalyst electrode layer is formed which is the inside catalyst electrode layer formed on the inner peripheral face of the solid electrolyte membrane, and the inside current collector side inside catalyst electrode layer and the solid electrolyte membrane side inside catalyst electrode layer are continuously formed so as to form an inside catalyst electrode layer inner space in its inner part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チューブ形状または円柱形状に形成することにより、コストを低減し、かつ小型化が可能な、燃料電池に用いられる燃料電池用膜電極複合体に関する。   The present invention relates to a membrane electrode assembly for a fuel cell used in a fuel cell, which can be reduced in cost and reduced in size by being formed into a tube shape or a columnar shape.

従来の平板構造の固体高分子電解質型燃料電池(以下、単に燃料電池と称する場合がある。)の最小発電単位である単位セルは、一般に固体電解質膜の両側に触媒電極層が接合されている膜電極複合体を有し、この膜電極複合体の両側にはガス拡散層が配されている。さらに、その外側にはガス流路を備えたセパレータが配されており、ガス拡散層を介して膜電極複合体の触媒電極層へと供給される燃料ガスおよび酸化剤ガスを通流させるとともに、発電により得られた電流を外部に伝える働きをしている。   A unit cell which is the minimum power generation unit of a conventional solid polymer electrolyte fuel cell having a flat plate structure (hereinafter sometimes simply referred to as a fuel cell) generally has a catalyst electrode layer bonded to both sides of the solid electrolyte membrane. A membrane electrode assembly is provided, and gas diffusion layers are disposed on both sides of the membrane electrode assembly. Furthermore, a separator having a gas flow path is arranged outside thereof, and the fuel gas and the oxidant gas supplied to the catalyst electrode layer of the membrane electrode composite are passed through the gas diffusion layer, It works to transmit the current obtained by power generation to the outside.

上記燃料電池の小型化のため、および、単位体積当たりの発電反応面積を大きくするためには、燃料電池の上記構成部材の厚さを薄くする必要がある。しかしながら、このような従来の平板構造の燃料電池においては、各構成部材の厚さをある一定以下の値にすることは、機能面や強度面から好ましくなく、設計限界に近づきつつある。そこで、同軸上に上記膜電極複合体の各層が積層されたチューブ形状または円柱形状の膜電極複合体が開発されている。   In order to reduce the size of the fuel cell and increase the power generation reaction area per unit volume, it is necessary to reduce the thickness of the constituent members of the fuel cell. However, in such a conventional flat plate structure fuel cell, setting the thickness of each constituent member to a certain value or less is not preferable in terms of function and strength, and is approaching the design limit. In view of this, a tube-shaped or columnar membrane electrode assembly in which the layers of the membrane electrode assembly are stacked on the same axis has been developed.

例えば、特許文献1には、同軸上に内側から順に、内部電極、触媒層、電解質層、触媒層、および外部電極が設けられた膜電極複合体が開示されており、上記内部電極の外周面および外部電極の内周面には複数の溝からなるガス通路が形成されている。このような膜電極複合体はその径を細く形成することにより、一定の空間に対し密に配置することができるため、単位体積当たりの電極面積を従来のものよりも大幅に増加することができる。しかしながら、上記膜電極複合体においては、内部電極の外周面上に形成された溝の凹凸のうち凸部のみにおいて上記内部電極と触媒層とが接しており、両者の接触面積が小さいため、小さい面積から集電を行うこととなり、効率的な集電は困難である。
現在、このような不具合を解消し、チューブ形状または円柱形状の膜電極複合体における単位体積当たりの出力密度をさらに向上させる様々な試みがなされている。
For example, Patent Document 1 discloses a membrane electrode complex in which an internal electrode, a catalyst layer, an electrolyte layer, a catalyst layer, and an external electrode are provided on the same axis in order from the inside, and the outer peripheral surface of the internal electrode is disclosed. A gas passage formed of a plurality of grooves is formed on the inner peripheral surface of the external electrode. By forming such a membrane electrode composite with a small diameter, it can be densely arranged in a certain space, so that the electrode area per unit volume can be greatly increased as compared with the conventional one. . However, in the above membrane electrode assembly, the internal electrode and the catalyst layer are in contact with each other only at the convex portion of the recesses and projections formed on the outer peripheral surface of the internal electrode, and the contact area between the two is small, so that the size is small. Current collection is performed from the area, and efficient current collection is difficult.
At present, various attempts have been made to solve such problems and further improve the output density per unit volume in a tube-shaped or cylindrical membrane electrode assembly.

特開2001−229933公報JP 2001-229933 A

本発明は、上記問題点に鑑みてなされたものであり、単位体積当たりの出力密度が高く、かつ集電効率が高い膜電極複合体を提供することを主目的とするものである。   The present invention has been made in view of the above problems, and a main object of the present invention is to provide a membrane electrode assembly having high output density per unit volume and high current collection efficiency.

上記目的を達成するために、本発明は、チューブ形状の固体電解質膜と、上記固体電解質膜の外周面に形成された外側触媒電極層と、上記固体電解質膜の内側に配置された内側触媒電極層と、上記内側触媒電極層の内側に配置された円柱形状を有する内側集電体とを少なくとも有する燃料電池用膜電極複合体であって、上記内側集電体の外周面上に軸方向に複数の溝が形成されており、上記内側集電体の溝の凹面上に形成された内側触媒電極層である内側集電体側内側触媒電極層が形成されており、上記固体電解質膜の内周面上に形成された内側触媒電極層である固体電解質膜側内側触媒電極層が形成されており、上記内側集電体側内側触媒電極層と、上記固体電解質膜側内側触媒電極層とが、その内部に内側触媒電極層内部空間を形成するように連続的に形成されていることを特徴とする燃料電池用膜電極複合体を提供する。   In order to achieve the above object, the present invention provides a tube-shaped solid electrolyte membrane, an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, and an inner catalyst electrode disposed inside the solid electrolyte membrane. A membrane electrode assembly for a fuel cell having at least a layer and an inner current collector having a cylindrical shape disposed inside the inner catalyst electrode layer, wherein the electrode assembly is axially disposed on an outer peripheral surface of the inner current collector. A plurality of grooves are formed, and an inner current collector side inner catalyst electrode layer that is an inner catalyst electrode layer formed on the concave surface of the groove of the inner current collector is formed, and an inner circumference of the solid electrolyte membrane A solid electrolyte membrane side inner catalyst electrode layer, which is an inner catalyst electrode layer formed on the surface, is formed, and the inner current collector side inner catalyst electrode layer and the solid electrolyte membrane side inner catalyst electrode layer are Forming the inner catalyst electrode layer internal space inside To provide a fuel cell membrane electrode assembly according to claim being urchin continuously formed.

本発明の燃料電池用膜電極複合体(以下、単に膜電極複合体と称する場合がある。)においては、内側集電体側内側触媒電極層および固体電解質膜側内側触媒電極層が設けられているため、従来のものよりも単位体積当たりの電極面積を大きくすることができ、出力密度を向上させることができる。また、上記内側集電体側内側触媒電極層は、内側集電体と広い面積において面接触しているため、集電効率を大幅に向上させることができる。   The fuel cell membrane electrode assembly of the present invention (hereinafter sometimes simply referred to as a membrane electrode assembly) is provided with an inner current collector side inner catalyst electrode layer and a solid electrolyte membrane side inner catalyst electrode layer. Therefore, the electrode area per unit volume can be made larger than the conventional one, and the output density can be improved. Further, since the inner current collector side inner catalyst electrode layer is in surface contact with the inner current collector in a wide area, the current collection efficiency can be greatly improved.

また、本発明においては、上記固体電解質膜と、上記内側集電体とが接していることが好ましい。これにより、膜電極複合体の外径を内側触媒電極層の厚さ相当分細くすることができ、膜電極複合体をさらに小型化することができるからである。   In the present invention, the solid electrolyte membrane is preferably in contact with the inner current collector. This is because the outer diameter of the membrane electrode assembly can be reduced by an amount corresponding to the thickness of the inner catalyst electrode layer, and the membrane electrode assembly can be further reduced in size.

さらに、本発明においては、上記外側触媒電極層の外周面に接するように配置された外側集電体を有することが好ましい。上記外側集電体を設けることにより、膜電極複合体の外側の集電を効率よく行うことができるからである。   Furthermore, in this invention, it is preferable to have the outer side electrical power collector arrange | positioned so that the outer peripheral surface of the said outer side catalyst electrode layer may be contact | connected. This is because by providing the outer current collector, it is possible to efficiently collect current outside the membrane electrode assembly.

また、本発明は、上述したような膜電極複合体を用いたことを特徴とする燃料電池を提供する。上記膜電極複合体を用いて燃料電池を構成することにより、単位体積当たりの出力密度が高く、高い効率で集電を行うことが可能な燃料電池を得ることができる。   The present invention also provides a fuel cell using the membrane electrode assembly as described above. By configuring a fuel cell using the membrane electrode assembly, a fuel cell having a high output density per unit volume and capable of collecting electricity with high efficiency can be obtained.

本発明の膜電極複合体においては、単位体積当たりの出力密度を高めることができ、かつ、発電反応により発生した電子の集電を効率よく行うことができるといった効果を奏する。   In the membrane electrode assembly of the present invention, it is possible to increase the power density per unit volume and to efficiently collect the electrons generated by the power generation reaction.

本発明は、燃料電池に用いられる膜電極複合体、およびそれを用いた燃料電池に関するものである。以下、それぞれ分けて説明する。   The present invention relates to a membrane electrode assembly used in a fuel cell and a fuel cell using the same. Hereinafter, each will be described separately.

A.燃料電池用膜電極複合体
まず、本発明の膜電極複合体について説明する。
図1は、本発明の膜電極複合体の一例を示す概略斜視図である。図1に示すように、本発明の膜電極複合体1は、チューブ形状の固体電解質膜2と、上記固体電解質膜2の外周面に形成された外側触媒電極層3と、上記固体電解質膜2の内側に配置された内側触媒電極層4と、上記内側触媒電極層4の内側に配置された円柱形状を有する内側集電体5とを有する。上記内側集電体5の外周面上には、軸方向に複数の溝6が形成されている。また、上記内側触媒電極層4は、上記溝6の凹面上に形成された内側集電体側内側触媒電極層7と、上記固体電解質膜2の内周面上に形成された固体電解質膜側内側触媒電極層8とから構成されている。上記内側集電体側内側触媒電極層7と固体電解質膜側内側触媒電極層8とは、その内部に内側触媒電極層内部空間9を形成している。さらに、上記内側集電体5の溝6が形成されていない部分には内側触媒電極層4は形成されておらず、上記固体電解質膜2の内周面と直に接している。
A. First, the membrane electrode assembly of the present invention will be described.
FIG. 1 is a schematic perspective view showing an example of the membrane electrode assembly of the present invention. As shown in FIG. 1, a membrane electrode assembly 1 of the present invention includes a tube-shaped solid electrolyte membrane 2, an outer catalyst electrode layer 3 formed on the outer peripheral surface of the solid electrolyte membrane 2, and the solid electrolyte membrane 2. The inner catalyst electrode layer 4 disposed inside the inner catalyst electrode 4 and the inner current collector 5 having a cylindrical shape disposed inside the inner catalyst electrode layer 4. A plurality of grooves 6 are formed in the axial direction on the outer peripheral surface of the inner current collector 5. The inner catalyst electrode layer 4 includes an inner current collector side inner catalyst electrode layer 7 formed on the concave surface of the groove 6 and a solid electrolyte membrane side inner side formed on the inner peripheral surface of the solid electrolyte membrane 2. And a catalyst electrode layer 8. The inner current collector side inner catalyst electrode layer 7 and the solid electrolyte membrane side inner catalyst electrode layer 8 form an inner catalyst electrode layer inner space 9 therein. Further, the inner catalyst electrode layer 4 is not formed in a portion where the groove 6 of the inner current collector 5 is not formed, and is in direct contact with the inner peripheral surface of the solid electrolyte membrane 2.

本発明の膜電極複合体においては、内側集電体側内側触媒電極層と固体電解質膜側内側触媒電極層とが設けられているため、従来の固体電解質膜側内側触媒電極層の相当する部分のみに内側触媒電極層が設けられているものと比較すると、膜電極複合体の外径を太くすることなく内側触媒電極層の面積を増加することができる。これにより、単位体積当たりの電極面積を増加することができ、単位体積当たりの出力密度を向上させることができる。   In the membrane electrode assembly of the present invention, the inner current collector side inner catalyst electrode layer and the solid electrolyte membrane side inner catalyst electrode layer are provided, so that only the corresponding portion of the conventional solid electrolyte membrane side inner catalyst electrode layer is provided. Compared with the case in which the inner catalyst electrode layer is provided, the area of the inner catalyst electrode layer can be increased without increasing the outer diameter of the membrane electrode assembly. Thereby, the electrode area per unit volume can be increased, and the output density per unit volume can be improved.

また、本発明の膜電極複合体においては、上記内側集電体側内側触媒電極層を内側集電体上の溝の凹面上に形成することにより、内側集電体側内側触媒電極層と内側集電体とを広い面積において面接触させることができる。そのため、内側触媒電極層から内側集電体へと電子が移動する際の抵抗を低減することができ、集電効率を大幅に向上させることができる。
以下、上述したような本発明の膜電極複合体を構成する各部材について、それぞれ分けて説明する。
In the membrane electrode assembly of the present invention, the inner current collector side inner catalyst electrode layer is formed on the concave surface of the groove on the inner current collector, whereby the inner current collector side inner catalyst electrode layer and the inner current collector are formed. The body can be brought into surface contact over a wide area. Therefore, the resistance when electrons move from the inner catalyst electrode layer to the inner current collector can be reduced, and the current collection efficiency can be greatly improved.
Hereinafter, each member constituting the membrane electrode assembly of the present invention as described above will be described separately.

1.内側触媒電極層
本発明の膜電極複合体に用いられる内側触媒電極層は、内側集電体側内側触媒電極層と、固体電解質膜側内側触媒電極層とから構成される。上記内側集電体側内側触媒電極層は、円柱形状を有する内側集電体の外周面上に軸方向に複数形成された溝の凹面上に、上記溝の凹面の形状に沿うように形成される。上記内側集電体側内側触媒電極層を内側集電体の溝の凹面に沿って、内側集電体と接するように形成することにより、内側集電体と内側触媒電極層との接触面積を広く確保することができ、効率よく集電を行うことが可能になるからである。
1. Inner catalyst electrode layer The inner catalyst electrode layer used in the membrane electrode assembly of the present invention is composed of an inner current collector side inner catalyst electrode layer and a solid electrolyte membrane side inner catalyst electrode layer. The inner current collector side inner catalyst electrode layer is formed on the concave surface of the groove formed in the axial direction on the outer peripheral surface of the cylindrical inner current collector so as to follow the shape of the concave surface of the groove. . By forming the inner current collector side inner catalyst electrode layer in contact with the inner current collector along the concave surface of the groove of the inner current collector, the contact area between the inner current collector and the inner catalyst electrode layer can be increased. This is because it can be ensured and current can be collected efficiently.

また、本発明においは、上記内側集電体側内側触媒電極層に加え、上記固体電解質膜の内周面上に、上記固体電解質膜と接するように固体電解質膜側内側触媒電極層が形成される。上記固体電解質膜側内側触媒電極層の端部は、上述した内側集電体側内側触媒電極層の端部と接するように形成されており、その内部には気密な空間である内側触媒電極層内部空間が形成される。上記内側触媒電極層内部空間を取り囲むように、上記内側集電体側内側触媒電極層と固体電解質膜側内側触媒電極層とを切れ目なく連続的に形成することにより、発電反応中に発生する電子やプロトンは両内側触媒電極層内を自由に移動することができるようになり、内側集電体や固体電解質膜へも自由に移動することができる。   In the present invention, in addition to the inner current collector side inner catalyst electrode layer, a solid electrolyte membrane side inner catalyst electrode layer is formed on the inner peripheral surface of the solid electrolyte membrane so as to be in contact with the solid electrolyte membrane. . The end of the solid electrolyte membrane side inner catalyst electrode layer is formed so as to be in contact with the end of the inner current collector side inner catalyst electrode layer described above, and the inside of the inner catalyst electrode layer which is an airtight space inside A space is formed. By continuously forming the inner current collector side inner catalyst electrode layer and the solid electrolyte membrane side inner catalyst electrode layer so as to surround the inner catalyst electrode layer inner space, electrons generated during a power generation reaction Protons can move freely in the inner catalyst electrode layers, and can move freely to the inner current collector and the solid electrolyte membrane.

また、上記固体電解質膜側内側触媒電極層と、内側集電体側内側触媒電極層とを、その内部に気密な空間である内側触媒電極層内部空間を有するように形成することにより、上記内側触媒電極層内部空間を発電に必要なガスや生成水を通流させる流路として用いることができる。このような内側触媒電極層内部空間の、内側集電体の軸に垂直な断面の形状および面積は、流路としての機能を損なうものでなければ特に限定されるものではない。   Further, the inner catalyst electrode side inner catalyst electrode layer and the inner current collector side inner catalyst electrode layer are formed so as to have an inner catalyst electrode layer inner space which is an airtight space therein, whereby the inner catalyst The internal space of the electrode layer can be used as a flow path through which gas or generated water necessary for power generation flows. The shape and area of the cross section perpendicular to the axis of the inner current collector of the inner catalyst electrode layer internal space are not particularly limited as long as the function as the flow path is not impaired.

本発明において、内側触媒電極層の形状は、上記内側集電体側内側触媒電極層が上記溝の凹面に沿った形状であり、上記固体電解質膜側内側触媒電極層が上記固体電解質膜の内周面に沿った形状であり、かつ、その内部に内側触媒電極層内部空間が形成されたものであれば特に限定されるものではない。また、内側集電体側内側触媒電極層の厚さ、および固体電解質膜側内側触媒電極層の厚さは特に限定されるものではないが、一般的には1μm〜100μmの範囲内、中でも5μm〜20μmの範囲内のものが用いられる。   In the present invention, the shape of the inner catalyst electrode layer is such that the inner current collector side inner catalyst electrode layer is formed along the concave surface of the groove, and the solid electrolyte membrane side inner catalyst electrode layer is the inner periphery of the solid electrolyte membrane. It is not particularly limited as long as it has a shape along the surface and an inner catalyst electrode layer internal space is formed in the inside. Further, the thickness of the inner current collector side inner catalyst electrode layer and the thickness of the solid electrolyte membrane side inner catalyst electrode layer are not particularly limited, but are generally in the range of 1 μm to 100 μm, and in particular, 5 μm to The thing in the range of 20 micrometers is used.

上記内側集電体側内側触媒電極層および固体電解質膜側内側触媒電極層を形成する材料は特に限定されるものではなく、通常の平面構造の膜電極複合体に用いられている材料を上述したような形状に成形したものを用いることが可能である。例えば、パーフルオロスルホン酸系ポリマー(商品名:Nafion、デュポン株式会社製)等のプロトン伝導材、カーボンブラックやカーボンナノチューブ等の導電性材料、および上記導電性材料に担持された白金等の触媒を含むもの等を用いることができる。なお、上記内側集電体側内側触媒電極層と、固体電解質膜側内側触媒電極層とは、同じ材料から形成されていても異なる材料から形成されていてもよいが、両者の接合性や製造コスト等の観点から、両者を同じ材料から形成することが好ましい。   The material for forming the inner current collector side inner catalyst electrode layer and the solid electrolyte membrane side inner catalyst electrode layer is not particularly limited, and the materials used for the membrane electrode assembly having a normal planar structure are as described above. It is possible to use what was shaped into a simple shape. For example, a proton conductive material such as perfluorosulfonic acid polymer (trade name: Nafion, manufactured by DuPont), a conductive material such as carbon black or carbon nanotube, and a catalyst such as platinum supported on the conductive material. What is included can be used. The inner current collector side inner catalyst electrode layer and the solid electrolyte membrane side inner catalyst electrode layer may be formed of the same material or different materials. From the viewpoint of the above, it is preferable to form both from the same material.

上記内側集電体側内側触媒電極層および固体電解質膜側内側触媒電極層の形成方法は特に限定されるものではなく、一般的な方法により形成することができる。例えば、内側集電体の外周面上に形成された溝の凹面上に、上述したような内側触媒電極層を形成する材料を膜状に押し出して内側集電体側内側触媒電極層を形成し、上記固体電解質膜の内周面上に上記内側触媒電極層を形成する材料をチューブ形状に押し出すことにより固体電解質膜側内側触媒電極層を形成することができる。   The method for forming the inner current collector side inner catalyst electrode layer and the solid electrolyte membrane side inner catalyst electrode layer is not particularly limited, and can be formed by a general method. For example, on the concave surface of the groove formed on the outer peripheral surface of the inner current collector, the material for forming the inner catalyst electrode layer as described above is extruded into a film shape to form the inner current collector side inner catalyst electrode layer, A solid electrolyte membrane side inner catalyst electrode layer can be formed by extruding a material for forming the inner catalyst electrode layer in a tube shape on the inner peripheral surface of the solid electrolyte membrane.

2.内側集電体
本発明においては、円柱形状を有し、その外周面上に軸方向に複数の溝が形成されているものが用いられる。この際、内側集電体の円柱形状の軸に垂直な断面の形状は、円形状に限定されるものではないが、円形状または楕円形状のような、丸みを帯びた形状のものが好ましい。また、内側集電体の円柱形状は、溝を形成できる外周面を有している形状であれば特に限定されるものではない。例えば、本発明の内側集電体はその外周面上に流路に用いることができる溝を有しており、内側集電体の中心部を空洞にして反応に必要なガスや生成水用の流路を設ける必要がないため、中実の円柱形状を有する内側集電体を用いることができる。あるいは、内側集電体の形成に用いられる材料の量の低減、内側集電体の軽量化、または水や空気などの冷却媒体等の流体を通流させる等の目的のため、中心部に空洞を有する中空の円柱形状を有する内側集電体を用いることもできる。さらに、内側集電体の形成に高価な材料が用いられる場合は、材料コストの削減の目的で、円柱形状の中心部を外周面とは異なる材料から形成してもよい。
2. Inner current collector In the present invention, one having a cylindrical shape and having a plurality of grooves formed in the axial direction on the outer peripheral surface thereof is used. At this time, the shape of the cross section perpendicular to the cylindrical axis of the inner current collector is not limited to a circular shape, but a round shape such as a circular shape or an elliptical shape is preferable. The cylindrical shape of the inner current collector is not particularly limited as long as it has a shape having an outer peripheral surface capable of forming a groove. For example, the inner current collector of the present invention has a groove that can be used for a flow path on the outer peripheral surface thereof, and the center of the inner current collector is used as a cavity for a gas or generated water required for the reaction. Since there is no need to provide a flow path, an inner current collector having a solid cylindrical shape can be used. Alternatively, a cavity is formed in the center for the purpose of reducing the amount of material used to form the inner current collector, reducing the weight of the inner current collector, or allowing a fluid such as a cooling medium such as water or air to flow. It is also possible to use an inner current collector having a hollow cylindrical shape having Furthermore, when an expensive material is used to form the inner current collector, the cylindrical central portion may be formed from a material different from the outer peripheral surface for the purpose of reducing the material cost.

上記内側集電体の外周面上に形成される軸方向の溝の寸法や形状等は特に限定されるものではないが、上述したような内側触媒電極層内部空間をその内部に有する内側触媒電極層を溝の凹面上に形成できるような、ある程度の深さを有するものが好ましい。この際の溝の寸法や形状は、その凹面上に形成される内側触媒電極層の厚さや内側触媒電極層内部空間の寸法や形状により適宜調整することができる。一般的には、上記溝の幅が、0.01mm〜2mmの範囲内、中でも0.05mm〜0.2mmの範囲内であり、上記溝の深さが0.01mm〜2mmの範囲内、中でも0.05mm〜0.2mmの範囲内であるものが用いられる。   The dimensions and shape of the axial groove formed on the outer peripheral surface of the inner current collector are not particularly limited, but the inner catalyst electrode having the inner catalyst electrode layer inner space as described above is provided therein. A layer having a certain depth so that the layer can be formed on the concave surface of the groove is preferable. The size and shape of the groove at this time can be appropriately adjusted depending on the thickness of the inner catalyst electrode layer formed on the concave surface and the size and shape of the inner space of the inner catalyst electrode layer. In general, the width of the groove is in the range of 0.01 mm to 2 mm, especially in the range of 0.05 mm to 0.2 mm, and the depth of the groove is in the range of 0.01 mm to 2 mm. What is in the range of 0.05 mm-0.2 mm is used.

上述したような溝を上記内側集電体の外周面上に形成する方法は特に限定されるものではない。例えば、内側集電体を形成する材料を円柱形状に形成する際、または形成後に、ダイヤモンド等の硬い材料からなる型を内側集電体の外周面に食い込むように配置して、両者の位置を相対的に移動させることによって溝を形成することができる。また、硬い材料からなる型を内側集電体の外周面上に食い込ませることによって溝を形成してもよい。さらに、円柱形状の導電性材料を切削等することにより所望の形状を有する流路用の溝を形成してもよいが、本発明においては内側集電体の外周面に型を食い込ませる方法により溝を形成することが好ましい。この方法によれば、切削屑などの発生がないため、切削屑などを除去する作業も必要なく、形成された溝が切削屑などにより閉塞される等の不具合を防止することができる。   The method for forming the grooves as described above on the outer peripheral surface of the inner current collector is not particularly limited. For example, when the material forming the inner current collector is formed into a cylindrical shape, or after the formation, a mold made of a hard material such as diamond is arranged so as to bite into the outer peripheral surface of the inner current collector, The groove can be formed by relatively moving. Moreover, you may form a groove | channel by making the type | mold consisting of a hard material bite into the outer peripheral surface of an inner side electrical power collector. Further, a groove for a flow path having a desired shape may be formed by cutting a cylindrical conductive material, but in the present invention, by a method of biting a mold into the outer peripheral surface of the inner current collector. It is preferable to form a groove. According to this method, since there is no generation of cutting waste or the like, it is not necessary to remove the cutting waste or the like, and it is possible to prevent problems such as the formed groove being blocked by cutting waste or the like.

また、本発明においては、上記内側集電体が、その外側に配置される固体電解質膜と接していることが好ましい。従来の円柱形状の膜電極複合体は、チューブ形状の固体電解質膜の内周面上にチューブ形状の内側触媒電極層が形成されており、さらにその内側触媒電極層の内周面に接するように、外周面に溝を有する内側集電体が配置されている膜電極複合体(例えば、特開2001−229933公報)である。このような膜電極複合体においては、内側集電体は、上記溝が形成されていない部分において、内側触媒電極層を介して固体電解質膜と接している場合が多い。しかしながら、本発明においては、内側集電体と固体電解質膜との間に内側触媒電極層を設けずに、内側集電体と固体電解質膜の内周面とを直に接触させることにより、従来のものよりも固体電解質膜の外径を小さく、つまり膜電極複合体の外径を小さくすることができ、膜電極複合体をさらに小型化することができる。   Moreover, in this invention, it is preferable that the said inner side electrical power collector is in contact with the solid electrolyte membrane arrange | positioned on the outer side. A conventional cylindrical membrane electrode assembly has a tube-shaped inner catalytic electrode layer formed on the inner peripheral surface of a tube-shaped solid electrolyte membrane, and further contacts the inner peripheral surface of the inner catalytic electrode layer. A membrane electrode assembly (for example, JP-A-2001-229933) in which an inner current collector having a groove on the outer peripheral surface is disposed. In such a membrane electrode assembly, the inner current collector is often in contact with the solid electrolyte membrane via the inner catalyst electrode layer in a portion where the groove is not formed. However, in the present invention, without providing the inner catalyst electrode layer between the inner current collector and the solid electrolyte membrane, the inner current collector and the inner peripheral surface of the solid electrolyte membrane are brought into direct contact with each other. The outer diameter of the solid electrolyte membrane can be made smaller than that of the membrane electrode, that is, the outer diameter of the membrane electrode assembly can be reduced, and the membrane electrode assembly can be further miniaturized.

上記内側集電体は、上記内側触媒電極層または固体電解質膜の内側に接するように形成される。そのため、内側集電体の外径は、共に用いられる内側集電体や固体電解質膜の内径により決定されるものであるが、通常は、0.1mm〜100mmの範囲内、中でも0.5mm〜3mmの範囲内のものが用いられる。   The inner current collector is formed so as to contact the inner side of the inner catalyst electrode layer or the solid electrolyte membrane. Therefore, the outer diameter of the inner current collector is determined by the inner current collector and the inner diameter of the solid electrolyte membrane used together. Usually, the outer diameter is in the range of 0.1 mm to 100 mm, particularly 0.5 mm to The thing in the range of 3 mm is used.

本発明において、内側集電体を形成する材料は、導電性が高いものであれば特に限定されるものではない。このような内側集電体を形成する材料は耐腐食性が高い材料が好ましく、例えば、チタン、ステンレス鋼、白金、金、SiO、B、NdO、またはTiC、TiSi、TiB等のチタン系合金などの金属等、またはカーボン、導電性セラミックス、導電性樹脂などを用いることができる。 In the present invention, the material forming the inner current collector is not particularly limited as long as it has high conductivity. The material forming the inner current collector is preferably a material having high corrosion resistance. For example, titanium, stainless steel, platinum, gold, SiO 2 , B 2 O 3 , Nd 2 O, or TiC, TiSi 2 , A metal such as a titanium-based alloy such as TiB 2 or the like, carbon, conductive ceramics, conductive resin, or the like can be used.

3.固体電解質膜
本発明に用いられる固体電解質膜としては、チューブ形状を有し、プロトン伝導性に優れ、かつ電流を流さない材料からなるものであれば特に限定されるものではない。このような固体電解質膜を形成する電解質材料としては、ナフィオン(商品名:Nafion、デュポン株式会社製)などに代表されるようなフッ素系樹脂、アミド系樹脂に代表されるような炭化水素系樹脂等有機系のもの、または、ケイ素酸化物を主成分とするものなどの無機系のもの等を挙げることができる。
3. Solid electrolyte membrane The solid electrolyte membrane used in the present invention is not particularly limited as long as it has a tube shape, is excellent in proton conductivity, and is made of a material that does not flow current. Examples of the electrolyte material for forming such a solid electrolyte membrane include fluorine resins such as Nafion (trade name: Nafion, manufactured by DuPont) and hydrocarbon resins such as amide resins. Examples thereof include organic materials such as organic materials, and inorganic materials such as those containing silicon oxide as a main component.

上記無機系の電解質材料を用いた固体電解質膜としては、多孔質ガラスをチューブ形状に成形し、そのナノ細孔内の表面を改質して、プロトン導電性を付与したチューブ形状の固体電解質膜や、チューブ形状のリン酸ガラスを応用したもの等を挙げることができる。上記多孔質ガラスを用いたものとしては、例えば多孔質ガラスの細孔内表面のOH基にメルカプトプロピルトリメトキシシランのシランカップリング剤を反応させ、その後にメルカプト基の−SHを酸化することにより、プロトン伝導性を有するスルホン酸基を導入する方法(化学と工業 第57巻 第1号(2004年)p41〜p44)等を挙げることができる。また、リン酸ガラスを応用したものとしては、燃料電池 Vol.3 No.3 2004 p69〜p71に報告された例等を挙げることができる。   As the solid electrolyte membrane using the inorganic electrolyte material, a tube-shaped solid electrolyte membrane in which porous glass is formed into a tube shape, the surface inside the nanopore is modified, and proton conductivity is imparted. And those using tube-shaped phosphate glass. As the above-mentioned porous glass, for example, by reacting a silane coupling agent of mercaptopropyltrimethoxysilane with an OH group on the pore inner surface of the porous glass, and then oxidizing -SH of the mercapto group. And a method of introducing a sulfonic acid group having proton conductivity (Chemical and Industrial Vol. 57 No. 1 (2004) p41 to p44) and the like. In addition, as an application of phosphate glass, fuel cell Vol. 3 No. 3 2004 p69 to p71 can be mentioned.

4.外側触媒電極層
本発明に用いられる外側触媒電極層は特に限定されるものではなく、上記内側触媒電極層と同様に、通常の平面構造の膜電極複合体に用いられている材料をチューブ形状に成形したものを用いることができる。具体的には、パーフルオロスルホン酸系ポリマー(商品名:Nafion、デュポン株式会社製)等のプロトン伝導材、カーボンブラックやカーボンナノチューブ等の導電性材料、および上記導電性材料に担持された白金等の触媒を含むものである。
4). Outer catalyst electrode layer The outer catalyst electrode layer used in the present invention is not particularly limited. Like the inner catalyst electrode layer, the material used for the membrane electrode assembly having a normal planar structure is formed into a tube shape. What was shape | molded can be used. Specifically, proton conductive materials such as perfluorosulfonic acid polymers (trade name: Nafion, manufactured by DuPont), conductive materials such as carbon black and carbon nanotubes, platinum supported on the conductive materials, and the like The catalyst is included.

5.外側集電体
本発明に用いられる膜電極複合体の外側の集電の方法は特に限定されるものではなく、通常のチューブ形状(内部の空間に内側集電体が挿入された円柱状を含む。)を有する一般的な膜電極複合体における集電の方法により行うことができる。例えば、触媒電極層としての機能と、集電体としての機能とを併せ持つ部材を、外側触媒電極層および外側集電体として用いてもよい。また、触媒電極層とは別の部材を集電体として用い、上記外側触媒電極層の外側に外側集電体を形成してもよい。
5. Outer current collector The method of current collection outside the membrane electrode assembly used in the present invention is not particularly limited, and includes a normal tube shape (including a columnar shape in which an inner current collector is inserted into an internal space) .) Can be carried out by a method of collecting current in a general membrane electrode assembly. For example, a member having both a function as a catalyst electrode layer and a function as a current collector may be used as the outer catalyst electrode layer and the outer current collector. Further, a member other than the catalyst electrode layer may be used as a current collector, and the outer current collector may be formed outside the outer catalyst electrode layer.

上記の中でも、本発明の膜電極複合体は、上記外側触媒電極層の外周面に配置された外側集電体を有することが好ましい。触媒電極層とは別の部材である集電体を用い、触媒電極層に導電性の高い集電体を密着させて集電を行うことにより、電子の移動を円滑にし、効率よく集電を行うことができるからである。   Among these, the membrane electrode assembly of the present invention preferably has an outer current collector disposed on the outer peripheral surface of the outer catalyst electrode layer. By using a current collector, which is a separate member from the catalyst electrode layer, and collecting current by bringing a highly conductive current collector into close contact with the catalyst electrode layer, the electrons can move smoothly and efficiently collect current. Because it can be done.

上述したような外側集電体は導電性が高く、膜電極複合体のチューブ形状の径方向にガスを透過するものであれば特に限定されるものではない。外側集電体は、各膜電極複合体の外側触媒電極層毎に形成されてもよいし、複数本の膜電極複合体の外側触媒電極層に対して1つの外側集電体が形成されてもよい。このような外側集電体の形状の例としては、バネ形状のもの、管の壁面部に、その壁面を貫通する孔を多数有する形状や、管の壁面部が網目構造のもの、複数の直線状の導電体がチューブ形状の軸方向に配置されたもの等を挙げることができ、中でもバネ形状のものが好適に用いられる。また、このような形状の外側集電体を形成する材料としては、例えば、チタン、ステンレス鋼、白金、金、SiO、B、NdO、またはTiC、TiSi、TiB等のチタン系合金などの金属等、またはカーボンを挙げることができる。 The outer current collector as described above is not particularly limited as long as it has high conductivity and allows gas to permeate in the radial direction of the tube shape of the membrane electrode assembly. The outer current collector may be formed for each outer catalyst electrode layer of each membrane electrode assembly, or one outer current collector is formed for the outer catalyst electrode layers of a plurality of membrane electrode complexes. Also good. Examples of the shape of such an outer current collector include a spring shape, a shape having many holes penetrating the wall surface of the tube, a tube wall surface having a mesh structure, and a plurality of straight lines And the like, in which a tube-shaped conductor is arranged in the axial direction of a tube shape, among which a spring-shaped one is preferably used. Further, as a material for forming the outer current collector having such a shape, for example, titanium, stainless steel, platinum, gold, SiO 2, B 2 O 3 , Nd 2 O or TiC, TiSi 2, TiB 2 and the like, Examples thereof include metals such as titanium alloys, and carbon.

B.燃料電池
本発明の燃料電池は、上述したような燃料電池用膜電極複合体を用いたことを特徴とするものである。本発明の燃料電池は、最小発電単位である単位セルに上記「A.燃料電池用膜電極複合体」に記載された、単位体積当たりの出力密度が高く、効率的に集電を行うことができる膜電極複合体を用いたものであるため、出力密度が高く、集電効率の高い燃料電池を得ることができる。なお、本発明の燃料電池に用いられる膜電極複合体は、上記「A.燃料電池用膜電極複合体」に記載されたものと同様であるので、ここでの説明は省略する。
B. Fuel Cell The fuel cell of the present invention is characterized by using the membrane electrode assembly for a fuel cell as described above. The fuel cell of the present invention has a high output density per unit volume described in the above “A. Membrane electrode composite for fuel cell” in a unit cell which is the minimum power generation unit, and can efficiently collect current. Since a membrane electrode assembly that can be used is used, a fuel cell with high output density and high current collection efficiency can be obtained. The membrane electrode assembly used in the fuel cell of the present invention is the same as that described in the above-mentioned “A. Membrane electrode assembly for fuel cell”, and the description thereof is omitted here.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

本発明の膜電極複合体の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the membrane electrode assembly of this invention.

符号の説明Explanation of symbols

1…膜電極複合体
2…固体電解質膜
3…外側触媒電極層
4…内側触媒電極層
5…内側集電体
6…溝
7…内側集電体側内側触媒電極層
8…固体電解質膜側内側触媒電極層
9…内側触媒電極層内部空間
DESCRIPTION OF SYMBOLS 1 ... Membrane electrode complex 2 ... Solid electrolyte membrane 3 ... Outer catalyst electrode layer 4 ... Inner catalyst electrode layer 5 ... Inner collector 6 ... Groove 7 ... Inner collector side inner catalyst electrode layer 8 ... Solid electrolyte membrane side inner catalyst Electrode layer 9 ... Inside catalyst electrode layer internal space

Claims (4)

チューブ形状の固体電解質膜と、前記固体電解質膜の外周面に形成された外側触媒電極層と、前記固体電解質膜の内側に配置された内側触媒電極層と、前記内側触媒電極層の内側に配置された円柱形状を有する内側集電体とを少なくとも有する燃料電池用膜電極複合体であって、
前記内側集電体の外周面上に軸方向に複数の溝が形成されており、
前記内側集電体の溝の凹面上に形成された内側触媒電極層である内側集電体側内側触媒電極層が形成されており、
前記固体電解質膜の内周面上に形成された内側触媒電極層である固体電解質膜側内側触媒電極層が形成されており、
前記内側集電体側内側触媒電極層と、前記固体電解質膜側内側触媒電極層とが、その内部に内側触媒電極層内部空間を形成するように連続的に形成されていることを特徴とする燃料電池用膜電極複合体。
A tube-shaped solid electrolyte membrane, an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, an inner catalyst electrode layer arranged on the inner side of the solid electrolyte membrane, and an inner side of the inner catalyst electrode layer A membrane electrode assembly for a fuel cell having at least an inner current collector having a cylindrical shape,
A plurality of grooves are formed in the axial direction on the outer peripheral surface of the inner current collector,
An inner current collector side inner catalyst electrode layer which is an inner catalyst electrode layer formed on the concave surface of the groove of the inner current collector is formed,
A solid electrolyte membrane side inner catalyst electrode layer which is an inner catalyst electrode layer formed on the inner peripheral surface of the solid electrolyte membrane is formed,
The fuel, wherein the inner current collector side inner catalyst electrode layer and the solid electrolyte membrane side inner catalyst electrode layer are continuously formed so as to form an inner catalyst electrode layer inner space therein. Battery membrane electrode composite.
前記固体電解質膜と、前記内側集電体とが接していることを特徴とする請求項1に記載の燃料電池用膜電極複合体。 The membrane electrode assembly for a fuel cell according to claim 1, wherein the solid electrolyte membrane and the inner current collector are in contact with each other. 前記外側触媒電極層の外周面に接するように配置された外側集電体を有することを特徴とする請求項1または請求項2に記載の燃料電池用膜電極複合体。 The membrane electrode assembly for a fuel cell according to claim 1 or 2, further comprising an outer current collector disposed so as to be in contact with an outer peripheral surface of the outer catalyst electrode layer. 請求項1から請求項3までのいずれかの請求項に記載の燃料電池用膜電極複合体を用いたことを特徴とする燃料電池。
A fuel cell comprising the fuel cell membrane electrode assembly according to any one of claims 1 to 3.
JP2005028531A 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell Expired - Fee Related JP4934967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028531A JP4934967B2 (en) 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028531A JP4934967B2 (en) 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell

Publications (2)

Publication Number Publication Date
JP2006216420A true JP2006216420A (en) 2006-08-17
JP4934967B2 JP4934967B2 (en) 2012-05-23

Family

ID=36979451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028531A Expired - Fee Related JP4934967B2 (en) 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell

Country Status (1)

Country Link
JP (1) JP4934967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992561B1 (en) 2007-12-14 2010-11-08 한국에너지기술연구원 Tube Type Solid Oxide Fuel Cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150949A (en) * 1992-11-13 1994-05-31 Nkk Corp Cylindrical solid oxide fuel cell
JP2000182651A (en) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The Solid electrolyte fuel cell assembly and solid electrolyte fuel cell module
JP2000243414A (en) * 1999-02-23 2000-09-08 Osaka Gas Co Ltd Solid electrolyte type fuel cell
JP2001229933A (en) * 2000-02-16 2001-08-24 Hitachi Cable Ltd Fuel cell and its production method
JP2001338653A (en) * 2000-05-30 2001-12-07 Riken Corp Separator for fuel cell
JP2002367630A (en) * 2001-06-07 2002-12-20 Hitachi Cable Ltd Fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150949A (en) * 1992-11-13 1994-05-31 Nkk Corp Cylindrical solid oxide fuel cell
JP2000182651A (en) * 1998-12-15 2000-06-30 Kansai Electric Power Co Inc:The Solid electrolyte fuel cell assembly and solid electrolyte fuel cell module
JP2000243414A (en) * 1999-02-23 2000-09-08 Osaka Gas Co Ltd Solid electrolyte type fuel cell
JP2001229933A (en) * 2000-02-16 2001-08-24 Hitachi Cable Ltd Fuel cell and its production method
JP2001338653A (en) * 2000-05-30 2001-12-07 Riken Corp Separator for fuel cell
JP2002367630A (en) * 2001-06-07 2002-12-20 Hitachi Cable Ltd Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992561B1 (en) 2007-12-14 2010-11-08 한국에너지기술연구원 Tube Type Solid Oxide Fuel Cell

Also Published As

Publication number Publication date
JP4934967B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
KR100992165B1 (en) Fuel cell
JP4915045B2 (en) Membrane electrode composite for tube fuel cell and tube fuel cell
US20090047422A1 (en) Method for Manufacturing Tube-Type Fuel Cell
JP4957545B2 (en) FUEL CELL MODULE AND FUEL CELL INCLUDING THE FUEL CELL MODULE
JP2007220632A (en) Tube type fuel cell module
JP2005353484A (en) Membrane electrode composite for tube type fuel cell, and current collector for tube type fuel cell
JP2006216410A (en) Fuel cell
JP5400414B2 (en) Electrolyzer
WO2022109420A1 (en) Corrugated electrodes for electrochemical applications
JP4934967B2 (en) Membrane electrode composite for fuel cell
JP2006216407A (en) Cell module assembly and fuel cell
JP2007335199A (en) Tubular solid polymer electrolyte fuel cell, and manufacturing method of tubular solid polymer electrolyte fuel cell
JP2009076395A (en) Tube type fuel battery cell, and tube type fuel cell equipped with tube type fuel battery cell
JP2006216463A (en) Membrane electrode composite for fuel cell
JP2006216419A (en) Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP4674452B2 (en) Membrane electrode composite for tube fuel cell
JP2006216421A (en) Membrane electrode composite for fuel cell
JP2006190603A (en) Tubular membrane-electrode assembly for fuel cell with heat insulation tube
JP4649886B2 (en) Membrane electrode composite for tube type fuel cell and method for producing the same
JP2006216416A (en) Membrane electrode assembly bundle for tube type fuel cell
JP2006216418A (en) Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP4752216B2 (en) Membrane electrode composite for tube fuel cell
JP2006216417A (en) Membrane electrode assembly for tube type fuel cell, and tube type fuel cell
JP2008004390A (en) Tube type fuel cell
JP4563084B2 (en) Method for manufacturing membrane electrode assembly for tube type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

LAPS Cancellation because of no payment of annual fees