JP2006216294A - Fuel battery cell and its manufacturing method - Google Patents

Fuel battery cell and its manufacturing method Download PDF

Info

Publication number
JP2006216294A
JP2006216294A JP2005026127A JP2005026127A JP2006216294A JP 2006216294 A JP2006216294 A JP 2006216294A JP 2005026127 A JP2005026127 A JP 2005026127A JP 2005026127 A JP2005026127 A JP 2005026127A JP 2006216294 A JP2006216294 A JP 2006216294A
Authority
JP
Japan
Prior art keywords
separator
gas
gas diffusion
diffusion layer
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026127A
Other languages
Japanese (ja)
Inventor
Motokata Ishihara
基固 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005026127A priority Critical patent/JP2006216294A/en
Publication of JP2006216294A publication Critical patent/JP2006216294A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel battery capable of reducing its size. <P>SOLUTION: The fuel cell is constituted of a plurality of cells composed of an electrode-electrolyte film junction 1, on both surfaces of which gas diffusion layers 4a, 4b are arranged, and separators 2, 3 contacting the gas diffusion layers at a central part 11 of one face to demarcate gas flow passages of fuel gas or oxidant gas. Plate-shaped members 9 are arranged between the separator and the electrode-electrolyte film junction so as to surround the central part of the separator. When the separators and the electrode-electrolyte film junctions are laminated, a thickness of the plate-shaped member in a lamination direction is set so that a compression ratio as a rate of change of a thickness of a contact part of the gas diffusion layer to which the separator contacts in a thickness direction becomes a prescribed value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池セルとその製造方法に関するものである。   The present invention relates to a fuel cell and a manufacturing method thereof.

固体高分子型燃料電池は、一般的に表面に燃料ガス及び酸化剤ガスの流路を画成するリブを設けた一対のセパレーターと、両面にガス拡散層を設けた電極−電解質膜接合体からなるセルを複数枚積層して構成されており、セパレーターの一面には、他のセパレーターの一面と接することで、発電により発生する熱を放熱するクーラントが流通するクーラント流路が設けられる(特許文献1参照)。   A polymer electrolyte fuel cell generally comprises a pair of separators provided with ribs defining flow paths for fuel gas and oxidant gas on the surface, and an electrode-electrolyte membrane assembly provided with gas diffusion layers on both sides. A plurality of cells are stacked, and one side of the separator is provided with a coolant channel through which a coolant that dissipates heat generated by power generation by contacting one side of the other separator (Patent Document) 1).

セパレーターの各流路リブは、電極−電解質膜接合体のガス拡散層と接しており、これによって、電極−電解質膜接合体のアノードで生じた電子はガス拡散層を通過して、一対のプレートからなるセパレーターを介し、更に隣接する電極−電解質膜接合体のガス拡散層を経てカソードに達する。このとき、電子が流れる経路の電気抵抗がそのまま燃料電池の損失となり、その中でも特に部材同士が接触する面の接触抵抗が大きい。また、部材同士の接触面圧が大きいほど、この接触面の抵抗は小さくなる傾向がある。このため、固体高分子型燃料電池は通常、その積層方向に一定の荷重をかける構造となっている。ガス拡散層には、通常カーボン繊維からなるカーボンペーパーもしくはカーボンクロスが用いられており、これらの材料は比較的高い弾性を持つため、ガス拡散層は積層荷重によってある程度圧縮された状態で使用される。ただし、過度に圧縮するとガス拡散性が悪化するため、圧縮率は適切な範囲に保つ必要がある。   Each flow channel rib of the separator is in contact with the gas diffusion layer of the electrode-electrolyte membrane assembly, whereby electrons generated at the anode of the electrode-electrolyte membrane assembly pass through the gas diffusion layer, and a pair of plates It reaches the cathode via the gas diffusion layer of the adjacent electrode-electrolyte membrane assembly through the separator composed of At this time, the electric resistance of the path through which the electrons flow becomes the loss of the fuel cell as it is, and among them, the contact resistance of the surface where the members contact each other is particularly large. Moreover, there exists a tendency for resistance of this contact surface to become small, so that the contact surface pressure of members is large. For this reason, the polymer electrolyte fuel cell usually has a structure in which a constant load is applied in the stacking direction. Carbon paper or carbon cloth made of carbon fiber is usually used for the gas diffusion layer. Since these materials have relatively high elasticity, the gas diffusion layer is used in a state compressed to some extent by the laminating load. . However, since the gas diffusibility deteriorates when compressed excessively, the compression ratio needs to be kept in an appropriate range.

このため、従来はセパレーター外周部に一定の高さの当接面を設け、これを電極−電解質膜接合体の外周部に接触させることにより、ガス拡散層の過度な圧縮を防ぐ構造とすることが一般的であった。   For this reason, conventionally, a contact surface with a certain height is provided on the outer periphery of the separator, and this is brought into contact with the outer periphery of the electrode-electrolyte membrane assembly, thereby preventing excessive compression of the gas diffusion layer. Was common.

また、各セパレーター及び電極−電解質膜接合体の外周部には通常、セル内のガスやクーラントが外部に流出するのを防ぐためにリップタイプの圧縮ガスケットや、液状ガスケット等のシール部材が設けられている。
特開2004−247154号公報
In addition, the outer periphery of each separator and electrode-electrolyte membrane assembly is usually provided with a seal member such as a lip type compression gasket or a liquid gasket to prevent the gas and coolant in the cell from flowing out. Yes.
JP 2004-247154 A

ガス拡散層に用いられるカーボンペーパーやカーボンクロスは、厚さ寸法の製造バラツキが比較的大きいため、従来構造のように外周部の当接面で規制される高さに圧縮すると、厚さ下限品では圧縮率が不足してセパレーターの流路リブとの接触抵抗が大きくなり、厚さ上限品では圧縮率が過剰になりガス拡散性が低下する。このため、結果として燃料電池の発電性能が低下するという問題点があった。   Carbon paper and carbon cloth used for the gas diffusion layer have a relatively large thickness variation, so when compressed to a height that is regulated by the abutment surface of the outer periphery as in the conventional structure, the thickness is lower. In such a case, the compression ratio is insufficient, and the contact resistance with the flow path rib of the separator is increased. In the case of the upper limit product, the compression ratio is excessive and the gas diffusibility is lowered. As a result, there has been a problem that the power generation performance of the fuel cell is lowered.

一方、燃料電池の小型化のためにはセパレーターを薄くすることが必要である。このため、最近では強度やガス透過の面で薄肉化に限界のあるカーボン成形品に変わって金属薄板のプレス成形品が用いられる傾向にある。この場合、プレス成形品は肉厚が一定であるためその表裏に自由な形状を成形することが出来ない。このためカーボン成形品と異なり、流れを整流するためのガイド形状や、シールに液状ガスケットを用いた場合の流路内へのガスケットはみ出し防止形状等を設けるにあたり著しい制約を生じていた。   On the other hand, it is necessary to make the separator thinner in order to reduce the size of the fuel cell. For this reason, recently, there is a tendency to use a press-formed product of a metal thin plate instead of a carbon molded product that is limited in thickness in terms of strength and gas permeation. In this case, since the thickness of the press-formed product is constant, a free shape cannot be formed on the front and back. For this reason, unlike carbon molded products, there are significant restrictions in providing a guide shape for rectifying the flow and a shape for preventing the gasket from protruding into the flow path when a liquid gasket is used for the seal.

したがって、本発明の目的は、小型化と発電性能を両立できる燃料電池を提供することにある。   Accordingly, an object of the present invention is to provide a fuel cell capable of achieving both size reduction and power generation performance.

本発明は、両面にガス拡散層を設けた電極−電解質膜接合体と、
一面の中央部に前記ガス拡散層と接して燃料ガスまたは酸化剤ガスのガス流路を画成するセパレーターと、
からなるセルを複数枚積層して構成する燃料電池において、
前記セパレーターと前記電極−電解質膜接合体との間に、前記セパレーターの中央部を取り囲むように配置される板状部材を設け、
前記板状部材の積層方向の厚さは、前記セパレーターと前記電極−電解質膜接合体が積層された時に、前記セパレーターが接触する前記ガス拡散層の接触部の積層方向の厚さの変化率である圧縮率が所定値となるように設定される
The present invention comprises an electrode-electrolyte membrane assembly provided with gas diffusion layers on both sides,
A separator that is in contact with the gas diffusion layer in the center of one surface and that defines a gas flow path of fuel gas or oxidant gas;
In a fuel cell configured by stacking a plurality of cells made of
Between the separator and the electrode-electrolyte membrane assembly, provided is a plate-like member disposed so as to surround the central portion of the separator,
The thickness in the laminating direction of the plate member is the rate of change in the laminating direction thickness of the contact portion of the gas diffusion layer that contacts the separator when the separator and the electrode-electrolyte membrane assembly are laminated. It is set so that a certain compression ratio becomes a predetermined value.

本発明では、板状部材の厚さをセパレーターと電極−電解質膜接合体のバラツキに応じてガス拡散層の圧縮率を所定値となるように調節するので、ガス拡散層の圧縮率を所定値に維持して燃料電池の発電性能を適正に発揮できる。   In the present invention, the thickness of the plate-like member is adjusted so that the compression rate of the gas diffusion layer becomes a predetermined value according to the variation between the separator and the electrode-electrolyte membrane assembly. Thus, the power generation performance of the fuel cell can be properly exhibited.

図1、図2に示す本発明の燃料電池セル構造は、金属薄板のプレス成形品をセパレーターに用いた固体高分子型燃料電池のセル構造である。図1は、燃料電池セルの平面図を、図2は同じく燃料電池セル断面図(断面A−A)を示す。   The fuel cell structure of the present invention shown in FIGS. 1 and 2 is a cell structure of a polymer electrolyte fuel cell using a metal sheet press-molded product as a separator. FIG. 1 is a plan view of the fuel cell, and FIG. 2 is a cross-sectional view (cross section AA) of the fuel cell.

燃料電池セルSは、電極−電解質膜接合体(以下、MEAという)1と、MEA1を挟持するアノードセパレーター2及びカソードセパレーター3と、各セパレータ2、3とMEA1と間に設置されるガス拡散層4a、4bから構成される。燃料電池は通常、セルSを複数積層したスタック構造として用いられる。   The fuel cell S includes an electrode-electrolyte membrane assembly (hereinafter referred to as MEA) 1, an anode separator 2 and a cathode separator 3 that sandwich the MEA 1, and a gas diffusion layer installed between each separator 2, 3 and the MEA 1. 4a and 4b. The fuel cell is usually used as a stack structure in which a plurality of cells S are stacked.

各々のセパレーター2、3は、ガス拡散層4a、4bに面する中央領域11では、波型に形成されており、図2によれば波型の凸部2aは、MEA1のアノード側ガス拡散層4aに接触し、水素(または水素リッチの改質ガス)が流通する水素流路5を区画する。また、アノードセパレーター2の凹部2bと隣接する他のセルSのカソードセパレーター3の凸部3aとが接して、冷媒が流通するクーラント流路7が形成される。クーラント流路7を形成するカソードセパレーター3の凹部3bは、隣接する他のセルSのカソード側ガス拡散層4bと接触し、空気(または酸素)が流通する空気流路6を形成する。   Each of the separators 2 and 3 is formed in a corrugated shape in the central region 11 facing the gas diffusion layers 4a and 4b. According to FIG. 2, the corrugated convex portion 2a is formed on the anode side gas diffusion layer of the MEA 1. The hydrogen flow path 5 through which hydrogen (or hydrogen-rich reformed gas) flows is partitioned by contacting with 4a. Also, the coolant channel 7 through which the coolant flows is formed by contacting the recess 2b of the anode separator 2 with the projection 3a of the cathode separator 3 of another cell S adjacent thereto. The recess 3b of the cathode separator 3 forming the coolant channel 7 is in contact with the cathode side gas diffusion layer 4b of another adjacent cell S to form an air channel 6 through which air (or oxygen) flows.

このようにして、図示しないコンプレッサや高圧タンクから水素や空気が各流路5、6に供給されて、MEA1の両面に設けられたガス拡散層4を通してMEA1の各極に供給され、発電に供される。発電に伴う熱により加熱したセルSを冷却するためにクーラント流路7に水等の冷媒が流通される。   In this way, hydrogen and air are supplied to the flow paths 5 and 6 from a compressor and a high-pressure tank (not shown), supplied to each electrode of the MEA 1 through the gas diffusion layers 4 provided on both sides of the MEA 1, and used for power generation. Is done. A coolant such as water is circulated in the coolant channel 7 in order to cool the cell S heated by the heat generated by the power generation.

このように構成され、MEA1のアノードでは、水素流路5からガス拡散層4aを介して供給された水素が、電子を放出しイオン化し、イオン化した水素が電解質膜を貫通してカソードに到達するとともに、電子は、ガス拡散層4a、アノードセパレーター2及びカソードセパレーター3を通過し、更に隣接するMEA1のカソード側ガス拡散層4bを経て隣接するMEA1のカソードに達する。   In the anode of the MEA 1 configured as described above, the hydrogen supplied from the hydrogen flow path 5 through the gas diffusion layer 4a releases electrons and ionizes, and the ionized hydrogen reaches the cathode through the electrolyte membrane. At the same time, the electrons pass through the gas diffusion layer 4a, the anode separator 2 and the cathode separator 3, and further reach the cathode of the adjacent MEA 1 via the cathode side gas diffusion layer 4b of the adjacent MEA 1.

一方、カソード極では、電解質を通過した水素イオン及び電子と空気流路6から供給される空気に含まれる酸素とが化学反応して水が生成され、生成水はカソードセパレーター2から排出される。   On the other hand, at the cathode electrode, hydrogen ions and electrons that have passed through the electrolyte and oxygen contained in the air supplied from the air flow path 6 chemically react to generate water, and the generated water is discharged from the cathode separator 2.

また、各セパレータ2、3の中央領域11に面する位置にガス拡散層4が配置され、その外側領域では化学反応が生じず、したがって、MEA1の外周部に化学反応に寄与しない領域がある。この領域ではガス拡散層4を固定する樹脂製のフレーム8が設けられる。このフレーム8と各セパレーター2、3との間、およびクーラント流路7を形成するセパレーター間に挟まれて板状部材9が配置され、更にその板状部材9を取り囲むように各流体の漏洩を防止するシール材としての液状ガスケット10が配置されている。   In addition, the gas diffusion layer 4 is disposed at a position facing the central region 11 of each separator 2 and 3, and no chemical reaction occurs in the outer region, and therefore there is a region that does not contribute to the chemical reaction in the outer peripheral portion of the MEA 1. In this region, a resin frame 8 for fixing the gas diffusion layer 4 is provided. A plate-like member 9 is disposed between the frame 8 and the separators 2 and 3 and between the separators forming the coolant channel 7, and each fluid is leaked so as to surround the plate-like member 9. A liquid gasket 10 is disposed as a sealing material to prevent.

セルSは積層方向に荷重が負荷されており、この荷重によってセパレーター2、3によりガス拡散層4の接触部が圧縮される。板状部材9がフレーム8及びセパレーター2、3に接触することでガス拡散層4の接触部の圧縮量が規制される。ガス拡散層4の圧縮量は水素流路5、空気流路6においては、ガス拡散層4の厚さとフレーム8の厚さ、セパレーター2、3の高さによって決まる。しかし、これらの寸法はそれぞれ製造バラツキを持っており、特にガス拡散層4の厚さの製造バラツキは大きい。これに対し、本発明では組立時にあらかじめ複数の異なる厚さの板状部材9を用意し、各々のガス拡散層4の厚さ及びフレーム8の厚さ、セパレーター2、3の高さに応じて、ガス拡散層4の圧縮率(=ガス拡散層4の積層方向の接触前の厚さに対する厚さの変化率)が所定値になるように板状部材9の厚さを選択して燃料電池を組み立てる。これによって、セパレーター2、3とガス拡散層4との適切な接触面圧を確保して接触抵抗の低減を図るとともに、ガス拡散層4の過度な圧縮によるガス拡散の悪化を防ぎ、発電効率の低下を防止することができる。   The cell S is loaded in the stacking direction, and the contact portion of the gas diffusion layer 4 is compressed by the separators 2 and 3 by this load. When the plate-like member 9 comes into contact with the frame 8 and the separators 2 and 3, the compression amount of the contact portion of the gas diffusion layer 4 is regulated. The compression amount of the gas diffusion layer 4 is determined by the thickness of the gas diffusion layer 4, the thickness of the frame 8, and the height of the separators 2 and 3 in the hydrogen flow path 5 and the air flow path 6. However, each of these dimensions has a manufacturing variation, and especially the manufacturing variation of the thickness of the gas diffusion layer 4 is large. On the other hand, in the present invention, a plurality of plate-like members 9 having different thicknesses are prepared in advance at the time of assembly, depending on the thickness of each gas diffusion layer 4 and the thickness of the frame 8 and the height of the separators 2 and 3. The thickness of the plate member 9 is selected so that the compressibility of the gas diffusion layer 4 (= thickness change rate relative to the thickness before contact in the stacking direction of the gas diffusion layer 4) becomes a predetermined value. Assemble. As a result, an appropriate contact surface pressure between the separators 2 and 3 and the gas diffusion layer 4 is ensured to reduce contact resistance, and deterioration of gas diffusion due to excessive compression of the gas diffusion layer 4 is prevented, and power generation efficiency is improved. A decrease can be prevented.

したがって、本発明の燃料電池の製造工程は以下のようになる。
1.MEA1の厚さ、セパレーター2、3の厚さと中央領域11での高さ、ガス拡散層4の厚さ、フレーム8の厚さを計測する(なお、計測する厚さおよび高さは、積層方向の寸法とする)。
2.1項の測定結果のバラツキに応じて、厚さの異なる板状部材9を用意する。
3.燃料電池を構成する厚さ等の明らかな前述の構成部材(板状部材9を除く)を選択し、かつ選択した構成部材の寸法からセルの積層時にセパレータ2、3が接触するガス拡散層4の圧縮率が所定値となる厚さを備えた板状部材9を選択する。
4.選択した構成部材を、例えば、図2に示すように下から設置して行く。なお、アノードセパレーター2とカソードセパレーター3との間も同様に、アノードセパレーターとカソードセパレータ3が確実に接触するように、各セパレーター2、3の計測した高さに応じて板状部材9の厚さを選定して組み込む。この際、板状部材9は、各々のクーラント流路7での漏洩がないように選定される。これによって、セパレーター2、3が適切に接触して接触抵抗が低減されるとともに、隙間が生じることがないので安定した積層を行うことができる。
5.なお、フレーム8とセパレーター2、3間および各セパレーター2、3間には液状ガスケット10が配置される。
6.このような手順で所定枚数のセルSを積層し、図示しない軸方向に負荷を作用させるボルトとナット等の拘束手段で、各セルSに所定の圧力を作用させて締め付け、燃料電池の組み立てが完了する。
Therefore, the manufacturing process of the fuel cell of the present invention is as follows.
1. The thickness of the MEA 1, the thicknesses of the separators 2 and 3 and the height in the central region 11, the thickness of the gas diffusion layer 4, and the thickness of the frame 8 are measured (note that the measured thickness and height are the stacking direction) Dimensions).
The plate-like member 9 having a different thickness is prepared in accordance with the variation in the measurement result of item 2.1.
3. The gas diffusion layer 4 in which the above-described structural members (excluding the plate-like member 9) such as the thickness constituting the fuel cell are selected and the separators 2 and 3 are in contact with each other when the cells are stacked from the dimensions of the selected structural members. A plate-like member 9 having a thickness at which the compression ratio becomes a predetermined value is selected.
4). The selected components are installed from below, for example, as shown in FIG. Similarly, between the anode separator 2 and the cathode separator 3, the thickness of the plate-like member 9 is determined in accordance with the measured height of each separator 2, 3 so that the anode separator and the cathode separator 3 are reliably in contact with each other. Select and install. At this time, the plate-like member 9 is selected so that there is no leakage in each coolant channel 7. Accordingly, the separators 2 and 3 are appropriately brought into contact with each other to reduce contact resistance, and a gap is not generated, so that stable lamination can be performed.
5. A liquid gasket 10 is disposed between the frame 8 and the separators 2 and 3 and between the separators 2 and 3.
6). In this procedure, a predetermined number of cells S are stacked and tightened by applying a predetermined pressure to each cell S with bolts and nuts that apply a load in the axial direction (not shown) to assemble the fuel cell. Complete.

また、水素流路5、空気流路6及びクーラント流路7の外周には、これらの流路内を流通する流体の漏洩を防止するためのシール手段がこれら流路を取り囲むように設けられるのが通常である。しかし本実施形態では、このシール手段として板状部材9の外周に液状ガスケット10を使用し、各流路から流体が板状部材9を通じて外部に漏洩することを防止する。液状ガスケット10は、各セパレーター2、3またはフレーム8に塗布した後で、上下の部材間で押し潰して使用する。押し潰して密着させた際に横方向に広がり、広がった部分が流路側にはみ出して固まると流体の流れに支障を来たす可能性がある。しかしながら、本発明では板状部材8が堰の役割を果たし、この余分な液状ガスケットが水素流路5、空気流路6及びクーラント流路7に流入するのを防ぐことができる。   Further, sealing means for preventing leakage of fluid flowing through these flow paths is provided on the outer periphery of the hydrogen flow path 5, the air flow path 6 and the coolant flow path 7 so as to surround these flow paths. Is normal. However, in this embodiment, the liquid gasket 10 is used on the outer periphery of the plate-like member 9 as this sealing means, and fluid is prevented from leaking from each flow path to the outside through the plate-like member 9. The liquid gasket 10 is used by being crushed between upper and lower members after being applied to each separator 2, 3 or frame 8. When it is crushed and brought into close contact, it spreads in the lateral direction, and if the expanded portion protrudes and hardens, it may interfere with the flow of fluid. However, in the present invention, the plate-like member 8 serves as a weir, and this extra liquid gasket can be prevented from flowing into the hydrogen flow path 5, the air flow path 6 and the coolant flow path 7.

一方、各板状部材9の内側は中空状に抜かれ、各流路に面する内周端部9aは図1に示すように、中央領域11と、中央領域11に流体を供給するための各流体ごとのマニフォールド孔12〜14と、これらを連通させるディフューザー部15とを形成しており、このディフューザー部15は流体を整流するガイド形状を有している。これによって、マニフォールド孔12〜14から中央領域11に円滑に流体を供給することができる。   On the other hand, the inside of each plate-like member 9 is hollowed out, and the inner peripheral end 9a facing each flow path has a central region 11 and each for supplying fluid to the central region 11 as shown in FIG. Manifold holes 12 to 14 for each fluid are formed, and a diffuser portion 15 for communicating these is formed, and this diffuser portion 15 has a guide shape for rectifying the fluid. Thereby, the fluid can be smoothly supplied from the manifold holes 12 to 14 to the central region 11.

各セパレーター2、3のクーラント流路7を形成する面は、本実施形態のようにセパレーター2、3に金属薄板のプレス成形品を用いた場合には各セパレーター2、3の板厚が均一であるため、各セパレーター2、3の両面にディフューザー部15のようなガイド形状を成形することが困難である。しかしながら、本発明ではセパレーター2、3とは別部材(板状部材9)でガイド形状を構成するため、適切な形状を得ることができる。また、ガイド形状の上下面が隙間なくセパレーター2、3ないしMEA1に接触するので、より確実に流体を整流することができる。   The surfaces of the separators 2 and 3 on which the coolant channels 7 are formed are uniform in the thickness of the separators 2 and 3 when a metal thin plate press-formed product is used for the separators 2 and 3 as in this embodiment. For this reason, it is difficult to form a guide shape like the diffuser portion 15 on both surfaces of the separators 2 and 3. However, in the present invention, since the guide shape is constituted by a member (a plate-like member 9) different from the separators 2 and 3, an appropriate shape can be obtained. Further, since the upper and lower surfaces of the guide shape are in contact with the separators 2, 3 or MEA 1 without a gap, the fluid can be rectified more reliably.

図3に第2実施形態の燃料電池セル断面図を示す。本実施形態では、第1実施形態と同様の板状部材を用いるとともに、この板状部材の両面をセパレーター2、3の外周部ないし樹脂フレーム8と接着剤により接着することによりシール機能を持たせた構成である。これにより、シール機能専用のシール手段(前述の液体ガスケット10)を設ける必要がないためセルの寸法を小型化することができる。   FIG. 3 shows a cross-sectional view of the fuel cell according to the second embodiment. In the present embodiment, a plate-like member similar to that of the first embodiment is used, and both sides of the plate-like member are bonded to the outer peripheral portions of the separators 2 and 3 or the resin frame 8 with an adhesive to provide a sealing function. It is a configuration. Thereby, since it is not necessary to provide sealing means dedicated to the sealing function (the liquid gasket 10 described above), the size of the cell can be reduced.

したがって、本発明では、板状部材9の積層方向の厚さを変更して、セパレーター2、3とMEA1とが積層された時のセパレーター2、3が接触するガス拡散層4の接触部の積層方向の厚さの変化率である圧縮率が所定値となるようにするので、ガス拡散層4の圧縮率を所定値に維持して燃料電池の発電性能を適正に発揮できる。   Therefore, in the present invention, the thickness of the plate-like member 9 in the stacking direction is changed, and the contact portion of the gas diffusion layer 4 that contacts the separators 2 and 3 when the separators 2 and 3 and the MEA 1 are stacked is stacked. Since the compression rate, which is the rate of change of the thickness in the direction, is set to a predetermined value, the power generation performance of the fuel cell can be appropriately exhibited while maintaining the compression rate of the gas diffusion layer 4 at a predetermined value.

隣接するセパレータ2、3間に板状部材を冷媒流路が形成されるように設けたので、冷媒流路を容易に設けるとともに、冷媒の漏洩を防止することができる。   Since the plate-like member is provided between the adjacent separators 2 and 3 so that the refrigerant flow path is formed, the refrigerant flow path can be easily provided and the leakage of the refrigerant can be prevented.

セパレータ2、3の中央領域11は、上下に凸部2a、3a、凹部2b、3bが形成される波型に形成され、その一方の凸部2aにガス拡散層4の一面が接してガス流路5を画成し、他方の凹部2bに隣接する他のセルSのセパレータ3の一方の凸部3aが接してクーラント流路7を形成するため、容易にガス流路5、6やクーラント流路7を形成することができる。   The central region 11 of the separators 2 and 3 is formed in a corrugated shape in which convex portions 2a and 3a and concave portions 2b and 3b are formed on the upper and lower sides, and one surface of the gas diffusion layer 4 is in contact with one of the convex portions 2a. Since the flow path 5 is defined and one of the convex portions 3a of the separator 3 of another cell S adjacent to the other concave portion 2b is in contact with each other to form the coolant flow path 7, the gas flow paths 5 and 6 and the coolant flow are easily obtained. A path 7 can be formed.

板状部材9は、ガスまたは冷媒を流路5〜7に供給する各マニフォールド12〜14からのガスまたは冷媒がガス流路5、6またはクーラント流路7に供給されるように中空状に形成されるので、容易に流路を形成することができる。   The plate-like member 9 is formed in a hollow shape so that the gas or refrigerant from each of the manifolds 12 to 14 that supplies gas or refrigerant to the flow paths 5 to 7 is supplied to the gas flow paths 5 and 6 or the coolant flow path 7. Therefore, the flow path can be easily formed.

板状部材9の外側に、各流路5〜7のシール性を担保する液状ガスケット10を設けたので、液状ガスケット10が各流路内にはみ出すことを板状部材9により抑制し、シール性を担保することができる。   Since the liquid gasket 10 that secures the sealing performance of each of the flow paths 5 to 7 is provided on the outside of the plate-like member 9, the plate-like member 9 suppresses the liquid gasket 10 from protruding into each flow path, and the sealing performance. Can be secured.

また、板状部材9とセパレーター2、3との間、および板状部材9とMEA1との間を接着剤により接着してシール性を担保するので、シールのための構成部材を設ける必要がなく、セルSの寸法を小型化することができる。   Moreover, since the sealing property is secured by bonding the plate-like member 9 and the separators 2 and 3 and between the plate-like member 9 and the MEA 1 with an adhesive, there is no need to provide a component for sealing. The dimensions of the cell S can be reduced.

さらに、本発明では、セパレーター2、3の中央部11を取り囲む板状部材9を積層方向の厚さ違いに複数枚設け、ガス拡散層4の積層方向の厚さと、セパレーター2、3の積層方向の厚さと中央部11の高さとを計測するステップと、計測したガス拡散層4とセパレーター2、3の寸法から、ガス拡散層4とセパレーター2、3とが積層された時にガス拡散層4とセパレーター2、3の接触部におけるガス拡散層4の積層方向の厚さの変化率である圧縮率が所定値となるように板状部材9を選択するステップと、を備えた燃料電池の製造方法としたので、ガス拡散層の圧縮率を所定値に維持して燃料電池の発電性能を適正に発揮できる。   Furthermore, in the present invention, a plurality of plate-like members 9 surrounding the central portion 11 of the separators 2 and 3 are provided with different thicknesses in the stacking direction, the thickness of the gas diffusion layer 4 in the stacking direction, and the stacking direction of the separators 2 and 3 And measuring the thickness of the central portion 11 and the measured dimensions of the gas diffusion layer 4 and the separators 2 and 3, the gas diffusion layer 4 and the separators 2 and 3 are stacked when the gas diffusion layer 4 and the separators 2 and 3 are laminated. Selecting a plate-like member 9 so that the compression rate, which is the rate of change in thickness in the stacking direction of the gas diffusion layer 4 at the contact portion of the separators 2 and 3, becomes a predetermined value. Therefore, the power generation performance of the fuel cell can be properly exhibited while maintaining the compression ratio of the gas diffusion layer at a predetermined value.

本発明の燃料電池セル平面図である。It is a fuel cell cell top view of the present invention. 同じく燃料電池セル断面図(図1の断面A−A)である。It is a fuel cell sectional view similarly (section AA of Drawing 1). 第2実施形態の燃料電池セル断面図である。It is fuel cell sectional drawing of 2nd Embodiment.

符号の説明Explanation of symbols

1:MEA
2:アノードセパレーター
3:カソードセパレーター
4:ガス拡散層
5:アノードセパレーターガス流路
6:カソードセパレーターガス流路
7:クーラント流路
8:フレーム
9:板状部材
10:液状ガスケット
11:中央領域
12:水素マニフォールド孔
13:クーラントマニフォールド孔
14:空気マニフォールド孔
15:ディフューザー部
1: MEA
2: Anode separator 3: Cathode separator 4: Gas diffusion layer 5: Anode separator gas flow path 6: Cathode separator gas flow path 7: Coolant flow path 8: Frame 9: Plate member 10: Liquid gasket 11: Central region 12: Hydrogen manifold hole 13: Coolant manifold hole 14: Air manifold hole 15: Diffuser section

Claims (7)

両面にガス拡散層を設けた電極−電解質膜接合体と、
一面の中央部に前記ガス拡散層と接触して燃料ガスまたは酸化剤ガスのガス流路を画成するセパレーターと、
からなるセルを複数枚積層して構成する燃料電池において、
前記セパレーターと前記電極−電解質膜接合体との間に、前記セパレーターの中央部を取り囲むように配置される板状部材を設け、
前記板状部材の積層方向の厚さは、前記セパレーターと前記電極−電解質膜接合体が積層された時に、前記セパレーターが接触する前記ガス拡散層の接触部の積層方向の厚さの変化率である圧縮率が所定値となるように設定されることを特徴とする燃料電池。
An electrode-electrolyte membrane assembly having gas diffusion layers on both sides;
A separator that is in contact with the gas diffusion layer at the center of one surface and defines a gas flow path of fuel gas or oxidant gas;
In a fuel cell configured by stacking a plurality of cells made of
Between the separator and the electrode-electrolyte membrane assembly, provided is a plate-like member disposed so as to surround the central portion of the separator,
The thickness in the laminating direction of the plate member is the rate of change in the laminating direction thickness of the contact portion of the gas diffusion layer that contacts the separator when the separator and the electrode-electrolyte membrane assembly are laminated. A fuel cell characterized in that a certain compression ratio is set to a predetermined value.
前記セパレータの他面は、他のセパレータの他面との間で冷媒流路を画成し、
これらセパレータ間に前記板状部材を設け、
前記板状部材の積層方向の厚さは、前記セパレーター同士が接して前記冷媒流路を画成するように設定されることを特徴とする請求項1に記載の燃料電池。
The other surface of the separator defines a coolant channel with the other surface of the other separator,
The plate member is provided between the separators,
2. The fuel cell according to claim 1, wherein a thickness of the plate-shaped member in a stacking direction is set so that the separators are in contact with each other to define the refrigerant flow path.
前記セパレータの中央部は上下に凸部が形成される波型に形成され、その一方の凸部に前記ガス拡散層の一面が接して前記ガス流路を画成し、他方の凸部に隣接する他のセルのセパレータの一方の凸部が接して前記冷媒流路を形成することを特徴とする請求項1または2に記載の燃料電池。   The central portion of the separator is formed in a corrugated shape with convex portions formed on the top and bottom, and one surface of the gas diffusion layer is in contact with one convex portion to define the gas flow path, and adjacent to the other convex portion. 3. The fuel cell according to claim 1, wherein one of the protrusions of the separator of the other cell that is in contact with each other forms the refrigerant flow path. 前記板状部材は、前記ガスまたは前記冷媒を前記流路に供給する各マニフォールドからのガスまたは冷媒が前記ガス流路または前記冷媒流路に供給されるように中空状に形成されることを特徴とする請求項1または2に記載の燃料電池。   The plate-like member is formed in a hollow shape so that the gas or refrigerant from each manifold that supplies the gas or the refrigerant to the flow path is supplied to the gas flow path or the refrigerant flow path. The fuel cell according to claim 1 or 2. 前記板状部材を取り囲むように、前記ガス流路と前記冷媒流路のシール性を担保する液状ガスケットを設けることを特徴とする請求項2または3に記載の燃料電池。   4. The fuel cell according to claim 2, wherein a liquid gasket is provided so as to enclose the gas flow path and the refrigerant flow path so as to surround the plate-shaped member. 前記板状部材と前記セパレーターとの間、および前記板状部材と前記電極−電解質膜接合体との間を接着剤により接着してシール性を担保することを特徴とする請求項2または3に記載の燃料電池。   The seal between the plate member and the separator and between the plate member and the electrode-electrolyte membrane assembly is secured by an adhesive to ensure sealing performance. The fuel cell as described. 両面にガス拡散層を設けた電極−電解質膜接合体と、
一面の中央部に前記ガス拡散層と接して燃料ガスまたは酸化剤ガスのガス流路を画成するセパレーターと、
からなるセルを複数枚積層して構成する燃料電池において、
前記セパレーターの中央部を取り囲む板状部材を積層方向の厚さの異なるように複数枚設け、
前記ガス拡散層の積層方向の厚さと、前記セパレーターの積層方向の厚さと前記中央部の高さとを計測するステップと、
計測した前記ガス拡散層と前記セパレーターの寸法から、前記ガス拡散層と前記セパレーターとが積層された時に前記セパレーターとの接触部における前記ガス拡散層の積層方向の厚さの変化率である圧縮率が所定値となるように前記板状部材を選択するステップと、
選択された板状部材を、前記圧縮率が所定値となる前記ガス拡散層を設けた電極−電解質膜接合体と前記セパレーターとの間に配置するステップと。
を備えたことを特徴とする燃料電池の製造方法。

An electrode-electrolyte membrane assembly having gas diffusion layers on both sides;
A separator that is in contact with the gas diffusion layer in the center of one surface and that defines a gas flow path of fuel gas or oxidant gas;
In a fuel cell configured by stacking a plurality of cells made of
Provide a plurality of plate-like members surrounding the central portion of the separator so that the thickness in the stacking direction is different,
Measuring the thickness of the gas diffusion layer in the stacking direction, the thickness of the separator in the stacking direction, and the height of the central portion;
From the measured dimensions of the gas diffusion layer and the separator, when the gas diffusion layer and the separator are laminated, the compressibility is a rate of change in thickness in the stacking direction of the gas diffusion layer at the contact portion with the separator Selecting the plate-like member so that becomes a predetermined value;
Disposing the selected plate-shaped member between the separator and the electrode-electrolyte membrane assembly provided with the gas diffusion layer having a predetermined compression rate.
A method for producing a fuel cell, comprising:

JP2005026127A 2005-02-02 2005-02-02 Fuel battery cell and its manufacturing method Pending JP2006216294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026127A JP2006216294A (en) 2005-02-02 2005-02-02 Fuel battery cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026127A JP2006216294A (en) 2005-02-02 2005-02-02 Fuel battery cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006216294A true JP2006216294A (en) 2006-08-17

Family

ID=36979354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026127A Pending JP2006216294A (en) 2005-02-02 2005-02-02 Fuel battery cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006216294A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130565A (en) * 2006-11-22 2008-06-05 Gm Global Technology Operations Inc Heating of auxiliary coolant for fuel cell equipped with metal plate
WO2011013313A1 (en) 2009-07-27 2011-02-03 パナソニック株式会社 Polymer fuel cell stack and polymer fuel cell separator pair
WO2013137240A1 (en) * 2012-03-14 2013-09-19 日産自動車株式会社 Electrode assembly for solid polymer fuel cell
CN108140852A (en) * 2015-10-06 2018-06-08 日产自动车株式会社 Fuel cell pack
JP2021108250A (en) * 2019-12-27 2021-07-29 株式会社Ihi Molding method for separator, separator, molding program and three-dimensional multilayer molding device
DE102023108830A1 (en) 2022-06-03 2023-12-14 Toyota Jidosha Kabushiki Kaisha FUEL CELL AND METHOD FOR PRODUCING A FUEL CELL

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130565A (en) * 2006-11-22 2008-06-05 Gm Global Technology Operations Inc Heating of auxiliary coolant for fuel cell equipped with metal plate
WO2011013313A1 (en) 2009-07-27 2011-02-03 パナソニック株式会社 Polymer fuel cell stack and polymer fuel cell separator pair
US9005840B2 (en) 2009-07-27 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Polymer fuel cell stack and polymer fuel cell separator pair
WO2013137240A1 (en) * 2012-03-14 2013-09-19 日産自動車株式会社 Electrode assembly for solid polymer fuel cell
JPWO2013137240A1 (en) * 2012-03-14 2015-08-03 日産自動車株式会社 Membrane electrode assembly for polymer electrolyte fuel cells
US9496562B2 (en) 2012-03-14 2016-11-15 Nisson Motor Co., Ltd. Electrode assembly for solid polymer fuel cell
CN108140852A (en) * 2015-10-06 2018-06-08 日产自动车株式会社 Fuel cell pack
CN108140852B (en) * 2015-10-06 2019-06-21 日产自动车株式会社 Fuel cell pack
JP2021108250A (en) * 2019-12-27 2021-07-29 株式会社Ihi Molding method for separator, separator, molding program and three-dimensional multilayer molding device
JP7413778B2 (en) 2019-12-27 2024-01-16 株式会社Ihi Separator modeling method, separator, modeling program, and three-dimensional additive manufacturing device
DE102023108830A1 (en) 2022-06-03 2023-12-14 Toyota Jidosha Kabushiki Kaisha FUEL CELL AND METHOD FOR PRODUCING A FUEL CELL

Similar Documents

Publication Publication Date Title
JP5186754B2 (en) Fuel cell
JP5438918B2 (en) Fuel cell electrolyte / electrode structure and fuel cell
JP5087863B2 (en) Fuel cell
JP5349184B2 (en) Fuel cell stack
EP2759011B1 (en) Fuel cell assembly
EP2525429B1 (en) Fuel cell
JP2008226713A (en) Fuel cell stack
JP2007188693A (en) Fuel cell and manufacturing method of fuel cell
JP2008171613A (en) Fuel cells
JP2006216294A (en) Fuel battery cell and its manufacturing method
CN115149057B (en) Power generation cell and membrane electrode assembly with resin frame
JP2005183304A (en) Fuel cell
JP4214027B2 (en) Fuel cell
JP2007329083A (en) Fuel cell
JP2007122898A (en) Fuel cell
JP2013157093A (en) Fuel cell
JP5756388B2 (en) Fuel cell
JP2006147258A (en) Separator and fuel battery stack
JP2008123885A (en) Fuel cell, manufacturing method of fuel cell, and assembly
JP2004335179A (en) Fuel cell
JP3641622B2 (en) Fuel cell and processing method thereof
US10056619B2 (en) Fuel cell having a recess in the separator
JP2006127948A (en) Fuel cell stack
JP3866246B2 (en) Fuel cell
JP7337720B2 (en) Junction Separator, Metal Separator, and Method for Manufacturing Fuel Cell Stack