JP2006215131A - 非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、マイクロフライアイ光学素子、及び露光装置 - Google Patents

非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、マイクロフライアイ光学素子、及び露光装置 Download PDF

Info

Publication number
JP2006215131A
JP2006215131A JP2005025855A JP2005025855A JP2006215131A JP 2006215131 A JP2006215131 A JP 2006215131A JP 2005025855 A JP2005025855 A JP 2005025855A JP 2005025855 A JP2005025855 A JP 2005025855A JP 2006215131 A JP2006215131 A JP 2006215131A
Authority
JP
Japan
Prior art keywords
lens
cylindrical
aspherical
reflecting mirror
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005025855A
Other languages
English (en)
Inventor
Hisao Osawa
日佐雄 大澤
Noboru Yonetani
登 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005025855A priority Critical patent/JP2006215131A/ja
Publication of JP2006215131A publication Critical patent/JP2006215131A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 照明用の光学要素として使用した場合でも、照明むらを発生しにくい非球面レンズを提供する。
【解決手段】 非球面レンズ1においては、通常の非球面レンズと異なり、レンズの外周付近を通過する光線6が、焦点4より手前で光軸5と交差するように、局所曲率半径が小さくなるようにされている。よって、光線6は、リレーレンズ2を通過したときは、光軸から遠ざかる方向に進行し、照射面3から外れて照明に寄与しない。従って、3を照明する場合の照明一様性が、非球面レンズ1の周辺部を通る光線6により悪くなることが防止される。
【選択図】 図1

Description

本発明は、非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、及びこれらを使用したマイクロフライアイ光学素子、さらには、このマイクロフライアイ光学素子を使用した露光装置に関するものである。
露光装置(ステッパ)における照明光学系においてレチクルを照明する際には、その照明均一性が近年極めて重要視されるようになってきた。通常、露光装置の照明系ではその照明均一性を高めるためにフライアイ光学素子と呼ばれる光学素子が使われている。
フライアイ光学素子は数多くのレンズをアレイ状に配列させた構造を持っており、照明均一性を高めるためには、そのフライアイ光学素子中のレンズ素子の数を増したり、個々のレンズ素子の形状誤差を小さくしたりすることが必要である。近年では前者の要請を満たす必要から個々のレンズは小型化、すなわちマイクロレンズ化してきており、このようなフライアイをマイクロフライアイと呼んでいる。
又、近年開発が進んでいるEUV(Extremely Ultra Violet:極端紫外線)露光装置においては、レンズが使用できないので、レンズの代わりに反射鏡が使用され、マイクロ反射鏡を使用したフライアイを使用することが考えられている。
マイクロレンズアレイはフォトリソグラフィー技術を使って製作されている。これらの方法としては、特開平9−008266号公報(特許文献1)に記載されているような方法もあるが、精密なマイクロレンズを製造する方法としては、特表平8−504515号公報(特許文献2)に開示されているような方法が一般的に用いられている。これは、グレースケールマスク(アナログ的とみなせる光透過率の変化を有するマスク)を使用して光学基材の表面に形成されたレジストを感光させ、レジストを現像することによって、グレースケールに応じた形状の、立体的なレジストパターンを形成し、それをマイクロレンズとするか、あるいは前述のように、さらにレンズ形状となったレジストを光学基材と共にエッチングすることにより、レンズ形状のレジストのパターンを光学基材に転写し、光学基材からなるマイクロレンズを形成するものである。
グレースケールマスクを用いてマイクロレンズを製作する方法の例を図6に示す。石英からなる基板31の上にレジスト32を塗布する(a)。この場合、レジストとしてはポジ型のものを使用している。そして、グレースケールマスク33を通して光をレジスト32上に照射する(b)。図においてハッチングを施してある部分がグレースケールとなっており、ハッチング部の中心に行くほど光の透過率が低くなっている。ハッチングを施していない部分は、透明な部分である。
このようにして露光されたレジスト32を現像すると、強く光の照射を受けた部分は多く除去され、弱く光の照射を受けた部分は除去量が少なくなって、(c)に示すように、レジスト32にマイクロレンズアレイのパターンが形成される。
このような状態で、レジスト32と基板31を同時にドライエッチングすると、レジスト32に形成されたマイクロレンズのパターンが基板31に転写され、レジスト32が無くなった状態で、基板31の表面にマイクロレンズアレイが形成される(d)。レジスト32と基板31のエッチングレートの違いにより、レジスト32に形成されたマイクロレンズのパターンと基板31の表面に形成されたマイクロレンズのパターンはその凹凸度が異なるが、所望の凹凸を有するマイクロレンズのパターンが基板31の表面に形成されるように、予め、レジスト32に形成されるマイクロレンズのパターンの形状を決定しておけばよい。
このような方法によれば、マイクロレンズのみならす、シリンドリカルレンズ、及びこれらのアレイ、回折格子、フレネルレンズ等の種々の光学素子や、その他、光学素子以外の目的に使用される、表面に所定のパターンを有する基板を製造することができる。
特開平9−008266号公報 特表平8−504515号公報
以上のマイクロレンズアレイの製作手順において、レジスト32に形成されたマイクロレンズのパターンの表面を滑らかにするために、(c)の工程の後に、レジスト32の加熱処理を行うのが一般的である。すなわち、レジスト32を加熱することにより、レジスト32を軟化させ、その表面に形成されている凹凸を滑らかにする。
しかしながら、加熱処理を行うと、マイクロレンズの外周部の形状誤差が大きくなり、マイクロフライアイとして使用した場合に、照度ムラを発生させる原因ともなっている。
図7は、実際に製作されたマイクロレンズ(凸レンズ)の形状と設計形状との差を示したグラフである。ここで、実際に製作されたマイクロレンズの形状は、図6(c)の状態から加熱処理を行ってレジスト32の表面を滑らかにした後、ドライエッチングし、図6(d)に示されるように基板31の表面に形成されたマイクロレンズの形状を実測したものである。
図7において、横軸は、レンズの光軸を中心とした半径方向位置であり、縦軸はサグ量の設計値と実際値との差である。設計値通りに製作できていればグラフは水平な線となり、曲率半径に製作誤差が発生したとしても上か下に凸の2次曲線となるはずである。図7からレジストの熱変形は中心部と外周部で異なることが分かるとともに、中心部の形状を基にすると、相対的に外周部の形状誤差が大きくなっていることが分かる。
外周部の変形量は製作されるマイクロレンズごとにバラツキが大きいため、変形量を事前に予測して、その分を補正したグレースケールマスクを製造することで修正を図っても、熱処理による誤差発生のばらつきが原因となり外周部の形状誤差を小さくすることが困難である。この外周部の変形が照野の外周部に照度の高い照明ムラを発生させることにつながる。
照明ムラ発生の原因を、図8を使用して説明する。照明は、照明光を図6のようにして製造されたマイクロレンズ41とリレーレンズ42を介して照明面43に照射することによって行う。ここで、マイクロレンズ41の局所半径が、その周辺部で大きくなっていると、平行光束として入射する照明光のうち、マイクロレンズ41の周辺部を通過するものは、マイクロレンズ41の焦点44に集まらず、焦点44より遠くで光軸45と交わることになる。このため、本来ならば、照明面43に入らないはずのマイクロレンズ41の周辺部を通過する光線46が、照明面43を照明することになり、本来照明面の所定場所48を照明するべき光線47と重なって、照明むらを発生させる。
なお、マイクロレンズ41は非球面レンズであり、設計値としても表面の局所曲率半径は、光軸からの距離に応じて変わっており、これにより非点収差を補正しているが、図8においては、レンズ周辺部の局所曲率半径が、この設計値より大きくなっているため、上記のような現象が発生するのである。
同様のことは、図6に示す方法と同様な方法で製造されたマイクロシリンドリカルレンズ、マイクロ反射鏡、マイクロシリンドリカル反射鏡についても発生する。
本発明は、このような事情に鑑みてなされたもので、照明用の光学要素として使用した場合でも、照明むらを発生しにくい非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、及びこれらを使用したマイクロフライアイ光学素子、さらには、このマイクロフライアイ光学素子を使用した露光装置を提供することを課題とする。
前記課題を解決するための第1の手段は、光を屈折させる非球面レンズであって、その表面形状の非球面性を決定する非球面パラメータκが、当該非球面レンズの光軸をz軸とする(r,θ,z)円筒座標系において、rを変数に持つ関数とされていることを特徴とする非球面レンズ(請求項1)である。
本手段においては、レンズの局所曲率半径を、レンズの光軸からの半径に応じて変化させ、その結果、レンズの光軸に平行に入射した光線が、光軸を通過する位置(凸レンズの場合)、又は、レンズの光軸上のある点から放出されたと見える、その点の位置(凹レンズの場合)を、レンズに入射する光の、光軸からの距離に応じて変化させることができる。よって、後に述べるように、照明光学系に使用した場合に、レンズの外周近傍を通過する光が照明面に当たらないようにして、照明均一性を向上させることができる。
前記課題を解決するための第2の手段は、前記第1の手段であって、その表面形状が、以下の(1)式で決定されることを特徴とするもの(請求項2)である。ただし、cは曲率を表す定数である。
Figure 2006215131
(1)式は、代表的な非球面レンズの表面形状としてのコーニック面を定義する式である。多くのマイクロレンズは、表面形状がこの式に従うように形成され、κの値を調整することにより非点収差の発生を防いでいる。
本手段においては、このκの値を、rの関数とすることにより、レンズの外周近傍を通過する光線に、意識的に非点収差を発生させ、後に述べるように、照明光学系に使用した場合に、レンズの外周近傍を通過する光が照明面に当たらないようにして、照明均一性を向上させることができる。
前記課題を解決するための第3の手段は、前記第2の手段であって、前記非球面パラメータκの絶対値がrの増加と共に増大していることを特徴とするもの(請求項3)である。
κの絶対値をrの増加と共に増大させると、κが一定の場合に比して、レンズの外周部における局所半径が、レンズの中央部の局所半径に対して減少するようになる。よって、照明光学系に使用した場合に、レンズの外周近傍を通過する光が照明面に当たらないようにして、照明均一性を向上させることができる。
前記課題を解決するための第4の手段は、前記第1の手段から第4の手段のいずれかの非球面レンズを1次元、又は2次元に配置したことを特徴とする非球面レンズアレイ(請求項4)である。
本手段は、照明光学系に使用した場合に、照明均一性を向上させることができる。
前記課題を解決するための第5の手段は、光を屈折させるシリンドリカルレンズであって、その母線をz軸、光軸をy軸とするx−y−z直交座標系において、x−y平面に平行な断面における前記シリンドリカルレンズの輪郭を表す線が非円弧状であり、その非円弧状の非円弧性を決める非円パラメータκが、xを変数に持つ関数とされていることを特徴とするシリンドリカルレンズ(請求項5)である。
前記課題を解決するための第6の手段は、前記第5の手段であって、前記断面の、曲面となっている表面を表す線の形状が、以下の(2)式で決定されることを特徴とするもの(請求項6)である。ただし、cは曲率を表す定数である。
Figure 2006215131
前記課題を解決するための第7の手段は、前記第6の手段であって前記非円パラメータκの絶対値がxの増加と共に増大していることを特徴とするもの(請求項7)である。
前記課題を解決するための第8の手段は、前記第5の手段から第7の手段のいずれかのシリンドリカルレンズを1次元、又は2次元に配置したことを特徴とするシリンドリカルレンズアレイ(請求項8)である。
これら、第5の手段から第8の手段は、それぞれ前記第1の手段から第4の手段と同様の作用効果を奏する。なお、シリンドリカルレンズ、又はシリンドリカルレンズアレイを照明光学系に使用する場合には、2つのシリンドリカルレンズ、又はシリンドリカルレンズアレイを、その母線方向が直角になるように組み合わせて使用する。
前記課題を解決するための第9の手段は、光を反射する非球面反射鏡であって、その表面形状の非球面性を決定する非球面パラメータκが、当該非球面反射鏡の光軸をz軸とする(r,θ,z)円筒座標系において、rを変数に持つ関数とされていることを特徴とする非球面反射鏡(請求項9)である。
前記課題を解決するための第10の手段は、前記第9の手段であって、その表面形状が、以下の(1)式で決定されることを特徴とするもの(請求項10)である。ただし、cは曲率を表す定数である。
Figure 2006215131
前記課題を解決するための第11の手段は、前記第10の手段であって、前記非球面パラメータκの絶対値がrの増加と共に増大していることを特徴とするもの(請求項11)である。
前記課題を解決するための第12の手段は、前記第9の手段から第11の手段のいずれかの非球面反射鏡を1次元、又は2次元に配置したことを特徴とする非球面反射鏡アレイ(請求項12)である。
これら第9の手段から第12の手段は、それぞれ、前記第1の手段から第4の手段と同様の作用効果を奏する。
前記課題を解決するための第13の手段は、光を反射するシリンドリカル反射鏡であって、その母線をz軸、光軸をy軸とするx−y−z直交座標系において、x−y平面に平行な断面における前記シリンドリカル反射鏡の輪郭を表す線が非円弧状であり、その非円弧状の非円弧性を決める非円パラメータκが、xを変数に持つ関数とされていることを特徴とするシリンドリカル反射鏡(請求項13)である。
前記課題を解決するための第14の手段は、前記第13の手段であって、前記断面の、曲面となっている表面を表す線の形状が、以下の(2)式で決定されることを特徴とするもの(請求項14)である。ただし、cは曲率を表す定数である。
Figure 2006215131
前記課題を解決するための第15の手段は、前記第14の手段であって、前記非円パラメータκの絶対値がxの増加と共に増大していることを特徴とするもの(請求項15)である。
前記課題を解決するための第16の手段は、前記第13の手段から第15の手段のうちいずれかのシリンドリカル反射鏡を1次元、又は2次元に配置したことを特徴とするシリンドリカル反射鏡アレイ(請求項16)である。
これら第13の手段から第16の手段は、それぞれ、前記第1の手段から第4の手段と同様の作用効果を奏する。
前記課題を解決するための第17の手段は、前記第4の手段である非球面レンズアレイ、前記第8の手段であるシリンドリカルレンズアレイ、前記第12の手段である非球面反射鏡アレイ、前記第16の手段であるシリンドリカル反射鏡アレイのうち少なくとも一つを使用したマイクロフライアイ光学素子(請求項17)である。
本手段は、照明光学系に使用すれば、均一な照明光を得ることができる。
前記課題を解決するための第18の手段は、前記第17の手段のマイクロフライアイ光学素子を照明光学系に有することを特徴とする露光装置(請求項18)である。
本手段は、照明光学系における照明均一性が良い露光装置とすることができる。
本発明によれば、照明用の光学要素として使用した場合でも、照明むらを発生しにくい非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、及びこれらを使用したマイクロフライアイ光学素子、さらには、このマイクロフライアイ光学素子を使用した露光装置を提供することができる。
以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である非球面レンズを使用した照明光学系の例を示す図である。非球面レンズ1の表面はコーニック面とされており、その表面形状(1)は以下の式を満足する。
Figure 2006215131
ここで、cは曲率半径を示す定数、rは光軸を中心とした半径、κはコーニックパラメータ、A(r)はサグ量である。そして、通常の非球面レンズと異なり、κの値が一定でなく、rの関数であり、rの増加と共に増大するようになっている。そのため、レンズ周辺部の局所曲率半径は、通常の非球面レンズに比べて小さくなるようになっている。
このような非球面レンズ1に平行光束を入射させた場合、非球面レンズ1の中心付近を通る光線は、焦点4の位置で光軸5と交差するが、非球面レンズ1の周辺部を通る光線6は、焦点4より前の位置で5と交差する。よって、光線6は、リレーレンズ2を通過したときは、光軸から遠ざかる方向に進行し、照射面3から外れて照明に寄与しない。従って、3を照明する場合の照明一様性が、非球面レンズ1の周辺部を通る光線6により悪くなることが防止される。
以上の説明は、回転対称の非球面レンズについて行ったが、図1における非球面レンズ1とリレーレンズ2を、紙面に垂直な方向に母線を有するシリンドリカルレンズの母線に垂直な面での断面図と考えれば、シリンドリカルレンズについても同様なことが言えることは明らかである。ただし、この場合、シリンドリカルレンズの表面形状を決定する式は、(1)式でなく、以下の(2)式となる。
Figure 2006215131
ここで、cは曲率半径を示す定数、xはシリンドリカルレンズの母線と光軸に垂直な方向の、光軸からの距離、κはコーニックパラメータ、A(x)はサグ量である。
なお、以上説明したような非球面レンズ、シリンドリカルレンズを製造するためには、図6に示したような方法を使用するが、このとき、目的の表面形状のレンズが得られるように、グレースケールマスクを設計するようにする。
また、前述したレンズ以外でも、レンズの中心を通る子午線の方向により曲率半径が異なるトーリックレンズの場合は、円筒座標系において、コーニックパラメータκは少なくとも変数として、光軸を中心とした半径rの他に、光軸を中心に光軸と垂直な面内における方向を示す角度(動径方向)θも変数に持つようにすることが好ましい。もちろん、直交座標系で表されている場合は、光軸方向に対して垂直な面内における位置を示す2つの変数を用いればよい。一方、トーリックレンズ以外でも2次元的に配列されたレンズアレイにおいて、レンズピッチの配列方向ごとに配列ピヅチが異なるようなものは、プロセスにより生ずるレンズが変形する影響が、配列方向ごとに異なる。したがって、このような場合には、光軸方向に対して垂直な面内おける位置を示す二つの変数(円筒座標系では、r、θ)を用いることが好ましい場合がある。
以上の説明は、非球面レンズ、シリンドリカルレンズについて行ったが、非球面反射鏡、シリンドリカル反射鏡についても同じことが言えることは、説明を要しないであろう。本発明の実施の形態の1例である非球面シリンドリカル反射鏡(反射鏡アレイ)を製造する方法の例を、図2に示す。
石英からなる基板7の上にレジスト8を塗布する(a)。この場合、レジストとしてはポジ型のものを使用している。そして、グレースケールマスク9を通して光をレジスト8上に照射する(b)。図においてハッチングを施してある部分がグレースケールとなっており、ハッチング部の中心に行くほど光の透過率が高くなっている。黒塗りの部分は、不透明な部分である。
このようにして露光されたレジスト8を現像すると、強く光の照射を受けた部分は多く除去され、弱く光の照射を受けた部分は除去量が少なくなって、(c)に示すように、レジスト8に反射鏡アレイのパターンが形成される。この状態でレジスト8を加熱し、表面の細かい凹凸を除去する。
その後、状態で、レジスト8と基板7を同時にドライエッチングすると、レジスト8に形成された反射鏡のパターンが基板7に転写され、レジスト8が無くなった状態で、基板7の表面に反射鏡アレイのパターンが形成される(d)。レジスト8と基板7のエッチングレートの違いにより、レジスト8に形成された反射鏡のパターンと基板7の表面に形成された反射鏡のパターンはその凹凸度が異なるが、所望の凹凸を有する反射鏡のパターンが基板7の表面に形成されるように、予め、レジスト8に形成される反射鏡のパターンの形状を決定しておけばよい。
このようにして形成された基板7の表面に、屈折率の異なる2つの物質(例えばEUV領域ではMoとSi)からなる薄膜を交互に成膜することにより、多層膜からなる反射膜10を製造することにより、反射鏡アレイが完成する(e)。もちろん、可視光や紫外光用に使用する場合には、通常の反射剤を、スパッタリングや蒸着により、基板7の上に成膜して、反射膜10を形成してもよい。
以下、本発明の実施の形態の方法によって製造されたシリンドリカルレンズアレイ、フライアイレンズを使用した露光装置の概要について図3を用いて説明する。図3に示す露光装置は、露光光(照明光)を供給するための光源11として、たとえば248nmの波長の光を供給するKrFエキシマレーザー光源または193nmの波長の光を供給するArFエキシマレーザー光源を備えている。光源11からZ方向に沿って射出されたほぼ平行な光束は、X方向に沿って細長く延びた矩形状の断面を有し、一対のレンズ12aおよび12bからなるビームエキスパンダー12に入射し、所定の矩形状の断面を有する光束に整形される。
整形光学系としてのビームエキスパンダー12を介したほぼ平行な光束は、折り曲げミラー13でY方向に偏向された後、回折光学素子14を介して、アフォーカルズームレンズ15に入射する。一般に、回折光学素子は、ガラス基板に露光光(照明光)の波長程度のピッチを有する段差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有する。具体的には、回折光学素子14は、矩形状の断面を有する平行光束が入射した場合に、そのファーフィールド(またはフラウンホーファー回折領域)に円形状の光強度分布を形成する機能を有する。したがって、回折光学素子14を介した光束は、アフォーカルズームレンズ15の瞳位置に円形状の光強度分布、すなわち円形状の断面を有する光束を形成する。
アフォーカルズームレンズ15は、アフォーカル系(無焦点光学系)を維持しながら所定の範囲で倍率を連続的に変化させることができるように構成されている。アフォーカルズームレンズ15を介した光束は、輪帯照明用の回折光学素子16に入射する。アフォーカルズームレンズ15は、回折光学素子14の発散原点と回折光学素子16の回折面とを光学的にほぼ共役に結んでいる。そして、回折光学素子16の回折面またはその近傍の面の一点に集光する光束の開口数は、アフォーカルズームレンズ15の倍率に依存して変化する。
輪帯照明用の回折光学素子16は、平行光束が入射した場合に、そのファーフィールドにリング状の光強度分布を形成する機能を有する。
回折光学素子16を介した光束は、ズームレンズ17に入射する。ズームレンズ17の後側焦点面の近傍には、光源側から順に第1フライアイ部材18aと第2フライアイ部材18bとからなるマイクロフライアイレンズ(またはフライアイレンズ)18の入射面(すなわち第1フライアイ部材18aの入射面)が位置決めされている。なお、マイクロフライアイレンズ18は入射光束に基づいて多数光源を形成するオプティカルインテグレータとして機能する。
上述したように、回折光学素子14を介してアフォーカルズームレンズ15の瞳位置に形成される円形状の光強度分布からの光束は、アフォーカルズームレンズ15から射出された後、様々な角度成分を有する光束となって回折光学素子16に入射する。すなわち、回折光学素子14は、角度光束形成作用を有するオプティカルインテグレータを構成している。一方、回折光学素子16は、平行光束が入射した場合に、そのファーフィールドにリング状の光強度分布を形成する機能を有する。したがって、回折光学素子16を介した光束は、ズームレンズ17の後側焦点面に(ひいてはマイクロフライアイレンズ18の入射面に)、たとえば光軸AXを中心とした輪帯状の照野を形成する。
マイクロフライアイレンズ18の入射面に形成される輪帯状の照野の外径は、ズームレンズ17の焦点距離に依存して変化する。このように、ズームレンズ17は、回折光学素子16とマイクロフライアイレンズ18の入射面とを実質的にフーリエ変換の関係に結んでいる。マイクロフライアイレンズ18に入射した光束は二次元的に分割され、マイクロフライアイレンズ18の後側焦点面にはマイクロフライアイレンズ18への入射光束によって形成される照野と同じ輪帯状の多数光源(以下、「二次光源」という)が形成される。
マイクロフライアイレンズ18の後側焦点面に形成された輪帯状の二次光源からの光束は、コンデンサー光学系19の集光作用を受けた後、所定のパターンが形成されたマスクMを重畳的に照明する。マスクMのパターンを透過した光束は、投影光学系PLを介して、感光性基板であるウェハW上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが逐次露光される。
このように本実施の形態にかかる露光装置においては、照明光の均一性を向上させるために、マイクロフライアイレンズ18を使用している。そして、このマイクロフライアイレンズ18を構成する第1フライアイ部材18a、第2フライアイ部材18bは、前述のような本発明のシリンドリカルレンズアレイである。それ故、従来よりも均一な照明光を形成することができる。
なお、第1フライアイ部材18a、第2フライアイ部材18bのシリンドリカルレンズアレイの母線方向は互いに直交するようにされている。勿論、マイクロフライアイレンズとして、本発明の実施の形態である単体のフライアイレンズアレイを使用するようにしてもよい。
次に、本発明の実施の形態であるシリンドリカル反射鏡のアレイをフライアイミラーとして使用したEUV露光装置の概要を図4に示す。EUV光源21から放出されたEUV光22は、照明光学系23に入射し、コリメータミラーとして作用する凹面反射鏡24を介してほぼ平行光束となり、一対のフライアイミラー25aおよび25bからなるオプティカルインテグレータ25に入射する。一対のフライアイミラー25aおよび25bは、本発明の実施の形態であるシリンドリカルマイクロ反射鏡アレイであり、その母線方向が互いに直交するように配置されている。
こうして、第2フライアイミラー25bの反射面の近傍、すなわちオプティカルインテグレータ25の射出面の近傍には、所定の形状を有する実質的な面光源が形成される。実質的な面光源からの光は、平面反射鏡26により偏向された後、マスクM上に細長い円弧状の照明領域を形成する(円弧状の照明領域を形成するための開口板は図示を省略している)。照明されたマスクMのパターンからの光は、複数の反射鏡(図4では例示的に6つの反射鏡M1〜M6)からなる投影光学系PLを介して、ウェハW上にマスクパターンの像を形成する。なお、フライアイミラー25a、25bを対として使用する代わりに、本発明の実施の形態であるマイクロ反射鏡アレイを使用することもできる。
図6に示されるような工程で、レジストを加熱する工程を付加して製造され、図6(d)に示されるような形状を有する石英マイクロレンズを製造した。このレンズの使用有効半径は250μmである。
非球面レンズを設計するに当たり、(1)式における非球面パラメータκを、半径rの関数
κ=-2.3+1.0r+2.0r (r=0〜0.35mm)
として、レンズの表面形状が(1)式によって決定されるような形状となるようにグレースケールマスクを設計し使用した。比較例として、(1)式における非球面パラメータκを-2.3で一定として、レンズの表面形状が(1)式によって決定されるような形状となるようにグレースケールマスクを設計し使用した。
このようにして製造された実際のレンズの形状を図5に示す。図5において、横軸は半径方向位置、縦軸は局所半径を示している。設計面とされているのは、(1)式においてκを-2.3の一定値とした場合の(1)式で示される曲面の局所半径である。
非球面パラメータ一定とされているのは、表面形状が、(1)式においてκを-2.3の一定値とした場合の(1)式で示される曲面となるようにグレースケールマスクを設計して使用し、図6に示す工程(加熱処理を含む)で製造した場合(比較例)に、実際に得られた局所曲率半径である。
これを見ると分かるように、非球面パラメータを一定とした場合には、設計値と大きく異なり、レンズの周縁部において曲率半径が著しく大きくなっていることが分かる。よって、前述のような問題が発生する。
非球面パラメータを変化とされているのが、本発明の実施例の結果であり、レンズの周縁部において、設計値よりも局所半径が小さくなっている。よって、本発明の実施の形態において説明したような効果が得られる。
本発明の実施の形態の1例である非球面レンズを使用した照明光学系の例を示す図である。 本発明の実施の形態の1例である非球面シリンドリカル反射鏡(反射鏡アレイ)を製造する方法の例を示す図である。 本発明の実施の形態の方法によって製造されたシリンドリカルレンズアレイ、フライアイレンズを使用した露光装置の概要を示す図である。 本発明の実施の形態であるシリンドリカル反射鏡のアレイをフライアイミラーとして使用したEUV露光装置の概要を示す図である。 本発明の実施例と比較例おけるレンズ形状を示す図である。 グレースケールマスクを用いてマイクロレンズを製作する方法の例を示す図である。 実際に製作されたマイクロレンズ(凸レンズ)の形状と設計形状との差を示したグラフである。 照明むらの発生原因を説明するための図である。
符号の説明
1…非球面レンズ、2…リレーレンズ、3…照射面、4…焦点、5…光軸、6…光線、7…基板、8…レジスト、9…グレースケールマスク、10…反射膜、11…光源、12…ビームエキスパンダ、12a…レンズ、12b…レンズ、13…折り曲げミラー、14…回折光学素子、15…アフォーカルズームレンズ、16…回折光学素子、17…ズームレンズ、18…マイクロフライアイレンズ、18a…第1フライアイ部材、18b…第2フライアイ部材、19…コンデンサ光学系、21…EUV光源、22…EUV光、23…照明光学系、24…凹面反射鏡、25…オプティカルインテグレータ、25a…フライアイミラー、25b…フライアイミラー、26…平面反射鏡、AX…光軸、M…マスク、PL…投影光学系、W…ウェハ、M1〜M2…ミラー

Claims (18)

  1. 光を屈折させる非球面レンズであって、その表面形状の非球面性を決定する非球面パラメータκが、当該非球面レンズの光軸をz軸とする(r,θ,z)円筒座標系において、rを変数に持つ関数とされていることを特徴とする非球面レンズ。
  2. 請求項1に記載の非球面レンズであって、その表面形状が、以下の(1)式で決定されることを特徴とする非球面レンズ。ただし、cは曲率を表す定数である。
    Figure 2006215131
  3. 請求項2に記載の非球面レンズであって、前記非球面パラメータκの絶対値がrの増加と共に増大していることを特徴とする非球面レンズ。
  4. 請求項1から請求項3のうちいずれか1項に記載の非球面レンズを1次元、又は2次元に配置したことを特徴とする非球面レンズアレイ。
  5. 光を屈折させるシリンドリカルレンズであって、その母線をz軸、光軸をy軸とするx−y−z直交座標系において、x−y平面に平行な断面における前記シリンドリカルレンズの輪郭を表す線が非円弧状であり、その非円弧状の非円弧性を決める非円パラメータκが、xを変数に持つ関数とされていることを特徴とするシリンドリカルレンズ。
  6. 請求項5に記載のシリンドリカルレンズであって、前記断面の、曲面となっている表面を表す線の形状が、以下の(2)式で決定されることを特徴とするシリンドリカルレンズ。ただし、cは曲率を表す定数である。
    Figure 2006215131
  7. 請求項6に記載のシリンドリカルレンズであって、前記非円パラメータκの絶対値がxの増加と共に増大していることを特徴とするシリンドリカルレンズ。
  8. 請求項5から請求項7のうちいずれか1項に記載のシリンドリカルレンズを1次元、又は2次元に配置したことを特徴とするシリンドリカルレンズアレイ。
  9. 光を反射する非球面反射鏡であって、その表面形状の非球面性を決定する非球面パラメータκが、当該非球面反射鏡の光軸をz軸とする(r,θ,z)円筒座標系において、rを変数に持つ関数とされていることを特徴とする非球面反射鏡。
  10. 請求項9に記載の非球面反射鏡であって、その表面形状が、以下の(1)式で決定されることを特徴とする非球面反射鏡。ただし、cは曲率を表す定数である。
    Figure 2006215131
  11. 請求項10に記載の非球面反射鏡であって、前記非球面パラメータκの絶対値がrの増加と共に増大していることを特徴とする非球面反射鏡。
  12. 請求項9から請求項11のうちいずれか1項に記載の非球面反射鏡を1次元、又は2次元に配置したことを特徴とする非球面反射鏡アレイ。
  13. 光を反射するシリンドリカル反射鏡であって、その母線をz軸、光軸をy軸とするx−y−z直交座標系において、x−y平面に平行な断面における前記シリンドリカル反射鏡の輪郭を表す線が非円弧状であり、その非円弧状の非円弧性を決める非円パラメータκが、xを変数に持つ関数とされていることを特徴とするシリンドリカル反射鏡。
  14. 請求項13に記載のシリンドリカル反射鏡であって、前記断面の、曲面となっている表面を表す線の形状が、以下の(2)式で決定されることを特徴とするシリンドリカル反射鏡。ただし、cは曲率を表す定数である。
    Figure 2006215131
  15. 請求項14に記載のシリンドリカル反射鏡であって、前記非円パラメータκの絶対値がxの増加と共に増大していることを特徴とするシリンドリカル反射鏡。
  16. 請求項13から請求項15のうちいずれか1項に記載のシリンドリカル反射鏡を1次元、又は2次元に配置したことを特徴とするシリンドリカル反射鏡アレイ。
  17. 請求項4に記載の非球面レンズアレイ、請求項8に記載のシリンドリカルレンズアレイ、請求項12に記載の非球面反射鏡アレイ、請求項16に記載のシリンドリカル反射鏡アレイのうち少なくとも一つを使用したマイクロフライアイ光学素子。
  18. 請求項17に記載のマイクロフライアイ光学素子を照明光学系に有することを特徴とする露光装置。

JP2005025855A 2005-02-02 2005-02-02 非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、マイクロフライアイ光学素子、及び露光装置 Pending JP2006215131A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025855A JP2006215131A (ja) 2005-02-02 2005-02-02 非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、マイクロフライアイ光学素子、及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025855A JP2006215131A (ja) 2005-02-02 2005-02-02 非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、マイクロフライアイ光学素子、及び露光装置

Publications (1)

Publication Number Publication Date
JP2006215131A true JP2006215131A (ja) 2006-08-17

Family

ID=36978441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025855A Pending JP2006215131A (ja) 2005-02-02 2005-02-02 非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、マイクロフライアイ光学素子、及び露光装置

Country Status (1)

Country Link
JP (1) JP2006215131A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100549B2 (en) 2008-08-07 2012-01-24 Panasonic Corporation Illuminating lens, and lighting device, surface light source, and liquid-crystal display apparatus each using the same
JP2019049659A (ja) * 2017-09-11 2019-03-28 キヤノン株式会社 照明光学系、露光装置、および物品の製造方法
CN112578484A (zh) * 2020-12-28 2021-03-30 中国科学院长春光学精密机械与物理研究所 一种非均一曲面复眼透镜及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100549B2 (en) 2008-08-07 2012-01-24 Panasonic Corporation Illuminating lens, and lighting device, surface light source, and liquid-crystal display apparatus each using the same
US8109658B2 (en) 2008-08-07 2012-02-07 Panasonic Corporation Illuminating lens, and lighting device, surface light source, and liquid-crystal display apparatus each using the same
US8425088B2 (en) 2008-08-07 2013-04-23 Panasonic Corporation Illuminating lens, and lighting device
US8434911B2 (en) 2008-08-07 2013-05-07 Panasonic Corporation Illuminating lens, and lighting device
JP2019049659A (ja) * 2017-09-11 2019-03-28 キヤノン株式会社 照明光学系、露光装置、および物品の製造方法
US10545395B2 (en) 2017-09-11 2020-01-28 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and method of manufacturing article
CN112578484A (zh) * 2020-12-28 2021-03-30 中国科学院长春光学精密机械与物理研究所 一种非均一曲面复眼透镜及其制备方法

Similar Documents

Publication Publication Date Title
KR101484435B1 (ko) 노광 방법 및 장치, 그리고 디바이스 제조 방법
JP4852617B2 (ja) マイクロリソグラフィ投影露光装置のための照明システム
KR101285056B1 (ko) 조명 광학 장치, 노광 장치 및 노광 방법
TWI714524B (zh) 用於投影微影的照明光學單元、光瞳琢面反射鏡、光學系統、照明系統、投影曝光裝置、用以產生一微結構組件之方法以及微結構組件
JP2021503623A (ja) 投影リソグラフィシステム用の瞳ファセットミラー、光学システム、および照明光学系
KR101144458B1 (ko) 마이크로 인쇄술용 조명 시스템
US20030156269A1 (en) Method and apparatus for illuminating a surface using a projection imaging apparatus
JP2020149070A (ja) Euvマイクロリソグラフィのための投影レンズ、投影露光装置、及び投影露光方法
CN101978324B (zh) 用于微光刻的投射物镜
WO2002031570A1 (fr) Procede d'evaluation de la qualite d'images
JP4207478B2 (ja) オプティカルインテグレータ、照明光学装置、露光装置および露光方法
JP2007158225A (ja) 露光装置
CN102870030B (zh) 成像光学系统和具有这种成像光学系统的用于微光刻的投射曝光设备
JP2004198748A (ja) オプティカルインテグレータ、照明光学装置、露光装置および露光方法
JP2006215131A (ja) 非球面レンズ、シリンドリカルレンズ、非球面反射鏡、シリンドリカル反射鏡、マイクロフライアイ光学素子、及び露光装置
US20220357666A1 (en) Curved reticle by mechanical and phase bending along orthogonal axes
JP2008182244A (ja) マイクロリソグラフ投影露光装置の照明系用光インテグレータ
TWI825014B (zh) 在euv光譜區域中操作光學物鏡
JP2005301054A (ja) 照明光学系及びそれを用いた露光装置
US20030227684A1 (en) Diffractive optical element, refractive optical element, illuminating optical apparatus, exposure apparatus and exposure method
JP2001176772A (ja) 照明光学装置および該照明光学装置を備えた投影露光装置
CN110753882A (zh) 在euv光谱区域中操作的光学物镜
JP2004029458A (ja) 投影光学系及び縮小投影露光装置
KR20230000964A (ko) 투영 광학계, 노광 장치, 및 물품 제조 방법
CN117441116A (zh) 成像光学单元