JP2006214723A - Controller of heat source system - Google Patents

Controller of heat source system Download PDF

Info

Publication number
JP2006214723A
JP2006214723A JP2006096714A JP2006096714A JP2006214723A JP 2006214723 A JP2006214723 A JP 2006214723A JP 2006096714 A JP2006096714 A JP 2006096714A JP 2006096714 A JP2006096714 A JP 2006096714A JP 2006214723 A JP2006214723 A JP 2006214723A
Authority
JP
Japan
Prior art keywords
heat source
combustion
scavenging
state
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006096714A
Other languages
Japanese (ja)
Other versions
JP4533335B2 (en
Inventor
Kazunobu Inoue
一信 井上
Takashi Shigematsu
敬 重松
健二 ▲崎▼山
Kenji Sakiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2006096714A priority Critical patent/JP4533335B2/en
Publication of JP2006214723A publication Critical patent/JP2006214723A/en
Application granted granted Critical
Publication of JP4533335B2 publication Critical patent/JP4533335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller of a heat source system of high tracking property to load fluctuation. <P>SOLUTION: The controller of the number of heat source systems has a plurality of heat source apparatuses B1, B2, B3 and B4 transferring to combustion after each of them scavenges the inside of a furnace, and a number setting means 4 for manually varying the number of heat source apparatuses to be put into a scavenge state in a combustion apparatus for combusting a required number of heat source apparatuses B1, B2, B3 and B4 according to a load amount. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、炉内の掃気を行った後に燃焼へ移行する複数台のボイラ等の熱源機器を有し、負荷量に応じて必要台数分の熱源機器を燃焼,停止させる熱源システムの制御装置に関する。   The present invention relates to a control device for a heat source system having a plurality of boilers and other heat source devices that shift to combustion after scavenging in a furnace, and that burns and stops a required number of heat source devices according to the load amount. .

たとえば、複数のボイラユニットを有するボイラシステムにおいては、予め定められた起動順序にしたがって順次起動することが行われる。こうしたシステムにおいては、一般的に各ボイラユニットの起動毎に掃気(パージ)が必要となるために、負荷変動に対するシステムの追随性が悪いという課題がある。この課題の解決案として、特開昭63−238303号公報にて、起動順序にしたがって、あるボイラに燃焼開始信号が供給されると同時に、つぎに燃焼へ移行すべきボイラに対してプリパージ待機信号を供給する方式が提案されている。   For example, in a boiler system having a plurality of boiler units, activation is performed sequentially in accordance with a predetermined activation sequence. In such a system, since scavenging (purging) is generally required for each startup of each boiler unit, there is a problem that the system does not follow the load variation. As a solution to this problem, in Japanese Patent Laid-Open No. 63-238303, a combustion start signal is supplied to a certain boiler according to the startup sequence, and at the same time, a pre-purge standby signal is sent to a boiler that is to be shifted to combustion next. A method for supplying the water has been proposed.

しかしながら、この提案においては、基本的にはプリパージ待機中のボイラは、1台に限られているために、急激な負荷変動が予想されるシステム等においては、負荷変動に対する追随性が十分でないという課題があった。また、この提案では、あるボイラに燃焼開始信号が与えられたとき、常に、つぎに燃焼状態へ移行すべきボイラにプリパージ待機信号が供給されてプリパージが開始される,すなわち1台のボイラは常にプリパージ待機をしているために、不必要なパージが行われ、熱的なロスを生ずる問題がある。   However, in this proposal, the number of boilers that are on standby for pre-purge is basically limited to one, so that in systems where sudden load fluctuations are expected, the followability to load fluctuations is not sufficient. There was a problem. Further, in this proposal, when a combustion start signal is given to a certain boiler, a pre-purge standby signal is always supplied to the boiler to be shifted to the next combustion state and pre-purge is started, that is, one boiler is always Since waiting for the pre-purge, unnecessary purge is performed, which causes a problem of thermal loss.

この発明は、上記の課題を解決すべくなされたものであって、それぞれ炉内の掃気を行った後に燃焼へ移行する複数台の熱源機器を有し、負荷量に応じて必要台数分の前記熱源機器を燃焼させるものにおいて、掃気状態とする熱源機器の台数を手動により可変とする台数設定手段を備えたことを特徴としている。   The present invention has been made to solve the above-described problem, and has a plurality of heat source devices each of which moves to combustion after scavenging in the furnace, and the required number of units according to the load amount. An apparatus for burning a heat source device is characterized by comprising a number setting means for manually changing the number of heat source devices in a scavenged state.

この発明によれば、掃気状態とする熱源機器の台数を手動により設定できるので、システムの負荷変動の大きい場合には掃気状態とする熱源機器の台数を増加させることで、負荷変動に対してより多くの熱源機器を速やかに燃焼状態へ移行させることができ、負荷変動に対する追随性の良好な熱源システムの制御装置を提供できる。また、システムの負荷変動が大きくない場合には、掃気状態とする熱源機器の台数を減少させることで、掃気による熱ロスを少なくできるなどの効果が大きい。
According to the present invention, the number of heat source devices to be in the scavenging state can be manually set. Therefore, when the load fluctuation of the system is large, the number of heat source devices to be in the scavenging state is increased, so that the load fluctuation can be increased. Many heat source devices can be promptly shifted to a combustion state, and a control device for a heat source system with good followability to load fluctuations can be provided. In addition, when the load fluctuation of the system is not large, the effect of reducing the heat loss due to scavenging is great by reducing the number of heat source devices in the scavenging state.

(実施の形態)
この発明の実施の形態としては、それぞれ炉内の掃気を行った後に燃焼へ移行する複数台の熱源機器を有し、負荷量に応じて必要台数分の前記熱源機器を燃焼させるものにおいて、掃気状態とする熱源機器の台数を手動により可変とする台数設定手段を備えたものとする。
(Embodiment)
As an embodiment of the present invention, there are a plurality of heat source devices that each move to combustion after scavenging in the furnace, and the scavenging device is configured to burn the required number of heat source devices according to the load amount. It is assumed that a number setting means for manually changing the number of heat source devices to be in a state is provided.

この実施の形態について以下に詳細に説明する。熱源機器とは蒸気や温水等の形態で熱を要求する負荷に対して、熱供給を行う蒸気ボイラ,温水ボイラ等を含み、熱源機器は炉,すなわち燃焼炉の掃気(パージともいい、換気も含む)を終えた後に、燃焼へ移行する。この掃気は、通常、安全上、炉内容積の4倍以上の掃気を行い、連続的掃気とされるが、安全上許されるならこれに限定されるものではなく、間欠掃気でも良いものである。   This embodiment will be described in detail below. Heat source equipment includes steam boilers, hot water boilers, etc. that supply heat to loads that require heat in the form of steam, hot water, etc. The heat source equipment is a scavenging (also called purge, ventilation) of the furnace, that is, the combustion furnace. Transition to combustion. This scavenging is usually a scavenging that is at least four times the furnace volume for safety and is a continuous scavenging, but is not limited to this if allowed for safety, and may be intermittent scavenging. .

熱源機器は停止状態と、掃気状態と、燃焼状態とをとりうるものであり、望ましくは、燃焼状態は、低燃焼、中燃焼および高燃焼のように多段階の燃焼状態をとりうるものとする。また、この発明は、熱源機器の台数が2台以上のシステムに適用される。負荷量は、熱源機器を蒸気ボイラとする場合においては、各ボイラユニットの出力側蒸気管が接続される共通の蒸気ヘッダの蒸気圧力または蒸気温度を検出することにより検出できるもので
あり、その他、送気(供給蒸気)量を流量センサなどにより検出することにより,あるいは蒸気使用負荷機器の稼働状況を検出することなどにより検出できるものである。
The heat source device can take a stopped state, a scavenging state, and a combustion state, and preferably, the combustion state can take a multi-stage combustion state such as low combustion, medium combustion, and high combustion. . In addition, the present invention is applied to a system having two or more heat source devices. When the heat source equipment is a steam boiler, the load amount can be detected by detecting the steam pressure or steam temperature of the common steam header to which the output side steam pipe of each boiler unit is connected. It can be detected by detecting the amount of air supply (supplied steam) with a flow sensor or by detecting the operating status of the steam load equipment.

また、熱源機器を温水ボイラとする場合の負荷量は、負荷へ供給される出湯温度と設定温度の差や、負荷から戻ってくる湯の温度と設定温度との差や、流量などで把握されるものであり、熱源機器の種類に応じて適宜定められる。望ましくは、この負荷量に応じて各熱源機器は、燃焼状態および台数を制御する台数制御手段(システム制御手段)により予め定めた順位にしたがい順次燃焼が開始され、予め定めた順位にしたがい停止が制御される。各熱源機器の停止の順序は、望ましくは、燃焼開始の順番の逆とするが、これに限らない。   In addition, when the heat source equipment is a hot water boiler, the load amount is ascertained by the difference between the tapping temperature supplied to the load and the set temperature, the difference between the temperature of hot water returning from the load and the set temperature, the flow rate, etc. It is determined appropriately according to the type of heat source device. Desirably, according to this load amount, each heat source device starts combustion sequentially according to a predetermined order by a unit control means (system control means) for controlling the combustion state and the number of units, and stops according to a predetermined order. Be controlled. The order of stopping the heat source devices is desirably the reverse of the order of starting combustion, but is not limited thereto.

また、熱源機器を掃気状態とする制御は、台数制御手段により行われ、現時点の負荷量においては台数制御手段により未だ燃焼開始信号が供給されておらず、負荷が増加した場合に燃焼開始信号が供給される順位にある熱源機器に対して連続的に掃気状態とするように、当該熱源機器に対して掃気運転を指示する。この掃気においては、所定量の掃気が終了した後は、通常行われる掃気と比較して送風量を低減することが望ましい。   Further, the control for setting the heat source device to the scavenging state is performed by the number control means, and the combustion start signal is not yet supplied by the number control means at the current load amount, and the combustion start signal is output when the load increases. A scavenging operation is instructed to the heat source device so that the heat source device in the order of supply is continuously scavenged. In this scavenging, after a predetermined amount of scavenging has been completed, it is desirable to reduce the amount of blown air compared to the normal scavenging.

掃気状態とする熱源機器の台数を設定する台数設定手段は、掃気状態とする熱源機器の台数を1台または2台以上の複数台に設定するもので、たとえば1台の場合は、負荷の状態に応じて未だ燃焼開始信号が供給されておらず、負荷が増加した場合に、つぎに燃焼開始信号が供給される熱源機器に対してのみ掃気信号を供給する。そして、2台の場合は負荷の状態に応じて未だ燃焼開始信号が供給されておらず、負荷が増加した場合に、つぎに燃焼開始信号が供給される熱源機器と、そのつぎに燃焼開始信号が供給される熱源機器とに対してのみ掃気信号を供給するものである。ここで、台数設定手段により掃気の台数は設定されるが、燃焼状態にない熱源機器が設定台数(たとえば2台)未満の場合(たとえば1台または0台)は、掃気運転可能な熱源機器のみを掃気指示の対象とするものである。   The number setting means for setting the number of heat source devices to be in the scavenging state is to set the number of heat source devices to be in the scavenging state to one or a plurality of two or more. Accordingly, when the combustion start signal is not yet supplied and the load increases, the scavenging signal is supplied only to the heat source device to which the combustion start signal is supplied next. In the case of two units, the combustion start signal is not yet supplied according to the state of the load, and when the load increases, the heat source device to which the combustion start signal is supplied next, and then the combustion start signal The scavenging signal is supplied only to the heat source device to which the gas is supplied. Here, the number of scavenging is set by the number setting means, but when the number of heat source devices not in the combustion state is less than the set number (for example, two) (for example, one or zero), only the heat source device capable of scavenging operation is used. Is the target of the scavenging instruction.

台数の設定の方式は、手動により台数を設定する手動設定方式である。この手動設定方式は、システムの制御器に台数設定手段が備えられ、システムを設置する負荷の状態を判断して、システム供給業者またはユーザが設定台数を可変できるように構成する。   The number setting method is a manual setting method in which the number is set manually. This manual setting method is configured such that the system controller is provided with a number setting means, and the system supplier or user can vary the set number by judging the state of the load for installing the system.

以下、熱源機器を蒸気ボイラとし、台数設定手段を手動台数設定方式とした実施の形態に対応する実施例について図面にしたがって説明する。図中、B1,B2,B3,B4は、複数台設置した第1〜第4ボイラであり、運転停止状態(燃焼および掃気のいずれも行っていない状態)と、低燃焼状態と高燃焼状態との,所謂3位置制御が可能であり、さらに低燃焼へ移行する前および燃焼停止後に炉(図示しない)内の掃気(パージともいう)を行うものである。各ボイラの燃焼開始の優先順位はB1,B2,B3,B4の順であり、停止の順位はその逆である。   Hereinafter, examples corresponding to the embodiment in which the heat source device is a steam boiler and the number setting means is a manual number setting method will be described with reference to the drawings. In the figure, B1, B2, B3, and B4 are first to fourth boilers installed in a plurality of units, and are in an operation stop state (a state in which neither combustion nor scavenging is performed), a low combustion state, and a high combustion state. This so-called three-position control is possible, and scavenging (also referred to as purging) in a furnace (not shown) is performed before shifting to low combustion and after stopping combustion. The priority of combustion start of each boiler is in the order of B1, B2, B3, B4, and the order of stop is the opposite.

各ボイラの蒸気の出力管A1,A2,A3,A4は、共通のスチームヘッダ(蒸気集合部)1と連結されている。このスチームヘッダ1には、その内部の蒸気圧力を検出し、負荷の状態を検出する圧力検出器2を設ける。この圧力検出器2の検出圧力信号に基づいて負荷量を検出し、図6に示すような制御手順にしたがい台数制御器3により指示された起動順序(予め定めておいても良いし、種々の条件に応じて変更してもよい)で、予め定めた燃焼制御パターンにしたがって、必要台数のボイラを燃焼,停止させるとともに、所定の台数を掃気運転させ、負荷変動に追随するように制御する。   The steam output pipes A1, A2, A3, and A4 of each boiler are connected to a common steam header (steam collecting section) 1. The steam header 1 is provided with a pressure detector 2 that detects the internal steam pressure and detects the load state. The load amount is detected on the basis of the detected pressure signal of the pressure detector 2, and the start sequence (which may be determined in advance or in accordance with the control procedure as shown in FIG. In accordance with a predetermined combustion control pattern, the required number of boilers are combusted and stopped, a predetermined number of scavenging operations are performed, and control is performed so as to follow the load fluctuation.

台数制御器3は、図示しないマイクロコンピュータとその動作を制御するソフトウエア
を含むものであり、図6はソフトウエアの一部の概要を示すものである。具体的には、台数制御器3による制御は、図4および図5に示す燃焼制御パターン,すなわち停止の台数制御パターンによる制御と、図2および図3に示す起動の台数制御パターンによる制御とにより、各ボイラを検出圧力帯(P1〜P2)に応じて、停止,連続掃気(連P)(以下、単に掃気という),低燃焼,高燃焼に制御するとともに、設定台数を手入力可能な台数設定手段4により設定された台数が掃気運転されるように制御する。ここで、設定された掃気台数が確保できない圧力帯では、設定台数未満の台数のボイラを掃気運転させる。また、図3の制御において、急激な負荷増加変動が生じ、あるボイラを掃気から高燃焼へ移行させる必要が生じた場合、実質的な高燃焼状態とするために、過渡的に掃気状態の2台のボイラを低燃焼へ移行させ、その後1台を高燃焼へ,他の1台を掃気へそれぞれ移行させるものである。この実質的な高燃焼状態を早く生じさせるための制御は、掃気台数が3台以上の場合でも同様に適用させる。
The number controller 3 includes a microcomputer (not shown) and software for controlling the operation thereof, and FIG. 6 shows an outline of a part of the software. Specifically, the control by the number controller 3 is based on the combustion control pattern shown in FIGS. 4 and 5, that is, the control by the stop number control pattern and the control by the start number control pattern shown in FIGS. 2 and 3. Each boiler can be controlled to stop, continuous scavenging (continuous P) (hereinafter simply referred to as scavenging), low combustion, and high combustion according to the detected pressure band (P1 to P2), and the number of set numbers can be manually input Control is performed so that the number of units set by the setting means 4 is scavenged. Here, in the pressure range where the set number of scavenging units cannot be secured, the number of boilers less than the set number are scavenged. Further, in the control of FIG. 3, when a sudden load increase fluctuation occurs and it becomes necessary to shift a certain boiler from scavenging to high combustion, in order to obtain a substantially high combustion state, 2 in the scavenging state transiently. One boiler is shifted to low combustion, then one is shifted to high combustion, and the other is shifted to scavenging. The control for quickly generating this substantially high combustion state is similarly applied even when the number of scavenging is three or more.

以下に、この実施例の台数制御器3による台数制御(運転制御)を図2〜図6にしたがい詳述する。今、ユーザが、負荷の変動がそれほどでもないとして、台数設定手段4により設定台数を1台に設定して、システムを起動(運転開始)したとする。図6において、ステップS1でシステムの起動が判定され、今の場合、YESによりステップS2へ移行する。ステップS2では台数設定手段4により設定された掃気台数により燃焼制御パターンを選択する。つづいて、ステップS3へ移行し、蒸気圧力に対する必要燃焼台数NQ(図2から求められる)が現在燃焼している現在燃焼台数NGと等しいかどうかを判定する。YESの判定の場合はステップS3に止まる。今の場合、NOでステップS4へ移行し、必要燃焼台数NQが現在燃焼台数NGより大きいかどうかを判定する。今の場合、NOが判定されステップS6へ移行する。ステップS6においてはステップS2にて選択された制御パターン,すなわち図2の起動パターンに応じて、各ボイラB1〜B4に対して掃気(連P)を1台指示するとともに、ボイラを順次1台ずつ起動して、ステップS7へ移行し、システム全体の運転停止要求があるかどうかを判定し、ステップS3へ戻る。こうして、ステップS4にてYESが判定されるまで、各ステップのS3→S4→S6→S7→S3を繰り返す。   The number control (operation control) by the number controller 3 of this embodiment will be described in detail below with reference to FIGS. Now, suppose that the user sets the set number to one by the number setting means 4 and starts the system (starts operation), assuming that the load fluctuation is not so much. In FIG. 6, it is determined in step S1 that the system is activated. In this case, the process proceeds to step S2 due to YES. In step S2, the combustion control pattern is selected according to the number of scavenging units set by the unit setting means 4. Subsequently, the process proceeds to step S3, where it is determined whether or not the required number of combustion NQ (determined from FIG. 2) with respect to the steam pressure is equal to the number of currently burned NG. If YES, the process stops at step S3. In this case, the process proceeds to step S4 with NO, and it is determined whether the required number of combustion NQ is larger than the current number of combustion NG. In this case, NO is determined and the process proceeds to step S6. In step S6, according to the control pattern selected in step S2, that is, the activation pattern of FIG. 2, one scavenging (continuous P) is instructed to each of the boilers B1 to B4, and the boilers are sequentially one by one. After starting, the process proceeds to step S7, where it is determined whether or not there is an operation stop request for the entire system, and the process returns to step S3. Thus, S3 → S4 → S6 → S7 → S3 in each step is repeated until YES is determined in step S4.

図2に示すように、まずボイラB1を掃気(状態C1)とし、つぎにボイラB1を低燃焼,ボイラB2を掃気とし(状態C2)、つぎにボイラB1を高燃焼,ボイラB2を掃気とする(状態C3)といったように、各ボイラB1〜B4を順次、掃気と低燃焼と高燃焼とに制御する起動制御が行われる。このようにしてステップS4でYESが判定されると、図4の停止パターンに応じて、掃気を1台指示するとともに各ボイラB1〜B4を順次1台ずつ停止する。   As shown in FIG. 2, the boiler B1 is first scavenged (state C1), then the boiler B1 is low burned, the boiler B2 is scavenged (state C2), the boiler B1 is then high burned, and the boiler B2 is scavenged. As in (State C3), start-up control is performed to sequentially control the boilers B1 to B4 to scavenging, low combustion, and high combustion. If YES is determined in step S4 in this way, one scavenging is instructed and one of the boilers B1 to B4 is sequentially stopped according to the stop pattern of FIG.

つぎに、ユーザが、負荷の変動が大きいと判断して、台数設定手段4により設定台数を2台に設定した場合を以下に説明する。図6において、ステップS1でシステムの起動が判定され、今の場合、YESによりステップS2へ移行し、設定台数2台に対応した燃焼制御パターンが選択される。ステップS3では蒸気圧力に対する必要燃焼台数NQ(図3から求められる)が現在燃焼している現在燃焼台数NGと等しいかどうかを判定する。YESの判定の場合はステップS2に止まる。今の場合、NOでステップS4へ移行し、必要燃焼台数NQが現在燃焼台数NGより大きいかどうかを判定する。今の場合、NOが判定されステップS6へ移行する。ステップS6においては図3の起動パターンに応じて、各ボイラB1〜B4に対して掃気2台を指示するとともに、ボイラを順次1台ずつ起動して、ステップS7へ移行し、システム全体の運転停止要求があるかどうかを判定し、ステップS3へ戻る。こうして、ステップS4にてYESが判定されるまで、各ステップのS3→S4→S6→S7→S3を繰り返す。   Next, a case where the user determines that the load fluctuation is large and sets the set number to two by the number setting unit 4 will be described below. In FIG. 6, it is determined in step S1 that the system has been activated. In this case, the process proceeds to step S2 due to YES, and a combustion control pattern corresponding to two set units is selected. In step S3, it is determined whether the required number of combustion NQ (determined from FIG. 3) with respect to the steam pressure is equal to the number of currently burned NG. If the determination is YES, the process stops at step S2. In this case, the process proceeds to step S4 with NO, and it is determined whether the required number of combustion NQ is larger than the current number of combustion NG. In this case, NO is determined and the process proceeds to step S6. In step S6, in accordance with the activation pattern of FIG. 3, two scavenging units are instructed to each of the boilers B1 to B4, the boilers are sequentially activated one by one, the process proceeds to step S7, and the operation of the entire system is stopped. It is determined whether there is a request, and the process returns to step S3. Thus, S3 → S4 → S6 → S7 → S3 in each step is repeated until YES is determined in step S4.

図3に示すように、まずボイラB1,B2を掃気とし(状態E1)、つぎにボイラB1
を低燃焼,ボイラB2,B3を掃気とし(状態E2)、つぎにボイラB1を高燃焼,ボイラB2,B3を掃気とする(状態E3)といったように、各ボイラB1〜B4を順次、掃気と低燃焼と高燃焼とに制御する起動制御が行われる。このようにしてステップS4でYESが判定されると、図5の停止パターンに応じて、掃気を2台指示するとともに、各ボイラB1〜B4を順次1台ずつ停止する。
As shown in FIG. 3, the boilers B1 and B2 are first scavenged (state E1), and then the boiler B1
Are set to low combustion, boilers B2 and B3 are scavenged (state E2), boiler B1 is then highly combusted, and boilers B2 and B3 are scavenged (state E3). Start-up control is performed to control low combustion and high combustion. If YES is determined in step S4 in this manner, two scavenging units are instructed according to the stop pattern of FIG. 5, and each of the boilers B1 to B4 is stopped one by one.

以上のように、掃気台数が2台とされている図3の制御によれば、図2の制御の場合と比較して、負荷変動に対する追随性が良い。すなわち、たとえば状態E3において負荷が急増し、状態E5の運転状態が必要となったとすると、図7に示すように、掃気状態のボイラB1,B2を過渡的に低燃焼とし、ついでボイラB2を高燃焼とし、ボイラB3を掃気に戻し、ボイラB4を掃気とする。したがって、ボイラB2を高燃焼へ移行させるのに、所定のプレパージ時間を必要とすることがないとともに、過渡状態で直ちにボイラB2を高燃焼へ移行させた状態と同じにできるので、負荷変動に対する追随性が良い。これに対して、掃気を設けない従来例では、ボイラB2はプレパージ→低燃焼→高燃焼と移行するので、プレパージの時間を必要とするとともに、過渡状態でボイラB2の低燃焼状態がある(直ちに高燃焼とならない)ために、負荷変動に対する追随性が悪い。また、図2の制御では、ボイラB2は低燃焼→高燃焼と移行するので、過渡状態でボイラB2の低燃焼状態があるために、図3の制御と比較して負荷変動に対する追随性は劣る。   As described above, according to the control in FIG. 3 in which the number of scavenging is two, the followability to the load fluctuation is better than in the case of the control in FIG. That is, for example, if the load suddenly increases in the state E3 and the operation state of the state E5 becomes necessary, as shown in FIG. 7, the scavenged boilers B1 and B2 are set to low combustion transiently, and then the boiler B2 is made high. It is set as combustion, boiler B3 is returned to scavenging, and boiler B4 is scavenging. Therefore, a predetermined pre-purge time is not required to shift the boiler B2 to the high combustion, and it can be made the same as the state in which the boiler B2 is immediately shifted to the high combustion in the transient state. Good sex. On the other hand, in the conventional example in which scavenging is not provided, the boiler B2 shifts from pre-purge → low combustion → high combustion, so that pre-purge time is required and the boiler B2 is in a low combustion state in a transient state (immediately). Therefore, the followability to load fluctuation is poor. Further, in the control of FIG. 2, the boiler B2 shifts from low combustion to high combustion, and therefore, the boiler B2 has a low combustion state in a transient state, so that the followability to the load fluctuation is inferior compared with the control of FIG. .

本発明の一実施例の概略構成を示す図である。It is a figure which shows schematic structure of one Example of this invention. 本発明の一実施例の掃気台数を1台としたときの起動の台数制御パターンを示す。The number control pattern of starting when the number of scavenging of one Example of this invention is set to 1 is shown. 本発明の一実施例の掃気台数を2台としたときの起動の台数制御パターンを示す。The number control pattern of starting when the scavenging number of one Example of this invention is set to 2 is shown. 本発明の一実施例の掃気台数を1台としたときの停止の台数制御パターンを示す。The number control pattern of a stop when the scavenging number of one Example of this invention is set to 1 is shown. 本発明の一実施例の掃気台数を2台としたときの停止の台数制御パターンを示す。The number control pattern of a stop when the scavenging number of one Example of this invention is set to 2 is shown. 本発明の一実施例の制御手順を示すフローチャート図である。It is a flowchart figure which shows the control procedure of one Example of this invention. 本発明の一実施例の動作説明図である。It is operation | movement explanatory drawing of one Example of this invention.

符号の説明Explanation of symbols

B1,B2,B3,B4 ボイラ(熱源機器)
4 台数設定手段

B1, B2, B3, B4 boiler (heat source equipment)
4 Number setting means

Claims (1)

それぞれ炉内の掃気を行った後に燃焼へ移行する複数台の熱源機器を有し、負荷量に応じて必要台数分の前記熱源機器を燃焼させるものにおいて、掃気状態とする熱源機器の台数を手動により可変とする台数設定手段を備えたことを特徴とする熱源システムの制御装置。


Each unit has multiple heat source devices that shift to combustion after scavenging in the furnace, and burns the required number of heat source devices according to the amount of load. A heat source system control device comprising a number setting means that can be varied according to the above.


JP2006096714A 1996-02-21 2006-03-31 Control device for heat source system Expired - Lifetime JP4533335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096714A JP4533335B2 (en) 1996-02-21 2006-03-31 Control device for heat source system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6000296 1996-02-21
JP2006096714A JP4533335B2 (en) 1996-02-21 2006-03-31 Control device for heat source system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10420896A Division JP3820621B2 (en) 1996-02-21 1996-03-29 Control device for heat source system

Publications (2)

Publication Number Publication Date
JP2006214723A true JP2006214723A (en) 2006-08-17
JP4533335B2 JP4533335B2 (en) 2010-09-01

Family

ID=36978093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096714A Expired - Lifetime JP4533335B2 (en) 1996-02-21 2006-03-31 Control device for heat source system

Country Status (1)

Country Link
JP (1) JP4533335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020547A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020547A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP7110806B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system

Also Published As

Publication number Publication date
JP4533335B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2002130602A (en) Method for controlling number of boilers
JP3820621B2 (en) Control device for heat source system
JP2010032173A (en) Boiler plant, device and method for controlling the boiler plant
JP4533335B2 (en) Control device for heat source system
JP5086145B2 (en) Multi-can boiler
JP4118206B2 (en) Number control device in boiler multi-can installation system
JP2004069086A (en) Multi-boiler installation boiler
JP5692807B2 (en) Multi-can boiler
JP2002081605A (en) Method for controlling number of thermal instruments
JPS591912A (en) Combustion control method of combustion furnace with fluidized bed
JP6057125B2 (en) Combustion device
JP2000018503A (en) Automatic number of operating set control method of boiler
JP3998812B2 (en) How to control the number of boilers with multiple cans
JP2002081604A (en) Method for controlling number of thermal instruments
JP4176686B2 (en) Combustion device with pilot burner
JP3309734B2 (en) Combustion equipment
JPH0336402A (en) Automatic control of number of boilers
JP2002221318A (en) Combustion control method for thermal apparatus
JP4551038B2 (en) Multi-can installation system for gas-fired boilers
JP2004197992A (en) Hot water supply heating device
JPH08219550A (en) Control method in multi-can installation system of fluid heater
JP3142460B2 (en) Pressure control method for burner combustion air
JP3551496B2 (en) Hot water storage system
JP2005249249A (en) Combined combustion apparatus
JP2000337601A (en) Combustion controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080131

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term