JP2006213737A - Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient - Google Patents

Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient Download PDF

Info

Publication number
JP2006213737A
JP2006213737A JP2006138631A JP2006138631A JP2006213737A JP 2006213737 A JP2006213737 A JP 2006213737A JP 2006138631 A JP2006138631 A JP 2006138631A JP 2006138631 A JP2006138631 A JP 2006138631A JP 2006213737 A JP2006213737 A JP 2006213737A
Authority
JP
Japan
Prior art keywords
mouse
bone resorption
antibody
bone
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006138631A
Other languages
Japanese (ja)
Inventor
Chuzo Kishimoto
忠三 岸本
Chisato Miyaura
千里 宮浦
Tatsuo Suda
立雄 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006138631A priority Critical patent/JP2006213737A/en
Publication of JP2006213737A publication Critical patent/JP2006213737A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new bone resorption inhibitor including interleukin-6 antibody as an active ingredient. <P>SOLUTION: The bone resorption inhibitor includes an antibody to interleukin-6 receptor as an active ingredient. This bone resorption inhibitor effectively inhibits the bone resorption for suppressing the formation of osteoclast cells in the presence of interleukin-6 and interleukin-6 receptor and is useful as a therapeutic agent for a variety of diseases relating to bone resorption. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はインターロイキン6リセプターに対する抗体(以下、インターロイキン6リセプター抗体と称する)を有効成分とする骨吸収抑制剤に関するものである。   The present invention relates to a bone resorption inhibitor comprising an antibody against interleukin 6 receptor (hereinafter referred to as interleukin 6 receptor antibody) as an active ingredient.

骨組織は、骨芽細胞による骨形成と破骨細胞による骨吸収とによって基本的形状を変えることなく、新生骨と置換される。この過程は骨リモデリング(骨再造形)と呼ばれ、生体の機能維持に重要な役割を果たしている。
しかしながら、一度、骨形成と骨吸収とのバランスが失われると、骨組織は異常をきたし、種々の疾患を呈することとなる。
Bone tissue is replaced with new bone without changing the basic shape by bone formation by osteoblasts and bone resorption by osteoclasts. This process is called bone remodeling (bone remodeling) and plays an important role in maintaining the functions of the living body.
However, once the balance between bone formation and bone resorption is lost, bone tissue becomes abnormal and exhibits various diseases.

骨吸収の主役を担う破骨細胞はマクロファージ系の細胞に由来し、骨芽細胞との細胞間接触を介して破骨細胞へと分化することによって形成されるが、この過程を促進する因子は骨吸収因子と呼ばれ、これまでに活性型ビタミンD3 、副甲状腺ホルモン、インターロイキン1(1L−1)、プロスタグランディンなどが知られている。
これ等の骨吸収因子を過剰投与すると、in vivoで破骨細胞数を増加、活性化させ、骨吸収を亢進することが知られている(例えば医学のあゆみ165:572-576,1993を参照)。
Osteoclasts, which play a major role in bone resorption, are derived from macrophage cells and are formed by differentiating into osteoclasts through cell-cell contact with osteoblasts. It is called a bone resorption factor, and active vitamin D 3 , parathyroid hormone, interleukin 1 (1L-1), prostaglandin, etc. are known so far.
It is known that excessive administration of these bone resorption factors increases and activates the number of osteoclasts in vivo and enhances bone resorption (see, for example, Medical History 165: 572-576, 1993) ).

インターロイキン6(IL−6)はBリンパ球系細胞の増殖を促進させるサイトカインとして発見され、その後Tリンパ球細胞の成熟化をも誘導することによって免疫系に影響を及ぼすことがわかった(例えばLotz等;J. Exp. Immunol. 18:1253-1258, 1988 を参照)。さらにはIL−6は造血系幹細胞の分化誘導にも関与している等、さまざまな細胞機能に関与していることおよびIL−6は種々の細胞から分泌されることから骨に対する影響も示唆されている。   Interleukin 6 (IL-6) was discovered as a cytokine that promotes the proliferation of B lymphocyte cells and was subsequently found to affect the immune system by also inducing the maturation of T lymphocyte cells (eg, Lotz et al .; see J. Exp. Immunol. 18: 1253-1258, 1988). Furthermore, IL-6 is involved in various cell functions such as being involved in the induction of hematopoietic stem cell differentiation, and IL-6 is secreted from various cells, suggesting an effect on bone. ing.

Ishimi等は骨吸収因子のIL−1や腫瘍壊死因子(TNF)の刺激によってマウス骨芽細胞は多量のIL−6を産生し、その結果in vitroで骨吸収が惹起されることを報告した(J. Immunol.,145:3297-3803, 1990 )。またIL−6はマウス頭頂骨に対し骨吸収活性を示すことも知られており(J. Immunol.,145:3297-3803, 1990 )、さらにはIL−6遺伝子を移入したCHO細胞をマウスに移植すると、高Ca血症を呈すると報告されている(Endocrinology, 128:2657-2659, 1991)。   Ishimi et al. Reported that mouse osteoblasts produced large amounts of IL-6 by stimulation with bone resorption factor IL-1 and tumor necrosis factor (TNF), resulting in in vitro bone resorption. J. Immunol., 145: 3297-3803, 1990). IL-6 is also known to exhibit bone resorption activity on the mouse parietal bone (J. Immunol., 145: 3297-3803, 1990), and further, CHO cells transfected with the IL-6 gene are introduced into mice. When transplanted, it has been reported to exhibit hypercalcemia (Endocrinology, 128: 2657-2659, 1991).

しかしながらAl−humidan等やBarton等はIL−6添加によってもマウス頭頂骨の骨吸収作用は見られなかったと報告しており(J Bone Miner Res 6:3-8, 1991およびCytokine 2:217-220, 1990)、さらにはLittlewood等は副甲状腺ホルモン(PTH)、リポポリサッカライド(LPS)、TNFα、またはIL−1によって刺激された骨芽細胞はIL−6を産生するが、IL−6は骨芽細胞様細胞の分化増殖については何らの作用をも示さなかったことから、骨芽細胞から産生されたIL−6は骨芽細胞の増殖や分化に影響しないと報告している(J Bone Miner Res 6:141-148, 1991)。   However, Al-humidan et al., Barton et al. Reported that bone resorption of the mouse parietal bone was not observed even when IL-6 was added (J Bone Miner Res 6: 3-8, 1991 and Cytokine 2: 217-220). , 1990), and Littlewood et al. Show that osteoblasts stimulated by parathyroid hormone (PTH), lipopolysaccharide (LPS), TNFα, or IL-1 produce IL-6, whereas IL-6 produces bone. Since it did not show any effect on the differentiation and proliferation of blast-like cells, it has been reported that IL-6 produced from osteoblasts does not affect the proliferation and differentiation of osteoblasts (J Bone Miner Res 6: 141-148, 1991).

さらにLittlewood等はPTH刺激により骨芽細胞のIL−6産生は増加したものの、IL−6リセプター(IL−6R)のメッセンジャーRNA(mRNA)量は増加しなかったと述べている(Endocrinology, 129:1513-1520, 1991)。
従って、IL−6と骨吸収の関係については使用する材料や実験系によって相反する結果が報告されており、未だその関係は解明されていない(詳細はRoodmanの総説:J Bone Miner Res 7:475-478, 1992を参照)。
Furthermore, Littlewood et al. Stated that IL-6 production of osteoblasts was increased by stimulation with PTH, but the amount of messenger RNA (mRNA) of IL-6 receptor (IL-6R) was not increased (Endocrinology, 129: 1513). -1520, 1991).
Therefore, the relationship between IL-6 and bone resorption has been reported to be contradictory depending on the materials used and the experimental system, and the relationship has not yet been elucidated (details are reviewed by Rodman: J Bone Miner Res 7: 475). -478, 1992).

最近、Manolagas等はin vitroでエストロゲンがIL−6の産生を抑制する事(J.C.I. 89:883-891, 1992 )、あるいは卵巣摘出(OVX)ラットの破骨細胞数の増加をエストロゲンや抗IL−6抗体が抑制する事(Science 257:88-91, 1992 )を報告している。しかしながら、これ等の報告では増加した破骨細胞が骨吸収作用を有する程度に活性化(成熟細胞化)されているか否かについては何らのデータもなく、従ってIL−6が生体内での骨吸収に直接関与しているかは依然として不明である。   Recently, Manologas et al. Reported that estrogen suppresses IL-6 production in vitro (JCI 89: 883-891, 1992), or increased the number of osteoclasts in ovariectomized (OVX) rats. It has been reported that 6 antibodies suppress (Science 257: 88-91, 1992). However, in these reports, there is no data as to whether or not the increased osteoclasts are activated (mature cells) to the extent that they have bone resorption action, and therefore IL-6 is bone in vivo. It remains unclear whether it is directly involved in absorption.

本発明者等はIL−6の骨吸収における役割を鋭意研究してきたがヒトIL−6を強制発現させたトランスジェニックマウスでは高Ca血症や破骨細胞形成の亢進が認められなかったことから、IL−6以外の因子の寄与について研究した結果、IL−6は単独では破骨細胞形成促進作用を殆ど示さないのに対しIL−6Rの存在下では強力な破骨細胞形成作用を持つこと、さらにはこの破骨細胞形成作用が抗IL−6R抗体を添加することによって抑制されることを見い出し、発明を完成させた。
すなわち本願発明はインターロイキン6リセプター抗体(IL−6R抗体)を有効成分として含有する骨吸収抑制剤に関するものである。
The present inventors have intensively studied the role of IL-6 in bone resorption. However, in transgenic mice in which human IL-6 was forcibly expressed, hypercalcemia and increased osteoclast formation were not observed. As a result of studies on the contribution of factors other than IL-6, IL-6 alone has almost no osteoclast formation promoting action, but it has a strong osteoclast forming action in the presence of IL-6R. Furthermore, the present inventors have found that this osteoclast-forming action is suppressed by adding an anti-IL-6R antibody, thereby completing the invention.
That is, the present invention relates to a bone resorption inhibitor containing an interleukin 6 receptor antibody (IL-6R antibody) as an active ingredient.

本願発明で使用される抗IL−6R抗体は骨吸収抑制効果を有する限り、抗原や抗体の由来(動物種の相異)を問わない。
抗IL−6R抗体は公知の手段を用いて、ポリクローナルまたはモノクローナルタイプの抗体として得ることができる。例えば抗ヒトIL−6Rポリクローナル抗体の場合は欧州特許出願公開番号EP325474号に開示された遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞中で形質発現させた後、その宿主細胞中または培養上清中から目的のIL−6R蛋白を精製し、次いでその蛋白を感作抗原として、ヒト以外の哺乳動物を免疫させることによって得ることができる。
As long as the anti-IL-6R antibody used in the present invention has an inhibitory effect on bone resorption, the origin of the antigen or antibody (difference in animal species) does not matter.
The anti-IL-6R antibody can be obtained as a polyclonal or monoclonal type antibody using known means. For example, in the case of an anti-human IL-6R polyclonal antibody, the gene sequence disclosed in European Patent Application Publication No. EP325474 is inserted into a known expression vector system and expressed in a suitable host cell. Alternatively, it can be obtained by purifying the target IL-6R protein from the culture supernatant and then immunizing mammals other than humans using the protein as a sensitizing antigen.

また抗マウスIL−6R抗体の場合は特開平3−155795号に開示された遺伝子配列を使って、上記と同様な方法を用いて得ることができる。
一方、IL−6Rは細胞膜上に発現しているものと、細胞表層より離脱している(以下、可溶性と呼ぶ)ものとの2種類があり、可溶性IL−6Rは細胞膜上のIL−6R蛋白に於ける細胞外領域、細胞膜貫通領域および細胞内領域のうち細胞内領域が欠損している点で構造的に相異する。
In the case of an anti-mouse IL-6R antibody, it can be obtained by using the same method as described above using the gene sequence disclosed in JP-A-3-15595.
On the other hand, there are two types of IL-6R: those expressed on the cell membrane and those released from the cell surface (hereinafter referred to as soluble), and soluble IL-6R is an IL-6R protein on the cell membrane. The structure is different in that the intracellular region of the extracellular region, the transmembrane region, and the intracellular region is missing.

従って本願発明の抗IL−6R抗体のための抗原はこのような可溶性IL−6Rを含むものであり、これ等の可溶性IL−6Rは公知の手段により得ることができる(例えば、特開平4−98800号を参照)。
モノクローナル抗体の場合は、IL−6R蛋白を感作抗原として哺乳動物を免疫した後、その形質細胞(免疫細胞)をマウス等の哺乳動物のミエローマ細胞と融合させ、得られた融合細胞(ハイブリドーマ)をクローン化し、その中からIL−6Rの作用を中和させるクローンを選別し、これを培養して目的の抗体を回収することによって得ることができる。
Therefore, the antigen for the anti-IL-6R antibody of the present invention contains such soluble IL-6R, and these soluble IL-6R can be obtained by known means (for example, JP-A-4- 98800).
In the case of a monoclonal antibody, after immunizing a mammal using IL-6R protein as a sensitizing antigen, the plasma cells (immune cells) are fused with myeloma cells of mammals such as mice, and the resulting fused cells (hybridoma) Can be obtained by selecting a clone that neutralizes the action of IL-6R, culturing this, and recovering the desired antibody.

感作抗原で免疫される哺乳動物としては特に限定されるものではないが、細胞融合に使用するミエローマ細胞との適合性を考慮して選択するのが好ましく、一般的にはマウス、ラット、ハムスター等が使用される。
前記免疫細胞と融合される他方の親細胞としての哺乳動物のミエローマ細胞としては、すでに公知の種々の細胞株、例えば、P3(P3X63Ag8.653)〔J. Immunol.,123:1548, 1978〕、p3−U1〔Current Topics in Micro-biology and Immunology, 81:1-7, 1978〕、NS−1〔Eur. J. Immunol.,6: 511-519, 1976 〕、MPC−11〔Cell, 8:405-415, 1976 〕、SP2/0〔Nature, 276,269-270, 1978 〕、FO〔J. Immunol. Meth.,35:1-21, 1980 〕,S194〔J. Exp. Med.,148:313-323, 1978〕、R210〔Nature, 277:131-133, 1979 〕等が好適に使用される。
The mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the myeloma cells used for cell fusion, and is generally a mouse, rat, hamster. Etc. are used.
Mammalian myeloma cells as the other parent cells to be fused with the immune cells include various known cell lines such as P3 (P3X63Ag8.653) [J. Immunol., 123: 1548, 1978], p3-U1 [Current Topics in Microbiology and Immunology, 81: 1-7, 1978], NS-1 [Eur. J. Immunol., 6: 511-519, 1976], MPC-11 [Cell, 8: 405-415, 1976], SP2 / 0 [Nature, 276,269-270, 1978], FO [J. Immunol. Meth., 35: 1-21, 1980], S194 [J. Exp. Med., 148: 313. -323, 1978], R210 [Nature, 277: 131-133, 1979] etc. are preferably used.

前記免疫細胞とミエローマ細胞との細胞融合は、基本的には公知の方法、例えば、ミルシュタインら(Milstein et al.)の方法〔Methods Enzymol.,73:3-46, 1981〕等に準じて行うことができる。
より具体的には、前記細胞融合は、例えば、融合促進剤の存在下に通常の栄養培地中で実施される。融合促進剤としては、例えば、ポリエチレングリコール(PEG)、センダイウイルス(HVJ)等が使用され、更に所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。
The cell fusion between the immune cells and myeloma cells is basically performed according to a known method, for example, the method of Milstein et al. [Methods Enzymol., 73: 3-46, 1981]. It can be carried out.
More specifically, the cell fusion is performed in a normal nutrient medium in the presence of a fusion promoter, for example. As the fusion promoter, for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like is used, and an auxiliary agent such as dimethyl sulfoxide can be added and used to increase the fusion efficiency as desired.

免疫細胞とミエローマ細胞との使用割合は、例えば、ミエローマ細胞に対して、免疫細胞を1〜10倍程度とするのが好ましい。前記細胞融合に用いる培地としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI−1640培地、MEM培地、その他、この種の細胞培養に使用される通常の培地が使用可能であり、更に、牛胎児血清(FCS)等の血清補液を併用することも可能である。   For example, the usage ratio of immune cells and myeloma cells is preferably about 1 to 10 times that of myeloma cells. As the medium used for the cell fusion, for example, RPMI-1640 medium suitable for growth of the myeloma cell line, MEM medium, and other normal mediums used for this type of cell culture can be used. Serum supplements such as fetal calf serum (FCS) can be used in combination.

細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培地内でよく混合し、予め37℃程度に加温したPEG溶液、例えば、平均分子量1,000〜6,000程度のPEGを、通常、培地に約30〜60%(W/V)の濃度で添加し、混合することによって行われる。続いて、適当な培地を逐次添加し、遠心して上清を除去する操作を繰り返すことにより目的とするハイブリドーマが形成される。   In cell fusion, a predetermined amount of the immune cells and myeloma cells are mixed well in the medium, and a PEG solution pre-warmed to about 37 ° C., for example, PEG having an average molecular weight of about 1,000 to 6,000, Usually, it is carried out by adding to a medium at a concentration of about 30 to 60% (W / V) and mixing. Subsequently, the target hybridoma is formed by sequentially adding an appropriate medium and centrifuging to remove the supernatant.

当該ハイブリドーマは、通常の選択培地、例えば、HAT培地(ヒポキサンチン、アミノプテリン及びチミジンを含む培地)で培養することにより選択される。当該HAT培地による培養は、目的とするハイブリドーマ以外の細胞(未融合細胞)が死滅するのに充分な時間、通常数日〜数週間継続する。次いで、通常の限界希釈法に従って、目的とする抗体を産生するハイブリドーマのスクリーニング及び単一クローン化が実施される。   The hybridoma is selected by culturing in a normal selection medium, for example, HAT medium (medium containing hypoxanthine, aminopterin and thymidine). Culturing with the HAT medium is continued for a time sufficient for the cells other than the target hybridoma (unfused cells) to die, usually several days to several weeks. Subsequently, according to a normal limiting dilution method, screening of a hybridoma producing the target antibody and single cloning are performed.

さらには得られた抗体がヒト以外の動物に由来する抗体である場合は、その抗原認識部位(CDR)を残したまま、FR部分や定常領域部分をヒト由来の抗体に変えた再構成ヒト型抗体とすることができ、IL−6R抗体のヒト型抗体の例としてはPCT国際公開No.WO 92/19759を挙げることができる。   Furthermore, when the obtained antibody is an antibody derived from a non-human animal, the reconstituted human type in which the FR portion and the constant region portion are changed to a human-derived antibody while leaving the antigen recognition site (CDR). As an example of a human type antibody of IL-6R antibody, PCT International Publication No. WO 92/197559 can be mentioned.

本願発明の抗IL−6R抗体は投与する対象の動物種によって抗原であるIL−6Rと抗体産生細胞との間で種間の組合せを選択できる。一般的にはヒトに対してはヒトIL−6Rに対するヒト細胞由来の抗体が、またマウスに対してはマウスIL−6Rに対するマウス細胞由来の抗体が望ましいが、臨床上許容される限り、異なる種間の組合せであってもよい。   The anti-IL-6R antibody of the present invention can select an inter-species combination between IL-6R as an antigen and an antibody-producing cell depending on the animal species to be administered. In general, human-derived antibodies against human IL-6R are desirable for humans and mouse-derived antibodies against mouse IL-6R for mice, but different species are acceptable as long as they are clinically acceptable. A combination of the two may be used.

本発明の骨吸収抑制剤の活性成分である抗IL−6R抗体は、実施例2の実験3に示されるごとく、マウスIL−6とマウス可溶性IL−6Rの共存下での破骨細胞の形成を抑制する。また、本発明の骨吸収抑制剤の活性成分である抗IL−6R抗体は、実施例3に示すごとく、マウスIL−6、マウス可溶性IL−6RおよびヒトIL−1αの共存下での骨吸収を抑制する。   As shown in Experiment 3 of Example 2, anti-IL-6R antibody, which is an active ingredient of the bone resorption inhibitor of the present invention, forms osteoclasts in the presence of mouse IL-6 and mouse soluble IL-6R. Suppress. Further, as shown in Example 3, anti-IL-6R antibody which is an active ingredient of the bone resorption inhibitor of the present invention is bone resorption in the presence of mouse IL-6, mouse soluble IL-6R and human IL-1α. Suppress.

本願発明の骨吸収抑制剤はIL−6Rによって惹起された骨吸収が抑制される限り、これ等の関与する各種骨代謝疾患の治療に有効である。それ等の疾患としては、例えば骨粗鬆症、慢性関節リウマチ、多発性骨髄腫、腫瘍性高カルシウム血症、腎性骨異栄養症、ペーゼット症、骨転移、骨肉腫等を挙げることができる。
本願発明の骨吸収抑制剤は常用経路、例えば錠剤もしくはカプセル形態で経口的にまたは注射剤等の非経口的方法で全身または局所的に投与され得る。さらには少なくも1種の医薬用担体または希釈剤と共に医薬組成物やキットの形態をとることができる。
The bone resorption inhibitor of the present invention is effective for the treatment of various bone metabolic diseases involved as long as bone resorption induced by IL-6R is suppressed. Examples of such diseases include osteoporosis, rheumatoid arthritis, multiple myeloma, neoplastic hypercalcemia, renal osteodystrophy, Paget's disease, bone metastasis, osteosarcoma and the like.
The bone resorption inhibitor of the present invention can be administered systemically or locally by conventional routes, for example, orally in the form of tablets or capsules or parenteral methods such as injections. Furthermore, it can take the form of a pharmaceutical composition or kit with at least one pharmaceutical carrier or diluent.

投与量は病態の程度や投与方法等によって異なり、適宜適当な量を選択することが必要であるが一般にヒトの場合、指示一日用量は約25〜100マイクログラムの範囲で4回以下の分割用量となっている。しかしながら本願の骨吸収抑制剤はこれ等の投与量に限定されるものではない。
なお、IL−6R抗体の毒性については現在まで、何らかの影響があるとの報告はなされていない。
The dosage varies depending on the degree of disease state, administration method, and the like, and it is necessary to select an appropriate amount as appropriate. It is a dose. However, the bone resorption inhibitor of the present application is not limited to these doses.
It has not been reported that there is any influence on the toxicity of IL-6R antibody until now.

以下、実施例および参考例により本発明を具体的に説明する。
参考例1 マウスIL−6の調製
約108 個のP388D1 (IL−1)細胞(Nordan等、Science 233:566-569, 1986;Bazin 等、J. Immunol. 139:780-787, 1987 )からFast TrackTM(Invitrogen社製)kitを用いたランダムプライミングにより二本鎖のCDNAを合成した。
Hereinafter, the present invention will be specifically described with reference to Examples and Reference Examples.
Reference Example 1 Preparation of Mouse IL-6 About 10 8 P388D 1 (IL-1) cells (Nordan et al., Science 233: 566-569, 1986; Bazin et al., J. Immunol. 139: 780-787, 1987) Double-stranded CDNA was synthesized by random priming using Fast Track (Invitrogen) kit.

さらにプライマーとして5′または3′末端に制限酵素BamH1の認識部位を持つマウスIL−6遺伝子(J. Van Snick等、Eur. J. Immunol 18:193, 1988)の翻訳開始コドン(34番目のATG)を含む21〜43番目の配列及び終止コドン(667番目のTAG)を含む658〜683番目の配列に相補的なオリゴマーを合成した。   Furthermore, as a primer, the translation initiation codon (34th ATG) of the mouse IL-6 gene (J. Van Snick et al., Eur. J. Immunol 18: 193, 1988) having a recognition site for the restriction enzyme BamH1 at the 5 'or 3' end. Oligomers complementary to the 21st to 43rd sequences including) and the 658th to 683rd sequences including the stop codon (the 667th tag) were synthesized.

これ等のプライマーおよびGene Amp(宝酒造)kitを用いて、DNA Thermo Cycler(宝酒造)により、94℃1分間、50℃2分間、72℃3分間にて50サイクルのPCRを行なった。増幅された断片(0.66kb)を低融点アガロースゲル電気泳動により精製し、BamH1処理後、PUC19ベクターに導入し、サブクローニングした。マウスIL6遺伝子をBamH1で切り出した後、予めBamH1処理したpdRに組み込みCHO細胞に形質導入した。50nM MTX耐性のCHO細胞を選びその培養上清を実験に供した。   Using these primers and Gene Amp (Takara Shuzo) kit, 50 cycles of PCR were performed with DNA Thermo Cycler (Takara Shuzo) at 94 ° C for 1 minute, 50 ° C for 2 minutes, and 72 ° C for 3 minutes. The amplified fragment (0.66 kb) was purified by low-melting point agarose gel electrophoresis, treated with BamH1, introduced into the PUC19 vector, and subcloned. The mouse IL6 gene was excised with BamH1, and then incorporated into pdR previously treated with BamH1 to transduce CHO cells. A CHO cell resistant to 50 nM MTX was selected and the culture supernatant was used for the experiment.

参考例2 マウス可溶性IL6リセプター抗体の調製
(1)Saito等の方法(J. Immunol., 147:168-173 (1991))によって抗マウス可溶性IL−6リセプター抗体RS12を得た。この抗体はIgG2aサブクラスであった。
Reference Example 2 Preparation of Mouse Soluble IL6 Receptor Antibody (1) Anti-mouse soluble IL-6 receptor antibody RS12 was obtained by the method of Saito et al. (J. Immunol., 147: 168-173 (1991)). This antibody was of the IgG2a subclass.

(2)上記Saito等の文献に開示されたマウス可溶性IL−6リセプターを産生するCHO細胞を10%FCSを含むIMDM培地で培養し、その培養上清をRS12抗体とAffigel 10ゲル(バイオラッド)に固定したアフィニティーカラムを用いて精製した。得られたマウス可溶性IL−6リセプター50μgをフロイント完全アジュバントと混合しウィスターラット(日本チャールズリバー)の腹部皮下に接種した。2週間後からはフロイント不完全アジュバントで追加免疫した。45日目に屠殺し、その脾細胞約2×108 個を1×107 個のマウスミエローマ細胞P3U1と50%のPEG1500(ベーリンガーマンハイム)を用いて常法により細胞融合させた後、HAT培地にてハイブリドーマを選択した。 (2) CHO cells producing mouse soluble IL-6 receptor disclosed in the above-mentioned literature such as Saito are cultured in IMDM medium containing 10% FCS, and the culture supernatant is RS12 antibody and Affigel 10 gel (BioRad). It refine | purified using the affinity column fixed to. 50 μg of the obtained mouse soluble IL-6 receptor was mixed with Freund's complete adjuvant and inoculated subcutaneously into the abdomen of Wistar rats (Charles River Japan). Two weeks later, booster immunization was performed with Freund's incomplete adjuvant. On day 45, about 2 × 10 8 spleen cells were fused with 1 × 10 7 mouse myeloma cells P3U1 and 50% PEG1500 (Boehringer Mannheim) in a conventional manner, and then HAT medium was used. Hybridomas were selected.

ウサギ抗ラットIgG抗体(カッペル)をコートしたイミュノプレートにハイブリドーマ培養上清を加えた後、マウス可溶性IL−6Rを反応させ、次いでウサギ抗マウスIL−6R抗体およびアルカリフォスファターゼ標識ヒツジ抗ウサギIgG抗体によるELISA法によりマウス可溶性IL−6リセプターに対する抗体を産生するハイブリドーマをスクリーニングした。抗体の産生が確認されたものは2回のサブクローニングを行ない単一のクローン(MR16−1)を得た。   Hybridoma culture supernatant was added to an immunoplate coated with a rabbit anti-rat IgG antibody (cappel), and then mouse soluble IL-6R was reacted, followed by a rabbit anti-mouse IL-6R antibody and an alkaline phosphatase-labeled sheep anti-rabbit IgG antibody The hybridoma producing an antibody against the mouse soluble IL-6 receptor was screened by the ELISA method described above. Those in which the production of the antibody was confirmed were subcloned twice to obtain a single clone (MR16-1).

このハイブリドーマが産生する抗体のマウスIL−6に対する中和活性をMH60.BSF2細胞(Matsuda等、Eur. J. Immunol. 18:951-956, 1988)を用いた 3H−チミジンの取り込みで調べた。
96穴プレートにMH60.BSF2細胞を1×104 個/200μl/ウエルとなるよう調製し、これにマウスIL−6(10pg/ml)とMR16−1抗体およびRS12抗体12.3〜1000ng/mlを加えて、37℃、5%CO2 で44時間培養した後、 3H−チミジン(IμCi/well)を加え4時間後の取り込みを測定した(図1)。
The neutralizing activity of the antibody produced by this hybridoma on mouse IL-6 was determined as MH60. It was examined by 3 H-thymidine incorporation using BSF2 cells (Matsuda et al., Eur. J. Immunol. 18: 951-956, 1988).
MH60. BSF2 cells were prepared to 1 × 10 4 cells / 200 μl / well, mouse IL-6 (10 pg / ml), MR16-1 antibody and 12.12-1000 ng / ml of RS12 antibody were added thereto, and the mixture was incubated at 37 ° C. After culturing at 5% CO 2 for 44 hours, 3 H-thymidine (IμCi / well) was added, and the uptake after 4 hours was measured (FIG. 1).

実施例1
8週齢の雌性ddy系マウスに偽手術(sham)または卵巣摘出術(OVX)を行ない2週後に屠殺した。フェノールレッド不含αMEM培地を用い、脛骨および大腿骨より骨髄を採取し遠心分離により骨髄細胞を除いて骨髄液とした。骨髄液の骨吸収活性は45Caでラベルしたマウス長管骨を用いた器官培養法により測定した。すなわち、母親マウスに45CaCl2 を皮下投与することによって45Ca標識された前腕骨を妊娠17日令の胎児より採取し、フェノールレッド不含αMEM培地で5%CO2 ,37℃にて器官培養した。
Example 1
Eight-week-old female ddy mice were subjected to sham surgery (sham) or ovariectomy (OVX) and sacrificed two weeks later. Bone marrow was collected from the tibia and femur using phenol red-free αMEM medium, and the bone marrow cells were removed by centrifugation to obtain bone marrow fluid. The bone resorption activity of the bone marrow fluid was measured by an organ culture method using mouse long bones labeled with 45 Ca. That is, 45 CaCl 2 was subcutaneously administered to a mother mouse, and 45 Ca-labeled forearm bones were collected from a 17-day-old fetus and organ-cultured in phenol red-free αMEM medium at 5% CO 2 and 37 ° C. did.

24時間後、0.2%BSAを含むフェノールレッド不含αMEM培地と交換すると同時に骨髄液試料を40%の割合で添加した。骨吸収活性はSham群では約25%であったのに対し、OVX群は約60%であった。
そこで、この系を用いて、66μg/mlのマウスIL−6抗体およびRS12抗体で骨髄液試料を前処理(37℃、2時間、5%CO2 )して持続的添加を行った結果、両抗体ともOVX群に於いて骨吸収活性を阻害した(図2)。
After 24 hours, the bone marrow sample was added at a rate of 40% at the same time as replacing with phenol red-free αMEM medium containing 0.2% BSA. Bone resorption activity was approximately 25% in the Sham group, compared to approximately 60% in the OVX group.
Therefore, using this system, the bone marrow sample was pretreated (37 ° C., 2 hours, 5% CO 2 ) with 66 μg / ml mouse IL-6 antibody and RS12 antibody, and as a result, Both antibodies inhibited bone resorption activity in the OVX group (FIG. 2).

実施例2
マウスの骨芽細胞と骨髄細胞との共存培養系〔Takahashi,等:Endocrinology 122:1373, 1988, Takahashi, 等:Endocrinology 123:2600, 1988 〕により形成される破骨細胞数を骨吸収の指標として用いた。
Example 2
The number of osteoclasts formed by the co-culture system of mouse osteoblasts and bone marrow cells (Takahashi, et al .: Endocrinology 122: 1373, 1988, Takahashi, et al .: Endocrinology 123: 2600, 1988) was used as an index of bone resorption. Using.

マウスの骨芽細胞は以下の方法により調製した。すなわち生後1または2日令のddy系マウスから無菌的に取り出した頭蓋骨を0.1%コラゲナーゼ(細胞分散用、和光純薬)と0.2%ディスパーゼ(合同酒精)を含むPBSに入れ37℃の恒温槽にて10分間振とうした。浮遊してきた細胞を集め、更に新しい酵素溶液を入れ10分間酵素処理した。この酵素消化を5回繰返し、2〜5回目の消化で浮遊してきた細胞を骨芽細胞として回収した。   Mouse osteoblasts were prepared by the following method. That is, a skull removed aseptically from a 1-day or 2-day-old ddy mouse is placed in PBS containing 0.1% collagenase (for cell dispersion, Wako Pure Chemical Industries) and 0.2% dispase (joint spirit) 37 ° C. And shaken for 10 minutes. The floating cells were collected, and a new enzyme solution was added and the enzyme treatment was performed for 10 minutes. This enzyme digestion was repeated 5 times, and the cells that had floated in the 2nd to 5th digestion were collected as osteoblasts.

マウスの骨髄細胞は以下の方法により調製した。すなわち、6〜9週令のddy系マウスからけい骨を無菌的に取りだし、その骨端を切り落とした。けい骨の遠位端より25Gの針を付けたシリンジで1mlのα−最少必須培地(α−MEM,GIBCO社)を注入し、近位端より骨髄細胞を回収した。これらの細胞は共に10%の牛胎児血清(Biocell社)を含むα−MEMに懸濁して培養に用いた。   Mouse bone marrow cells were prepared by the following method. That is, the tibia was aseptically removed from 6-9 week old ddy mice, and the bone ends were cut off. 1 ml of α-minimum essential medium (α-MEM, GIBCO) was injected from a distal end of the tibia with a syringe with a 25 G needle, and bone marrow cells were collected from the proximal end. Both of these cells were suspended in α-MEM containing 10% fetal bovine serum (Biocell) and used for culture.

共存培養は、48穴の培養プレートに1×104 細胞/0.5m/wellの骨芽細胞と2×105 細胞/wellの骨髄細胞を添加し、37℃、5%CO2 で6〜7日間培養した。形成された破骨細胞は破骨細胞のマーカー酵素である酒石酸抵抗性酸性フォスファターゼ(TRAP)を染色することにより同定した〔Takahashi,等:Endocrinology 122:1373, 1988 〕。 In the co-culture, 1 × 10 4 cells / 0.5 m / well osteoblasts and 2 × 10 5 cells / well bone marrow cells are added to a 48-well culture plate and incubated at 37 ° C. with 5% CO 2 for 6 to 6 times. Cultured for 7 days. The formed osteoclasts were identified by staining with tartrate-resistant acid phosphatase (TRAP), a marker enzyme for osteoclasts [Takahashi, et al .: Endocrinology 122: 1373, 1988].

これらの培養系にマウスIL−6またはマウス可溶性IL−6R〔IL−6sR(sR324)〕〔Saito,等 al.J Immunol,147:168-173 (1991)〕とマウスIL−6R抗体(MR16−1あるいはRS12)またはマウスIL−6抗体(R&D systems)を添加して以下の実験を行った。なお、マウスIL−6とsR324は、CHO細胞にこれらの遺伝子を組み込んだ細胞の培養上清をそれぞれ用いた。培養上清中のマウスIL−6およびIL−6sR324はエンザイムイッムノアッセイによってそれぞれの濃度を測定し、α−MEMで適当な濃度に希釈して実験に供した。   These culture systems include mouse IL-6 or mouse soluble IL-6R [IL-6sR (sR324)] [Saito, et al. J Immunol, 147: 168-173 (1991)] and mouse IL-6R antibody (MR16- 1 or RS12) or mouse IL-6 antibody (R & D systems) was added and the following experiment was performed. In addition, mouse IL-6 and sR324 used the culture supernatant of the cell which integrated these genes in the CHO cell, respectively. The concentrations of mouse IL-6 and IL-6sR324 in the culture supernatant were measured by enzyme immunoassay, diluted to an appropriate concentration with α-MEM, and used for the experiment.

実験1 マウスIL−6又はマウス可溶性IL−6R単独での破骨細胞形成実験
マウスIL−6(0.2ng/ml〜200ng/ml)とsR324(0.5〜500ng/ml)単独での破骨細胞形成能を調べたが、いずれも単独では破骨細胞形成能を示さなかった。なお、本実験系において陽性対象薬である活性型ビタミンD3 は有意な破骨細胞形成を示した(図3)。
Experiment 1 Osteoclast formation experiment with mouse IL-6 or mouse soluble IL-6R alone Break with mouse IL-6 (0.2 ng / ml to 200 ng / ml) and sR324 (0.5 to 500 ng / ml) alone Bone cell formation ability was examined, but none of them showed osteoclast formation ability alone. The active vitamin D 3 is a positive control drug in this experimental system showed significant osteoclast formation (Figure 3).

実験2 マウスIL−6とマウス可溶性IL−6R共存下での破骨細胞形成実験
20ng/mlまたは200ng/mlのマウスIL−6に0.05ng/ml〜500ng/mlのsR324を共存させた時の破骨細胞形成能を調べたところ、sR324の濃度に依存して著明な破骨細胞の形成が認められた(図4)。なお、形成された破骨細胞を象牙切片上で培養したところ多くの吸収窩が認められ、それらはカルシトニンの添加により抑制された。従って本実験系で形成された破骨細胞は骨吸収能とカルシトニンリセプターを有する成熟破骨細胞であると考えられた。
Experiment 2 Osteoclast formation experiment in the presence of mouse IL-6 and mouse soluble IL-6R When 0.05 ng / ml to 500 ng / ml of sR324 was allowed to coexist in 20 ng / ml or 200 ng / ml of mouse IL-6 When the osteoclast-forming ability was examined, the formation of marked osteoclasts was observed depending on the concentration of sR324 (FIG. 4). When the formed osteoclasts were cultured on ivory slices, many resorption pits were observed, which were suppressed by the addition of calcitonin. Therefore, the osteoclasts formed in this experimental system were considered to be mature osteoclasts with bone resorbability and calcitonin receptor.

実験3 マウスIL−6とマウス可溶性IL−6リセプター共存下での破骨細胞形成に対するマウス抗IL−6リセプター抗体(MR16−1もしくはRS12)またはマウス抗IL−6抗体の抑制効果
20ng/mlまたは200ng/mlのマウスIL−6に62.5ng/ml〜500ng/mlのsR324を共存させた時の破骨細胞形成能を調べたところ、実験2と同様にsR324の濃度に依存して著明な破骨細胞の形成が認められた。20ng/mlのマウスIL−6と500ng/mlのsR324による破骨細胞形成に対してMR16−1は1ng/ml〜100ng/mlの濃度範囲で濃度依存的な抑制作用を示した。RS12およびマウス抗IL−6抗体は10ng/mlと100ng/mlで抑制作用を示した(図5)。
Experiment 3 Inhibitory effect of mouse anti-IL-6 receptor antibody (MR16-1 or RS12) or mouse anti-IL-6 antibody on osteoclast formation in the presence of mouse IL-6 and mouse soluble IL-6 receptor 20 ng / ml or The ability of osteoclasts to form when 62.5 ng / ml to 500 ng / ml of sR324 coexisted with 200 ng / ml of mouse IL-6 was markedly dependent on the concentration of sR324 as in Experiment 2. Osteoclast formation was observed. MR16-1 exhibited a concentration-dependent inhibitory effect on osteoclast formation by 20 ng / ml mouse IL-6 and 500 ng / ml sR324 in a concentration range of 1 ng / ml to 100 ng / ml. RS12 and mouse anti-IL-6 antibody showed inhibitory action at 10 ng / ml and 100 ng / ml (FIG. 5).

実施例3 マウスIL−6、マウス可溶性IL−6リセプターおよびヒトIL−1αの共存下で惹起される骨吸収に対する抗マウスIL−6リセプター抗体(MR16−1)の抑制効果
母親マウスに45CaCl2 を皮下投与することによって45Ca標識された頭蓋冠を妊娠16日令の胎児より採取し、1mg/mlのBSAを含むBGJb培地で5%CO2 ,37℃にて器官培養した。24時間後、新たな培地に交換し、100pg/mlのヒトIL−1α,20ng/mlのマウスIL−6および500ng/mlのマウス可溶性IL−6R(sR324)を添加して、37℃,5%CO2 で5日間培養した。この場合、前記新たな培地に被験物質であるMR16−1を10μg/ml添加した。この実験系で惹起される骨吸収を、10μg/mlのMR16−1はほぼ完全に抑制した(図6)。
Example 3 Inhibitory effect of anti-mouse IL-6 receptor antibody (MR16-1) on bone resorption induced in the presence of mouse IL-6, mouse soluble IL-6 receptor and human IL-1α 45 CaCl 2 the the 45 Ca labeled calvaria taken from fetuses of gestational 16 days old by subcutaneous administration, were organ cultured at 5% CO 2, 37 ℃ in BGJb medium containing BSA of 1 mg / ml. After 24 hours, the medium was replaced with fresh medium, and 100 pg / ml human IL-1α, 20 ng / ml mouse IL-6 and 500 ng / ml mouse soluble IL-6R (sR324) were added, and the mixture was incubated at 37 ° C., 5 Incubated with% CO 2 for 5 days. In this case, MR16-1 as a test substance was added to the new medium at 10 μg / ml. Bone resorption induced by this experimental system was almost completely suppressed by 10 μg / ml MR16-1 (FIG. 6).

発明の効果
以上の通り、抗IL−6R抗体を有効成分とする本発明の骨吸収抑制剤は、IL−6とIL−6Rの共存下での破骨細胞の形成を抑制し、骨吸収阻害効果を有していることが証明される。従って、本発明の骨吸収抑制剤は、骨吸収が関与する各種骨代謝疾患、例えば骨粗鬆症、慢性関節リウマチ、多発性骨髄腫、腫瘍性高カルシウム血症、腎性骨異栄養、ペーゼット症、骨転移、骨肉腫等の治療剤として期待される。
As described above, the bone resorption inhibitor of the present invention comprising an anti-IL-6R antibody as an active ingredient suppresses the formation of osteoclasts in the presence of IL-6 and IL-6R, and inhibits bone resorption. Proven to have an effect. Therefore, the bone resorption inhibitor of the present invention is used for various bone metabolic diseases in which bone resorption is involved, such as osteoporosis, rheumatoid arthritis, multiple myeloma, neoplastic hypercalcemia, renal osteodystrophy, pagetosis, bone Expected to be a therapeutic agent for metastasis and osteosarcoma.

図1はMH60.BSF2細胞のIL−6依存性増殖に対する抗体MR16−1及びRS12の効果を示すグラフである。1 shows MH60. It is a graph which shows the effect of antibody MR16-1 and RS12 with respect to IL-6 dependent proliferation of a BSF2 cell. 図2は、OVX(2週)マウスからの骨髄液の骨吸収活性に対する、抗体の中和効果を示すグラフである。FIG. 2 is a graph showing the neutralizing effect of antibodies on bone resorption activity of bone marrow fluid from OVX (2 weeks) mice. 図3は、マウス骨芽細胞と骨髄細胞の共存培養系での破骨細胞の形成に対する、IL−6又は可溶性IL−6R(sR324)単独による効果を示すグラフである。FIG. 3 is a graph showing the effect of IL-6 or soluble IL-6R (sR324) alone on the formation of osteoclasts in a co-culture system of mouse osteoblasts and bone marrow cells. 図4は、マウス骨芽細胞と骨髄細胞の共存培養系での破骨細胞の形成に対する、IL−6又はsR324の併用の効果を示すグラフである。FIG. 4 is a graph showing the effect of combined use of IL-6 or sR324 on the formation of osteoclasts in a co-culture system of mouse osteoblasts and bone marrow cells. 図5は、IL−6及びIL−6R(sR324)の共存下でのマウス骨芽細胞と骨髄細胞の共存培養による破骨細胞の形成に対する、IL−6R抗体の抑制効果を示すグラフである。FIG. 5 is a graph showing the inhibitory effect of IL-6R antibody on the formation of osteoclasts by coculture of mouse osteoblasts and bone marrow cells in the presence of IL-6 and IL-6R (sR324). 図6は、IL−6,可溶性IL−6R(sR324)およびIL−1αの共存下での45Ca放出に対する、抗IL−6R抗体の抑制効果を示すグラフである。FIG. 6 is a graph showing the inhibitory effect of anti-IL-6R antibody on 45 Ca release in the presence of IL-6, soluble IL-6R (sR324) and IL-1α.

Claims (3)

インターロイキン6リセプターに対する抗体を有効成分とする骨吸収抑制剤。   A bone resorption inhibitor comprising an antibody against interleukin-6 receptor as an active ingredient. 前記インターロイキン6リセプターに対する抗体がマウス由来であることを特徴とする請求項1記載の骨吸収抑制剤。   The bone resorption inhibitor according to claim 1, wherein the antibody against the interleukin 6 receptor is derived from a mouse. 前記インターロイキン6リセプターがマウス由来であることを特徴とする請求項1又は2記載の骨吸収抑制剤。   The bone resorption inhibitor according to claim 1 or 2, wherein the interleukin 6 receptor is derived from a mouse.
JP2006138631A 1993-08-25 2006-05-18 Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient Pending JP2006213737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138631A JP2006213737A (en) 1993-08-25 2006-05-18 Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21057093 1993-08-25
JP2006138631A JP2006213737A (en) 1993-08-25 2006-05-18 Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13461794A Division JPH07165608A (en) 1993-08-25 1994-06-16 Bone absorption inhibitor comprising interleukin 6 receptor antibody as active ingredient

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010027563A Division JP2010111706A (en) 1993-08-25 2010-02-10 Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient

Publications (1)

Publication Number Publication Date
JP2006213737A true JP2006213737A (en) 2006-08-17

Family

ID=36977238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138631A Pending JP2006213737A (en) 1993-08-25 2006-05-18 Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient

Country Status (1)

Country Link
JP (1) JP2006213737A (en)

Similar Documents

Publication Publication Date Title
FI120721B (en) Use of an IL-6 Antagonist to Prepare a Pharmaceutical Composition Intended to Treat Arthritis Rheumatism
JP5576903B2 (en) Antibody to OPGL
US8454956B2 (en) Methods for treating rheumatoid arthritis and osteoporosis with anti-IL-20 antibodies
US9394362B2 (en) IL-21 antibodies and methods of making or using the antibodies
JP2003523403A (en) Uses of IL-18 inhibitors
JP2010235621A (en) Treatment of follicular lymphoma using inhibitor of lymphotoxin (lt) pathway
KR101691534B1 (en) Use of il-20 antagonists for treating rheumatoid arthritis and osteoporosis
CZ20023644A3 (en) Pharmaceutical preparation
JP4299887B2 (en) Soluble lymphotoxin-beta receptor, anti-lymphotoxin receptor antibody, and anti-lymphotoxin ligand antibody as therapeutic agents for the treatment of immunological diseases
SK180399A3 (en) Cd40:cd154 blockade therapy for therapeutic protein inhibitor syndrome
EP2193790A1 (en) IL-3 Inhibitors in use for treatment of rheumatoid arthritis in an early stage
US20040247597A1 (en) Method of treating atherosclerosis and other inflammatory diseases
JPH07188056A (en) Suppressor for bone resorption containing antibody against interleukin 6 receptor as active ingredient
BR112021011257A2 (en) ANTI-IL-17A ANTIBODY AND USE THEREOF
JP2006213737A (en) Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient
JP2010111706A (en) Bone resorption inhibitor including interleukin-6 receptor antibody as active ingredient
JPH07165608A (en) Bone absorption inhibitor comprising interleukin 6 receptor antibody as active ingredient
CA2458993A1 (en) A method for the treatment or prevention of bone erosion
AU2013203707B2 (en) Use of il-20 antagonists for treating rheumatoid arthritis and osteoporosis
EP2355840A2 (en) Chemoattractants inhibitors and the use thereof
AU2002328084A1 (en) A method for the treatment or prevention of bone erosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060518

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20090714

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110