JP2006212551A - Filter member and its manufacturing method - Google Patents

Filter member and its manufacturing method Download PDF

Info

Publication number
JP2006212551A
JP2006212551A JP2005028382A JP2005028382A JP2006212551A JP 2006212551 A JP2006212551 A JP 2006212551A JP 2005028382 A JP2005028382 A JP 2005028382A JP 2005028382 A JP2005028382 A JP 2005028382A JP 2006212551 A JP2006212551 A JP 2006212551A
Authority
JP
Japan
Prior art keywords
filter material
ceramic sintered
zeolite
mol
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005028382A
Other languages
Japanese (ja)
Other versions
JP5014580B2 (en
Inventor
Masanobu Aizawa
正信 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005028382A priority Critical patent/JP5014580B2/en
Publication of JP2006212551A publication Critical patent/JP2006212551A/en
Application granted granted Critical
Publication of JP5014580B2 publication Critical patent/JP5014580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter member having a strength sufficiently withstanding the use at the time of functioning as a filter and exhibiting high separating performance at the time of use as the filter. <P>SOLUTION: The filter material is provided with a porous supporting body made of a ceramic sintering material and an active layer made of a zeolite film formed on the surface of the supporting body. The porous supporting body is made of the ceramic sinter of an alumina base with alumina of 90 mol% or more, preferably 94 mol% or more, and may contain silica of 4 wt% or less. preferably 3 wt% or less. As a sintering auxiliary agent, a metal oxide of 0.1 to 9 mol% of which the composition is expressed by (ZrO<SB>2</SB>)<SB>x</SB>+(MO)<SB>1-x</SB>, (wherein M is Ca, Mg, Y<SB>2/3</SB>or Gd<SB>2/3</SB>, and x is 0-0.96) is contained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミック焼結材からなる多孔質支持体と、同支持体の表面に成膜されたゼオライト膜とからなるフィルター材に関し、特にフィルターとして機能させる際に使用に十分耐え得る強度を備え、かつ、フィルターとして使用する際に高い分離性能を発揮するフィルター材に関する。本発明はまたこのようなフィルター材の製造方法に関する。   The present invention relates to a filter material comprising a porous support made of a ceramic sintered material and a zeolite membrane formed on the surface of the support, and particularly has a strength sufficient to withstand use when functioning as a filter. The present invention also relates to a filter material that exhibits high separation performance when used as a filter. The present invention also relates to a method for producing such a filter material.

ゼオライト結晶は、結晶中に分子サイズ程度の細孔を有し、ゼオライトの分子の大きさや、形状により分子を選択的に通過させる分子ふるいの性質を有している。ゼオライトは、この分子ふるいの性質を利用してガス分離膜や、逆透気化分離、逆浸透分離、ガスセンサー等への分野に応用されている。とりわけ、ゼオライト膜を、水と有機溶剤等を含む混合液から有機溶剤等を分離する分離膜として利用することが現在注目されている。   Zeolite crystals have pores of about the molecular size in the crystals, and have a molecular sieving property that allows molecules to selectively pass through depending on the size and shape of the zeolite molecules. Zeolite is applied to fields such as gas separation membranes, reverse gas permeation separation, reverse osmosis separation, and gas sensors by utilizing the properties of this molecular sieve. In particular, the use of a zeolite membrane as a separation membrane for separating an organic solvent or the like from a mixed solution containing water and an organic solvent or the like is currently attracting attention.

一方、ゼオライト膜をフィルターとして利用するにおいて、ゼオライト膜単体では強度に問題があるため、通常はセラミック焼結材からなる多孔質支持体の表面にゼオライト膜を成膜した状態でこれを用いる。ゼオライト膜を多孔質支持体に成膜する方法において、ゼオライト膜は、耐熱温度が焼結温度よりはるかに低いため、焼結法により多孔質支持体に成膜することはできない。このため、従来からバインダーや接着剤を用いて、ゼオライト膜を多孔質支持体に成膜する方法等が行われており、代表的な方法として水熱合成法による方法がある。水熱合成法は、シリカ源とアルミナ源を主成分として含む懸濁液に多孔質支持体を浸漬し、所定の温度条件下で水熱反応により懸濁液中のゼオライト種結晶を核として膜を成長させ、多孔質支持体にゼオライト膜を成膜する方法である(特許文献1参照)。
特開平7−185275号公報
On the other hand, when a zeolite membrane is used as a filter, since the zeolite membrane alone has a problem in strength, it is usually used in a state where a zeolite membrane is formed on the surface of a porous support made of a ceramic sintered material. In the method of forming a zeolite membrane on a porous support, the heat resistance temperature of the zeolite membrane is much lower than the sintering temperature, so that it cannot be formed on the porous support by the sintering method. For this reason, conventionally, a method of forming a zeolite membrane on a porous support using a binder or an adhesive has been performed, and a representative method is a method using a hydrothermal synthesis method. In the hydrothermal synthesis method, a porous support is immersed in a suspension containing a silica source and an alumina source as main components, and a zeolite seed crystal in the suspension is used as a nucleus by hydrothermal reaction under a predetermined temperature condition. In which a zeolite membrane is formed on a porous support (see Patent Document 1).
JP-A-7-185275

一般に前記水熱合成法で用いる合成反応溶液は高アルカリ性であり、多孔質支持体を構成するアルミナなどの酸化物およびバインダーはアルカリ性に弱いことから、同支持体表面にゼオライト膜を形成した時点で、支持体の機械的強度が低下し、フィルターとして十分な強度が得られない。このような強度不足のフィルター材では高い分離性能は発揮されない。   In general, the synthesis reaction solution used in the hydrothermal synthesis method is highly alkaline, and oxides and binders such as alumina constituting the porous support are weakly alkaline, so when a zeolite membrane is formed on the surface of the support. The mechanical strength of the support is lowered, and sufficient strength as a filter cannot be obtained. Such a filter material with insufficient strength does not exhibit high separation performance.

本発明は、上記問題に鑑み、フィルターとして機能させる際に使用に十分耐え得る強度を備え、かつ、フィルターとして使用する際に高い分離性能を発揮するフィルター材、およびその製造方法を提供することを課題とする。   In view of the above problems, the present invention provides a filter material that has sufficient strength to withstand use when functioning as a filter, and that exhibits high separation performance when used as a filter, and a method for producing the same. Let it be an issue.

本発明による第1のフィルター材は、
セラミック焼結材からなる多孔質支持体と、同支持体の表面に成膜されたゼオライト膜からなる活性層とを備えたフィルター材において、
多孔質支持体が、アルミナ90mol%以上、好ましくは94mol%以上のアルミナベースのセラミック焼結材からなり、シリカを4重量%以下、好ましくは3重量%以下含んでいてもよく、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を、xは0〜0.96をそれぞれ意味する)で表される組成の金属酸化物を0.1から9mo1%含むことを特徴とするものである。
The first filter material according to the present invention is:
In a filter material comprising a porous support made of a ceramic sintered material and an active layer made of a zeolite membrane formed on the surface of the support,
The porous support is composed of alumina-based ceramic sintered material of 90 mol% or more, preferably 94 mol% or more of alumina, and may contain 4 wt% or less, preferably 3 wt% or less of silica. (ZrO 2 ) x + (MO) 1-x (wherein M represents Ca, Mg, Y 2/3 or Gd 2/3 , and x represents 0 to 0.96, respectively) The metal oxide is characterized by containing 0.1 to 9 mol 1%.

本発明による第2のフィルター材は、
セラミック焼結材からなる多孔質支持体と、同支持体の表面に成膜されたゼオライト膜からなる活性層とを備えたフィルター材において、
多孔質支持体とゼオライト膜の間にセラミック焼結材からなる多孔質中間層が設けられ、
多孔質支持体は、アルミナ90mol%以上、好ましくは94mol%以上のアルミナベースのセラミック焼結材からなり、シリカを4重量%以下、好ましくは3重量%以下含んでいてもよく、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を、xは0〜0.96をそれぞれ意味する)で表される組成の金属酸化物を0.1から9mo1%含み、
多孔質中間層は、アルミナ90mol%以上、好ましくは94mol%以上、のアルミナベースのセラミック焼結材からなり、シリカを4重量%以下、好ましくは1重量%以下、含んでいてもよく、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を、xは0.0001〜0.98をそれぞれ意味する)で表される組成の金属酸化物を0.1から9mo1%含むことを特徴とするものである。
The second filter material according to the present invention is:
In a filter material comprising a porous support made of a ceramic sintered material and an active layer made of a zeolite membrane formed on the surface of the support,
A porous intermediate layer made of a ceramic sintered material is provided between the porous support and the zeolite membrane,
The porous support is made of alumina-based ceramic sintered material of 90 mol% or more, preferably 94 mol% or more of alumina, and may contain 4 wt% or less, preferably 3 wt% or less of silica. (ZrO 2 ) x + (MO) 1-x (wherein M represents Ca, Mg, Y 2/3 or Gd 2/3 , and x represents 0 to 0.96, respectively) 0.1 to 9 mol 1% of a metal oxide,
The porous intermediate layer is made of an alumina-based ceramic sintered material of 90 mol% or more, preferably 94 mol% or more of alumina, and may contain 4 wt% or less, preferably 1 wt% or less of silica. (ZrO 2 ) x + (MO) 1-x (wherein M represents Ca, Mg, Y 2/3 or Gd 2/3 , and x represents 0.0001 to 0.98) as an auxiliary agent It is characterized by containing 0.1 to 9 mol 1% of a metal oxide having the composition shown.

第1のフィルター材における、多孔質支持体のゼオライト側の表面の平均孔径は、分離物質の透過速度、活性層の膜厚の適正化と均一化を図るために、好ましくは0.3〜2.0μm、より好ましくは0.4〜1.5μmである。   In the first filter material, the average pore diameter on the zeolite-side surface of the porous support is preferably 0.3 to 2 in order to optimize and uniform the permeation rate of the separation substance and the film thickness of the active layer. 0.0 μm, more preferably 0.4 to 1.5 μm.

第1のフィルター材において、ゼオライト膜の表面におけるゼオライト粒子の各界面部の密度が粒子内部の密度より高い部分は、全粒子界面の好ましくは10%以上、より好ましくは20%以上を占める。   In the first filter material, the portion where the density of each interface part of the zeolite particles on the surface of the zeolite membrane is higher than the density inside the particles occupies preferably 10% or more, more preferably 20% or more of the whole particle interface.

第1および第2のフィルター材において、多孔質支持体の強度は好ましくは3.0〜13kg/mm、より好ましくは5.0〜13kg/mmであり、同支持体の厚みは好ましくは1.5〜2.5mmである。 In the first and second filter materials, the strength of the porous support is preferably 3.0 to 13 kg / mm 2 , more preferably 5.0 to 13 kg / mm 2 , and the thickness of the support is preferably 1.5 to 2.5 mm.

第1および第2のフィルター材において、多孔質支持体または多孔質中間層の窒素ガスを用いた透過速度は、好ましくは100〜3000m/(m・h・atm)、より好ましくは200〜3000m/(m・h・atm)である(実施例6で得られた図8のグラフ参照)。 In the first and second filter materials, the permeation rate of the porous support or the porous intermediate layer using nitrogen gas is preferably 100 to 3000 m 3 / (m 2 · h · atm), more preferably 200 to 3000 m 3 / (m 2 · h · atm) (see the graph of FIG. 8 obtained in Example 6).

第2のフィルター材における、多孔質中間層の平均孔径は、分離物質の透過速度、活性層の膜厚の適正化と均一化を図るために、好ましくは0.3〜2.0μm、より好ましくは0.4〜1.5μmである(実施例5で得られた図7のグラフ参照)。   The average pore size of the porous intermediate layer in the second filter material is preferably 0.3 to 2.0 μm, more preferably, in order to optimize and uniform the permeation rate of the separation substance and the thickness of the active layer. Is 0.4 to 1.5 μm (see the graph of FIG. 7 obtained in Example 5).

第2のフィルター材において、多孔質中間層は球形状の原料粒子から成形されることが好ましく、球形状の原料粒子のアスペクト比は好ましくは1.1〜3.0、より好ましくは1.1〜2.5であり(実施例4で得られた図6のグラフ参照)、BET法で測定した球形状の原料粒子の比表面積は好ましくは0.1〜6m/g、より好ましくは0.1〜4m/gである。 In the second filter material, the porous intermediate layer is preferably formed from spherical raw material particles, and the aspect ratio of the spherical raw material particles is preferably 1.1 to 3.0, more preferably 1.1. (Refer to the graph of FIG. 6 obtained in Example 4), and the specific surface area of the spherical raw material particles measured by the BET method is preferably 0.1 to 6 m 2 / g, more preferably 0. .1 to 4 m 2 / g.

第1および第2のフィルター材において、多孔性支持体はフィルター材を支持することができる強度を有し、最上層(最外層)である活性層の最適組成を維持しうる組成からなり、分離物質の透過性に優れた多孔質構造をなす。最上層(最外層)のゼオライト膜からなる活性層は、ゼオライトの組成によって、或る範囲に限定された結晶構造的な微細孔を有し、その孔径によって、例えば、水とエタノールやイソプロパノール等のような有機物との混合液から、水のみを分離するフィルターとして作用する。   In the first and second filter materials, the porous support has a strength capable of supporting the filter material and is composed of a composition capable of maintaining the optimum composition of the active layer which is the uppermost layer (outermost layer). It has a porous structure with excellent material permeability. The active layer composed of the zeolite membrane of the uppermost layer (outermost layer) has crystal structural micropores limited to a certain range depending on the composition of the zeolite, and depending on the pore size, for example, water and ethanol, isopropanol, etc. It acts as a filter that separates only water from a mixed solution with such organic matter.

3層構造をなす第2の発明によるフィルター材において、多孔質支持体とゼオライト膜の間に設けられたセラミック焼結材からなる多孔質中間層は、分離物質の透過性に優れ、最上層(最外層)である活性層の最適組成を維持しうる組成からなり、かつ活性層の層厚および結晶構造を最適化しうる多孔質構造をなす。   In the filter material according to the second invention having a three-layer structure, the porous intermediate layer made of a ceramic sintered material provided between the porous support and the zeolite membrane is excellent in permeability of the separated substance, and is the uppermost layer ( The outermost layer has a porous structure that can maintain the optimum composition of the active layer and that can optimize the layer thickness and crystal structure of the active layer.

第1および第2のフィルター材において、最下層(最内層)の多孔質支持体はアルミナをベースとするセラミック焼結材からなる。実施例1で得られた図1のグラフから分かるように、多孔質支持体を構成するセラミック焼結材中のアルミナ組成割合は好ましくは90mol%以上、より好ましくは94mol%以上である。実施例1で得られた図2のグラフから分かるように、第1のフィルター材では、セラミック焼結材が含むことが許容されるシリカ含有量は、4重量%以下、望ましくは3重量%以下である。第2のフィルター材においては、セラミック焼結材が含むことが許容されるシリカ含有量は、4重量%以下、望ましくは1重量%以下である。セラミック焼結材は、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を意味し、実施例1で得られた図4のグラフから分かるように、xは好ましくは0〜0.96である)の組成からなる酸化物を0.1から9mo1%、好ましくは0.2〜0.8mo1%含む(実施例1で得られた図3のグラフ参照)。 In the first and second filter materials, the lowermost (innermost) porous support is made of a ceramic sintered material based on alumina. As can be seen from the graph of FIG. 1 obtained in Example 1, the alumina composition ratio in the ceramic sintered material constituting the porous support is preferably 90 mol% or more, more preferably 94 mol% or more. As can be seen from the graph of FIG. 2 obtained in Example 1, in the first filter material, the silica content allowed to be contained in the ceramic sintered material is 4% by weight or less, desirably 3% by weight or less. It is. In the second filter material, the silica content allowed to be contained in the ceramic sintered material is 4% by weight or less, desirably 1% by weight or less. The ceramic sintered material is (ZrO 2 ) x + (MO) 1-x (where M is Ca, Mg, Y 2/3 or Gd 2/3, and is obtained in Example 1). As can be seen from the graph of FIG. 4, the oxide contains 0.1 to 9 mol 1%, preferably 0.2 to 0.8 mol 1% (preferably x is 0 to 0.96). (See the graph of FIG. 3 obtained in Example 1).

第2のフィルター材において、多孔質中間層を構成するセラミック焼結材中のアルミナ組成割合も好ましくは90mol%以上、より好ましくは94mol%以上である。このセラミック焼結材は不純物としてシリカを4重量%以下、望ましくは1重量%以下含んでいてもよく、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を意味し、実施例3で得られた図5のグラフから分かるように、xは好ましくは0.0001〜0.98である)の組成からなる酸化物を0.1から9mo1%、好ましくは0.2〜0.8mo1%含む。 In the second filter material, the alumina composition ratio in the ceramic sintered material constituting the porous intermediate layer is also preferably 90 mol% or more, more preferably 94 mol% or more. This ceramic sintered material may contain 4% by weight or less, preferably 1% by weight or less of silica as an impurity, and (ZrO 2 ) x + (MO) 1-x (where M is Ca , Mg, Y 2/3 or Gd 2/3, and as can be seen from the graph of FIG. 5 obtained in Example 3, x is preferably 0.0001 to 0.98) The oxide contains 0.1 to 9 mol 1%, preferably 0.2 to 0.8 mol 1%.

本発明は、また、第1および第2の発明によるフィルター材の製造方法にも関し、該方法は、
多孔質支持体または多孔質中間層となるセラミック焼結材の表面にゼオライト種結晶を付着させ、乾燥後、種付着セラミック焼結材をゼオライト合成反応用の溶液またはスラリーに接触させ、加熱処理し、水熱合成法によりセラミック焼結材の表面にゼオライト膜からなる活性層を形成する方法において、
ゼオライト種結晶の直径(d)とセラミック焼結材表面の平均細孔径(di)が、好ましくは1/3≦d/di<6、より好ましくは1/2≦d/di≦3の関係にあることを特徴とする。
The present invention also relates to a method for producing a filter material according to the first and second inventions, the method comprising:
Zeolite seed crystals are attached to the surface of the ceramic support that becomes the porous support or porous intermediate layer, and after drying, the seed-attached ceramic sintered material is contacted with the solution or slurry for the zeolite synthesis reaction and heat-treated. In the method of forming an active layer composed of a zeolite membrane on the surface of a ceramic sintered material by a hydrothermal synthesis method,
The diameter (d) of the zeolite seed crystal and the average pore diameter (di) of the ceramic sintered material surface are preferably 1/3 ≦ d / di <6, more preferably 1/2 ≦ d / di ≦ 3. It is characterized by being.

ゼオライト種結晶の直径(d)とセラミック焼結材表面の平均細孔径(di)が上記の関係にあることが好ましい理由は、次の通りである。   The reason why it is preferable that the diameter (d) of the zeolite seed crystal and the average pore diameter (di) on the surface of the ceramic sintered material are in the above relationship is as follows.

最終的に得られるゼオライト膜の品質は、多孔質支持体または多孔質中間層となるセラミック焼結材の表面あるいは表面近傍内部に、浸漬、刷毛塗り、印刷などの方法により付着した種結晶の付着量や種結晶の付着分布などに大きく影響される。例えば、比d/diが1/3未満であると、上記セラミック焼結体の多孔度が小さいことに起因して、種結晶の付着量が少なくなり、その結果、水熱合成法により得られるゼオライト膜は不連続となり、ピンホールが生じ、水とエタノールの分離特性が低くなる。比d/diが6より大きいと、種の付着量が多すぎ、例えば浸漬後の乾燥中に該セラミック焼結体に沈積したゼオライト種の膜にクラックあるいはピンホールが生じ、その結果最終的に水熱合成法により得られるゼオライト膜にクラックあるいはピンホールが生じ、やはり分離特性が低下する。したがって、1/3≦d/di<6の関係が成立することが好ましく、さらに水の分離速度(フラックス)の向上を図る場合は、1/2≦d/di≦3の関係が成立することが好ましい。   The quality of the finally obtained zeolite membrane is that the seed crystals adhered to the surface of or near the surface of the ceramic sintered material that becomes the porous support or porous intermediate layer by dipping, brushing, printing, etc. It is greatly affected by the amount and distribution of seed crystals. For example, when the ratio d / di is less than 1/3, the amount of seed crystals attached is reduced due to the low porosity of the ceramic sintered body, and as a result, it can be obtained by a hydrothermal synthesis method. The zeolite membrane becomes discontinuous, pinholes are generated, and the separation characteristics of water and ethanol are lowered. If the ratio d / di is greater than 6, the amount of seeds attached is too large, for example cracks or pinholes occur in the zeolite seed film deposited on the ceramic sintered body during drying after soaking, and as a result Cracks or pinholes are generated in the zeolite membrane obtained by the hydrothermal synthesis method, and the separation characteristics are also lowered. Therefore, it is preferable that the relationship 1/3 ≦ d / di <6 is satisfied, and when the water separation rate (flux) is further improved, the relationship 1/2 ≦ d / di ≦ 3 is satisfied. Is preferred.

本発明方法において、多孔質支持体または多孔質中間層となるセラミック焼結材の表面にゼオライト種結晶を付着させるには、ゼオライト種結晶を水溶液中に分散させた懸濁液にセラミック焼結材を浸漬する、該懸濁液をセラミック焼結材に刷毛塗りまたは印刷する、などの方法を採用することができ、浸漬法は生産性に優れており望ましい。種結晶をセラミック焼結材に均一で適度な量で付着させるには、ゼオライト種結晶を水溶液中に分散させた懸濁液中の種結晶の濃度は、好ましくは0.05〜l.0重量%、より好ましくは0.05〜0.5重量%である。種結晶の濃度が1重量%より高いと、懸濁液中の種結晶の分散性が低下し、種結晶の凝集や沈殿が生じ、その結果、該多孔質体への付着状況において不均一性や付着量の増大が生じ、最終的に得られるゼオライト膜にクラックやピンホールが生じ、分離特性が低下する。浸漬の場合は、浸漬回数を増加させるとやはり種結晶の付着量が増大し、生産性も低下するため、浸漬回数は好ましくは1〜2回である。   In the method of the present invention, in order to attach a zeolite seed crystal to the surface of a ceramic sintered material to be a porous support or a porous intermediate layer, the ceramic sintered material is dispersed in a suspension in which the zeolite seed crystal is dispersed in an aqueous solution. Can be employed, and the suspension can be brushed or printed on a ceramic sintered material. The dipping method is preferable because of its excellent productivity. In order to attach the seed crystal to the ceramic sintered material in a uniform and appropriate amount, the concentration of the seed crystal in the suspension in which the zeolite seed crystal is dispersed in the aqueous solution is preferably 0.05 to 1. It is 0% by weight, more preferably 0.05 to 0.5% by weight. When the concentration of the seed crystal is higher than 1% by weight, the dispersibility of the seed crystal in the suspension is lowered, and the seed crystal is agglomerated and precipitated. As a result, the adhesion to the porous material is not uniform. And the amount of adhesion increases, cracks and pinholes occur in the finally obtained zeolite membrane, and the separation characteristics deteriorate. In the case of dipping, increasing the number of dippings also increases the amount of seed crystals attached and decreases productivity, so the number of dippings is preferably 1 to 2 times.

浸漬、刷毛塗り、印刷などの後の乾燥方法としては、生産性やゼオライト膜品質確保の面から、温度や湿度、時間を制御した方法が好ましい。乾燥温度は好ましくは20〜70℃、より好ましくは30〜65℃で、湿度は好ましくは10〜90%RH、より好ましくは20〜80%RHで、乾燥時間は好ましくは4〜24時間である。温度が低すぎたり湿度が高すぎると、乾燥に時間がかかるため、工業的に不利である。温度が高すぎたり湿度が低すぎると、最終的に水熱合成法により得られるゼオライト膜の品質が低下する。これは、ゼオライト種結晶中の結晶水の脱着挙動が得られるゼオライト膜に影響を及ぼしていると考えられる。   As a drying method after dipping, brushing, printing or the like, a method in which the temperature, humidity, and time are controlled is preferable from the viewpoint of ensuring productivity and zeolite membrane quality. The drying temperature is preferably 20 to 70 ° C., more preferably 30 to 65 ° C., the humidity is preferably 10 to 90% RH, more preferably 20 to 80% RH, and the drying time is preferably 4 to 24 hours. . If the temperature is too low or the humidity is too high, drying takes time, which is industrially disadvantageous. If the temperature is too high or the humidity is too low, the quality of the zeolite membrane finally obtained by the hydrothermal synthesis method will deteriorate. This is considered to affect the zeolite membrane from which the desorption behavior of crystal water in the zeolite seed crystals is obtained.

本発明方法において、水熱合成法を、密閉容器または圧力容器内で昇温速度を制御して行うことがましい。昇温速度は好ましくはl.5〜100℃/min、より好ましくは2〜100℃/minである。密閉容器または圧力容器内の圧力は好ましくは大気圧〜10気圧である。   In the method of the present invention, the hydrothermal synthesis method is preferably carried out by controlling the rate of temperature rise in a closed vessel or a pressure vessel. The heating rate is preferably l. It is 5-100 degreeC / min, More preferably, it is 2-100 degreeC / min. The pressure in the closed vessel or pressure vessel is preferably atmospheric pressure to 10 atm.

水熱合成法を解放系(大気圧系)の容器を用いて行うと、反応中の反応液の組成を維持するために、水分の蒸発を防ぐことが必要となり、一般に還流が必要となり、製造設備が複雑となり、その結果、工業製品のコスト高の一因となりうる。また、開放系の容器を用いた水熱合成法では、容器内の反応液の対流が活発となる。この結果、例えば、容器内に複数の種付着セラミック焼結材を設置する場合、該焼結材間の距離や該焼結材と容器壁面間の距離が重要となり、一般には十分な距離が必要となるため、容器を大型化する必要があり、生産設備のコスト高の一因ともなりうる。本発明では、このような観点から、容器内の反応圧力を1.1気圧以上に高め、かつ水熱合成法のための昇温速度をl.5〜100℃/min、より好ましくは2〜100℃/minとし、反応温度を95℃以上とすることで、還流を必要としない密閉系あるいは加圧系の容器を用いて、十分な性能を有するゼオライト膜を水熱合成法により得ることができる。また、従来の開放系の水熱合成法では、例えば、管状のセラミック焼結材を用いた場合、該焼結体管間が10mmであると、良好なゼオライト膜が得られなかったが、本発明の圧力および昇温速度制御型の水熱合成法では、この条件においても、十分な性能を有するゼオライト膜の製造が可能である。昇温速度を1.5℃/min以上に制御する理由は、ゼオライト種結晶が付着したセラミック焼結体管表面近傍のゼオライト膜生成反応が生じる以前に、反応液中(該焼結体管の沖合)にてゼオライト結晶の晶出が生じ、その結果セラミック焼結体管表面でのゼオライト生成反応が阻害されることを防ぐ効果が得られるためである。工業的な大規模の生産を考慮した場合、昇温速度は好ましくは2℃/min以上であり、また反応液(沖合)での晶出が生じる温度域である30℃程度から反応温度までの昇温速度を制御することが、製造コストを抑制する面でさらに望ましい。   When the hydrothermal synthesis method is carried out using an open system (atmospheric pressure system) container, it is necessary to prevent moisture evaporation in order to maintain the composition of the reaction solution during the reaction, and in general, reflux is required. The equipment becomes complicated, and as a result, it can contribute to the high cost of industrial products. In the hydrothermal synthesis method using an open container, convection of the reaction liquid in the container becomes active. As a result, for example, when installing a plurality of seed-attached ceramic sintered materials in a container, the distance between the sintered materials and the distance between the sintered material and the container wall surface are important, and generally a sufficient distance is required. Therefore, it is necessary to increase the size of the container, which may contribute to the high cost of production equipment. In the present invention, from such a viewpoint, the reaction pressure in the vessel is increased to 1.1 atm or higher, and the temperature increase rate for the hydrothermal synthesis method is set to l. When the reaction temperature is 95 ° C. or higher by setting the reaction temperature to 5 to 100 ° C./min, more preferably 2 to 100 ° C./min, sufficient performance can be obtained using a sealed or pressurized container that does not require reflux. The zeolite membrane can be obtained by a hydrothermal synthesis method. In addition, in the conventional open-type hydrothermal synthesis method, for example, when a tubular ceramic sintered material is used, a good zeolite membrane cannot be obtained when the distance between the sintered tubes is 10 mm. The hydrothermal synthesis method of the invention that controls the pressure and temperature rise rate can produce a zeolite membrane having sufficient performance even under these conditions. The reason for controlling the rate of temperature rise to 1.5 ° C./min or more is that before the zeolite film formation reaction near the surface of the ceramic sintered body tube to which the zeolite seed crystals have adhered occurs in the reaction solution (in the sintered body tube). This is because the crystallization of the zeolite crystal occurs offshore), and as a result, the effect of preventing the zeolite formation reaction on the ceramic sintered body tube surface from being inhibited is obtained. When considering industrial large-scale production, the rate of temperature rise is preferably 2 ° C./min or more, and from about 30 ° C., which is a temperature range where crystallization occurs in the reaction liquid (offshore), to the reaction temperature. Controlling the rate of temperature rise is more desirable in terms of reducing manufacturing costs.

本発明の方法によると、ゼオライト粒子の界面部が粒子内部に比べて、密な構造となることから、フィルターを通過する分離液等が、構造が密な界面部よりも、予め平均粒子径等が制御された粒子内部を中心に通過することから、フィルター性能の制御が容易となる。   According to the method of the present invention, since the interface part of the zeolite particles has a dense structure as compared with the inside of the particles, the separation liquid passing through the filter has an average particle diameter and the like in advance from the interface part having a dense structure. Passes through the inside of the controlled particle, so that the filter performance can be easily controlled.

なお、上記の効果を出すには、粒子界面が線分率にして全粒子界面の10%以上望ましくは15%以上の界面が密な構造であることが好ましい。   In order to obtain the above effect, it is preferable that the particle interface has a dense structure in which the interface is a line fraction and 10% or more, preferably 15% or more, of all the particle interfaces.

本発明によれば、フィルターとして機能させる際に使用に十分耐え得る強度を備え、かつ、フィルターとして使用する際に高い分離性能を発揮するフィルター材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the filter material which has the intensity | strength which can fully endure use when making it function as a filter, and exhibits high separation performance when using as a filter can be provided.

実施例1
第1のフィルター材において、多孔質支持体を構成するセラミック焼結材中のアルミナ組成割合の好ましい範囲を決めるために、多孔質支持体中のアルミナ組成割合を変化させ、対応するフィルター材について水/エタノール混合溶液からの水の分離係数αを求めた(水(10重量%)/エタノール(90重量%)の混合溶液からの75℃でのPV(パーベーパレーション)による水分離を測定した)。アルミナ組成割合と分離係数αの関係を図1のグラフに示す。このグラフから分かるように、多孔質支持体を構成するセラミック焼結材中のアルミナ組成割合は好ましくは90mol%以上、より好ましくは94mol%以上である。第2のフィルター材においても同じであった。
Example 1
In the first filter material, in order to determine a preferable range of the alumina composition ratio in the ceramic sintered material constituting the porous support, the alumina composition ratio in the porous support is changed, and The separation factor α of water from the ethanol / ethanol mixed solution was determined (water separation by PV (pervaporation) at 75 ° C. from the water (10 wt%) / ethanol (90 wt%) mixed solution was measured) . The relationship between the alumina composition ratio and the separation factor α is shown in the graph of FIG. As can be seen from this graph, the alumina composition ratio in the ceramic sintered material constituting the porous support is preferably 90 mol% or more, more preferably 94 mol% or more. The same was true for the second filter material.

第1のフィルター材において、多孔質支持体を構成するセラミック焼結材が不純物として含むことが許容されるシリカ含有量を決めるために、シリカ含有量を変化させ、対応するフィルターの分離係数αを上記と同様にして求めた。多孔質支持体のSi組成割合とフィルター材の分離係数αの関係を図2のグラフに示す。このグラフから分かるように、多孔質支持体を構成するセラミック焼結材が含むことが許容されるシリカ含有量は、4重量%以下、望ましくは3重量%以下である。第2のフィルター材においては、多孔質中間層を構成するセラミック焼結材が含むことが許容されるシリカ含有量は、4重量%以下、望ましくは1重量%以下である。   In the first filter material, in order to determine the silica content that the ceramic sintered material constituting the porous support is allowed to contain as impurities, the silica content is changed, and the separation factor α of the corresponding filter is set. It calculated | required like the above. The relationship between the Si composition ratio of the porous support and the separation factor α of the filter material is shown in the graph of FIG. As can be seen from this graph, the silica content allowed to be contained in the ceramic sintered material constituting the porous support is 4% by weight or less, desirably 3% by weight or less. In the second filter material, the silica content allowed to be contained in the ceramic sintered material constituting the porous intermediate layer is 4% by weight or less, desirably 1% by weight or less.

第1のフィルター材において、多孔質支持体を構成するセラミック焼結材に焼結助剤として含まれる(ZrO+(MO)1−xの組成からなる酸化物の化学式におけるxの範囲を決めるために、多孔質支持体中の焼結助剤含有量lmol%の場合の焼結助剤中のZrO組成割合(mol%)を変化させ、対応する支持体の強度を3点曲げ強度試験法により測定した。焼結助剤中のZrO組成割合(mol%)と同支持体の3点曲げ強度との関係を図4のグラフに示す。このグラフから分かるように、焼結助剤中のZrO組成割合の好ましい範囲は0〜96mol%であり、したがってxの好ましい範囲は0〜0.96である。第2のフィルター材においても同じであった。 In the first filter material, the range of x in the chemical formula of the oxide having the composition of (ZrO 2 ) x + (MO) 1-x contained as a sintering aid in the ceramic sintered material constituting the porous support. In order to determine the ZrO 2 composition ratio (mol%) in the sintering aid when the sintering aid content in the porous support is 1 mol%, the strength of the corresponding support is bent at three points. It was measured by the strength test method. The relationship between the ZrO 2 composition ratio (mol%) in the sintering aid and the three-point bending strength of the support is shown in the graph of FIG. As can be seen from this graph, the preferred range of the ZrO 2 composition ratio in the sintering aid is 0 to 96 mol%, and therefore the preferred range of x is 0 to 0.96. The same was true for the second filter material.

第1のフィルター材において、多孔質支持体を構成するセラミック焼結材に含まれる焼結助剤の含有量の範囲を決めるために、多孔質支持体中の焼結助剤((ZrO0.92+(CaO)0.08)の含有量(mol%)を変化させ、対応する多孔質支持体の強度を3点曲げ強度試験法によりを測定した。セラミック焼結材に含まれる焼結助剤の含有量(mol%)と同支持体の3点曲げ強度との関係を図3のグラフに示す。このグラフから分かるように、セラミック焼結材中の焼結助剤の含有量の好ましい範囲は0.1〜9mol%であり、より好ましくは0.2〜0.8mo1%である。第2のフィルター材においても同じであった。 In the first filter material, in order to determine the range of the content of the sintering aid contained in the ceramic sintered material constituting the porous support, the sintering aid ((ZrO 2 ) in the porous support is determined. The content (mol%) of 0.92 + (CaO) 0.08 ) was changed, and the strength of the corresponding porous support was measured by a three-point bending strength test method. The relationship between the content (mol%) of the sintering aid contained in the ceramic sintered material and the three-point bending strength of the support is shown in the graph of FIG. As can be seen from this graph, the preferred range of the content of the sintering aid in the ceramic sintered material is 0.1 to 9 mol%, more preferably 0.2 to 0.8 mol. The same was true for the second filter material.

実施例2
第1のフィルター材において、多孔質支持体を構成するセラミック焼結材の強度を3点曲げ試験法により測定した。この強度が3.0kg/mm以下であると、膜モジュールヘの取り付け工程(シール工程)工程や、その他のハンドリング時にフィルター材が破損しやすい。また、加圧分離操作などの実使用を考慮すると、この強度は5.0〜13kg/mmであることが好ましい。しかし強度が13kg/mm を越えると、多孔質支持体がより緻密質な構造となり、所期の物質移動速度が阻害される。したがって、多孔質支持体の強度は好ましくは3.0〜13kg/mm、より好ましくは5.0〜13kg/mmである。所期の物質移動速度を確保するには、同支持体の厚みは好ましくは1.5〜2.5mmである。第2のフィルター材においても同じであった。
Example 2
In the first filter material, the strength of the ceramic sintered material constituting the porous support was measured by a three-point bending test method. When the strength is 3.0 kg / mm 2 or less, the filter material is likely to be damaged during the process of attaching to the membrane module (sealing process) and other handling. In consideration of actual use such as pressure separation operation, the strength is preferably 5.0 to 13 kg / mm 2 . However, when the strength exceeds 13 kg / mm 2 , the porous support has a denser structure, and the desired mass transfer rate is hindered. Therefore, the strength of the porous support is preferably 3.0 to 13 kg / mm 2 , more preferably 5.0 to 13 kg / mm 2 . In order to ensure the desired mass transfer rate, the thickness of the support is preferably 1.5 to 2.5 mm. The same was true for the second filter material.

実施例3
第2のフィルター材において、多孔質中間層を構成するセラミック焼結材に焼結助剤として含まれる(ZrO+(MO)1−xの組成からなる酸化物の化学式におけるxの範囲を決めるために、多孔質中間層中の焼結助剤含有量4mol%の場合の焼結助剤中のZrO組成割合(mol%)を変化させ、対応するフィルター材の分離係数αを測定し た。焼結助剤中のZrO組成割合(mol%)とフィルター材の分離係数αの関係を図5のグラフに示す。このグラフから分かるように、焼結助剤中のZrO組成割合 の好ましい範囲は0.01〜0.98mol%であり、したがってxの好ましい範囲は0.0001〜0.98である。
Example 3
In the second filter material, the range of x in the chemical formula of an oxide having a composition of (ZrO 2 ) x + (MO) 1-x contained as a sintering aid in the ceramic sintered material constituting the porous intermediate layer To determine the separation factor α of the corresponding filter material by changing the ZrO 2 composition ratio (mol%) in the sintering aid when the content of the sintering aid in the porous intermediate layer is 4 mol%. did. The relationship between the ZrO 2 composition ratio (mol%) in the sintering aid and the separation factor α of the filter material is shown in the graph of FIG. As can be seen from this graph, the preferable range of the composition ratio of ZrO 2 in the sintering aid is 0.01 to 0.98 mol%, and therefore the preferable range of x is 0.0001 to 0.98.

なお、中間層中の焼結助剤含有量とフィルターの分離係数αの関係は、中間層中の焼結助剤含有量が増加するとアルミナの組成割合が低下し、その結果分離係数αが低下した。この傾向は、図1に示すグラフとほぼ同じであった。   The relationship between the content of the sintering aid in the intermediate layer and the separation factor α of the filter is that the composition ratio of alumina decreases as the content of the sintering aid in the intermediate layer increases, resulting in a decrease in the separation factor α. did. This tendency was almost the same as the graph shown in FIG.

実施例4
第2のフィルター材において、多孔質中間層を形成するための球形状の原料粒子の粒子特性としてアルペクト比を決めるために、原料粒子のアスペクト比を変化させ、対応するフィルター材の分離性能を測定した。すなわち、多孔質支持体と多孔質中間層からなる積層体のガス透過速度が1300m/(m・h・atm) である場合の該積層体のアスペクト比とフィルターの性能(分離係数αおよび分離速度(フラックス))の関係を求めた。得られた関係を図6のグラフに示す。このグラフから分かるように、球形状の原料粒子のアスペクト比は好ましくは1.1〜3.0、より好ましくは1.1〜2.5である。多孔質支持体を形成するための球形状の原料粒子のアスペクト比においても同じであった。
Example 4
In the second filter material, in order to determine the arpect ratio as the particle characteristics of the spherical raw material particles for forming the porous intermediate layer, the aspect ratio of the raw material particles is changed and the separation performance of the corresponding filter material is measured. did. That is, when the gas permeation rate of the laminate comprising the porous support and the porous intermediate layer is 1300 m 3 / (m 2 · h · atm), the aspect ratio of the laminate and the performance of the filter (separation coefficient α and The relationship of separation rate (flux) was determined. The relationship obtained is shown in the graph of FIG. As can be seen from this graph, the aspect ratio of the spherical raw material particles is preferably 1.1 to 3.0, more preferably 1.1 to 2.5. The same was true for the aspect ratio of the spherical raw material particles for forming the porous support.

実施例5
第2のフィルター材における、多孔質中間層の平均孔径の好適な範囲を決めるために、同中間層の平均孔径を変化させ、対応するフィルター材の分離性能(分離係数αおよび分離速度(75℃、PV(パーベーパレーション)原液組成は、水(10重量%)/エタノール(90重量%)の混合溶液であり、この溶液から水の分離速度(フラックス)を測定した)を求めた。多孔質中間層の平均孔径とフィルター材の性能の関係を図7のグラフに示す。このグラフから分かるように、多孔質中間層の平均孔径は、好ましくは0.3〜2.0μm、より好ましくは0.4〜1.5μmである。第1のフィルター材における、多孔質支持体のゼオライト側の表面の平均孔径も同じである。
Example 5
In order to determine a suitable range of the average pore diameter of the porous intermediate layer in the second filter material, the average pore diameter of the intermediate layer is changed, and the separation performance (separation coefficient α and separation rate (75 ° C.) of the corresponding filter material is changed. The PV (pervaporation) stock solution composition was a mixed solution of water (10 wt%) / ethanol (90 wt%), and the water separation rate (flux) was measured from this solution. The relationship between the average pore diameter of the intermediate layer and the performance of the filter material is shown in the graph of Fig. 7. As can be seen from this graph, the average pore diameter of the porous intermediate layer is preferably 0.3 to 2.0 µm, more preferably 0. The average pore diameter of the surface on the zeolite side of the porous support in the first filter material is also the same.

バプルポイント測定法から規定される欠陥は、10%以下、望ましくは5%以下である。欠陥率が10%を越えると分離係数αが1000以下に低下するため、欠陥率はこの点でも10%以下であり、望ましくは5%以下である。欠陥率が5%以下である場合、分離係数aは、3000以上となる。なお、バブルポイント法は、ASTM(アメリカ材料試験協会)の規格(F316−86)による多孔質体の最大細孔径を測定する方法であって、再現性に優れている。   The defect defined by the bubble point measurement method is 10% or less, desirably 5% or less. When the defect rate exceeds 10%, the separation factor α decreases to 1000 or less. Therefore, the defect rate is also 10% or less in this respect, and desirably 5% or less. When the defect rate is 5% or less, the separation coefficient a is 3000 or more. The bubble point method is a method for measuring the maximum pore diameter of a porous material according to the standard (F316-86) of ASTM (American Society for Testing and Materials), and is excellent in reproducibility.

実施例6
多孔質体の物質移動速度を窒素ガスを用いたガス透過速度で代用する方法がある。多孔質支持体および中間層の積層体の物質透過性の好適な範囲を決めるために、同積層体の窒素ガスの透過速度を変化させ、対応するフィルター材の分離速度(75℃、PV(パーベーパレーション)原液組成は、水(10重量%)/エタノール(90重量%)の混合溶液であり、この溶液から水の分離速度(フラックス)を測定した)を求めた。多孔質支持体および中間層の積層体の窒素ガスの透過速度とフィルター材の分離速度の関係を図8のグラフに示す。
Example 6
There is a method in which the mass transfer rate of the porous body is substituted with a gas permeation rate using nitrogen gas. In order to determine a suitable range of the material permeability of the porous support and intermediate laminate, the nitrogen gas permeation rate of the laminate was changed, and the separation rate (75 ° C, PV (par (Vaporization) The stock solution composition was a mixed solution of water (10% by weight) / ethanol (90% by weight), and the separation rate (flux) of water was measured from this solution. The graph of FIG. 8 shows the relationship between the permeation rate of nitrogen gas and the separation rate of the filter material in the laminate of the porous support and the intermediate layer.

このグラフから分かるように、多孔質支持体または中間層の積層体の窒素ガスの透過速度は、100m/(m・h・atm)以上、好ましくは200m/(m・h・atm)以上であり、フラックスはガス透過速度が増大するにつれて高くなる傾向を示した。一方、分離係数はガス透過速度が3000m/(m・h・atm)以上になると低下する傾向を示した。このことから、多孔質支持体または中間層の積層体の窒素ガスの透過速度は、100〜3000m/(m・h・atm)以上、好ましくは200〜3000m/(m・h・atm)である。 As can be seen from this graph, the permeation rate of nitrogen gas of the porous support or the laminate of the intermediate layer is 100 m 3 / (m 2 · h · atm) or more, preferably 200 m 3 / (m 2 · h · atm). ) As described above, the flux tended to increase as the gas permeation rate increased. On the other hand, the separation factor tended to decrease when the gas permeation rate was 3000 m 3 / (m 2 · h · atm) or more. From this, the nitrogen gas permeation rate of the porous support or the laminate of the intermediate layer is 100 to 3000 m 3 / (m 2 · h · atm) or more, preferably 200 to 3000 m 3 / (m 2 · h · atm).

実施例7
多孔質支持体または多孔質中間層となるセラミック焼結材の表面にゼオライト種結晶を付着させ、乾燥後、種付着セラミック焼結材をゼオライト合成反応用の溶液またはスラリーに接触させ、加熱処理し、水熱合成法によりセラミック焼結材の表面にゼオライト膜からなる活性層を形成する方法において、水熱合成法の前工程におけるゼオライト種結晶の直径(d)とセラミック焼結材表面の平均細孔径(di)の関係を調べた。
Example 7
Zeolite seed crystals are attached to the surface of the ceramic support that becomes the porous support or porous intermediate layer, and after drying, the seed-attached ceramic sintered material is contacted with the solution or slurry for the zeolite synthesis reaction and heat-treated. In the method of forming an active layer composed of a zeolite membrane on the surface of a ceramic sintered material by a hydrothermal synthesis method, the diameter (d) of the zeolite seed crystals and the average fineness of the surface of the ceramic sintered material in the previous step of the hydrothermal synthesis method The relationship of the hole diameter (di) was examined.

その結果、比d/diが1/3未満であると、上記セラミック焼結体の多孔度が小さいことに起因して、種結晶の付着量が少なくなり、水熱合成により得られるゼオライト膜は不連続となり、ピンホールが生じ、水とエタノールの分離特性が低くなる。比d/diが6より大きいと、種の付着量が多すぎ、例えば浸漬後の乾燥中に該セラミック焼結体に沈積したゼオライト種の膜にクラックあるいはピンホールが生じ、その結果最終的に水熱合成法により得られるゼオライト膜にクラックあるいはピンホールが生じ、やはり分離特性が低下する。したがって、1/3≦d/di<6の関係が成立することが好ましく、さらに水の分離速度(フラックス)の向上を図る場合は、1/2≦d/di≦3の関係が成立することが好ましいことが分かった。   As a result, if the ratio d / di is less than 1/3, the amount of seed crystals attached decreases due to the low porosity of the ceramic sintered body, and the zeolite membrane obtained by hydrothermal synthesis is It becomes discontinuous, pinholes occur, and the separation characteristics of water and ethanol are lowered. If the ratio d / di is greater than 6, the amount of seeds attached is too large, for example, cracks or pinholes occur in the zeolite seed film deposited on the ceramic sintered body during drying after immersion, resulting in a final result. Cracks or pinholes are generated in the zeolite membrane obtained by the hydrothermal synthesis method, and the separation characteristics are also lowered. Therefore, it is preferable that the relationship 1/3 ≦ d / di <6 is satisfied, and when the water separation rate (flux) is further improved, the relationship 1/2 ≦ d / di ≦ 3 is satisfied. Was found to be preferable.

実施例8
実施例7記載の水熱合成法の前工程において、多孔質支持体または多孔質中間層となるセラミック焼結材の表面にゼオライト種結晶を付着させるために、ゼオライト種結晶を水溶液中に分散させた懸濁液にセラミック焼結材を浸漬した。種結晶をセラミック焼結材に均一で適度な量で付着させるのに好適な、懸濁液中の種結晶の濃度を求めた。種結晶の濃度が1重量%より高いと、懸濁液中の種結晶の分散性が低下し、種結晶の凝集や沈殿が生じ、その結果、該多孔質体への付着状況において不均一性や付着量の増大が生じ、最終的に得られるゼオライト膜にクラックやピンホールが生じ、分離特性が低下した。したがって懸濁液中の種結晶の濃度は好ましくは0.05〜l.0重量%、より好ましくは0.05〜0.5重量%であることが分かった。浸漬の場合は、浸漬回数を増加させるとやはり種結晶の付着量が増大し、生産性も低下するため、浸漬回数は好ましくは1〜2回であることが分かった。
Example 8
In the pre-process of the hydrothermal synthesis method described in Example 7, in order to attach the zeolite seed crystal to the surface of the ceramic sintered material that becomes the porous support or the porous intermediate layer, the zeolite seed crystal is dispersed in an aqueous solution. The ceramic sintered material was immersed in the suspension. The concentration of the seed crystal in the suspension, which is suitable for attaching the seed crystal to the ceramic sintered material in a uniform and appropriate amount, was determined. When the concentration of the seed crystal is higher than 1% by weight, the dispersibility of the seed crystal in the suspension is lowered, and the seed crystal is agglomerated and precipitated. As a result, the adhesion to the porous material is not uniform. As a result, the amount of adhesion increased and cracks and pinholes were formed in the finally obtained zeolite membrane, resulting in a decrease in separation characteristics. Therefore, the concentration of seed crystals in the suspension is preferably 0.05 to 1. It was found to be 0% by weight, more preferably 0.05-0.5% by weight. In the case of immersion, it was found that the number of immersions is preferably 1 to 2 because increasing the number of immersions also increases the amount of seed crystals attached and decreases the productivity.

実施例9
実施例7記載の水熱合成法の前工程において、多孔質支持体または多孔質中間層となるセラミック焼結材の表面にゼオライト種結晶を付着させるための浸漬、刷毛塗り、印刷などの後の乾燥工程において、生産性やゼオライト膜品質確保の面から、乾燥温度や湿度、乾燥時間の条件を決めた。温度が低すぎたり湿度が高すぎると、乾燥に時間がかがるため、工業的に不利である。温度を高すぎたり湿度が低すぎると、最終的に水熱合成法により得られるゼオライト膜の品質が低下する。乾燥温度は好ましくは20〜70℃、より好ましくは30〜65℃で、湿度は好ましくは10〜90%RH、より好ましくは20〜80%RHで、乾燥時間は好ましくは4〜24時間であった。
Example 9
In the pre-process of the hydrothermal synthesis method described in Example 7, after dipping, brushing, printing, etc. for attaching the zeolite seed crystal to the surface of the ceramic sintered material to be the porous support or the porous intermediate layer In the drying process, the conditions for drying temperature, humidity, and drying time were determined from the viewpoint of productivity and quality assurance of the zeolite membrane. If the temperature is too low or the humidity is too high, drying takes time, which is industrially disadvantageous. If the temperature is too high or the humidity is too low, the quality of the zeolite membrane finally obtained by the hydrothermal synthesis method will deteriorate. The drying temperature is preferably 20 to 70 ° C., more preferably 30 to 65 ° C., the humidity is preferably 10 to 90% RH, more preferably 20 to 80% RH, and the drying time is preferably 4 to 24 hours. It was.

実施例10
実施例7記載の水熱合成法を、密閉容器または圧力容器内で行い、好適な昇温速度および好適な容器内圧力を求めた。室温、好ましくは30℃程度から反応温度までの昇温速度を変えて、水熱合成反応を繰り返した。容器内の反応圧力を1.1気圧以上に高め、かつ水熱合成のための昇温速度をl.5〜100℃/min、より好ましくは2〜100℃/minとし、反応温度を95℃以上とすることで、還流を必要としない密閉系あるいは加圧系の容器を用いて、十分な性能を有するゼオライト膜を水熱合成法により得ることができた。昇温速度を1.5℃/min以上に制御する理由は、ゼオライト種結晶が付着したセラミック焼結体管表面近傍のゼオライト膜生成反応が生じる以前に、反応液中(該焼結体管の沖合)にてゼオライト結晶の晶出が生じ、その結果セラミック焼結体管表面でのゼオライト生成反応が阻害されることを防ぐ効果が得られるためである。
Example 10
The hydrothermal synthesis method described in Example 7 was performed in a sealed container or a pressure container, and a suitable temperature increase rate and a suitable pressure in the container were determined. The hydrothermal synthesis reaction was repeated by changing the temperature rising rate from room temperature, preferably about 30 ° C. to the reaction temperature. The reaction pressure in the vessel is increased to 1.1 atm or higher, and the rate of temperature increase for hydrothermal synthesis is l. When the reaction temperature is 95 ° C. or higher by setting the reaction temperature to 5 to 100 ° C./min, more preferably 2 to 100 ° C./min, sufficient performance can be obtained using a sealed or pressurized container that does not require reflux. A zeolite membrane having the same could be obtained by a hydrothermal synthesis method. The reason for controlling the rate of temperature rise to 1.5 ° C./min or more is that before the zeolite film formation reaction near the surface of the ceramic sintered body tube to which the zeolite seed crystals have adhered occurs in the reaction solution (in the sintered body tube). This is because the crystallization of the zeolite crystal occurs offshore), and as a result, the effect of preventing the zeolite formation reaction on the ceramic sintered body tube surface from being inhibited is obtained.

上記水熱合成法によると、セラミック焼結材の表面に水熱合成によりゼオライト膜を形成するに際して、密閉容器内で加圧下に反応を行うことで、結晶性が促進され、粒子内のSi成分等が粒子界面部に押しやられる。その結果、粒子界面部が粒子内部に比べて緻密な構造となると共に、粒子内の定比組成化が可能となる。例えば、通常の条件で形成されたゼオライトでは粒子(1) の組成比はAl:Si=1:1.4で、粒子(2) の組成比はAl:Si=1:1.09であるが、上記のような条件下での水熱合成により形成されたゼオライト膜では、図9に示すように、粒子(1) の組成比および粒子(2) の組成比はいずれもAl:Si=1:1で、粒子界面部(3) の組成比はAl:Si=1:1.5である。すなわち、粒子界面部(3) は粒子(1) (2) 内部に比べて高いSi組成比を有し、緻密な構造となる。このような構造が得られることにより、フィルターを通過する分離液等が緻密な構造の界面部よりも、予め平均粒子径等が制御された粒子内部を通過することから、フィルター性能の制御が容易となる。   According to the hydrothermal synthesis method, when forming a zeolite membrane by hydrothermal synthesis on the surface of the ceramic sintered material, the reaction is carried out under pressure in a sealed container to promote crystallinity, and the Si component in the particles Etc. are pushed to the particle interface. As a result, the particle interface portion has a dense structure as compared with the inside of the particle, and a specific ratio composition in the particle can be achieved. For example, in a zeolite formed under normal conditions, the composition ratio of particles (1) is Al: Si = 1: 1.4, and the composition ratio of particles (2) is Al: Si = 1: 1.09. In the zeolite membrane formed by hydrothermal synthesis under the above conditions, as shown in FIG. 9, the composition ratio of the particles (1) and the composition ratio of the particles (2) are both Al: Si = 1. 1: The composition ratio of the particle interface (3) is Al: Si = 1: 1.5. That is, the particle interface (3) has a higher Si composition ratio than the inside of the particles (1) and (2), and has a dense structure. By obtaining such a structure, it is easy to control the filter performance because the separation liquid that passes through the filter passes through the inside of the particle whose average particle diameter is controlled in advance rather than the interface part of the dense structure. It becomes.

実際に、ゼオライト粒子界面部を透過型電子顕微鏡(TEM)の暗視野にて観察したところ、小傾角型の粒子界面も含め、粒子内部よりもコントラストが高く(白く)観察された。このコントラストが高く(白く)観察された部分が密度の高い部分である(図10の写真(倍率:50万倍)参照)。   Actually, when the interface part of the zeolite particles was observed in the dark field of a transmission electron microscope (TEM), the contrast was higher (whiter) than the inside of the particles, including the small-inclination type particle interface. A portion where the contrast is observed to be high (white) is a portion having a high density (see the photograph in FIG. 10 (magnification: 500,000 times)).

水熱合成中の容器中の雰囲気圧力は好ましくは大気圧〜10気圧、より好ましくは1.1〜10気圧であった。   The atmospheric pressure in the vessel during hydrothermal synthesis was preferably atmospheric pressure to 10 atmospheres, more preferably 1.1 to 10 atmospheres.

なお、上記の効果を出すには、粒子界面が線分率にして全粒子界面の10%以上望ましくは15%以上の界面が密な構造であった。   In order to obtain the above effect, the interface of the particles had a dense structure in which the interface of the particle interface was 10% or more, preferably 15% or more of all the particle interfaces.

多孔質支持体中のアルミナ組成割合とフィルターの水/エタノールの分離係数αとの関係を示す。The relationship between the alumina composition ratio in the porous support and the water / ethanol separation factor α of the filter is shown. 多孔質支持体のシリカ含有量とフィルター材の分離係数αの関係を示すグラフである。It is a graph which shows the relationship between the silica content of a porous support body, and the separation factor (alpha) of a filter material. 多孔質支持体中の焼結助剤の含有量(mol%)と同支持体の3点曲げ強度との関係を示すグラフである。It is a graph which shows the relationship between content (mol%) of the sintering auxiliary agent in a porous support body, and the 3 point | piece bending strength of the support body. 多孔質支持体中の焼結助剤含有量lmol%の場合の焼結助剤中のZrO組成割合(mol%)と同支持体の3点曲げ強度との関係を示すグラフである。Is a graph showing the relationship between a porous three-point bending strength of sintered ZrO 2 composition ratio in the sintered aid of sintering aid when content lmol% (mol%) and the same support of the support body. 多孔質中間層中の焼結助剤含有量4mol%の場合の焼結助剤中のZrO組成割合(mol%)とフィルター材の分離係数αの関係を示すグラフである。Porous ZrO 2 composition ratio in the sintered aid in the case of sintering aid content 4 mol% in the intermediate layer (mol%) and is a graph showing the relationship between the separation coefficient of the filter material alpha. 多孔質支持体と多孔質中間層からなる積層体のガス透過速度が1300m/(m・h・atm) である場合の該積層体のアスペクト比とフィルターの性能(分離係数αおよび分離速度(フラックス))の関係を示すグラフである。When the gas permeation rate of a laminate comprising a porous support and a porous intermediate layer is 1300 m 3 / (m 2 · h · atm), the aspect ratio of the laminate and the filter performance (separation coefficient α and separation rate) It is a graph which shows the relationship of (flux). 中間層の孔径とフィルター材の分離係数αの関係を示すグラフである。It is a graph which shows the relationship between the hole diameter of an intermediate | middle layer, and the separation factor (alpha) of a filter material. 多孔質支持体および中間層の積層体の窒素ガス透過速度とフィルター材の分離速度の関係を示すグラフである。It is a graph which shows the relationship between the nitrogen gas permeation | transmission rate of the laminated body of a porous support body and an intermediate | middle layer, and the separation rate of a filter material. ゼオライト膜の粒子および粒子界面部を示す模式図である。It is a schematic diagram which shows the particle | grains and particle | grain interface part of a zeolite membrane. ゼオライト粒子界面部の透過型電子顕微鏡(TEM)写真(倍率:50万倍)である。It is a transmission electron microscope (TEM) photograph (magnification: 500,000 times) of the zeolite particle interface.

Claims (12)

セラミック焼結材からなる多孔質支持体と、同支持体の表面に成膜されたゼオライト膜からなる活性層とを備えたフィルター材において、
多孔質支持体は、アルミナ90mol%以上のアルミナベースのセラミック焼結材からなり、シリカを4重量%以下含んでいてもよく、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を、xは0〜0.96をそれぞれ意味する)で表される組成の金属酸化物を0.1から9mo1%含むことを特徴とするフィルター材。
In a filter material comprising a porous support made of a ceramic sintered material and an active layer made of a zeolite membrane formed on the surface of the support,
The porous support is made of an alumina-based ceramic sintered material of 90 mol% or more of alumina, and may contain 4% by weight or less of silica. As a sintering aid, (ZrO 2 ) x + (MO) 1-x (Wherein M represents Ca, Mg, Y 2/3 or Gd 2/3 , and x represents 0 to 0.96) 0.1 to 9 mol 1% of a metal oxide having a composition represented by Filter material characterized by
セラミック焼結材からなる多孔質支持体と、同支持体の表面に成膜されたゼオライト膜からなる活性層とを備えたフィルター材において、
多孔質支持体とゼオライト膜の間にセラミック焼結材からなる多孔質中間層が設けられ、
多孔質支持体は、アルミナ90mol%以上のアルミナベースのセラミック焼結材からなり、シリカを4重量%以下含んでいてもよく、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を、xは0〜0.96をそれぞれ意味する)で表される組成の金属酸化物を0.1から9mo1%含み、
多孔質中間層は、アルミナ90mol%以上のアルミナベースのセラミック焼結材からなり、シリカを4重量%以下含んでいてもよく、焼結助剤として(ZrO+(MO)1−x(ここでMはCa、Mg、Y2/3またはGd2/3を、xは0.0001〜0.98をそれぞれ意味する)で表される組成の金属酸化物を0.1から9mo1%含むことを特徴とするフィルター材。
In a filter material comprising a porous support made of a ceramic sintered material and an active layer made of a zeolite membrane formed on the surface of the support,
A porous intermediate layer made of a ceramic sintered material is provided between the porous support and the zeolite membrane,
The porous support is made of an alumina-based ceramic sintered material of 90 mol% or more of alumina, and may contain 4% by weight or less of silica. As a sintering aid, (ZrO 2 ) x + (MO) 1-x (Wherein M represents Ca, Mg, Y 2/3 or Gd 2/3 , x represents 0 to 0.96, respectively), and contains 0.1 to 9 mol 1% of a metal oxide.
The porous intermediate layer is made of an alumina-based ceramic sintered material of 90 mol% or more of alumina, and may contain 4% by weight or less of silica. As a sintering aid, (ZrO 2 ) x + (MO) 1-x (Wherein M represents Ca, Mg, Y 2/3 or Gd 2/3 , and x represents 0.0001 to 0.98) 0.1 to 9 mol 1% Filter material characterized by including.
多孔質支持体のゼオライト側の表面の平均孔径が0.3〜2.0μmであることを特徴とする請求項1記載のフィルター材。   2. The filter material according to claim 1, wherein an average pore diameter of the surface on the zeolite side of the porous support is 0.3 to 2.0 [mu] m. ゼオライト膜の表面においてゼオライト粒子の各界面部の密度が粒子内部の密度より高い部分が全粒子界面の10%以上を占めることを特徴とする請求項1記載のフィルター材。   2. The filter material according to claim 1, wherein the density of each interface part of the zeolite particles on the surface of the zeolite membrane occupies 10% or more of the whole particle interface. 多孔質支持体の強度が3.0〜13kg/mmであり、同支持体の厚みが1.5〜 2.5mmであることを特徴とする請求項1または2記載のフィルター材。 Strength of the porous support is 3.0~13kg / mm 2, according to claim 1 or 2 filter material, wherein the thickness of the support is 1.5 to 2.5 mm. 多孔質支持体または多孔質中間層の窒素ガスを用いた透過速度が100〜3000m/(m・h・atm)であることを特徴とする請求項1または2記載のセラミックフィルター材。 3. The ceramic filter material according to claim 1, wherein a permeation rate of the porous support or the porous intermediate layer using nitrogen gas is 100 to 3000 m 3 / (m 2 · h · atm). 多孔質中間層の平均孔径が0.3〜2.0μmであることを特徴とする請求項2記載のフィルター材。   The filter material according to claim 2, wherein the porous intermediate layer has an average pore size of 0.3 to 2.0 µm. 多孔質中間層が球形状の原料粒子から成形され、球形状の原料粒子のアスペクト比が1.1〜3.0であり、BET法で測定した球形状の原料粒子の比表面積が0.1〜6m/gであることを特徴とする請求項2記載のフィルター材。 The porous intermediate layer is formed from spherical raw material particles, the spherical raw material particles have an aspect ratio of 1.1 to 3.0, and the specific surface area of the spherical raw material particles measured by the BET method is 0.1. The filter material according to claim 2, which is ˜6 m 2 / g. 請求項1または2記載のフィルター材の製造方法であって、
多孔質支持体または多孔質中間層となるセラミック焼結材の表面にゼオライト種結晶を付着させ、乾燥後、種付着セラミック焼結材をゼオライト合成反応用の溶液またはスラリーに接触させ、加熱処理し、水熱合成法によりセラミック焼結材の表面にゼオライト膜からなる活性層を形成する方法において、
ゼオライト種結晶の直径(d)とセラミック焼結材表面の平均細孔径(di)が、1/3≦d/di<6の関係を満たすことを特徴とするフィルター材の製造方法。
It is a manufacturing method of the filter material according to claim 1 or 2,
Zeolite seed crystals are attached to the surface of the ceramic support that becomes the porous support or porous intermediate layer, and after drying, the seed-attached ceramic sintered material is contacted with the solution or slurry for the zeolite synthesis reaction and heat-treated. In the method of forming an active layer composed of a zeolite membrane on the surface of a ceramic sintered material by a hydrothermal synthesis method,
A method for producing a filter material, wherein the zeolite seed crystal diameter (d) and the average pore diameter (di) of the ceramic sintered material surface satisfy a relationship of 1/3 ≦ d / di <6.
水熱合成法を、密閉容器または圧力容器内で昇温速度を制御して行うことを特徴とする請求項9記載のフィルター材の製造方法。   The method for producing a filter material according to claim 9, wherein the hydrothermal synthesis method is performed by controlling a heating rate in a sealed container or a pressure container. 昇温速度がl.5〜100℃/minであることを特徴とする請求項10記載のフィルター材の製造方法。   Temperature increase rate is l. It is 5-100 degrees C / min, The manufacturing method of the filter material of Claim 10 characterized by the above-mentioned. 密閉容器または圧力容器内の圧力が大気圧〜10気圧であることを特徴とする請求項10記載のフィルター材の製造方法。
The method for producing a filter material according to claim 10, wherein the pressure in the sealed container or pressure container is from atmospheric pressure to 10 atmospheric pressure.
JP2005028382A 2005-02-04 2005-02-04 Filter material and manufacturing method thereof Active JP5014580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028382A JP5014580B2 (en) 2005-02-04 2005-02-04 Filter material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028382A JP5014580B2 (en) 2005-02-04 2005-02-04 Filter material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006212551A true JP2006212551A (en) 2006-08-17
JP5014580B2 JP5014580B2 (en) 2012-08-29

Family

ID=36976196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028382A Active JP5014580B2 (en) 2005-02-04 2005-02-04 Filter material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5014580B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532259A (en) * 2007-06-29 2010-10-07 コーニング インコーポレイテッド Zeolite membrane structure and method for producing zeolite membrane structure
WO2015146571A1 (en) * 2014-03-28 2015-10-01 日本碍子株式会社 Monolithic separation membrane structure and method for producing same
CN110885237A (en) * 2019-12-08 2020-03-17 浙江理工大学 Preparation method of low-temperature sintered alumina ceramic support

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197510A (en) * 1987-02-10 1988-08-16 Ngk Insulators Ltd Ceramic filter
JPH05105420A (en) * 1991-03-29 1993-04-27 Ngk Insulators Ltd Synthetic film of zeolite crystalline body and its production
JPH0789716A (en) * 1993-09-24 1995-04-04 Nok Corp Production of filmlike synthetic zeolite
JPH0971481A (en) * 1995-09-05 1997-03-18 Nitsukatoo:Kk Ceramic porous support
JPH09313903A (en) * 1996-05-23 1997-12-09 Mitsubishi Heavy Ind Ltd Zeolite separation membrane manufacture
JPH1057784A (en) * 1996-08-16 1998-03-03 Noritake Co Ltd Zeolite separation membrane and its production
JPH11137981A (en) * 1997-11-06 1999-05-25 Noritake Co Ltd Base body to carry zeolite membrane
JP2001046818A (en) * 1999-08-06 2001-02-20 Toshiba Corp Ceramic filter element and its manufacture
JP2004099338A (en) * 2002-09-05 2004-04-02 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for synthesizing zeolite membrane
JP2004250290A (en) * 2003-02-20 2004-09-09 Japan Science & Technology Agency Oriented zeolite film, its manufacturing method and its use

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197510A (en) * 1987-02-10 1988-08-16 Ngk Insulators Ltd Ceramic filter
JPH05105420A (en) * 1991-03-29 1993-04-27 Ngk Insulators Ltd Synthetic film of zeolite crystalline body and its production
JPH0789716A (en) * 1993-09-24 1995-04-04 Nok Corp Production of filmlike synthetic zeolite
JPH0971481A (en) * 1995-09-05 1997-03-18 Nitsukatoo:Kk Ceramic porous support
JPH09313903A (en) * 1996-05-23 1997-12-09 Mitsubishi Heavy Ind Ltd Zeolite separation membrane manufacture
JPH1057784A (en) * 1996-08-16 1998-03-03 Noritake Co Ltd Zeolite separation membrane and its production
JPH11137981A (en) * 1997-11-06 1999-05-25 Noritake Co Ltd Base body to carry zeolite membrane
JP2001046818A (en) * 1999-08-06 2001-02-20 Toshiba Corp Ceramic filter element and its manufacture
JP2004099338A (en) * 2002-09-05 2004-04-02 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for synthesizing zeolite membrane
JP2004250290A (en) * 2003-02-20 2004-09-09 Japan Science & Technology Agency Oriented zeolite film, its manufacturing method and its use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532259A (en) * 2007-06-29 2010-10-07 コーニング インコーポレイテッド Zeolite membrane structure and method for producing zeolite membrane structure
WO2015146571A1 (en) * 2014-03-28 2015-10-01 日本碍子株式会社 Monolithic separation membrane structure and method for producing same
JPWO2015146571A1 (en) * 2014-03-28 2017-04-13 日本碍子株式会社 Monolith type separation membrane structure and manufacturing method thereof
US10518197B2 (en) 2014-03-28 2019-12-31 Ngk Insulators, Ltd. Monolithic separation membrane structure and method of manufacture thereof
EP3124098B1 (en) * 2014-03-28 2022-02-23 NGK Insulators, Ltd. Monolithic separation membrane structure and method for producing same
CN110885237A (en) * 2019-12-08 2020-03-17 浙江理工大学 Preparation method of low-temperature sintered alumina ceramic support
CN110885237B (en) * 2019-12-08 2022-02-01 浙江理工大学 Preparation method of low-temperature sintered alumina ceramic support

Also Published As

Publication number Publication date
JP5014580B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP3868479B2 (en) Separation membrane
US7510598B2 (en) Gas separating body and method for producing same
EP2832694B1 (en) Method for manufacturing a ddr zeolite type seed crystal
WO2017107478A1 (en) Preparation method for molecular sieve membrane support body
CN102309928B (en) Zeolitic separation membrane preventing thermal cracking and preparation method thereof
JP5014580B2 (en) Filter material and manufacturing method thereof
US10987637B2 (en) DDR-type zeolite seed crystal and method for manufacturing DDR-type zeolite membrane
JP2002201020A (en) Zeolite seed crystal, and method for producing zeolite membrane using the seed crystal
JP4892265B2 (en) Manufacturing method of filter material
WO2018180564A1 (en) Afx-structure zeolite membrane, membrane structure, and membrane structure production method
WO2018180563A1 (en) Afx-structure zeolite membrane, membrane structure, and membrane structure production method
JP6902661B2 (en) Gas separation method
JP2012050930A (en) Zeolite separation membrane and method for producing the same
JP5148044B2 (en) Porous substrate
JP3057313B2 (en) Ceramic porous membrane and method for producing the same
JP5360015B2 (en) Filter material
JP6902662B2 (en) Gas separation method
JP2005305342A (en) Preparation method for alumina separation membrane
CN110475604B (en) Zeolite membrane having ERI structure and membrane structure
JPH10235172A (en) Ceramic porous membrane, ceramic porous member using the same and production of these
Qi et al. Preparation and gas permeation of supported γ-Al 2 O 3 membranes used as substrate layer for microporous membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5014580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250