JP2006212245A - Oxygen enrichment apparatus - Google Patents

Oxygen enrichment apparatus Download PDF

Info

Publication number
JP2006212245A
JP2006212245A JP2005028749A JP2005028749A JP2006212245A JP 2006212245 A JP2006212245 A JP 2006212245A JP 2005028749 A JP2005028749 A JP 2005028749A JP 2005028749 A JP2005028749 A JP 2005028749A JP 2006212245 A JP2006212245 A JP 2006212245A
Authority
JP
Japan
Prior art keywords
oxygen
enriched air
enriched
suction
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005028749A
Other languages
Japanese (ja)
Inventor
Kazuhisa Morishita
和久 森下
Hiroo Oshima
裕夫 大島
Shuho Beppu
秀峰 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005028749A priority Critical patent/JP2006212245A/en
Publication of JP2006212245A publication Critical patent/JP2006212245A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen enrichment apparatus freely changing the flow rate and the concentration of oxygen enriched air to be discharged. <P>SOLUTION: This oxygen enrichment apparatus is provided with a body incorporating an oxygen enrichment membrane unit for generating oxygen enriched air, a plurality of pump parts (suction means) 5a and 5b sucking the air through the oxygen enrichment membrane unit, an outlet disposed in the downstream side of the pump parts 5a and 5b and discharging the oxygen enriched air, and channel switching means 13a-13d switching the channels communicating the oxygen enrichment membrane unit, the pump parts 5a and 5b and the outlet; and is constituted to switch the using number of the pump parts 5a and 5b by the channel switching means 13a-13d. This constitution can change characteristics of the pump parts 5a and 5b acting on the oxygen enrichment membrane unit and change a balancing point based on the characteristics of the oxygen enrichment membrane unit and the characteristics of the pump parts 5a and 5b connected thereto so as to change the flow rate and the concentration of the oxygen enriched air to be discharged from the outlet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸素濃度の高い空気、いわゆる酸素富化空気を使用者に提供する酸素富化機に関するものである。   The present invention relates to an oxygen enricher that provides users with high oxygen concentration air, so-called oxygen-enriched air.

従来のこの種の酸素富化機は、空気中の酸素を濃縮して酸素富化空気を発生させる装置本体と、これに接続され酸素富化空気を吐出する酸素吐出口とを基本構成とし、それに例えばマイナスイオン発生手段を備えるなどして色々に展開されてきている(例えば、特許文献1参照)。
特開平10−234836号公報
A conventional oxygen enricher of this type is basically composed of a device main body that generates oxygen-enriched air by concentrating oxygen in the air, and an oxygen discharge port that is connected to this and discharges oxygen-enriched air. For example, it has been developed in various ways, for example, by including negative ion generation means (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-234836

しかしながら、上記従来の酸素富化機の構成では、その本体から吐出される酸素富化空気の流量、濃度は一定であり、それを変えることは困難であった。特に使用者が満足する流量、濃度は感覚的なものも多分にあるために、非常にばらつきも大きい。従って、1台の酸素富化機で、使用者毎の選択により流量、濃度が自由に変えられることが理想であるが、特に酸素富化膜を使用して酸素富化空気を得るようにした酸素富化機では、酸素富化膜の特性と、それに接続される真空ポンプの特性でつり合うポイント一点で決定されるため、必然的に本体から吐出される酸素富化空気の流量、濃度が決定されてしまうという課題があった。   However, in the configuration of the conventional oxygen enricher, the flow rate and concentration of oxygen-enriched air discharged from the main body are constant, and it is difficult to change them. In particular, the flow rate and concentration that the user is satisfied with are often sensuous, so the variation is very large. Therefore, it is ideal that the flow rate and concentration can be freely changed by the selection of each user with one oxygen enricher, but in particular, oxygen enriched air is obtained using an oxygen enriched membrane. In an oxygen enricher, the flow rate and concentration of the oxygen-enriched air inevitably discharged from the main body are determined because it is determined at a single point that balances the characteristics of the oxygen-enriched film and the characteristics of the vacuum pump connected to it. There was a problem of being done.

本発明は、上記従来の課題を解決するもので、使用者が吐出される酸素富化空気の流量、濃度を自由に変えることができる使用勝手の良い酸素富化機を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide an easy-to-use oxygen enricher capable of freely changing the flow rate and concentration of oxygen-enriched air discharged by a user. To do.

上記従来の課題を解決するために、本発明の酸素富化機は、酸素富化空気を生成する酸素富化手段を内蔵した本体と、前記酸素富化手段を通して空気を吸引する複数の吸引手段と、前記複数の吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記酸素富化手段と前記吸引手段と前記吐出口を連通する流路を切り換える流路切換手段とを備え、前記流路切換手段により、使用する前記吸引手段の台数を切り換え可能に構成したもので、一つの酸素富化手段を用いて吸引手段の使用台数を変えるだけで、吸引手段の特性が変化し、酸素富化手段の特性とそれに接続される吸引手段の特性でつり合うポイントを変化させて、吐出口から吐出される酸素富化空気の流量、濃度を変えることができるようになる。   In order to solve the above-described conventional problems, an oxygen enricher of the present invention includes a main body incorporating oxygen enrichment means for generating oxygen enriched air, and a plurality of suction means for sucking air through the oxygen enrichment means. A discharge port for discharging oxygen-enriched air generated by the oxygen enrichment unit disposed downstream of the plurality of suction units, and a flow communicating the oxygen enrichment unit, the suction unit, and the discharge port A flow path switching means for switching the path, and the flow path switching means is configured so that the number of the suction means to be used can be switched, and the number of the suction means used is changed by using one oxygen-enriching means. By simply changing the characteristics of the suction means, changing the balance point between the characteristics of the oxygen enrichment means and the characteristics of the suction means connected thereto, the flow rate and concentration of the oxygen-enriched air discharged from the discharge port are changed. Be able to .

また、本発明の酸素富化機は、酸素富化空気を生成する酸素富化手段を内蔵した本体と、前記酸素富化手段を通して空気を吸引する複数の吸引手段と、前記複数の吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記酸素富化手段と前記吸引手段と前記吐出口を連通する流路を切り換える流路切換手段とを備え、前記流路切換手段により、吸引手段を、直列接続、並列接続自在にその構成を切り換え可能にしたもので、複数の吸引手段の接続方法を変えるだけで吸引手段の特性が変化し、酸素富化手段の特性とそれに接続される吸引手段の特性でつり合うポイントを変化させて、吐出口から吐出される酸素富化空気の流量、濃度を変えることができるようになる。   The oxygen enricher of the present invention includes a main body incorporating oxygen enrichment means for generating oxygen enriched air, a plurality of suction means for sucking air through the oxygen enrichment means, and a plurality of suction means. A discharge port that is arranged downstream and discharges oxygen-enriched air generated by the oxygen-enriching unit; and a channel switching unit that switches a channel that connects the oxygen-enriching unit, the suction unit, and the discharge port. With the flow path switching means, the structure of the suction means can be switched in series connection and parallel connection freely, the characteristics of the suction means change only by changing the connection method of the plurality of suction means, The flow rate and concentration of the oxygen-enriched air discharged from the discharge port can be changed by changing the balance point between the characteristics of the oxygen-enriching means and the characteristics of the suction means connected thereto.

また、本発明の酸素富化機は、酸素富化空気を生成する酸素富化手段を複数内蔵した本体と、前記酸素富化手段を通して空気を吸引する吸引手段と、前記吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記複数の酸素富化手段を接続すると共に酸素富化空気を通す経路とを備え、前記経路に、使用する前記酸素富化手段の台数を切り換え可能な接続切換手段を設けたもので、一つの吸引手段を用いて酸素富化手段の使用台数を変えるだけで、酸素富化空気の流量、濃度を変える事ができる。また第1、第2の発明と組み合わせれば、より幅広い領域で酸素富化空気の流量、濃度を変えることができるようになる。   Further, the oxygen enricher of the present invention includes a main body having a plurality of oxygen enrichment means for generating oxygen enriched air, a suction means for sucking air through the oxygen enrichment means, and a downstream side of the suction means. A discharge port for discharging the oxygen-enriched air generated by the oxygen-enriching means and a path for connecting the plurality of oxygen-enriching means and allowing the oxygen-enriched air to pass therethrough. A connection switching means capable of switching the number of oxygen-enriching means is provided, and the flow rate and concentration of oxygen-enriched air can be changed only by changing the number of oxygen-enriching means used by using one suction means. Can do. When combined with the first and second inventions, the flow rate and concentration of oxygen-enriched air can be changed in a wider range.

本発明の酸素富化機は、吐出される酸素富化空気の流量、濃度を利用者の好みに合わせて自由に変えることができる。   The oxygen enricher of the present invention can freely change the flow rate and concentration of discharged oxygen-enriched air according to the user's preference.

第1の発明は、酸素富化空気を生成する酸素富化手段を内蔵した本体と、前記酸素富化手段を通して空気を吸引する複数の吸引手段と、前記複数の吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記酸素富化手段と前記吸引手段と前記吐出口を連通する流路を切り換える流路切換手段とを備え、前記流路切換手段により、使用する前記吸引手段の台数を切り換え可能に構成したもので、一つの酸素富化手段を用いて吸引手段の使用台数を変えるだけで、吸引手段の特性が変化し、酸素富化手段の特性とそれに接続される吸引手段の特性でつり合うポイントを変化させて、吐出口から吐出される酸素富化空気の流量、濃度を変えることができるようになる。   According to a first aspect of the present invention, there is provided a main body incorporating oxygen enriching means for generating oxygen enriched air, a plurality of suction means for sucking air through the oxygen enriched means, and a downstream side of the plurality of suction means. A discharge port for discharging the oxygen-enriched air generated by the oxygen-enriching means; and a flow path switching means for switching the flow path connecting the oxygen-enriching means, the suction means and the discharge port, and The number of the suction means to be used can be switched by the path switching means. By simply changing the number of suction means to be used with one oxygen enrichment means, the characteristics of the suction means can be changed, and the oxygen enrichment means can be changed. The flow rate and concentration of the oxygen-enriched air discharged from the discharge port can be changed by changing the balance point between the characteristics of the gasifying means and the characteristics of the suction means connected thereto.

第2の発明は、酸素富化空気を生成する酸素富化手段を内蔵した本体と、前記酸素富化手段を通して空気を吸引する複数の吸引手段と、前記複数の吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記酸素富化手段と前記吸引手段と前記吐出口を連通する流路を切り換える流路切換手段とを備え、前記流路切換手段により、吸引手段を、直列接続、並列接続自在にその構成を切り換え可能にしたもので、複数の吸引手段の接続方法を変えるだけで吸引手段の特性が変化し、酸素富化手段の特性とそれに接続される吸引手段の特性でつり合うポイントを変化させて、吐出口から吐出される酸素富化空気の流量、濃度を変えることができるようになる。   According to a second aspect of the present invention, a main body having an oxygen enriching means for generating oxygen-enriched air, a plurality of suction means for sucking air through the oxygen enriching means, and a downstream side of the plurality of suction means. A discharge port for discharging the oxygen-enriched air generated by the oxygen-enriching means; and a flow path switching means for switching the flow path connecting the oxygen-enriching means, the suction means and the discharge port, and By the path switching means, the structure of the suction means can be switched so that it can be connected in series or in parallel. The characteristics of the suction means can be changed simply by changing the connection method of the plurality of suction means. The flow rate and concentration of oxygen-enriched air discharged from the discharge port can be changed by changing the balance point between the characteristics and the characteristics of the suction means connected thereto.

第3の発明は、酸素富化空気を生成する酸素富化手段を複数内蔵した本体と、前記酸素富化手段を通して空気を吸引する吸引手段と、前記吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記複数の酸素富化手段を接続すると共に酸素富化空気を通す経路とを備え、前記経路に、使用する前記酸素富化手段の台数を切り換え可能な接続切換手段を設けたもので、一つの吸引手段を用いて酸素富化手段の使用台数を変えるだけで、酸素富化空気の流量、濃度を変えることができるようになる。また第1、第2の発明と組み合わせれば、より幅広い領域で酸素富化空気の流量、濃度を変えることができるようになる。   According to a third aspect of the present invention, there is provided a main body including a plurality of oxygen-enriching means for generating oxygen-enriched air, a suction means for sucking air through the oxygen-enriching means, and a downstream side of the suction means. A discharge port for discharging the oxygen-enriched air generated by the oxygenation means; and a path for connecting the plurality of oxygen enrichment means and allowing the oxygen-enriched air to pass therethrough, and the oxygen enrichment means used in the path It is possible to change the flow rate and concentration of oxygen-enriched air simply by changing the number of oxygen-enriching means used with one suction means. . When combined with the first and second inventions, the flow rate and concentration of oxygen-enriched air can be changed in a wider range.

第4の発明は、第1〜第3のいずれか1つの発明の酸素富化機に周囲温度を検知する温度検知手段を設け、前記温度検知手段で検知された温度に応じて、吐出口から吐出される酸素富化空気の流量又は濃度を変えるようにしたもので、周囲温度の変化に関係なく、安定した特性の酸素富化空気を使用者に提供することができる。   According to a fourth aspect of the present invention, the oxygen enricher according to any one of the first to third aspects is provided with a temperature detection unit that detects an ambient temperature, and the discharge port is arranged in accordance with the temperature detected by the temperature detection unit. By changing the flow rate or concentration of the oxygen-enriched air to be discharged, it is possible to provide the user with oxygen-enriched air having stable characteristics regardless of changes in the ambient temperature.

第5の発明は、第1〜第4のいずれか1つの発明の吸引手段を、ダイヤフラム式の真空ポンプで形成したもので、ダイヤフラム式の真空ポンプは排気速度が大きいため、特に、酸素富化膜を用いた酸素富化手段で、その負荷特性が大気圧側である場合に、酸素富化空気の流量、濃度の変化量を大きくすることが可能となる。   In the fifth invention, the suction means of any one of the first to fourth inventions is formed by a diaphragm type vacuum pump. Since the diaphragm type vacuum pump has a high exhaust speed, it is particularly enriched in oxygen. In the oxygen enrichment means using a membrane, when the load characteristic is on the atmospheric pressure side, it is possible to increase the flow rate and concentration variation of the oxygen enriched air.

第6の発明は、第1〜第4のいずれか1つの発明の吸引手段を、ロッキングピストン式の真空ポンプで形成したもので、ロッキングピストン式の真空ポンプは到達真空圧が大きいため、特に、酸素富化膜を用いた酸素富化手段で、その負荷特性が真空側である場合に、酸素富化空気の流量、濃度変化量を大きくすることができる。   In the sixth invention, the suction means of any one of the first to fourth inventions is formed by a rocking piston type vacuum pump, and the rocking piston type vacuum pump has a large ultimate vacuum pressure. In the oxygen enrichment means using the oxygen enriched film, when the load characteristic is on the vacuum side, the flow rate and concentration change amount of the oxygen enriched air can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の第1の実施の形態における酸素富化機について図1〜図8をもとに説明を行う。
(Embodiment 1)
Hereinafter, the oxygen enricher according to the first embodiment of the present invention will be described with reference to FIGS.

図1(a)〜(d)は、本実施の形態における酸素富化機の正面図、側面図、背面図及び断面図である。   1A to 1D are a front view, a side view, a rear view, and a cross-sectional view of an oxygen enricher in the present embodiment.

図1において、酸素富化機本体1(以下、「本体1」と称す)の内部には、本体1内に吸引された空気の酸素濃度を高める、いわゆる酸素富化空気を生成する酸素富化手段である酸素富化膜ユニット2を内設している。前記酸素富化膜ユニット2を通過することで空気の酸素濃度は、通過前の通常の21%(窒素約79%)から、約30%(窒素約70%)に高められる。   In FIG. 1, the oxygen enricher main body 1 (hereinafter referred to as “main body 1”) has an oxygen enrichment that generates so-called oxygen-enriched air that increases the oxygen concentration of the air sucked into the main body 1. An oxygen-enriched membrane unit 2 as means is provided. By passing through the oxygen-enriched membrane unit 2, the oxygen concentration of air is increased from 21% (about 79% nitrogen) before passing to about 30% (about 70% nitrogen).

また、本体1の内部には、吸気手段26が配され、その吸気手段26により、本体1の背面に設けた吸気口30から本体1内に外気を吸引し、その外気を酸素富化膜ユニット2に送り、本体1の側面に設けた排気口40から外部へ排出する。5a、5bは、本体1内に吸引された空気の一部を、酸素富化膜ユニット2が有する酸素富化膜(図示せず)を通して吸引する吸引手段であるポンプ部で、ポンプ部5a、5bを駆動するモータ部12に直結されている。   Further, an intake means 26 is disposed inside the main body 1, and the intake means 26 sucks outside air into the main body 1 from an intake port 30 provided on the back surface of the main body 1, and the outside air is sucked into the oxygen-enriched membrane unit. 2 and discharged to the outside through an exhaust port 40 provided on the side surface of the main body 1. 5a and 5b are pump units which are suction means for sucking a part of the air sucked into the main body 1 through an oxygen-enriched membrane (not shown) of the oxygen-enriched membrane unit 2, and the pump units 5a, It is directly connected to the motor unit 12 that drives 5b.

6は、ポンプ5a、5bに連通すると共に、本体1の側面に設けられた吐出口で、さらにこの吐出口6に、酸素富化空気吐出手段7が着脱自在に連結されており、ポンプ5a、5bから送出される酸素富化空気が、吐出口6を経て酸素富化空気吐出手段7に送り込まれるようになっている。   6 is a discharge port provided on a side surface of the main body 1 and communicated with the pumps 5a and 5b. Further, an oxygen-enriched air discharge means 7 is detachably connected to the discharge port 6, and the pump 5a, The oxygen-enriched air sent from 5b is sent to the oxygen-enriched air discharge means 7 through the discharge port 6.

図2に示すように、ポンプ部5aは、酸素富化空気を吸引する吸引口A20aと同酸素富化空気を排気する排気口B20bを、ポンプ部5bも同様に、吸引口C20cと、排気口D20dを備えている。   As shown in FIG. 2, the pump unit 5a includes a suction port A20a that sucks oxygen-enriched air and an exhaust port B20b that exhausts the oxygen-enriched air, and the pump unit 5b similarly uses a suction port C20c and an exhaust port. D20d is provided.

ポンプ部5a、5bと酸素富化膜ユニット2と吐出口6との間は、図2に示されるように配管されると共に、その配管経路には、ポンプ部5a、5bと酸素富化膜ユニット2と吐出口6間の流路を切り換える流路切換手段13a、13b、13c、13dが設けられ、流路切換手段13a、13b、13c、13dは、本体1に設けたスイッチ手段であるスイッチ操作基板14と接続された制御基板10で電気的に制御されるようになっている。   The pump sections 5a and 5b, the oxygen-enriched membrane unit 2 and the discharge port 6 are piped as shown in FIG. 2, and the pipe sections 5a and 5b and the oxygen-enriched membrane unit are connected to the pipe path. 2 is provided with flow path switching means 13a, 13b, 13c, 13d for switching the flow path between the discharge port 6 and the discharge port 6. The flow path switching means 13a, 13b, 13c, 13d are switch operations that are switch means provided in the main body 1. The control board 10 connected to the board 14 is electrically controlled.

制御基板10は、ポンプ部5a、5bを駆動するモータ部12及び吸気手段26の運転も制御するものである。   The control board 10 also controls the operation of the motor unit 12 and the intake means 26 that drive the pump units 5a and 5b.

酸素富化空気吐出手段7は、一端が本体1に設けた吐出口6に着脱自在で、軟体からなるチューブ3と、チューブ3内で結露した水を貯蔵するためのカプセル4と、使用者の耳や首元に掛けられるヘッドセット8と、ヘッドセット8に取着され使用者の口元に酸素富化空気を供給するマウス9とから構成されている。マウス9は、ヘッドセット8を使用者の耳、首元に掛けることで口元に位置決めされる。   The oxygen-enriched air discharge means 7 is detachably attached to a discharge port 6 provided at one end of the main body 1, and includes a tube 3 made of a soft body, a capsule 4 for storing water condensed in the tube 3, and a user's It is composed of a headset 8 hung on the ear or neck and a mouse 9 attached to the headset 8 and supplying oxygen-enriched air to the mouth of the user. The mouse 9 is positioned at the mouth by putting the headset 8 on the user's ear and neck.

次に上記構成に基づく酸素富化機の動作、作用について説明する。   Next, the operation and action of the oxygen enricher based on the above configuration will be described.

まずポンプ部5a、5bの配管経路に配された流路切換手段13a、13b、13c、13dの開閉操作で空気流路を変更し、ポンプ部5a、5bを単独駆動、並列接続駆動、直列接続駆動に変えて、本体1の酸素富化空気吐出手段7から吐出される酸素富化空気の流量、濃度を変えるしくみについて説明を行う。   First, the air flow path is changed by opening and closing the flow path switching means 13a, 13b, 13c, and 13d arranged in the piping path of the pump sections 5a and 5b, and the pump sections 5a and 5b are independently driven, connected in parallel, and connected in series. A mechanism for changing the flow rate and concentration of oxygen-enriched air discharged from the oxygen-enriched air discharge means 7 of the main body 1 instead of driving will be described.

最初に、図2を用いて、ポンプ部5aの単独駆動で酸素富化空気を得る場合について述べる。   First, the case where oxygen-enriched air is obtained by single drive of the pump unit 5a will be described with reference to FIG.

図2に示すように、流路切換手段13a、13b、13dを制御して、流路G、I、Nを閉じることによって、酸素富化膜ユニット2で得られた酸素富化空気は、流路F⇒流路E⇒吸引口A20a⇒ポンプ部5a⇒排気口B20b⇒流路H⇒流路J⇒流路P⇒流路O⇒吐出口6へと送出される。従ってこの場合は、ポンプ部5bへの酸素富化空気の流れはなく、ポンプ部5aのみの特性で、酸素富化膜ユニット2から酸素富化空気を吸引することになる。   As shown in FIG. 2, by controlling the channel switching means 13a, 13b, 13d and closing the channels G, I, N, the oxygen-enriched air obtained in the oxygen-enriched membrane unit 2 flows. Channel F⇒Flow path E⇒Suction port A20a⇒Pump unit 5a⇒Exhaust port B20b⇒Flow path H⇒Flow path J⇒Flow path P⇒Flow path O⇒Discharge port 6 Therefore, in this case, there is no flow of oxygen-enriched air to the pump unit 5b, and oxygen-enriched air is sucked from the oxygen-enriched membrane unit 2 with the characteristics of only the pump unit 5a.

次にポンプ部5a、5bを並列接続駆動する場合について、図3を用いて説明する。   Next, the case where the pump units 5a and 5b are driven in parallel will be described with reference to FIG.

図3に示すように、流路切換手段13b、13cを制御して、流路I、Lを閉じることによって、酸素富化膜ユニット2で収集された酸素富化空気は、流路F⇒流路E⇒吸引口A20a⇒ポンプ部5a⇒排気口B20b⇒流路H⇒流路J⇒流路P⇒流路O⇒吐出口6、という経路と並列に、流路F⇒流路G⇒流路M⇒流路K⇒吸引口C20c⇒ポンプ部5b⇒排気口D20d⇒流路N⇒流路O⇒吐出口6という経路を有することになる、すなわち、酸素富化膜ユニット2からの酸素富化空気は流路切換手段13aで二つに分かれ、ポンプ部5a、5bをそれぞれ通過して、流路切換手段13dで再度合流し、吐出口6へ吐出されることになる。   As shown in FIG. 3, by controlling the flow path switching means 13b, 13c and closing the flow paths I, L, the oxygen-enriched air collected by the oxygen-enriched membrane unit 2 flows into the flow path F⇒flow In parallel with the path E⇒suction port A20a⇒pump unit 5a⇒exhaust port B20b⇒channel H⇒channel J⇒channel P⇒channel O⇒discharge port 6, channel F⇒channel G⇒flow Path M⇒Flow path K⇒Suction port C20c⇒Pump unit 5b⇒Exhaust port D20d⇒Flow path N⇒Flow path O⇒Discharge port 6 In other words, oxygen enrichment from the oxygen-enriched membrane unit 2 The converted air is divided into two by the flow path switching means 13a, passes through the pump parts 5a and 5b, rejoins at the flow path switching means 13d, and is discharged to the discharge port 6.

次に、図2に示すような単独接続、図3に示すような並列接続に変えた時の、酸素富化空気の流量、濃度が具体的にどのように変化するかを図4を用いて説明を行う。   Next, FIG. 4 shows how the flow rate and concentration of oxygen-enriched air change when the single connection as shown in FIG. 2 and the parallel connection as shown in FIG. 3 are changed. Give an explanation.

図4の上図に示すように、酸素富化膜ユニット2が個別に有する酸素富化膜の流量特性(以下、「膜の流量特性」という)と、ポンプ部5a、5bの有するポンプ特性がグラフ上でクロスするポイントでつりあい、ポンプ部5a、5bは駆動をする。図2に示したポンプ部5aの単独駆動の場合は(イ)−(ロ)を結ぶ線がポンプ特性であり、(イ)は一般的に排気速度と言われ、ポンプ部5aの吸引口A20aを大気開放した場合の、排気口B20bの流量を測定したものである。また(ロ)は一般的に到達真空圧と言われ、ポンプ部5aの吸引口A20aを完全密閉した場合の、吸引口A20aの最大真空圧を測定したものである。単独駆動のポンプ特性(イ)−(ロ)と、膜の流量特性がクロスするポイント(ハ)で駆動するため、この時の流量はグラフの縦軸目盛りから読み取れるように、約3L/min得ることができる。   As shown in the upper diagram of FIG. 4, the flow characteristics of the oxygen-enriched film that the oxygen-enriched film unit 2 has individually (hereinafter referred to as “flow characteristics of the film”) and the pump characteristics of the pump units 5 a and 5 b are as follows. The pump units 5a and 5b are driven at the crossing points on the graph. In the case of the single drive of the pump unit 5a shown in FIG. 2, the line connecting (A)-(B) is the pump characteristic, and (A) is generally referred to as the exhaust speed, and the suction port A20a of the pump unit 5a. The flow rate of the exhaust port B20b when the air is released to the atmosphere is measured. Further, (b) is generally referred to as ultimate vacuum pressure, and is a measurement of the maximum vacuum pressure of the suction port A20a when the suction port A20a of the pump unit 5a is completely sealed. Since the pump is driven at a point (c) where the single-drive pump characteristics (b)-(b) and the flow rate characteristic of the membrane cross, the flow rate at this time can be about 3 L / min so that it can be read from the vertical scale of the graph. be able to.

濃度については、図2の下図に示す酸素富化膜の濃度特性(以下、「膜の濃度特性」という)から読み取れ、上述のクロスポイント(ハ)の真空圧で駆動するため、(ニ)のポイントが単独駆動の場合の酸素濃度となり、グラフの縦軸目盛りから読み取れるように、約30%の酸素濃度を得ることができるものである。   The concentration can be read from the concentration characteristic of the oxygen-enriched film shown in the lower diagram of FIG. 2 (hereinafter referred to as “film concentration characteristic”), and is driven by the above-described cross-point (c) vacuum pressure. The point is the oxygen concentration in the case of single drive, and an oxygen concentration of about 30% can be obtained as can be read from the vertical scale of the graph.

次に、図3で示した並列接続駆動の場合のポンプ特性は、(ホ)と(ロ)を結んだ線で示される。これは空気を並列に分岐して二つのポンプ部5a、5bそれぞれで吸引するため、到達真空圧(ロ)は変化せずに、排気速度(イ)が(ホ)に増加する。ポンプ部5a、5bを並列接続することにより、ポンプ特性が(イ)−(ロ)から(ホ)−(ロ)に変化したことで、膜の流量特性とのクロスポイントは(ハ)から(ヘ)へ移動する。従って、流量は約3L/minから約3.3L/minへ増加する。また酸素濃度についても、膜の濃度特性とのクロスポイントが、(ニ)から(ト)へ移動するため、酸素濃度も約30%から約31%に増加させることができる。   Next, the pump characteristic in the case of the parallel connection driving shown in FIG. 3 is indicated by a line connecting (e) and (b). Since air is branched in parallel and sucked by the two pump parts 5a and 5b, the ultimate vacuum pressure (B) does not change and the exhaust speed (I) increases to (E). By connecting the pump parts 5a and 5b in parallel, the pump characteristic has changed from (A)-(B) to (E)-(B). Move to f). Accordingly, the flow rate increases from about 3 L / min to about 3.3 L / min. Also, the oxygen concentration can be increased from about 30% to about 31% because the cross point with the concentration characteristics of the film moves from (d) to (g).

次にポンプ部5a、5bを直列接続して駆動した場合について、図5を用いて説明する。図5に示すように、流路切換手段13a〜13dを制御して、流路G、J、M、Pのそれぞれを閉じることによって、酸素富化膜ユニット2で得られた酸素富化空気は、流路F⇒流路E⇒吸引口A20a⇒ポンプ部5a⇒排気口B20b⇒流路H⇒流路I⇒流路L⇒流路K⇒吸引口C20c⇒ポンプ部5b⇒排気口D20d⇒流路N⇒流路O⇒吐出口6の経路が構成される。すなわち、酸素富化膜ユニット2からの酸素富化空気は、はじめにポンプ部5aを通過した後、次にポンプ部5bを通過して、吐出口6へ吐出されることになる。   Next, the case where the pump parts 5a and 5b are connected in series and driven will be described with reference to FIG. As shown in FIG. 5, the oxygen-enriched air obtained in the oxygen-enriched membrane unit 2 is controlled by controlling the channel switching means 13a to 13d and closing each of the channels G, J, M, and P. , Channel F⇒channel E⇒suction port A20a⇒pump unit 5a⇒exhaust port B20b⇒channel H⇒channel I⇒channel L⇒channel K⇒ suction port C20c⇒pump unit 5b⇒exhaust port D20d⇒flow The path N → channel O → discharge port 6 is configured. That is, the oxygen-enriched air from the oxygen-enriched membrane unit 2 first passes through the pump unit 5a, then passes through the pump unit 5b, and is discharged to the discharge port 6.

次に図2に示すような単独接続を、図5に示すような直列接続に変えた場合、酸素富化空気の流量、濃度が具体的にどのように変化するかを図6を用いて説明を行う。   Next, when the single connection as shown in FIG. 2 is changed to the serial connection as shown in FIG. 5, how the flow rate and concentration of oxygen-enriched air will change will be described with reference to FIG. I do.

前述の並列接続駆動の特性説明で説明したように、図2に示したポンプ部5aの単独駆動の場合は、(イ)−(ロ)を結ぶ線がポンプ特性であり、膜の流量特性がクロスするポイント(ハ)で駆動するため、グラフの縦軸目盛りから読み取れるように、約1.5L/minの流量を得ることができる。また、酸素濃度については、下図に示す膜の濃度特性から読み取れ、上述のクロスポイント(ハ)の真空圧で駆動するため、(ニ)のポイントが単独駆動の場合の濃度となり、グラフの縦軸目盛りから読み取れるように、約30%の濃度を得ることができるものである。   As explained in the above description of the characteristics of the parallel connection drive, in the case of the single drive of the pump unit 5a shown in FIG. 2, the line connecting (A)-(B) is the pump characteristic, and the flow rate characteristic of the membrane is Since driving is performed at the crossing point (c), a flow rate of about 1.5 L / min can be obtained so as to be read from the vertical scale of the graph. Also, the oxygen concentration can be read from the concentration characteristics of the film shown in the figure below, and is driven by the above-mentioned cross point (c) vacuum pressure. Therefore, the point (d) is the concentration in the case of single driving, and the vertical axis of the graph As can be read from the scale, a concentration of about 30% can be obtained.

また、図5で示した直列接続駆動の場合のポンプ特性は(イ)−(ホ)を結び線で示される。これは空気をポンプ部5aと5bとで二回吸引するため、排気速度(イ)は変化せずに、到達真空圧(ロ)が(ホ)に増加する。直列接続でポンプ特性が(イ)−(ロ)から(イ)−(ホ)に変化したことで、膜の流量特性とのクロスポイントは(ハ)から(ヘ)へ移動する。従って、流量は約1.5L/minから約2.1L/minに増加する。また酸素濃度についても、膜の濃度特性とのクロスポイントが、(ニ)から(ト)へ移動するため、濃度も約30%から約31.5%に増加することが可能となる。   Further, the pump characteristics in the case of series connection driving shown in FIG. 5 are indicated by connecting lines (A) to (E). This is because air is sucked twice by the pump parts 5a and 5b, so that the ultimate vacuum pressure (B) increases to (E) without changing the exhaust speed (A). When the pump characteristics are changed from (b)-(b) to (b)-(e) in series connection, the cross point with the flow rate characteristic of the membrane moves from (c) to (f). Accordingly, the flow rate increases from about 1.5 L / min to about 2.1 L / min. As for the oxygen concentration, the cross point with the concentration characteristic of the film moves from (d) to (g), so that the concentration can be increased from about 30% to about 31.5%.

図6の、上図からも分かるように、直列接続の場合は、高真空圧側にクロスポイントが移動できるため、膜の流量特性が比較的高真空度側で得られ、大きい効果を得ることができる。逆に並列接続の場合は、低真空圧側でのクロスポイントが移動できるため、膜の流量特性が比較的低真空度側で得られるものに対して、大きい効果を得ることができる。   As can be seen from the upper diagram of FIG. 6, in the case of series connection, since the cross point can be moved to the high vacuum pressure side, the flow rate characteristic of the film can be obtained on the relatively high vacuum side, and a great effect can be obtained. it can. Conversely, in the case of parallel connection, since the cross point on the low vacuum pressure side can be moved, a great effect can be obtained with respect to the film whose flow characteristics are obtained on the relatively low vacuum side.

上記実施の形態では、図2、3、5共、複数のポンプ部5a、5bと一つのモータ部12を接続したもので説明を行ってきたが、これは、図7に示すように、1つのモータ部12の軸15を両軸にし、その両軸にポンプ部5a、5bのそれぞれに内蔵されたロッド16を接続したもので、1つのモータ部12で2つ又はそれ以上の複数のポンプ部を駆動することができるものであり、低コスト化、及び小型化を図ることができるものである。   In the above-described embodiment, the description has been made by connecting a plurality of pump parts 5a and 5b and one motor part 12 in both FIGS. 2, 3, and 5. However, as shown in FIG. A shaft 15 of one motor unit 12 is used as both shafts, and rods 16 built in each of the pump units 5a and 5b are connected to both shafts, and two or more pumps are provided by one motor unit 12. The portion can be driven, and the cost and size can be reduced.

しかしながら、例えば、ポンプ部5aのみで酸素富化空気を吸引する場合(単独駆動の場合)、1つのモータ部12でポンプ部5a、5bの両方を駆動しているため、ポンプ部5bを停止することはできず、モータ部12としては、基本的にポンプ部5a、5bの双方を駆動できる能力を必要とするものであり、片方の駆動のみでよい場合でも、ポンプ部5a、5bの2つ分の電力を常に消費してしまう。これを改善するために、複数のポンプ部5a、5bのそれぞれに1つのモータ部12を設けるようにすれば、大型化、コストUPはするものの、一方のポンプ部のみの駆動の場合、他方のポンプ部を停止することができ、その分消費電力が削減できるため、消エネ効果を得ることができる。   However, for example, when oxygen-enriched air is sucked only by the pump unit 5a (in the case of single drive), since both the pump units 5a and 5b are driven by one motor unit 12, the pump unit 5b is stopped. The motor unit 12 basically requires the ability to drive both the pump units 5a and 5b. Even when only one of the pump units 5a and 5b is required, the two pump units 5a and 5b are required. Always consumes a minute's power. In order to improve this, if one motor unit 12 is provided in each of the plurality of pump units 5a and 5b, the size and cost will be increased, but in the case of driving only one pump unit, the other Since the pump unit can be stopped and the power consumption can be reduced accordingly, an energy saving effect can be obtained.

以上のように本実施の形態によれば、酸素富化空気の流量、酸素濃度を自由に変化させることができるが、使用者にとっては、吸引している酸素富化空気の流量や濃度がどのような状態にあるかを認識しにくいため、図1に示す様に本体1の外郭に、LEDや液晶パネルなどからなる表示ユニット11を設け、本体1から吐出されている酸素富化空気の流量、酸素濃度の変化などの状況を表示ユニット11に表示すればより親切である。   As described above, according to the present embodiment, it is possible to freely change the flow rate and oxygen concentration of oxygen-enriched air, but for the user, what is the flow rate and concentration of oxygen-enriched air being sucked? Since it is difficult to recognize whether it is in such a state, as shown in FIG. 1, a display unit 11 made of an LED, a liquid crystal panel, or the like is provided outside the main body 1, and the flow rate of oxygen-enriched air discharged from the main body 1 If the display unit 11 displays a situation such as a change in oxygen concentration, it is more kind.

また、酸素富化空気を吸引している使用者は、リラックスし、場合によっては目を閉じて酸素富化機を使用することもあるので、目を閉じた状態でも酸素富化空気の状況が認識できるように、表示ユニット11に、酸素富化空気の状況の変化によって変わる音を発生させる手段を設けるようにしても良い。   Also, users who are sucking in oxygen-enriched air are relaxed and in some cases they close their eyes and use the oxygen-enriching machine, so the situation of oxygen-enriched air can be maintained even with their eyes closed. As can be recognized, the display unit 11 may be provided with means for generating a sound that changes depending on changes in the state of oxygen-enriched air.

また、上記実施の形態では、酸素富化空気の流量、酸素濃度を変えるのに、使用者がスイッチ操作基板14から任意に選択又は操作することを前提に説明を行ってきたが、制御基板10にマイコンを搭載し、前記マイコンにより流路切換手段13a〜13dを自動的に切り換え、ある一定のサイクルで変化させるようにすることで、人が酸素富化空気を吸引する際に、最も効果的な流量、濃度になるように自動的に変えることもできる。   In the above embodiment, the description has been made on the assumption that the user arbitrarily selects or operates from the switch operation board 14 to change the flow rate and oxygen concentration of the oxygen-enriched air. It is most effective when a person sucks in oxygen-enriched air by automatically switching the flow path switching means 13a to 13d by the microcomputer and changing them in a certain cycle. It can be automatically changed to achieve a proper flow rate and concentration.

また、酸素富化膜ユニット2自体が有する特性として、周囲温度の変化で、膜の流量特性、濃度特性が変化する。これは酸素富化膜ユニット2の基本部材である酸素富化膜自体が有する温度特性によるものであり、周囲の温度が上昇すれば、通過する空気の流量は増加し、一方酸素濃度は低下するという特性を持っている。   Further, as the characteristics possessed by the oxygen-enriched membrane unit 2 itself, the flow rate characteristics and concentration characteristics of the membrane change with changes in ambient temperature. This is due to the temperature characteristics of the oxygen-enriched membrane itself, which is a basic member of the oxygen-enriched membrane unit 2. As the ambient temperature rises, the flow rate of air passing therethrough increases while the oxygen concentration decreases. It has the characteristics of

逆に、周囲の温度が低下すれば、通過する空気の流量は低下し、逆に酸素濃度は増加する。そこで、本体1を運転している際の周囲温度によって、吐出される酸素富化空気の流量、酸素濃度が変動するのを防止するために、制御基板10内に、周囲温度を検知するサーミスタなどの温度検知素子(図示せず)を設け、周囲の温度が上昇したときに、流路切換手段13a〜13dを制御して、酸素富化空気の流量を低減させ、酸素濃度を増加させ、逆に周囲の温度が低下したときに、同様に流路切換手段13a〜13dを制御して、酸素富化空気の流量を増加させ、酸素濃度を低減させるようにすれば、本体1から吐出する酸素富化空気の流量、濃度を常に安定化させることができる。   Conversely, if the ambient temperature decreases, the flow rate of the passing air decreases, and conversely, the oxygen concentration increases. Therefore, a thermistor for detecting the ambient temperature in the control board 10 in order to prevent the flow rate and oxygen concentration of the oxygen-enriched air that is discharged from fluctuating depending on the ambient temperature when the main body 1 is operating. Temperature sensing element (not shown) is provided, and when the ambient temperature rises, the flow path switching means 13a-13d are controlled to reduce the flow rate of oxygen-enriched air, increase the oxygen concentration, and When the ambient temperature drops, the flow rate switching means 13a to 13d are controlled in the same manner to increase the flow rate of oxygen-enriched air and reduce the oxygen concentration. The flow rate and concentration of enriched air can always be stabilized.

ポンプ部5a、5bの基本構成には数種類のタイプが存在し、主にダイヤフラムタイプとロッキングピストンタイプがある。ダイヤフラムタイプのポンプは揺動幅は少ないために、空気の脈動が小さく、ポンプ特性が安定しており、結果、本体1より吐出される酸素富化空気の流量、濃度が安定的に供給できる。逆にロッキングピストンタイプのポンプは揺動幅が大きいために、空気の脈動は大きいが、一回あたりの吸気−排気の量が多く、ポンプ特性としては到達真空圧を比較的高くできる。到達真空圧を高くできるということは、酸素富化膜の流量特性、濃度特性とのクロスポイントを絶対真空側へシフトできるため、高めの流量、濃度を得る事が可能となる。   There are several types of basic configurations of the pump parts 5a and 5b, and there are mainly a diaphragm type and a locking piston type. Since the diaphragm type pump has a small oscillation width, the air pulsation is small and the pump characteristics are stable. As a result, the flow rate and concentration of oxygen-enriched air discharged from the main body 1 can be stably supplied. On the contrary, since the rocking piston type pump has a large swinging width, the air pulsation is large, but the intake / exhaust amount per one time is large, and the ultimate vacuum pressure can be made relatively high as a pump characteristic. The fact that the ultimate vacuum pressure can be increased means that the cross point between the flow rate characteristic and the concentration characteristic of the oxygen-enriched film can be shifted to the absolute vacuum side, so that a higher flow rate and concentration can be obtained.

(実施の形態2)
図8は、本発明の第2の実施の形態における酸素富化機の酸素富化膜ユニットの斜視図、図9は同酸素富化膜ユニットの流量、酸素濃度特性を示す図である。なお、上記第1の実施の形態と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 2)
FIG. 8 is a perspective view of an oxygen-enriched membrane unit of an oxygen enricher according to the second embodiment of the present invention, and FIG. 9 is a diagram showing the flow rate and oxygen concentration characteristics of the oxygen-enriched membrane unit. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施の形態は、複数の酸素富化膜ユニット2を用いて、酸素富化空気の流量、酸素濃度を変えるようにするものである。   In the present embodiment, a plurality of oxygen-enriched membrane units 2 are used to change the flow rate and oxygen concentration of oxygen-enriched air.

図8に示すように、複数の酸素富化膜ユニット2a、2bを直列に接続し、その接続経路に、接続切換手段13eを設置する。この場合、図9に示すように、酸素富化膜ユニット2a、2bの2つのユニットを使用した場合の膜の流量特性は、1ユニットの場合の約2倍の特性となる。従って、ポンプ特性とのクロスポイントは、1ユニットの場合の(ロ)から(ニ)に移動する。その結果、流量は縦軸目盛りから読み取れるように、約3L/minから約5.3L/minに増加する。また、酸素濃度については、(ハ)から(ホ)に移動するため、約30%から約27%に減少・変化する。   As shown in FIG. 8, a plurality of oxygen-enriched membrane units 2a and 2b are connected in series, and connection switching means 13e is installed in the connection path. In this case, as shown in FIG. 9, the flow rate characteristic of the membrane when using two units of the oxygen-enriched membrane units 2a and 2b is about twice that of the case of one unit. Therefore, the cross point with the pump characteristic moves from (b) to (d) in the case of one unit. As a result, the flow rate increases from about 3 L / min to about 5.3 L / min so that it can be read from the vertical scale. Further, the oxygen concentration moves from (c) to (e), and therefore decreases and changes from about 30% to about 27%.

以上のように、上記実施の形態によれば、一つの吸引手段(ポンプ部5a又はポンプ部5bのいずれか一つ)を用いて、酸素富化膜ユニット2a、2bの使用個数を変えるだけで、酸素富化空気の流量、濃度を変える事ができる。また上記第1の実施の形態に述べたような複数のポンプ部5a、ポンプ部5bの接続の切換と組み合わせれば、より幅広い領域で酸素富化空気の流量、濃度を変えることができるようになる。   As described above, according to the above-described embodiment, it is only necessary to change the number of oxygen-enriched membrane units 2a and 2b using one suction means (either one of the pump unit 5a or the pump unit 5b). The flow rate and concentration of oxygen-enriched air can be changed. Further, when combined with the switching of the connection of the plurality of pump units 5a and 5b as described in the first embodiment, the flow rate and concentration of oxygen-enriched air can be changed in a wider area. Become.

以上のように、本発明にかかる酸素富化機は、酸素富化空気の流量、濃度を自由に変えられるもので、酸素富化機に限らず、ポンプやファンなどからなる吸引手段を有する各種機器、装置に適用できるものである。   As described above, the oxygen enricher according to the present invention can freely change the flow rate and concentration of oxygen-enriched air, and is not limited to the oxygen enricher, but includes various suction devices including pumps and fans. It can be applied to equipment and devices.

(a)本発明の実施の形態1における酸素富化機の正面図(b)同酸素富化機の側面図(c)同酸素富化機の背面図(d)同酸素富化機の断面図(A) Front view of the oxygen enricher in Embodiment 1 of the present invention (b) Side view of the oxygen enricher (c) Rear view of the oxygen enricher (d) Cross section of the oxygen enricher Figure 同酸素富化機において1台のポンプ部を使用する際の接続図Connection diagram when using one pump unit in the oxygen enricher 同酸素富化機において2台のポンプ部を並列接続して使用する際の接続図Connection diagram when using two pump units connected in parallel in the oxygen enricher (a)同酸素富化機の流量−真空圧特性を示す図(b)同酸素富化機の酸素濃度−真空圧特性を示す図(A) The figure which shows the flow volume-vacuum pressure characteristic of the oxygen enricher (b) The oxygen concentration-vacuum pressure characteristic of the oxygen enricher 同酸素富化機において2台のポンプ部を直列接続して使用する際の接続図Connection diagram when using two pump units connected in series in the oxygen enricher (a)同酸素富化機の流量−真空圧特性を示す図(b)同酸素富化機の酸素濃度−真空圧特性を示す図(A) The figure which shows the flow volume-vacuum pressure characteristic of the oxygen enricher (b) The oxygen concentration-vacuum pressure characteristic of the oxygen enricher 同ポンプ部の分解斜視図The exploded perspective view of the pump part 本発明の実施の形態2における酸素富化機の酸素富化膜ユニットの斜視図The perspective view of the oxygen enrichment film | membrane unit of the oxygen enricher in Embodiment 2 of this invention (a)同酸素富化膜ユニットの流量−真空圧特性を示す図(b)同酸素富化膜ユニットの酸素濃度−真空圧特性を示す図(A) Diagram showing flow rate-vacuum pressure characteristics of the oxygen-enriched membrane unit (b) Diagram showing oxygen concentration-vacuum pressure characteristics of the oxygen-enriched membrane unit

符号の説明Explanation of symbols

1 酸素富化機本体(本体)
2 酸素富化膜ユニット(酸素富化手段)
5a、5b ポンプ部(吸引手段)
6 吐出口
7 酸素富化空気吐出手段
10 制御基板
11 表示ユニット(表示手段)
12 モータ部
13a〜13d 流路切換手段
13e 接続切換手段
14 スイッチ操作基板(スイッチ手段)
1 Oxygen enrichment machine (main unit)
2 Oxygen-enriched membrane unit (oxygen-enriching means)
5a, 5b Pump part (suction means)
6 Discharge port 7 Oxygen-enriched air discharge means 10 Control board 11 Display unit (display means)
12 Motor part 13a-13d Flow path switching means 13e Connection switching means 14 Switch operation board (switch means)

Claims (6)

酸素富化空気を生成する酸素富化手段を内蔵した本体と、前記酸素富化手段を通して空気を吸引する複数の吸引手段と、前記複数の吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記酸素富化手段と前記吸引手段と前記吐出口を連通する流路を切り換える流路切換手段とを備え、前記流路切換手段により、使用する前記吸引手段の台数を切り換え可能に構成した酸素富化機。 A main body incorporating oxygen enriching means for generating oxygen enriched air; a plurality of suction means for sucking air through the oxygen enriched means; and the oxygen enriching means arranged downstream of the plurality of suction means. A discharge port that discharges the generated oxygen-enriched air; and a flow path switching unit that switches the flow path that connects the oxygen enrichment unit, the suction unit, and the discharge port, and is used by the flow path switching unit. An oxygen enricher configured to switch the number of suction means. 酸素富化空気を生成する酸素富化手段を内蔵した本体と、前記酸素富化手段を通して空気を吸引する複数の吸引手段と、前記複数の吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記酸素富化手段と前記吸引手段と前記吐出口を連通する流路を切り換える流路切換手段とを備え、前記流路切換手段により、吸引手段を、直列接続、並列接続自在にその構成を切り換え可能にした酸素富化機。 A main body incorporating oxygen enriching means for generating oxygen enriched air; a plurality of suction means for sucking air through the oxygen enriched means; and the oxygen enriching means arranged downstream of the plurality of suction means. A discharge port that discharges the generated oxygen-enriched air; and a flow path switching unit that switches a flow path that communicates the oxygen enrichment unit, the suction unit, and the discharge port. An oxygen-enriching machine that can switch the configuration of the means so that it can be connected in series or parallel. 酸素富化空気を生成する酸素富化手段を複数内蔵した本体と、前記酸素富化手段を通して空気を吸引する吸引手段と、前記吸引手段の下流側に配され前記酸素富化手段で生成された酸素富化空気を吐出する吐出口と、前記複数の酸素富化手段を接続すると共に酸素富化空気を通す経路とを備え、前記経路に、使用する前記酸素富化手段の台数を切り換え可能な接続切換手段を設けた酸素富化機。 A main body having a plurality of oxygen enriching means for generating oxygen-enriched air, a suction means for sucking air through the oxygen enriching means, and a downstream side of the suction means and generated by the oxygen enriching means A discharge port for discharging oxygen-enriched air and a path through which the plurality of oxygen-enriching means are connected and oxygen-enriched air is passed, and the number of the oxygen-enriching means to be used can be switched to the path. An oxygen enricher provided with connection switching means. 周囲温度を検知する温度検知手段を設け、前記温度検知手段で検知された温度に応じて、吐出口から吐出される酸素富化空気の流量又は濃度を変えるように構成した請求項1〜3のいずれか1項に記載の酸素富化機。 The temperature detection means for detecting the ambient temperature is provided, and the flow rate or concentration of the oxygen-enriched air discharged from the discharge port is changed according to the temperature detected by the temperature detection means. The oxygen enricher according to any one of claims. 吸引手段を、ダイヤフラム式の真空ポンプで形成した請求項1〜4のいずれか1項に記載の酸素富化機。 The oxygen enricher according to any one of claims 1 to 4, wherein the suction means is formed by a diaphragm type vacuum pump. 吸引手段を、ロッキングピストン式の真空ポンプで形成した請求項項1〜4のいずれか1項に記載の酸素富化機。 The oxygen enricher according to any one of claims 1 to 4, wherein the suction means is formed by a rocking piston type vacuum pump.
JP2005028749A 2005-02-04 2005-02-04 Oxygen enrichment apparatus Pending JP2006212245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028749A JP2006212245A (en) 2005-02-04 2005-02-04 Oxygen enrichment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028749A JP2006212245A (en) 2005-02-04 2005-02-04 Oxygen enrichment apparatus

Publications (1)

Publication Number Publication Date
JP2006212245A true JP2006212245A (en) 2006-08-17

Family

ID=36975932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028749A Pending JP2006212245A (en) 2005-02-04 2005-02-04 Oxygen enrichment apparatus

Country Status (1)

Country Link
JP (1) JP2006212245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051841A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Oxygen enrichment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051841A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Oxygen enrichment device

Similar Documents

Publication Publication Date Title
US8875707B2 (en) Trans-fill method and system
US9408991B2 (en) Pump unit and breathing assistance device
JP2005237538A (en) Fitness device
JP2006212245A (en) Oxygen enrichment apparatus
JP2005007035A (en) Food processing machine
JP2004358034A (en) Oxygen enrichment machine
KR20030067015A (en) A filtered water supply with apparatus generating oxygen-mixer
JP2005245495A (en) Health apparatus
JP2013059383A (en) Gas-supplying unit and gas-mixing device
JP2006020690A (en) Oxygen enricher
JP2003236353A (en) Apparatus for producing ozonized water
JP2009039201A (en) Oxygen enricher
JP2009039202A (en) Oxygen enricher
JP2005111040A (en) Health improving device
KR200337085Y1 (en) Air cleaner having anion generation module and oxygen generation module
JP2007037613A (en) Oxygen enricher
JP2003236354A (en) Apparatus for producing ozonized water
JP4944074B2 (en) Oxygen enrichment equipment
JP2006212183A (en) Oxygen enrichment machine
JP5266015B2 (en) Oxygen-enriched air introduction device
JP3772866B2 (en) Oxygen enricher
JP2006174898A (en) Oxygen enricher
KR20200144343A (en) Oxygen generator
JP2006122077A (en) Oxygen enrichment machine
JP2006130200A (en) Oxygen enrichment machine