JP2006212033A - Differentiation-suppressive polypeptide - Google Patents

Differentiation-suppressive polypeptide Download PDF

Info

Publication number
JP2006212033A
JP2006212033A JP2006059729A JP2006059729A JP2006212033A JP 2006212033 A JP2006212033 A JP 2006212033A JP 2006059729 A JP2006059729 A JP 2006059729A JP 2006059729 A JP2006059729 A JP 2006059729A JP 2006212033 A JP2006212033 A JP 2006212033A
Authority
JP
Japan
Prior art keywords
cys
gly
ser
asn
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006059729A
Other languages
Japanese (ja)
Inventor
Seiji Sakano
誠治 坂野
Akira Ito
章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2006059729A priority Critical patent/JP2006212033A/en
Publication of JP2006212033A publication Critical patent/JP2006212033A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel factor which is important for regeneration therapy and has a differentiation-suppressive activity to undifferentiated cells, and an effective medicine useful for tissue regeneration and proliferation maintenance of undifferentiated cells using the same. <P>SOLUTION: Human Delta-1 and Serrate-1 peptides which are ligands of a Notch protein controlling the proliferation of cerebral nerve, muscle and blood cell systems to human homologue and have a specific amino acid sequence are produced by genetic recombination of animal cells, and differentiation-suppressive agents for undifferentiated cells and media for cell culture are obtained thereby. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、未分化細胞の分化を抑制するための新規生理活性物質に関するものである。   The present invention relates to a novel physiologically active substance for suppressing differentiation of undifferentiated cells.

ヒトの血液、リンパ液中には多種類の細胞があり、それぞれが重要な役割を担っている。例えば、赤血球は体内での酸素運搬を、血小板は止血作用を、白血球やリンパ球は感染を防御している。これらの多様な細胞は骨髄中の造血幹細胞に由来する。造血幹細胞は体内の種々のサイトカインや環境要因によって刺激されて、各種血液細胞、破骨細胞、肥満細胞などに分化することが近年明らかにされてきた。このサイトカインとして、赤血球への分化についてはエリスロポエチン(EPO)が、白血球への分化については顆粒球コロニー刺激因子(G−CSF)が、血小板産生細胞である巨核球への分化については血小板増殖因子(mplリガンド)が発見されて、前者2つは現在すでに臨床応用がなされている。   There are many types of cells in human blood and lymph, and each plays an important role. For example, red blood cells protect the body from oxygen transport, platelets protect against hemostasis, and white blood cells and lymphocytes protect against infection. These diverse cells are derived from hematopoietic stem cells in the bone marrow. It has recently been revealed that hematopoietic stem cells are stimulated by various cytokines and environmental factors in the body and differentiate into various blood cells, osteoclasts, mast cells and the like. As this cytokine, erythropoietin (EPO) is used for differentiation into red blood cells, granulocyte colony-stimulating factor (G-CSF) is used for differentiation into white blood cells, and platelet growth factor (G-CSF) is used for differentiation into megakaryocytes, which are platelet-producing cells. mpl ligand) was discovered, and the former two are already in clinical application.

血液未分化細胞に関して、特定の血液系列に分化することが運命づけられた血液前駆細胞とすべての系列への分化能と自己複製能を有する造血幹細胞に概念的に分類されている。血液前駆細胞に関してコロニーアッセイによって同定が可能であるが、造血幹細胞の同定方法は確立されていない。これらの細胞に関して、ステムセルファクター(SCF)やインターロイキン3(IL−3)、顆粒球単球コロニー刺激因子(GM−CSF)、インターロイキン6(IL−6)、インターロイキン1(IL−1)、顆粒球コロニー刺激因子(G−CSF)、オンコスタチンMなどが細胞の分化増殖を促すことが報告されている。骨髄移植療法に代替される造血幹細胞移植療法や遺伝子治療への応用のため、造血幹細胞を体外で増幅することが検討されている。しかし、この細胞を上記のようなサイトカインを用いて体外で増殖培養させると、造血幹細胞が本来有している多分化能および自己複製能が徐々に失われ、5週間培養後には特定の系列にのみ分化する血液前駆細胞へと変化し、造血幹細胞の特徴の一つである多分化能が失われることが報告されている(Rice et al.,Blood 86,512−523,1995)。   Blood undifferentiated cells are conceptually classified into blood progenitor cells destined to differentiate into a specific blood lineage and hematopoietic stem cells having the ability to differentiate into all lineages and self-replicating ability. Although it is possible to identify blood progenitor cells by colony assay, a method for identifying hematopoietic stem cells has not been established. Regarding these cells, stem cell factor (SCF), interleukin 3 (IL-3), granulocyte monocyte colony stimulating factor (GM-CSF), interleukin 6 (IL-6), interleukin 1 (IL-1) It has been reported that granulocyte colony-stimulating factor (G-CSF), oncostatin M and the like promote cell differentiation and proliferation. In order to apply hematopoietic stem cell transplantation therapy and gene therapy as an alternative to bone marrow transplantation therapy, it has been studied to amplify hematopoietic stem cells in vitro. However, when these cells are grown and cultured in vitro using cytokines as described above, the pluripotency and self-replicating ability inherent in hematopoietic stem cells are gradually lost, and after 5 weeks of culture, the cells become a specific lineage. It has been reported that pluripotency, which is one of the characteristics of hematopoietic stem cells, is lost (Rice et al., Blood 86, 512-523, 1995).

血液前駆細胞の増殖には単独のサイトカインのみでは効果が十分でなく、複数のサイトカインの共同作用(シナジー)が重要であることが明らかになっている。このことから造血幹細胞の特徴を維持したまま増殖させるためには、血液未分化細胞を増殖、分化させるサイトカインと共に分化を抑制するサイトカインが必要であると考えられている。しかし、一般に細胞の増殖や分化を促進するサイトカインが多数見いだされているのに対して、細胞の分化を抑制するサイトカインは少数しか見いだされていない。例えば、白血病細胞阻害因子(LIF)はマウス胚幹細胞を分化させずに増殖させる作用が報告されているが、造血幹細胞や血液前駆細胞に対し、そのような作用は有していない。また、腫瘍細胞増殖因子(TGF−β)は多様な細胞に対して増殖抑制の作用をするが、造血幹細胞や血液前駆細胞に対する作用は一定の見解が得られていない。   It has been clarified that a single cytokine alone is not sufficient for the proliferation of blood progenitor cells, and the joint action (synergy) of multiple cytokines is important. Therefore, in order to proliferate while maintaining the characteristics of hematopoietic stem cells, it is considered that a cytokine that suppresses differentiation is required together with a cytokine that proliferates and differentiates blood undifferentiated cells. However, in general, many cytokines that promote cell proliferation and differentiation are found, whereas only a few cytokines suppress cell differentiation. For example, leukemia cell inhibitory factor (LIF) has been reported to proliferate mouse embryonic stem cells without differentiation, but has no such effect on hematopoietic stem cells and blood progenitor cells. Moreover, although tumor cell growth factor (TGF-β) acts to suppress the growth of various cells, a certain opinion has not been obtained on the effects on hematopoietic stem cells and blood progenitor cells.

血液細胞のみならず、未分化細胞、特に幹細胞に関しては組織再生に強く関与すると考えられている。これらの組織再生、並びに各組織の未分化細胞を増幅させることは成書(吉里勝利著 再生ー甦るしくみ、1996、羊土社)を参考にすることからその幅広い用途を知ることができる。   It is considered that not only blood cells but also undifferentiated cells, especially stem cells, are strongly involved in tissue regeneration. Regenerating these tissues and amplifying the undifferentiated cells of each tissue can be known for a wide range of uses by referring to Seisho (Katsuri Yoshizato Regenerative Structure, 1996, Yodosha).

ノッチ(Notch)は、ショウジョウバエで発見された神経細胞の分化制御に関わるリセプター型膜蛋白質であり、ノッチのホモログは線虫(Lin−12)、アフリカツメガエル(Xotch)、マウス(Motch)、ヒト(TAN−1)などの無脊椎動物、脊椎動物の分類を越えた広い動物種から見いだされている。一方、ショウジョウバエノッチのリガンドとしてショウジョウバエデルタ(Delta)およびショウジョウバエセレイト(Serrate)の2つが見いだされており、リセプターのノッチと同様に広い動物種からノッチリガンドホモログが見いだされている(Artavanis−Tsakonas etal.,Science 268,225−232,1995)。   Notch is a receptor-type membrane protein involved in neuronal differentiation control discovered in Drosophila. Notch homologs are nematodes (Lin-12), Xenopus (Xotch), mice (Motch), humans (Motch) It has been found from a wide range of animal species beyond the classification of invertebrates and vertebrates such as TAN-1). On the other hand, two Drosophila Notch ligands, Drosophila Delta (Delta) and Drosophila Serrate, have been found, and notch ligand homologs have been found from a wide range of animal species, similar to the receptor Notch (Artavanis-Tsakonas etal). Science, 268, 225-232, 1995).

特にヒトに関して、ヒトノッチホモログであるTAN−1は、幅広く体中の組織に発現されており(Ellisen et al.,Cell 66,649−661,1991)、またTAN−1以外に2つのノッチ類縁分子が存在することが報告されている(Artavanis−Tsakonas et al.,Science 268,225−232,1995)。血液細胞においては、PCR(Polymerase Chain Reaction)法にてCD34陽性細胞にTAN−1の発現が認められている(Milner et al., Blood 83,2057−2062,1994)。しかしながらヒトに関して、ノッチのリガンドと考えられるヒトデルタ、ヒトセレイトの遺伝子のクローニングの報告はない。   Especially for humans, the human Notch homolog TAN-1 is widely expressed in tissues throughout the body (Ellisen et al., Cell 66, 649-661, 1991), and there are two notch analogs besides TAN-1. The presence of molecules has been reported (Artavanis-Tsakonas et al., Science 268, 225-232, 1995). In blood cells, expression of TAN-1 was observed in CD34 positive cells by PCR (Polymerase Chain Reaction) method (Milner et al., Blood 83, 2057-2062, 1994). However, regarding humans, there has been no report on cloning of human delta and human selenate genes that are considered ligands for Notch.

ショウジョウバエノッチについて、そのリガンドとの結合性が詳細に調べられ、ノッチの細胞外部分に36あるEpidermal Growth Factor(EGF)様繰り返しアミノ酸配列のうち11番目と12番目の繰り返し配列を結合領域として、リガンドとCa++を介して結合し得ることが示された(文献のFehon et al.,Cell 61,523−534,1990およびRebay et al.,Cell 67,687−699,1991および特表平7−503123)。他種のノッチホモログについてもEGF繰り返し配列は保存されており、リガンドとの結合に関して同様の機構が類推されている。リガンドにおいてもアミノ酸末端の近くにDSL(Delta−Serrate−Lag−2)と呼ばれるアミノ酸配列とリセプターと同様にEGF様繰り返し配列が保存されている(Artavanis−Tsakonas et al.,Science 268,225−232,1995)。 The Drosophila Notch has been examined in detail for its binding to the ligand. Among the Epidermal Growth Factor (EGF) -like repetitive amino acid sequences of 36 in the extracellular part of the Notch, the 11th and 12th repetitive amino acid sequences are used as the binding regions, and the ligand is used. And Ca ++ (Fehon et al., Cell 61, 523-534, 1990 and Rebay et al., Cell 67, 687-699, 1991 and JP 7). -503123). The EGF repeat sequences are also conserved in other types of Notch homologues, and a similar mechanism is inferred for binding to the ligand. Also in the ligand, an amino acid sequence called DSL (Delta-Serrate-Lag-2) and an EGF-like repetitive sequence are conserved in the vicinity of the amino acid terminal (Artavanis-Tsakonas et al., Science 268, 225-232). , 1995).

このDSLドメインはノッチリガンド分子以外にはそのような配列は見いだされておらず、ノッチリガンド分子に固有の構造である。このDSLドメインの共通配列を配列表の配列番号1に一般式として、また本発明のヒトデルター1とヒトセレイトー1と他の既知のノッチリガンド分子との比較を第1図に示す。   No such sequence has been found in the DSL domain other than the Notch ligand molecule, and the DSL domain has a structure unique to the Notch ligand molecule. The consensus sequence of this DSL domain is represented by SEQ ID NO: 1 in the sequence listing as a general formula, and FIG. 1 shows a comparison between human delta-1, human serato 1 and other known Notch ligand molecules of the present invention.

一方、EGF様配列はトロンボモジュリン(Jackman et al.,Proc.Natl.Acad.Sci.USA 83,8834−8838,1986)や低密度リポ蛋白質(LDL)リセプター(Russell et al.,Cell 37,577−585,1984)および血液凝固因子(Furie et al.,Cell 53,505−518,1989)で見いだされ、細胞外での凝集や接着に重要な役割を果たすと考えられている。   On the other hand, EGF-like sequences include thrombomodulin (Jackman et al., Proc. Natl. Acad. Sci. USA 83, 8834-8838, 1986) and low density lipoprotein (LDL) receptor (Russell et al., Cell 37, 577- 585, 1984) and blood coagulation factors (Furie et al., Cell 53, 505-518, 1989), and are thought to play an important role in extracellular aggregation and adhesion.

近年、クローニングされたショウジョウバエデルタの脊椎動物のホモログはニワトリ(C−デルタ−1)とアフリカツメガエル(X−デルタ−1)が見いだされており、X−デルタ−1は原始ニューロンの発生にXotchを介して作用することが報告されている(Henrique et al.,Nature 375,787−790,1995およびChitnis et al.,Nature 375,761−766,1995)。一方、ショウジョウバエセレイトの脊椎動物のホモログは、ラットジャグド(Jagged)が見いだされている(Claire et al.,Cell 80,909−917,1995)。この報告によれば、ラットジャグドのmRNAは胎仔ラットの脊髄に検出される。また、ラットノッチを強制的に過剰発現させた筋芽細胞株とラットジャグド発現細胞株の共培養により、この筋芽細胞株の分化が抑制されることが見いだされているが、ラットノッチを強制発現させていない筋芽細胞株に対してはラットジャグドが作用しないことが見いだされている。   In recent years, cloned Drosophila delta vertebrate homologues have been found in chickens (C-delta-1) and Xenopus (X-delta-1), and X-delta-1 adds Xotch to the development of primitive neurons. (Henrique et al., Nature 375,787-790, 1995 and Chitnis et al., Nature 375, 761-766, 1995). On the other hand, as a vertebrate homologue of Drosophila seleate, rat jagged is found (Claire et al., Cell 80, 909-917, 1995). According to this report, rat jagged mRNA is detected in the spinal cord of fetal rats. In addition, co-culture of a myoblast cell line that forcibly overexpressed rat notch and a rat jagd-expressing cell line has been found to suppress the differentiation of this myoblast cell line. It has been found that rat jagged does not act on myoblast cell lines.

これらの報告から、ノッチおよびそれに対するリガンドは神経細胞の分化制御に関係していると考えられているが、一部筋芽細胞を除き、血液細胞を含む他の細胞、特にプライマリーな細胞への作用に関しては全く不明であった。   From these reports, Notch and its ligands are thought to be involved in the regulation of neuronal differentiation. However, some cells, except for myoblasts, may be used as primary cells. The effect was completely unknown.

また、ノッチリガンド分子にはこれらの過去のショウジョウバエ、線虫の研究から少なくともノッチリガンド分子以外には見いだされていないDSLドメイン構造を有することが特徴である。したがって、このDSLドメインを有することはノッチリセプターにとってのリガンド分子であることと等価と考えてよい。   In addition, the Notch ligand molecule is characterized by having a DSL domain structure that has not been found at least other than the Notch ligand molecule from studies of these Drosophila and nematodes. Therefore, having this DSL domain may be considered equivalent to being a ligand molecule for the Notch receptor.

Rice et al.,Blood 86,512−523,1995Rice et al. , Blood 86, 512-523, 1995 吉里勝利著 再生ー甦るしくみ、1996、羊土社Yoshisato Victory Regeneration-How to Talk, 1996, Yodosha Artavanis−Tsakonas etal.,Science 268,225−232,1995Artavanis-Tsakonas et al. , Science 268, 225-232, 1995 Ellisen et al.,Cell 66,649−661,1991Ellisen et al. Cell 66, 649-661, 1991. Artavanis−Tsakonas et al.,Science 268,225−232,1995Artavanis-Tsakonas et al. , Science 268, 225-232, 1995 Milner et al., Blood 83,2057−2062,1994Milner et al. , Blood 83, 2057-2062, 1994 Fehon et al.,Cell 61,523−534,1990Fehon et al. , Cell 61, 523-534, 1990 Rebay et al.,Cell 67,687−699,1991Rebay et al. Cell 67, 687-699, 1991. Jackman et al.,Proc.Natl.Acad.Sci.USA 83,8834−8838,1986Jackman et al. , Proc. Natl. Acad. Sci. USA 83, 8834-8838, 1986 Russell et al.,Cell 37,577−585,1984Russell et al. , Cell 37, 577-585, 1984 Furie et al.,Cell 53,505−518,1989Furie et al. , Cell 53, 505-518, 1989. Henrique et al.,Nature 375,787−790,1995Henrique et al. , Nature 375, 787-790, 1995. Chitnis et al.,Nature 375,761−766,1995Chitnis et al. , Nature 375, 761-766, 1995 Claire et al.,Cell 80,909−917,1995Claire et al. , Cell 80, 909-917, 1995 特表平7−503123Special table flat 7-503123

上記のように未分化細胞に関して、それらの特徴を保ったまま増殖させる方法は完成されていない。この最大の原因は未分化細胞の分化を抑制する因子が十分に見いだされていないことにある。本発明の課題は、未分化細胞の分化を抑制する新規な因子に由来する化合物を提供することにある。   As described above, a method for growing undifferentiated cells while maintaining their characteristics has not been completed. The main cause of this is that sufficient factors that suppress the differentiation of undifferentiated cells have not been found. An object of the present invention is to provide a compound derived from a novel factor that suppresses differentiation of undifferentiated cells.

本発明者らはノッチおよびそのリガンドが神経芽細胞、筋芽細胞の分化制御のみならず、広く未分化な細胞、特に血液未分化細胞の分化制御を行なうとの仮説を立てた。しかしヒトへ臨床応用する際、既知のニワトリ型、アフリカツメガエル型などの異種の生物種のノッチリガンドでは種特異性、抗原性の問題がある。このため、未だ報告のないヒト型のノッチリガンドを取得することは不可欠である。そこで、本発明者らはノッチリガンド分子に共通するDSLドメインとEGF様ドメインを有する分子で、ヒト型ノッチ(TAN−1など)のリガンドであるヒトデルタホモログ(以下ヒトデルタ)及びヒトセレイトホモログ(以下ヒトセレイト)が存在すると考え、これらの発見は未分化細胞の分化制御に有効な医薬品の候補となると考え、それらの発見に努めた。   The present inventors hypothesized that Notch and its ligand not only control differentiation of neuroblasts and myoblasts but also control differentiation of widely undifferentiated cells, particularly blood undifferentiated cells. However, when clinically applied to humans, known Notch ligands of different species such as chicken and Xenopus have species specificity and antigenicity problems. For this reason, it is indispensable to obtain a human-type Notch ligand that has not yet been reported. Therefore, the present inventors are molecules having a DSL domain and an EGF-like domain common to Notch ligand molecules, and human delta homolog (hereinafter referred to as human delta) and human serate homolog (hereinafter referred to as human delta) ligands of human type Notch (TAN-1 etc.). The human serites were considered to exist, and these findings were considered to be candidates for effective drugs for controlling the differentiation of undifferentiated cells.

本発明者らはヒトノッチリガンドの探索のため、ヒト以外の動物で発見されているこれらのホモログの保存されたアミノ酸配列を解析し、対応するDNA配列の混合プライマーによるPCRによってこの遺伝子を発見すべく進めた。そして、鋭意研究の結果、ノッチリガンド分子に共通するDSLドメインを有している2つの新規分子、新規ヒトデルター1並びに新規ヒトセレイトーlのアミノ酸配列をコードするcDNAの単離に各々成功し、これらcDNAを用いて各種形態を有する蛋白質の発現系を作製した。また、これらの蛋白質の精製法を確立し、精製を行い単離した。   The present inventors analyzed the conserved amino acid sequence of these homologs found in non-human animals for the search for human Notch ligands, and found this gene by PCR with mixed primers of the corresponding DNA sequence. Proceeded as much as possible. As a result of intensive studies, the inventors succeeded in isolating cDNAs encoding the amino acid sequences of two novel molecules having a DSL domain common to Notch ligand molecules, novel human delta-1 and novel human seratol. Using this, protein expression systems having various forms were prepared. In addition, a purification method for these proteins was established, purified and isolated.

新規ヒトデルタ−1のアミノ酸配列は、配列表の配列番号2から4に示し、それらをコードするDNA配列を配列表の配列番号8に示した。また、新規ヒトセレイト−1のアミノ酸配列は、配列表の配列番号5から7に示し、それらをコードするDNA配列を配列表の配列番号9に示した。   The amino acid sequence of the novel human delta-1 is shown in SEQ ID NO: 2 to 4 in the sequence listing, and the DNA sequence encoding them is shown in SEQ ID NO: 8 in the sequence listing. The amino acid sequence of novel human serate-1 is shown in SEQ ID NO: 5 to 7 in the sequence listing, and the DNA sequence encoding them is shown in SEQ ID NO: 9 in the sequence listing.

このようにして作製された蛋白質の生理作用を神経未分化細胞、前脂肪細胞、肝細胞、筋芽細胞、皮膚未分化細胞、血液未分化細胞、免疫未分化細胞など、多数の細胞を用いて探索した。その結果、この新規ヒトデルタ−1及び新規ヒトセレイト−1はプライマリーな血液未分化細胞に対して分化制御作用を有し、かつ未分化な状態に維持する生理作用を有することを見いだした。   Physiological action of the protein produced in this way can be performed using a large number of cells such as neuronal undifferentiated cells, preadipocytes, hepatocytes, myoblasts, skin undifferentiated cells, blood undifferentiated cells and immune undifferentiated cells. Explored. As a result, it was found that the novel human delta-1 and the novel human selete-1 have a differentiation control action on primary blood undifferentiated cells and have a physiological action to maintain the undifferentiated state.

血液未分化細胞に対するこのような作用は過去に報告例がなく、全く新しく見いだされた知見である。さらにマウスに対する毒性試験では明らかな毒性は観察されず有効な医薬品となる効果を示し、本発明が完成した。したがって、本発明分子を含む薬剤、本発明分子を含む培地、本発明分子が固定化された器材は、血液未分化細胞を未分化な状態で保つことができる全く新しい医薬品、医療品である。また該ヒトデルタ−1もしくは該ヒトセレイト−1を各々免疫原として各々に対する抗体を作製し、精製法を確立し、本発明が完成した。   Such an action on blood undifferentiated cells has not been reported in the past, and is a completely new finding. Furthermore, in the toxicity test for mice, no obvious toxicity was observed, and the effect of becoming an effective pharmaceutical product was shown, and the present invention was completed. Therefore, the drug containing the molecule of the present invention, the medium containing the molecule of the present invention, and the device on which the molecule of the present invention is immobilized are completely new drugs and medical products that can keep blood undifferentiated cells in an undifferentiated state. Further, antibodies against each of the human delta-1 and the human serate-1 were used as immunogens, purification methods were established, and the present invention was completed.

すなわち、本発明はヒト由来遺伝子にコードされる配列表の配列番号1に記載のアミノ酸配列を含有するポリペプチド、少なくとも配列表の配列番号2もしくは5に記載のアミノ酸配列を含有するポリペプチド、配列表の配列番号3に記載のアミノ酸配列を含有するポリペプチド、配列表の配列番号4に記載のアミノ酸配列を含有するポリペプチド、配列表の配列番号6に記載のアミノ酸配列を含有するポリペプチド、配列表の配列番号7に記載のアミノ酸配列を含有するポリペプチド、未分化細胞の分化抑制作用を有するポリペプチド、未分化細胞が脳神経、筋肉系未分化細胞以外の未分化細胞であるポリペプチド、未分化細胞が血液未分化細胞であるポリペプチドに関し、また本発明は上記のポリペプチドを含有する医薬組成物、その用途が造血賦活剤である医薬組成物に関し、また本発明は上記のポリペプチドを含有する細胞培養培地、細胞が血液未分化細胞である細胞培養培地に関し、さらに本発明は少なくとも配列表の配列番号2もしくは5に記載のアミノ酸配列を含有するポリペプチドをコードするDNA、配列表の配列番号8に記載のDNA配列の242番から841番のDNA配列もしくは配列表の配列番号9に記載のDNA配列の502番から1095番のDNA配列を含有するDNA、配列表の配列番号3に記載のアミノ酸配列を含有するポリペプチドをコードするDNA、配列表の配列番号8に記載のDNA配列の242番から1801番のDNA配列を含有するDNA、配列表の配列番号4に記載のアミノ酸配列を含有するポリペプチドをコードするDNA、配列表の配列番号8に記載のDNA配列の242番から2347番のDNA配列を含有するDNA、配列表の配列番号6に記載のアミノ酸配列を含有するポリペプチドをコードするDNA、配列表の配列番号9に記載のDNA配列の502番から3609番のDNA配列を含有するDNA、配列表の配列番号7に記載のアミノ酸配列を含有するポリペプチドをコードするDNA、配列表の配列番号9に記載のDNA配列の502番から4062番のDNA配列を含有するDNA、更に本発明は上記のDNA群の中から選ばれるDNAと、宿主細胞中で発現可能なベクターDNAと連結してなる組み換えDNA体、組み換えDNA体により形質転換された細胞、細胞を培養し培養物中より生産された化合物を採取するポリペプチドの製造方法に関し、配列表の配列番号4のアミノ酸配列を有するポリペプチドを特異的に認識する抗体、配列表の配列番号7のアミノ酸配列を有するポリペプチドを特異的に認識する抗体に関する。   That is, the present invention relates to a polypeptide containing the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing encoded by a human-derived gene, a polypeptide containing at least the amino acid sequence set forth in SEQ ID NO: 2 or 5 in the sequence listing, A polypeptide containing the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing, a polypeptide containing the amino acid sequence shown in SEQ ID NO: 4 in the sequence listing, a polypeptide containing the amino acid sequence shown in SEQ ID NO: 6 in the sequence listing, A polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 7 in the sequence listing, a polypeptide having an action of inhibiting differentiation of undifferentiated cells, a polypeptide in which the undifferentiated cells are undifferentiated cells other than cranial nerves, muscle undifferentiated cells, The present invention relates to a polypeptide in which the undifferentiated cell is a blood undifferentiated cell, and the present invention relates to a pharmaceutical composition containing the above polypeptide, and its use The present invention relates to a cell culture medium containing the above polypeptide, a cell culture medium in which the cells are blood undifferentiated cells, and the present invention further relates to at least SEQ ID NO: 2 in the sequence listing. Alternatively, a DNA encoding a polypeptide containing the amino acid sequence described in 5, a DNA sequence from No. 242 to 841 of a DNA sequence shown in SEQ ID NO: 8 of the sequence listing or a DNA sequence shown in SEQ ID NO: 9 of the sequence listing DNA containing the DNA sequence of Nos. 502 to 1095, DNA encoding the polypeptide containing the amino acid sequence of SEQ ID No. 3 of the sequence listing, and DNA sequences No. 242 to 1801 of the DNA sequence of SEQ ID No. 8 of the sequence listing A DNA encoding the polypeptide containing the amino acid sequence of SEQ ID NO: 4 in the sequence listing DNA containing the DNA sequence of Nos. 242 to 2347 of the DNA sequence shown in SEQ ID NO: 8 of the Sequence Listing, DNA encoding the polypeptide containing the amino acid sequence of SEQ ID NO: 6 of Sequence Listing, DNA containing the DNA sequence of Nos. 502 to 3609 of the DNA sequence of SEQ ID NO: 9, DNA encoding a polypeptide containing the amino acid sequence of SEQ ID NO: 7 of the sequence listing, and SEQ ID NO: 9 of the sequence listing DNA comprising the DNA sequence of Nos. 502 to 4062 of the described DNA sequence, and the present invention is a recombinant DNA obtained by ligating a DNA selected from the above DNA group and a vector DNA that can be expressed in a host cell Body, cells transformed with recombinant DNA body, and method for producing polypeptide by culturing cells and collecting compound produced from culture The present invention relates to an antibody that specifically recognizes a polypeptide having the amino acid sequence of SEQ ID NO: 4 in the sequence listing, and an antibody that specifically recognizes a polypeptide having the amino acid sequence of SEQ ID NO: 7 in the sequence listing.

本発明のノッチリガンド分子は未分化細胞の維持、分化抑制にとって有効な化学品となり、医薬品、医療品として使用が可能である。   The Notch ligand molecule of the present invention is an effective chemical product for maintaining undifferentiated cells and inhibiting differentiation, and can be used as a pharmaceutical product or a medical product.

以下、本発明を詳細に説明する。
遺伝子操作に必要なcDNAの作製、ノーザンブロットによる発現の検討、ハイブリダイゼーションによるスクリーニング、組換えDNAの作製、DNAの塩基配列の決定、cDNAライブラリーの作製等の一連の分子生物学的な実験は通常の実験書に記載の方法によって行うことができる。前記の通常の実験書としては、例えば、Maniatisらの編集したMolecular Cloning,A laborartory manual,1989,Eds.,Sambrook,J.,Fritsch,E.F.,and Maniatis,T.,Cold Spring Harbor Loboratory Pressを挙げることができる。
Hereinafter, the present invention will be described in detail.
A series of molecular biological experiments such as preparation of cDNA necessary for gene manipulation, examination of expression by Northern blot, screening by hybridization, preparation of recombinant DNA, determination of DNA base sequence, preparation of cDNA library, etc. It can be performed by the method described in a normal experiment document. Examples of the above-mentioned normal experimental documents include, for example, Molecular Cloning edited by Maniatis et al., A laboratory manual, 1989, Eds. Sambrook, J .; , Fritsch, E .; F. , And Maniatis, T .; , Cold Spring Harbor Laboratory Press.

本発明のポリペプチドは少なくとも配列表の配列番号1から7のアミノ酸配列からなるポリペプチドを有するが、自然界で生じることが知られている生物種内変異、アレル変異等の突然変異及び人為的に作製可能な点変異による変異によって生じる改変体も、配列表の配列番号1から7のポリペプチドがそれらの性質を失わない限り本発明の新規ポリペプチドに含まれる。そのアミノ酸の改変、置換に関しては例えばBennttらの出願(国際公開番号、WO96/2645号)などに詳しく記載されており、これらを参考にして作製することができる。   The polypeptide of the present invention has a polypeptide consisting of at least the amino acid sequences of SEQ ID NOs: 1 to 7 in the sequence listing, but is known to occur in nature, such as intraspecies variation, allelic variation, and the like, and artificially Variants produced by mutations that can be made are included in the novel polypeptides of the present invention as long as the polypeptides of SEQ ID NOs: 1 to 7 in the Sequence Listing do not lose their properties. The amino acid modification and substitution are described in detail, for example, in an application by Benntt et al. (International Publication No. WO96 / 2645) and can be prepared with reference to these.

また、配列表の配列番号2から4のアミノ酸配列からなるポリペプチドをコードするDNA配列については配列表の配列番号8に、配列表の配列番号5から7のアミノ酸配列からなるポリペプチドをコードするDNA配列については配列表の配列番号9に各々アミノ酸配列とともに示した。これらの遺伝子配列に関し、アミノ酸レベルの変異がなくとも、自然界から分離した、染色体DNA、またはcDNAにおいて、遺伝コードの縮重により、そのDNAがコードするアミノ酸配列を変化させることなくDNAの塩基配列が変異した例はしばしば認められる。また、5'非翻訳領域及び3'非翻訳領域はポリペプチドのアミノ酸配列の規定には関与しないので、それらの領域のDNA配列は変異しやすい。このような遺伝コードの縮重によって得られる塩基配列も本発明のDNAに含まれる。   In addition, a DNA sequence encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 2 to 4 in the sequence listing encodes a polypeptide consisting of the amino acid sequence of SEQ ID NO: 5 to 7 in the sequence listing for SEQ ID NO: 8 in the sequence listing. The DNA sequence is shown together with the amino acid sequence in SEQ ID NO: 9 in the sequence listing. With respect to these gene sequences, even if there is no mutation at the amino acid level, in the chromosomal DNA or cDNA isolated from nature, the base sequence of the DNA can be changed without changing the amino acid sequence encoded by the DNA due to the degeneracy of the genetic code. Mutated cases are often seen. Further, since the 5 ′ untranslated region and the 3 ′ untranslated region are not involved in the definition of the amino acid sequence of the polypeptide, the DNA sequence in these regions is easily mutated. The base sequence obtained by such degeneracy of the genetic code is also included in the DNA of the present invention.

本発明において未分化細胞とは、特定の刺激によって増殖可能な細胞であり、かつ特定の刺激によって特定の機能を有する細胞に分化可能な細胞と規定され、これらの中には皮膚組織系の未分化細胞、脳神経系の未分化細胞、筋肉系の未分化細胞、血液系の未分化細胞などが含まれ、各々幹細胞といわれる自己複製能力を有しかつその系統の細胞を生み出す能力を有する細胞を含む。また、分化抑制作用とは、これらの未分化細胞が自律的もしくは他律的に分化する現象を抑制する作用であり、具体的には未分化な状態を維持する作用である。また、脳神経系未分化細胞とは、特定の刺激に伴い、特定の機能を有する脳、神経の細胞にのみ分化する能力を有する細胞と規定できる。また、筋肉系未分化細胞とは特定の刺激に伴い、特定の機能を有する筋肉細胞にのみ分化する能力を有する細胞と規定される。また、本発明で記載する血液未分化細胞とは、血液コロニーアッセイで同定が可能な特定の血液系列に分化することが運命づけられた血液前駆細胞および全ての系列への分化能と自己複製能を有する造血幹細胞を含む細胞群と規定される。   In the present invention, an undifferentiated cell is defined as a cell that can be proliferated by a specific stimulus and that can differentiate into a cell having a specific function by a specific stimulus. Differentiated cells, undifferentiated cells of the cranial nervous system, undifferentiated cells of the muscular system, undifferentiated cells of the blood system, etc., each having a self-replicating ability called a stem cell and capable of generating cells of that lineage Including. Further, the differentiation inhibitory action is an action that suppresses the phenomenon that these undifferentiated cells differentiate autonomously or irregularly, and specifically, an action that maintains an undifferentiated state. In addition, the cranial nervous system undifferentiated cells can be defined as cells having the ability to differentiate only into brain and nerve cells having a specific function in accordance with a specific stimulus. In addition, muscular undifferentiated cells are defined as cells having the ability to differentiate only into muscle cells having a specific function with a specific stimulus. The blood undifferentiated cells described in the present invention are blood progenitor cells destined to differentiate into a specific blood line that can be identified by a blood colony assay, and the ability to differentiate into all lineages and self-replicating ability. Is defined as a cell group containing hematopoietic stem cells having

配列表において、配列番号1のアミノ酸配列は、ノッチリガンド分子に共通するドメイン構造であるDSLドメインの共通アミノ酸配列を一般式として示した物であり、少なくともこのドメインの構造はヒトデルタ−1に関しては配列表の配列番号2の158番から200番までに相当し、またヒトセレイト−1に関しては配列表の配列番号5の156番から198番までに相当する。   In the sequence listing, the amino acid sequence of SEQ ID NO: 1 shows a common amino acid sequence of a DSL domain, which is a domain structure common to Notch ligand molecules, as a general formula. At least the structure of this domain is related to human delta-1. It corresponds to 158 to 200 of SEQ ID NO: 2 in the sequence table, and corresponds to 156 to 198 of SEQ ID NO: 5 in the sequence listing for human serate-1.

配列表の配列番号2のアミノ酸配列は本発明のヒトデルタ−1のシグナルペプチドを除いた活性中心の配列、すなわちアミノ末端からDSLドメインまでのアミノ酸配列であり、配列番号4に示した本発明のヒトデルタ−1の成熟型全長アミノ酸配列のアミノ酸番号1番から200番に相当している。配列番号3のアミノ酸配列は、本発明のヒトデルタ−1のシグナルペプチドを除いた細胞外ドメインの配列であり、配列番号4に示した本発明のヒトデルタ−1成熟型全長アミノ酸配列のアミノ酸番号1番から520番に相当している。配列番号4のアミノ酸配列は、本発明のヒトデルタ−1の成熟型全長アミノ酸配列である。   The amino acid sequence of SEQ ID NO: 2 in the sequence listing is the active center sequence excluding the human delta-1 signal peptide of the present invention, that is, the amino acid sequence from the amino terminus to the DSL domain, and the human delta of the present invention shown in SEQ ID NO: 4 Corresponds to amino acid numbers 1 to 200 of the mature full-length amino acid sequence of -1. The amino acid sequence of SEQ ID NO: 3 is the sequence of the extracellular domain excluding the human delta-1 signal peptide of the present invention, and amino acid number 1 of the human delta-1 mature full-length amino acid sequence of the present invention shown in SEQ ID NO: 4 To 520. The amino acid sequence of SEQ ID NO: 4 is the mature full-length amino acid sequence of human delta-1 of the present invention.

配列番号5のアミノ酸配列は、本発明のヒトセレイト−1のシグナルペプチドを除いた活性中心の配列、すなわちアミノ末端からDSLドメインまでのアミノ酸配列であり、配列番号7に示した本発明のヒトデルタ−1の成熟型全長アミノ酸配列のアミノ酸番号1番から198番に相当している。配列番号6のアミノ酸配列は、本発明のヒトセレイト−1のシグナルペプチドを除いた細胞外ドメインの配列であり、配列番号7に示した本発明のヒトセレイト−1成熟型全長アミノ酸配列のアミノ酸番号1番から1036番に相当している。配列番号7のアミノ酸配列は、本発明のヒトセレイト−1の成熟型全長アミノ酸配列である。   The amino acid sequence of SEQ ID NO: 5 is the sequence of the active center excluding the signal peptide of human serate-1 of the present invention, that is, the amino acid sequence from the amino terminus to the DSL domain, and the human delta-1 of the present invention shown in SEQ ID NO: 7 Corresponds to amino acid numbers 1 to 198 of the mature full-length amino acid sequence. The amino acid sequence of SEQ ID NO: 6 is the sequence of the extracellular domain excluding the signal peptide of human serate-1 of the present invention, and amino acid number 1 of the mature full-length amino acid sequence of human serate-1 of the present invention shown in SEQ ID NO: 7 No. 1036. The amino acid sequence of SEQ ID NO: 7 is the mature full-length amino acid sequence of human serate-1 of the present invention.

また、配列番号8の配列は本発明のヒトデルタ−1の全アミノ酸配列及びそれをコードしているcDNA配列であり、配列表の配列番号9の配列は本発明のヒトセレイト−1の全アミノ酸配列及びそれをコードしているcDNA配列である。   The sequence of SEQ ID NO: 8 is the entire amino acid sequence of human delta-1 of the present invention and the cDNA sequence encoding it. The sequence of SEQ ID NO: 9 of the sequence listing is the entire amino acid sequence of human serate-1 of the present invention and It is the cDNA sequence encoding it.

なお、配列表に記載されたアミノ酸配列の左端及び右端はそれぞれアミノ基末端(以下N末)及びカルボキシル基末端(以下C末)であり、また塩基配列の左端及び右端はそれぞれ5'末端及び3'末端である。   The left end and the right end of the amino acid sequences described in the sequence listing are the amino group end (hereinafter referred to as N-terminal) and the carboxyl group end (hereinafter referred to as C-terminal), respectively, and the left end and right end of the base sequence are the 5 ′ end and 3 respectively. 'The end.

ヒトノッチリガンドの遺伝子をクローニングするために次の方法が考え得る。ヒトノッチリガンドは生物の進化の過程で一部のアミノ酸配列が保存されていることから、保存されたアミノ酸配列に対応したDNA配列を設計し、RT−PCR(Reverse Transcription Polymerase Chain Reaction)のプライマーとして利用し、ヒト由来のPCRテンプレートをPCR反応によって増幅することにより、ヒトノッチリガンド遺伝子の断片が得られる可能性がある。またヒト以外の生物のノッチリガンドホモログの既知DNA配列情報からRT−PCRプライマーを作製し、その生物のPCRテンプレートから既知遺伝子断片を取得することは原理的に可能である。   The following method can be considered for cloning the gene of the human Notch ligand. Since a part of the amino acid sequence of human Notch ligand is conserved during the evolution of organisms, a DNA sequence corresponding to the conserved amino acid sequence is designed and used as a primer for RT-PCR (Reverse Transcription Polymerase Chain Reaction). There is a possibility that a human Notch ligand gene fragment can be obtained by amplifying a human-derived PCR template by PCR reaction. In principle, it is possible to prepare RT-PCR primers from the known DNA sequence information of Notch ligand homologues of organisms other than humans, and to obtain known gene fragments from the PCR templates of the organisms.

ヒトノッチリガンド断片取得を目的としてPCRを行うのに、DSL配列に対するPCRがまず考えられたが、この領域に保存されたアミノ酸配列に対応するDNA配列の組み合わせは膨大であり、PCRプライマー設計が無理であったため、EGF様配列をPCRの対象としなければならなかった。前述のように多数の分子にEGF様配列は保存されているため、断片取得及び同定は極めて困難であった。   To perform PCR for the purpose of obtaining human Notch ligand fragments, PCR for DSL sequences was first considered. However, the number of combinations of DNA sequences corresponding to amino acid sequences stored in this region is enormous, and PCR primer design is impossible. Therefore, EGF-like sequences had to be subjected to PCR. As described above, since EGF-like sequences are conserved in many molecules, fragment acquisition and identification are extremely difficult.

本発明者らは実施例1に示した配列を1例とする50組程度のPCRプライマーを設計、作製し、ヒト由来の様々な組織のpolyA+RNAから作製したcDNAをPCRテンプレートとして各々PCRを行い、各10種類以上のPCR産物をサブクローニングし、合計500種以上のシークエンスを行い、鋭意努力の結果、目的とする配列を有するクローンを1種類同定できた。すなわち、得られたPCR産物をクローニングベクターにクローニングし、このPCR産物を含む組換えプラスミドを用いて宿主細胞を形質変換し、組換えプラスミドを含む宿主細胞を大量培養し、組換えプラスミドを精製単離し、クローニングベクターに挿入されたPCR産物のDNA配列を調べ、各々について既知の他種デルタのアミノ酸配列と比較し、ヒトデルタ−1の配列を有すると思われる遺伝子断片の取得に努めた。その結果、配列表の配列番号8に記載のDNA配列の1012番から1375番と同一の配列、すなわちヒトデルタ−1のcDNAの一部を含む遺伝子断片を見つけだすことに成功した。 The present inventors designed and prepared about 50 sets of PCR primers using the sequence shown in Example 1 as an example, and performed PCR using cDNAs prepared from polyA + RNA of various human-derived tissues as PCR templates. This was carried out, and 10 or more kinds of PCR products were subcloned, and a total of 500 or more kinds of sequences were performed. As a result of diligent efforts, one kind of clone having the target sequence could be identified. That is, the obtained PCR product is cloned into a cloning vector, a host cell is transformed with a recombinant plasmid containing this PCR product, the host cell containing the recombinant plasmid is cultured in large quantities, and the recombinant plasmid is purified and purified. The DNA sequence of the PCR product inserted into the cloning vector was examined and compared with the amino acid sequence of another known delta for each, and efforts were made to obtain a gene fragment that appears to have the sequence of human delta-1. As a result, the inventors succeeded in finding a gene fragment containing the same sequence as DNA sequences Nos. 1012 to 1375 in the sequence listing, ie, a part of human delta-1 cDNA.

同様に、本発明者らは実施例3に示した配列を1例とする50組のPCRプライマーを設計、作製し、ヒト由来の様々な組織のpolyA+RNAから作製したcDNAをPCRテンプレートとして各々PCRを行い、各10種類以上のPCR産物をサブクローニングし、合計500種以上のシークエンスを行い、鋭意努力の結果、目的とする配列を有するクローンを1種類同定できた。すなわち、得られたPCR産物をクローニングベクターにクローニングし、このPCR産物を含む組換えプラスミドを用いて宿主細胞を形質変換し、組換えプラスミドを含む宿主細胞を大量培養し、組換えプラスミドを精製単離し、クローニングベクターに挿入されたPCR産物のDNA配列を調べ、各々について既知の他種セレイトのアミノ酸配列と比較し、ヒトセレイトー1の配列を有すると思われる遺伝子断片の取得に努めた。その結果、配列表の配列番号9に記載のDNA配列の1272番から1737番と同一の配列、すなわちヒトセレイトー1のcDNAの一部を含む遺伝子断片を見つけだすことに成功した。 Similarly, the present inventors designed and prepared 50 sets of PCR primers using the sequence shown in Example 3 as an example, and cDNAs prepared from polyA + RNA of various human-derived tissues were used as PCR templates, respectively. PCR was carried out, 10 or more types of PCR products were subcloned, and a total of 500 or more sequences were performed. As a result of diligent efforts, one type of clone having the target sequence could be identified. That is, the obtained PCR product is cloned into a cloning vector, a host cell is transformed with a recombinant plasmid containing this PCR product, the host cell containing the recombinant plasmid is cultured in large quantities, and the recombinant plasmid is purified and purified. The DNA sequence of the PCR product inserted into the cloning vector was examined, and each was compared with the amino acid sequence of another known selete for each, and an effort was made to obtain a gene fragment that appears to have the human seleito 1 sequence. As a result, the inventors succeeded in finding a gene fragment containing a part of the DNA sequence shown in SEQ ID NO: 9 in the Sequence Listing, which is identical to the 1272th to 1737th DNA sequences, that is, a portion of the human Serato 1 cDNA.

次に、こうして得られるヒトデルタ−1、ヒトセレイト−1遺伝子断片を用いて、ヒトのゲノム遺伝子ライブラリーあるいはcDNAライブラリーから目的遺伝子の全長を得ることができる。全長のクローニングには、前記の方法にて部分クローニングした遺伝子をアイソトープ標識、及び各種非アイソトープ標識し、ライブラリーをハイブリダイゼーションなどの方法にてスクリーニングすることによって得ることができる。アイソトープの標識法としては、例えば[32P]γ−ATPとT4ポリヌクレオチドキナーゼを用いて末端をラベルする方法や、他のニックトランスレーション法またはプライマー伸長法などによる標識法が利用できる。また別の方法としてヒト由来のcDNAライブラリーを発現ベクターに組み込み、COS−7細胞などで発現させ、目的の遺伝子をスクリーニングする発現クローニングなどの手法でリガンドのcDNAを分離することもできる。発現クローニングには、TAN−1など現在まで4種知られているノッチのアミノ酸配列を含有するポリペプチドの結合を利用したセルソーターによる分画法、ラジオアイソトープを用いたフィルムエマルジョンによる検出法、等の方法が挙げられる。ここではヒトデルタ−1及びセイトセレイト−1の遺伝子取得の方法を述べたが、リガンド作用の解析のために他の生物のノッチリガンドホモログ遺伝子の取得は有用であり、これも同様の手段によって取得できる。得られた目的遺伝子はDNA配列を決定し、アミノ酸配列を推定することができる。 Next, using the human delta-1 and human selete-1 gene fragments thus obtained, the full length of the target gene can be obtained from a human genomic gene library or cDNA library. Full-length cloning can be obtained by isotopic labeling the gene partially cloned by the above method and various non-isotopic labels, and screening the library by a method such as hybridization. As an isotope labeling method, for example, a method of labeling ends using [ 32 P] γ-ATP and T4 polynucleotide kinase, a labeling method by other nick translation methods or primer extension methods can be used. As another method, a cDNA library derived from a human can be incorporated into an expression vector, expressed in COS-7 cells, etc., and the cDNA of the ligand can be isolated by a technique such as expression cloning for screening the target gene. For expression cloning, a fractionation method using a cell sorter utilizing the binding of polypeptides containing amino acid sequences of four notches known to date such as TAN-1, a detection method using a film emulsion using a radioisotope, etc. A method is mentioned. Here, the method for obtaining the genes for human delta-1 and sateselate-1 has been described. However, it is useful to obtain the Notch ligand homologue genes of other organisms for the analysis of ligand action, and this can also be obtained by the same means. The obtained target gene can determine the DNA sequence and estimate the amino acid sequence.

本発明者らは実施例2に示したごとく、ヒトデルタ−1PCR産物を含む遺伝子断片をラジオアイソトープでラベルし、ハイブリダイゼーションプローブとし、スクリーニングライブラリーとしてヒト胎盤由来cDNAを用いてスクリーニングを行い、得られた複数のクローンのDNA配列を決定したところ、配列表の配列番号8に示すDNA塩基配列を含むクローンであり、およびそれから推定される配列表の配列番号4に示すアミノ酸配列をコードすることが明らかとなり、ヒトデルタ−1の全長アミノ酸をコードするcDNAのクローニングに成功した。   As shown in Example 2, the present inventors labeled a gene fragment containing a human delta-1 PCR product with a radioisotope, used as a hybridization probe, and performed screening using human placenta-derived cDNA as a screening library. When the DNA sequences of a plurality of clones were determined, it was revealed that the clone contained the DNA base sequence shown in SEQ ID NO: 8 in the sequence listing and encoded from the amino acid sequence shown in SEQ ID NO: 4 in the sequence listing deduced therefrom. Thus, the cDNA encoding the full-length amino acid of human delta-1 was successfully cloned.

これらの配列をデータベース(Genbankリリース89、June、1995)で比較したところ、これらは新規な配列であった。該アミノ酸配列をKyte−Doolittleの方法(J.Mol.Biol.157:105,1982)に従って、アミノ酸配列から疎水性部分、親水性部分を解析した。その結果、本発明のヒトデルタ−1は細胞膜通過部分を1つ有する細胞膜蛋白質として、細胞上に発現されることが明らかとなった。   When these sequences were compared in a database (Genbank release 89, June, 1995), they were novel sequences. According to the method of Kyte-Doolittle (J. Mol. Biol. 157: 105, 1982), the hydrophobic portion and the hydrophilic portion were analyzed from the amino acid sequence. As a result, it was revealed that human delta-1 of the present invention is expressed on cells as a cell membrane protein having one cell membrane passage portion.

同様に本発明者らは実施例4に示したごとく、ヒトセレイト−1PCR産物を含む遺伝子断片をラジオアイソトープでラベルし、ハイブリダイゼーションプローブとし、スクリーニングライブラリーとしてヒト胎盤由来cDNAを用いてスクリーニングを行い、得られた複数のクローンのDNA配列を決定したところ、配列表の配列番号9に示すDNA塩基配列を含むクローンであり、およびそれから推定される配列表の配列番号7に示すアミノ酸配列の一部をコードすることが明らかとなった。このスクリーニングでは全長のアミノ酸配列をコードする遺伝子配列の細胞内部分の一部、すなわち終止コドン周辺に当たる部分がクローニングできなかったため、実施例4に示した如く、RACE法(rapid amplification of cDNA ends法、Frohman et al.,Proc.Natl.Acad.Sci.U.S.A.85,8998−9002,1988)にて遺伝子クローニングを行い、最終的にヒトセレイト−1の全長アミノ酸をコードするcDNAのクローニングに成功した。   Similarly, as shown in Example 4, the present inventors labeled a gene fragment containing a human serate-1 PCR product with a radioisotope, used as a hybridization probe, and screened using human placenta-derived cDNA as a screening library, When the DNA sequences of the obtained plurality of clones were determined, it was a clone containing the DNA base sequence shown in SEQ ID NO: 9 in the sequence listing, and a part of the amino acid sequence shown in SEQ ID NO: 7 in the sequence listing deduced therefrom was obtained. It became clear to code. Since part of the intracellular portion of the gene sequence encoding the full-length amino acid sequence, that is, the portion corresponding to the vicinity of the stop codon could not be cloned in this screening, as shown in Example 4, the RACE method (rapid amplification of cDNA ends method, Frohman et al., Proc. Natl. Acad. Sci. USA 85, 8998-9002, 1988) and finally cloning cDNA encoding the full-length amino acid of human serate-1. Successful.

この配列をデータベース(Genbankリリース89、June、1995)で比較したところ、これらは新規な配列であった。該アミノ酸配列をKyte−Doolittleの方法(J.Mol.Biol.157:105,1982)に従って、アミノ酸配列から疎水性部分、親水性部分を解析した。その結果、本発明のヒトセレイト−1は細胞膜通過部分を1つ有する細胞膜蛋白質として、細胞上に発現されることが明らかとなった。   When this sequence was compared in a database (Genbank release 89, June, 1995), they were novel sequences. According to the method of Kyte-Doolittle (J. Mol. Biol. 157: 105, 1982), the hydrophobic portion and the hydrophilic portion were analyzed from the amino acid sequence. As a result, it was revealed that human serate-1 of the present invention is expressed on cells as a cell membrane protein having one cell membrane passage portion.

cDNAを組み込むプラスミドとしては、例えば大腸菌由来のpBR322、pUC18、pUC19、pUC118、pUC119(いずれも宝酒造社製、日本国)などが挙げられるが、その他のものであっても宿主内で複製増殖できるものであればいずれも用いることができる。またcDNAを組み込むファージベクターとしては、例えばλgt10、λgt11などが挙げられるが、その他のものであっても宿主内で増殖できるものであれば用いることができる。このようにして、得られたプラスミドは適当な宿主、例えばエシェリヒア(Escherichia)属菌、バチルス(Bacillus)属菌などにカルシウムクロライド法等を用いて導入する。上記エシェリヒア属菌の例としては、エシェリヒア コリK12HB101、MC1061、LE392、JM109などが挙げられる。上記バチルス属菌の例としては、バチルス、サチリスMI114等が挙げられる。また、ファージベクターは、例えば増殖させた大腸菌にインビトロパッケージング法(Proc.Natl.Acad.Sci.,71:2442−、1978)を用いて導入することができる。   Examples of the plasmid into which cDNA is incorporated include pBR322, pUC18, pUC19, pUC118, and pUC119 (all manufactured by Takara Shuzo Co., Ltd., Japan) derived from Escherichia coli. Any of them can be used. Examples of phage vectors into which cDNA is incorporated include λgt10, λgt11, and the like, but other types can be used as long as they can be propagated in the host. Thus, the obtained plasmid is introduce | transduced into a suitable host, for example, Escherichia genus bacteria, Bacillus genus bacteria, etc. using the calcium chloride method etc. Examples of the genus Escherichia include Escherichia coli K12HB101, MC1061, LE392, JM109, and the like. Examples of the Bacillus genus include Bacillus and Sachiris MI114. In addition, the phage vector can be introduced into, for example, grown Escherichia coli using an in vitro packaging method (Proc. Natl. Acad. Sci., 71: 2442-, 1978).

ヒトデルタ−1のアミノ酸配列の解析によれば、ヒトデルタ−1の前駆体のアミノ酸配列は配列表の配列番号8のアミノ酸配列に示す723アミノ酸残基からなり、シグナルペプチド領域は同配列表のアミノ酸配列の−21番(配列番号8の1番)のメチオニンから−1番(配列番号8の21番)のセリンにあたる21アミノ酸残基、細胞外領域は同配列表の1番(配列番号8の22番)のセリンから520番(配列番号8の541番)グリシンにあたる520アミノ酸残基、細胞膜通過領域は同配列表のアミノ酸配列の521番(配列番号8の542番)のプロリンから552番(配列番号8の573番)のロイシンにあたる32アミノ酸残基、細胞内領域は同配列表の553番(配列番号8の574番)のグルタミンから702番(配列番号8の723番)のバリンにあたる150アミノ酸残基が該当することが推定された。ただし、これらの各部分は、あくまでもアミノ酸配列から予測されたドメイン構成であり、実際に細胞上および溶液中での存在形態は、上記の構成と若干異なることも十分考えられ、上記に一応規定された各ドメインの構成アミノ酸が、5から10アミノ酸配列前後することも考えられる。   According to the analysis of the amino acid sequence of human delta-1, the amino acid sequence of the precursor of human delta-1 is composed of 723 amino acid residues shown in the amino acid sequence of SEQ ID NO: 8 in the sequence listing, and the signal peptide region is the amino acid sequence of the sequence listing. 21 amino acid residues corresponding to serine from -21 of -21 (SEQ ID NO: 8) to -1 (21 of SEQ ID NO: 8) serine, the extracellular region is 1 of the sequence listing (22 of SEQ ID NO: 8) No.) Serine to No. 520 (No. 541 of SEQ ID No. 8) Glycine, 520 amino acid residues, and the cell membrane passage region is the amino acid sequence of No. 521 (No. 542 of SEQ ID No. 8) of the same sequence listing from Proline No. 552 (sequence) 32 amino acid residues corresponding to leucine of No. 8 (573), and the intracellular region is from the glutamine of No. 553 (No. 574 of SEQ ID No. 8) to 702 (sequence) of the same sequence listing It has been estimated that 150 amino acid residues corresponding to valine 723 number) of issue 8 corresponds. However, each of these parts is a domain structure predicted from the amino acid sequence to the last, and it is considered that the existence form in cells and in solution is slightly different from the above structure. It is also conceivable that the constituent amino acids of each domain are around 5 to 10 amino acid sequences.

ヒトデルタ−1の他生物のデルタホモログとのアミノ酸配列の比較では、ショウジョウバエデルタ、ニワトリデルタ、アフリカツメガエルデルタとの相同性はそれぞれ47.6%、83.3%、76.2%であり、これらの物質とは異なる新規なアミノ酸配列を有する新規な物質であり、本発明者により初めて明らかにされた物質である。また、上記のデータベース上の全ての生物種の検索においてもヒトデルタ−1と同一配列を有するポリペプチドは見いだされなかった。   Comparison of amino acid sequences with other delta homologues of human delta-1 revealed that the homologies with Drosophila delta, chicken delta and Xenopus delta were 47.6%, 83.3% and 76.2%, respectively. This is a novel substance having a novel amino acid sequence different from that of the above substance, and is a substance that has been revealed for the first time by the present inventors. In addition, no polypeptide having the same sequence as human delta-1 was found in the search for all species on the database.

ノッチのリガンドホモログは、進化論的に保存された共通の配列を有している。すなわちDSL配列と繰り返して存在するEGF様配列である。ヒトデルタ−1とヒト以外の種のデルタホモログとの比較により、ヒトデルタ−1のアミノ酸配列からこれらの保存された配列を推定した。すなわち、DSL配列は配列表の配列番号4のアミノ酸配列の158番のシステインから200番のシステインにあたる43アミノ酸残基に相当した。EGF様配列は8回繰り返して存在し、配列表の配列番号4のアミノ酸配列のうち、第1EGF様配列は205番システインから233番システインまで、第2EGF様配列は236番システインから264番システインまで、第3EGF様配列は271番システインから304番システインまで、第4EGF様配列は311番システインから342番システインまで、第5EGF様配列は349番システインから381番システインまで、第6EGF様配列は388番システインから419番システインまで、第7EGF様配列は426番システインから457番システインまで、第8EGF様配列は464番システインから495番システインに該当した。   Notch's ligand homologues have an evolutionarily conserved common sequence. That is, it is an EGF-like sequence that repeats with the DSL sequence. These conserved sequences were deduced from the amino acid sequence of human delta-1 by comparison of human delta-1 with delta homologs of non-human species. That is, the DSL sequence corresponded to 43 amino acid residues corresponding to cysteine from 158 to 200 in the amino acid sequence of SEQ ID NO: 4 in the Sequence Listing. The EGF-like sequence is repeated 8 times. Among the amino acid sequences of SEQ ID NO: 4 in the sequence listing, the first EGF-like sequence is from 205 to 233 cysteine, and the second EGF-like sequence is from 236 to 264 cysteine. The 3rd EGF-like sequence is from 271 to 304, the 4th EGF-like sequence is from 311 to 342, the 5th EGF-like sequence is from 349 to 381, and the 6th EGF-like sequence is 388. From cysteine to 419, the 7th EGF-like sequence corresponds to cysteine from 426 to 457, and the 8th EGF-like sequence corresponds to 464 to 495.

ヒトデルタ−1のアミノ酸配列から予想されることとして、糖鎖が付加される部分はN−アセチル−D−グルコサミンがN−グルコシド結合可能な部分として、配列表の配列番号4のアミノ酸配列の456番のアスパラギン残基が挙げられる。また、N−アセチル−D−ガラクトサミンのO−グリコシド結合を推定する部分として、セリンまたはスレオニン残基が頻出する部分が考えられる。これらの糖鎖が付加されたタンパクの方がポリペプチドそのものよりも一般に生体内での分解に対して安定であり、また強い生理活性を有していると考えられる。したがって、配列表の配列番号2、3または4の配列を含有するポリペプチドのアミノ酸配列の中にN−アセチル−D−グルコサミンがN−グルコシドやN−アセチル−D−ガラクトサミンなどの糖鎖がN−グルコシドあるいはO−グルコシド結合してなるポリペプチドも本発明に含まれる。   As expected from the amino acid sequence of human delta-1, the portion to which a sugar chain is added is the portion where N-acetyl-D-glucosamine can bind to N-glucoside, and the number 456 of the amino acid sequence of SEQ ID NO: 4 in the sequence listing. Asparagine residues. Moreover, as a part which estimates the O-glycoside bond of N-acetyl-D-galactosamine, the part where a serine or threonine residue appears frequently is considered. Proteins to which these sugar chains have been added are generally more stable against degradation in vivo than polypeptides themselves, and are considered to have strong physiological activity. Accordingly, N-acetyl-D-glucosamine is an N-glucoside or N-acetyl-D-galactosamine sugar chain such that N-acetyl-D-glucosamine is included in the amino acid sequence of a polypeptide containing the sequence of SEQ ID NO: 2, 3, or 4 in the sequence listing. Polypeptides formed by -glucoside or O-glucoside linkage are also included in the present invention.

また、ヒトセレイト−1のアミノ酸配列の解析によれば、ヒトセレイト−1の前駆体のアミノ酸配列は配列表の配列番号9のアミノ酸配列に示す1218アミノ酸残基からなり、シグナルペプチド領域は同配列表のアミノ酸配列の−31番(配列番号9の1番)のメチオニンから−1番(配列番号9の31番)のアラニンにあたる31アミノ酸残基、細胞外領域は同配列表の1番(配列番号9の32番)のセリンから1036番(配列番号9の1067番)アスパラギン酸にあたる1036アミノ酸残基、細胞膜通過領域は同配列表のアミノ酸配列の1037番(配列番号9の1068番)のフェニルアラニンから1062番(配列番号9の1093)のロイシンにあたる26アミノ酸残基、細胞内領域は同配列表の1063番(配列番号9の1094番)のアルギニンから1187番(配列番号9の1218番)のバリンにあたる106アミノ酸残基が該当することが推定された。ただし、これらの各部分は、あくまでもアミノ酸配列から予測されたドメイン構成であり、実際に細胞上および溶液中での存在形態は、上記の構成と若干異なることも十分考えられ、上記に一応規定された各ドメインの構成アミノ酸が、5から10アミノ酸配列前後することも考えられる。   Further, according to the analysis of the amino acid sequence of human serate-1, the amino acid sequence of the precursor of human serate-1 is composed of 1218 amino acid residues shown in the amino acid sequence of SEQ ID NO: 9 in the sequence listing, and the signal peptide region is shown in the sequence listing. 31 amino acid residues from the methionine of amino acid sequence -31 (No. 1 of SEQ ID NO: 9) to alanine of -1 (No. 31 of SEQ ID NO: 9), the extracellular region is No. 1 (SEQ ID NO: 9) No. 32) serine to 1036 amino acid residues (1067 of SEQ ID NO: 9) aspartic acid, 1036 amino acid residues, and the cell membrane passage region is 1062 from phenylalanine of amino acid sequence 1037 (SEQ ID NO: 9 1068) of the same sequence listing. 26 amino acid residues corresponding to leucine of No. (SEQ ID NO: 91093), intracellular region is 1063 (SEQ ID NO: 9 of the same sequence listing) 106 the amino acid residue corresponding to valine 094 No.) No. 1187 from arginine (1218 of SEQ ID NO: 9) was estimated to be appropriate. However, each of these parts is a domain structure predicted from the amino acid sequence to the last, and it is considered that the existence form in cells and in solution is slightly different from the above structure. It is also conceivable that the constituent amino acids of each domain are around 5 to 10 amino acid sequences.

ヒトセレイト−1の他生物のセレイトホモログとのアミノ酸配列の比較では、ショウジョウバエセレイト、ラットジャグドとの相同性はそれぞれ32.1%、95.3%であり、これらの物質とは異なる新規なアミノ酸配列を有する新規物質であり、本発明者により初めて明らかにされた物質である。また、上記のデータベース上の全ての生物種の検索においてもヒトセレイト−1と同一配列を有するポリペプチドは見いだされなかった。   Comparing the amino acid sequence of human serate-1 with serate homologues of other organisms, the homology with Drosophila selete and rat jagd was 32.1% and 95.3%, respectively. It is a novel substance having a sequence, and is a substance that has been revealed for the first time by the present inventors. In addition, no polypeptide having the same sequence as human selete-1 was found in the search for all species on the database.

ノッチのリガンドホモログは、進化論的に保存された共通の配列を有している。すなわちDSL配列と繰り返して存在するEGF様配列である。ヒトセレイト−1と他のノッチリガンドホモログとの比較により、ヒトセレイト−1のアミノ酸配列からこれらの保存された配列を推定した。すなわち、DSL配列は配列表の配列番号7のアミノ酸配列の156番のシステインから198番のシステインにあたる43アミノ酸残基に相当した。EGF様配列は16回繰り返して存在し、配列表の配列番号7のアミノ酸配列のうち、第1EGF様配列は204番システインから231番システインまで、第2EGF様配列は234番システインから262番システインまで、第3EGF様配列は269番システインから302番システインまで、第4EGF様配列は309番システインから340番システインまで、第5EGF様配列は346番システインから378番システインまで、第6EGF様配列は385番システインから416番システインまで、第7EGF様配列は423番システインから453番システインまで、第8EGF様配列は460番システインから491番システインまで、第9EGF様配列は498番システインから529番システインまで、第10EGF様配列は536番システインから595番システインまで、第11EGF様配列は602番システインから633番システインまで、第12EGF様配列は640番システインから671番システインまで、第13EGF様配列は678番システインから709番システインまで、第14EGF様配列は717番システインから748番システインまで、第15EGF様配列は755番システインから786番システインまで、第16EGF様配列は793番システインから824番システインに該当した。但し、第10EGF様配列はシステインを10残基含む変則的な配列を有していた。   Notch's ligand homologues have an evolutionarily conserved common sequence. That is, it is an EGF-like sequence that repeats with the DSL sequence. These conserved sequences were deduced from the amino acid sequence of human serate-1 by comparing human serate-1 with other Notch ligand homologs. That is, the DSL sequence corresponded to 43 amino acid residues corresponding to cysteine from 156 to 198 in the amino acid sequence of SEQ ID NO: 7 in the Sequence Listing. The EGF-like sequence is repeated 16 times. Among the amino acid sequences of SEQ ID NO: 7 in the sequence listing, the first EGF-like sequence is from cysteine 204 to 231 cysteine, and the second EGF-like sequence is from 234 to 262 cysteine. The 3rd EGF-like sequence is from 269 to cysteine, the 4th EGF-like sequence is from 309 to 340 cysteine, the 5th EGF-like sequence is from 346 to 378 cysteine, and the 6th EGF-like sequence is 385. From cysteine to 416 cysteine, 7th EGF-like sequence from 423 cysteine to 453 cysteine, 8th EGF-like sequence from 460 cysteine to 491 cysteine, 9th EGF-like sequence from 498 cysteine to 529 cysteine, 10EGF Sequences from 536 cysteine to 595 cysteine, 11th EGF-like sequence from 602 to 633 cysteine, 12th EGF-like sequence from 640 to 671 cysteine, 13th EGF-like sequence from 678 to 709 Up to cysteine, the 14th EGF-like sequence corresponds to cysteine from 717 to 748, the 15th EGF-like sequence from 755 to 786, and the 16th EGF-like sequence from 793 to 824. However, the 10th EGF-like sequence had an irregular sequence containing 10 residues of cysteine.

ヒトセレイトー1のアミノ酸配列から予想されることとして、糖鎖が付加される部分はN−アセチル−D−グルコサミンがN−グルコシド結合可能な部分として、配列表の配列番号7のアミノ酸配列の112番、131番、186番、351番、528番、554番、714番、1014番、1033番のアスパラギン残基が挙げられる。また、N−アセチル−D−ガラクトサミンのO−グリコシド結合を推定する部分として、セリンまたはスレオニン残基が頻出する部分が考えられる。これらの糖鎖が付加されたタンパクの方がポリペプチドそのものよりも一般に生体内での分解に対して安定であり、また強い生理活性を有していると考えられる。したがって、配列表の配列番号5、6または7の配列を含有するポリペプチドのアミノ酸配列の中にN−アセチル−D−グルコサミンがN−グルコシドやN−アセチル−D−ガラクトサミンなどの糖鎖がN−グルコシドあるいはO−グルコシド結合してなるポリペプチドも本発明に含まれる。   As expected from the amino acid sequence of human serato 1, the portion to which a sugar chain is added is the portion where N-acetyl-D-glucosamine can bind to N-glucoside, the 112th amino acid sequence of SEQ ID NO: 7 in the sequence listing, 131, 186, 351, 528, 554, 714, 1014, 1033 asparagine residues. Moreover, as a part which estimates the O-glycoside bond of N-acetyl-D-galactosamine, the part where a serine or threonine residue appears frequently is considered. Proteins to which these sugar chains have been added are generally more stable against degradation in vivo than polypeptides themselves, and are considered to have strong physiological activity. Therefore, N-acetyl-D-glucosamine is an N-glucoside or N-acetyl-D-galactosamine sugar chain such as N in the amino acid sequence of the polypeptide containing the sequence number 5, 6 or 7 in the sequence listing. Polypeptides formed by -glucoside or O-glucoside linkage are also included in the present invention.

ショウジョウバエノッチおよびそのリガンドの結合に関する研究により、ショウジョウバエノッチのリガンドがノッチに結合するために必要なアミノ酸領域は、シグナルペプチドが切断された成熟体蛋白質のN末からDSL配列までであることが明らかにされている(特表平7−503121号)。このことから、ヒトノッチリガンド分子のリガンド作用発現に必要な領域は少なくともDSLドメイン、すなわち配列表の配列番号1のアミノ酸配列含む領域であり、また、少なくともヒトデルタ−1のリガンド作用の発現に必要な領域は配列表の配列番号2に示した新規アミノ酸配列であり、更に少なくともヒトセレイト−1のリガンド作用の発現に必要な領域は配列表の配列番号5に示した新規アミノ酸配列であることがわかる。   Studies on the binding of Drosophila Notch and its ligand reveal that the amino acid region required for the Drosophila Notch ligand to bind to Notch is from the N-terminal to the DSL sequence of the mature protein from which the signal peptide was cleaved. (Special Table No. 7-503121). From this, the region necessary for the expression of the ligand action of the human Notch ligand molecule is at least the DSL domain, that is, the region containing the amino acid sequence of SEQ ID NO: 1 in the sequence listing, and at least necessary for the expression of the ligand action of human delta-1. It can be seen that the region is the novel amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, and that at least the region necessary for the expression of the ligand action of human selete-1 is the novel amino acid sequence shown in SEQ ID NO: 5 in the sequence listing.

また、配列表の配列番号の8の遺伝子配列の一部もしくは全部をコードするDNAを用いれば、ヒトデルター1のmRNAの検出が可能であり、配列表の配列番号の9の遺伝子配列の一部もしくは全部をコードするDNAを用いれば、ヒトセレイト−1のmRNAの検出が可能である。たとえば、これらの遺伝子の発現を調べる方法として、配列表の配列番号8または9の一部の遺伝子配列を有する12merから16mer以上、さらに望ましくは18mer以上の相補し得る核酸、つまりアンチセンスDNA、RNA、及びそれらがメチル化、メチルフォスフェート化、脱アミノ化、またはチオフォスフェート化された誘導体を用い、ハイブリダイゼーション、PCR等の手法によって行うことが出来る。同様な方法でマウス等の他の生物の本遺伝子のホモログの検出や遺伝子クローニングができる。さらに、ヒトを含めたゲノム上の遺伝子のクローニングも同様に可能である。従って、そのようにしてクローニングされたこれら遺伝子を用いれば、本ヒトデルタ−1、ヒトセレイト−1の更に詳細な機能も明らかにすることが出来る。例えば、近年の遺伝子操作技術を用いれば、トランスジェニックマウス、ジーンターゲッティングマウス、また、本遺伝子と関連する遺伝子を共に不活化したダブルノックアウトなどのあらゆる方法を用いることが出来る。また、本遺伝子のゲノム上の異常があれば、遺伝子診断、遺伝子治療への応用も可能である。   Further, if DNA encoding a part or all of the gene sequence of SEQ ID NO: 8 in the sequence listing is used, it is possible to detect human delta-1 mRNA, and a part of the gene sequence of SEQ ID NO: 9 of the sequence listing or If DNA encoding all of them is used, it is possible to detect human Serte-1 mRNA. For example, as a method for examining the expression of these genes, nucleic acids capable of complementing 12 mer to 16 mer or more, more preferably 18 mer or more having a partial gene sequence of SEQ ID NO: 8 or 9 in the sequence listing, that is, antisense DNA, RNA , And derivatives in which they are methylated, methylphosphated, deaminated, or thiophosphated, and can be performed by techniques such as hybridization and PCR. The homologue of this gene from other organisms such as mice and gene cloning can be detected by the same method. Furthermore, cloning of genes on the genome including humans is possible as well. Therefore, by using these genes cloned in such a manner, more detailed functions of the present human delta-1 and human serate-1 can be clarified. For example, if a recent genetic manipulation technique is used, any method such as a transgenic mouse, a gene targeting mouse, or a double knockout in which both genes related to the present gene are inactivated can be used. Moreover, if there is an abnormality in the genome of this gene, it can be applied to gene diagnosis and gene therapy.

尚、本発明のヒトデルタ−1の全アミノ酸配列をコードするcDNAを含むベクターpUCDL−1Fを大腸菌JM109に遺伝子導入した形質転換細胞は、E.coli:JM109−pUCDL−1Fとして日本国茨城県つくば市東1丁目1番3号に所在の通商産業省工業技術院生命工学工業技術研究所に寄託されている。寄託日は平成8年10月28日であり、寄託番号はFERM BP−5728。また、本発明のヒトセレイト−1の全アミノ酸配列をコードするcDNAを含むベクターpUCSR−1を大腸菌JM109に遺伝子導入した形質転換細胞は、E.coli:JM109−pUCSR−1として日本国茨城県つくば市東1丁目1番3号に所在の通商産業省工業技術院生命工学工業技術研究所に寄託されている。寄託日は平成8年10月28日であり、寄託番号はFERM BP−5726。   A transformed cell in which the vector pUCDL-1F containing cDNA encoding the entire amino acid sequence of human delta-1 of the present invention was introduced into E. coli JM109 was obtained by using E. coli. Eli: JM109-pUCDL-1F has been deposited with the Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry, located in 1-3 1-3 Higashi, Tsukuba, Ibaraki, Japan. The deposit date is October 28, 1996, and the deposit number is FERM BP-5728. In addition, a transformed cell obtained by introducing a vector pUCSR-1 containing cDNA encoding the entire amino acid sequence of human serate-1 of the present invention into E. coli JM109 is E. coli. Eli: JM109-pUCSR-1 has been deposited with the Institute of Biotechnology, Institute of Industrial Technology, Ministry of International Trade and Industry located in 1-3-3 Higashi, Tsukuba City, Ibaraki, Japan. The deposit date is October 28, 1996, and the deposit number is FERM BP-5726.

上記の方法にて分離したヒトデルタ−1、ヒトセレイト−1のアミノ酸配列をコードするcDNAを用いた色々な形態を有したヒトデルタ−1、ヒトセレイト−1の発現、精製には多数の方法が成書によって知られている(Kriegler,Gene Transfer and Expression−A Laboratory Manual Stockton Pres,1990、および横田ら、バイオマニュアルシリーズ4,遺伝子導入と発現・解析法,羊土社、1994)。すなわち、分離した該ヒトデルタ−1、該ヒトセレイト−1のアミノ酸配列をコードするcDNAを適当な発現ベクターにつなぎ、動物細胞、昆虫細胞などの真核細胞、バクテリアなどの原核細胞を宿主として生産させることができる。   Numerous methods are available for the expression and purification of human delta-1 and human serate-1 having various forms using cDNA encoding the amino acid sequences of human delta-1 and human serate-1 separated by the above method. (Kriegler, Gene Transfer and Expression-A Laboratory Manual Stockton Pres, 1990, and Yokota et al., BioManual Series 4, Gene Introduction and Expression / Analysis Methods, Yodosha, 1994). That is, the isolated cDNA encoding the human delta-1 and human serate-1 amino acid sequences is connected to an appropriate expression vector to produce eukaryotic cells such as animal cells and insect cells, and prokaryotic cells such as bacteria. Can do.

本発明のヒトデルタ−1、ヒトセレイト−1を発現させる際に、本発明のポリペプチドをコードするDNAはその5'末端に翻訳開始コドンを有し、また、3'末端には翻訳終止コドンを有してもよい。これらの翻訳開始コドンや翻訳終止コドンは適当な合成DNAアダプターを用いて付加することもできる。更に該DNAを発現させるには上流にプロモーターを接続する。ベクターとしては上記の大腸菌由来プラスミド、枯草菌由来プラスミド、酵母由来プラスミド、あるいはλファージなどのバクテリオファージおよびレトロウィルス、ワクシニアウィルスなどの動物ウィルスなどが挙げられる。   When expressing human delta-1 and human serate-1 of the present invention, the DNA encoding the polypeptide of the present invention has a translation initiation codon at the 5 ′ end and a translation stop codon at the 3 ′ end. May be. These translation initiation codon and translation termination codon can also be added using an appropriate synthetic DNA adapter. Further, a promoter is connected upstream to express the DNA. Examples of the vector include the aforementioned E. coli-derived plasmid, Bacillus subtilis-derived plasmid, yeast-derived plasmid, bacteriophage such as λ phage, and animal viruses such as retrovirus and vaccinia virus.

本発明に用いられるプロモーターとしては、遺伝子発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。   The promoter used in the present invention may be any promoter as long as it is suitable for the host used for gene expression.

形質転換する際の宿主がエシェリヒア属菌である場合はtacプロモーター、trpプロモーター、lacプロモーターなどが好ましく、宿主がバチルス属菌である場合にはSPO1プロモーター、SPO2プロモーターなどが好ましく、宿主が酵母である場合にはPGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。   When the host for transformation is Escherichia, tac promoter, trp promoter, lac promoter and the like are preferable. When the host is Bacillus, SPO1 promoter, SPO2 promoter and the like are preferable, and the host is yeast. In some cases, PGK promoter, GAP promoter, ADH promoter and the like are preferable.

宿主が動物細胞である場合には、実施例に記載したSRαプロモーターなどのSV40由来のプロモーター、レトロウィルスのプロモーター、メタルチオネインプロモーター、ヒートショックプロモーターなどが利用できる。   When the host is an animal cell, an SV40-derived promoter such as the SRα promoter described in the Examples, a retrovirus promoter, a metal thionein promoter, a heat shock promoter, or the like can be used.

以上に示したあらゆる同業者であれば使用可能なプロモーターを有する発現ベクターを用いることにより、本発明のポリペチドを発現することができる。   By using an expression vector having a promoter that can be used by any person skilled in the art as described above, the polypeptide of the present invention can be expressed.

本発明のポリペプチドを発現させる時、配列表の配列番号2、3、4、5、6もしくは7のアミノ酸配列をコードするDNAのみでもかまわないが、産生されたポリペプチドの検出を容易にするための既知抗原エピトープをコードするcDNAを付加したり、多量体構造を形成させるためにイムノグロブリンFcをコードするcDNAを付加することで、特別の機能を付加した蛋白質を生産させることもできる。   When expressing the polypeptide of the present invention, DNA encoding the amino acid sequence of SEQ ID NO: 2, 3, 4, 5, 6 or 7 in the sequence listing may be used alone, but it facilitates detection of the produced polypeptide. Therefore, a protein having a special function can be produced by adding a cDNA encoding a known antigen epitope for adding a cDNA encoding an immunoglobulin Fc to form a multimeric structure.

ヒトデルタ−1に関して本発明者らは実施例5に示したごとく、細胞外タンパク質を発現する発現ベクターとして、
1)配列表の配列番号3に記載のアミノ酸配列の1番から520番のアミノ酸をコードするDNA、
2)配列表の配列番号3に記載のアミノ酸配列の1番から520番のアミノ酸のC末側に8アミノ酸、すなわちAsp Tyr Lys Asp Asp Asp Asp Lysのアミノ酸配列(以下FLAG配列、配列表の配列番号10)を持つポリペプチドを付加したキメラタンパク質をコードするDNA、および
3)配列表の配列番号3に記載のアミノ酸配列の1番から520番のアミノ酸のC末側にヒトIgG1のヒンジ部分以下のFc配列(国際公開番号、WO94/02035号参照)を付加し、ヒンジ部分のジスルフィド結合により2量体構造を有するキメラタンパク質をコードするDNAを発現ベクターpMKITNeo(丸山ら、91年度日本分子生物学会予稿集、日本国東京医科歯科大学丸山より入手可能、プロモーターとしてSRαを有する)に各々別々につなぎ、ヒトデルタ−1の細胞外部分発現ベクターを作製した。
As for human delta-1, as shown in Example 5, the present inventors expressed as an expression vector expressing an extracellular protein,
1) DNA encoding amino acids 1 to 520 of the amino acid sequence set forth in SEQ ID NO: 3 in the sequence listing;
2) 8 amino acids at the C-terminal side of amino acids 1 to 520 of the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing, that is, Asp Tyr Lys Asp Asp Asp Asp Lys amino acid sequence (hereinafter referred to as FLAG sequence, sequence listing sequence) DNA encoding a chimeric protein to which a polypeptide having number 10) is added, and 3) the hinge part of human IgG1 below the C-terminal side of amino acids 1 to 520 of the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing Fc sequence (see International Publication No. WO94 / 02035) is added, and a DNA encoding a chimeric protein having a dimer structure is formed by disulfide bond at the hinge portion. Expression vector pMKITNeo (Maruyama et al. Proceedings, available from Maruyama, Tokyo Medical and Dental University, Japan Connecting each separately have a SR alpha), was produced extracellular portions expression vector of human Delta-1.

また、ヒトデルタ−1の全長タンパク質を発現する発現ベクターとして、
4)配列表の配列番号4の1番から702番のアミノ酸をコードするDNA、および
5)配列表の配列番号4の1番から702番のアミノ酸のC末端側にFLAG配列を持つポリペプチドを付加したキメラタンパク質をコードするDNAを発現ベクターpMKITNeoに各々別々につなぎ、ヒトデルター1の全長発現ベクターを作製した。このようにして構築された該ヒトデルタ−1をコードするDNAを含有する発現プラスミドを用いて、形質転換体を製造する。
In addition, as an expression vector for expressing the full-length protein of human delta-1,
4) DNA encoding amino acids 1 to 702 of SEQ ID NO: 4 in the sequence listing, and 5) polypeptide having a FLAG sequence on the C-terminal side of amino acids 1 to 702 of SEQ ID NO: 4 in the sequence listing The DNA encoding the added chimeric protein was separately ligated to the expression vector pMKITNeo to prepare a full-length expression vector for human delta-1. A transformant is produced using the expression plasmid containing the DNA encoding the human delta-1 thus constructed.

また、同様に、ヒトセレイト−1に関して本発明者らは実施例6に示したごとく、細胞外タンパク質を発現する発現ベクターとして、
6)配列表の配列番号6に記載のアミノ酸配列の1番から1036番のアミノ酸をコードするDNA、
7)配列表の配列番号6に記載のアミノ酸配列の1番から1036番のアミノ酸のC末側に該FLAG配列を持つポリペプチドを付加したキメラタンパク質をコードするDNA、および
8)配列表の配列番号6に記載のアミノ酸配列の1番から1036番のアミノ酸のC末側に該Fc配列を付加し、ヒンジ部分のジスルフィド結合により2量体構造を有するキメラタンパク質をコードするDNAを発現ベクターpMKITNeoに各々別々につなぎ、ヒトセレイトー1の細胞外部分発現ベクターを作製した。
Similarly, as shown in Example 6 for human selete-1, the present inventors expressed an expression vector for expressing an extracellular protein.
6) DNA encoding amino acids 1 to 1036 of the amino acid sequence set forth in SEQ ID NO: 6 in the sequence listing;
7) DNA encoding a chimeric protein obtained by adding a polypeptide having the FLAG sequence to the C-terminal side of amino acids 1 to 1036 of the amino acid sequence shown in SEQ ID NO: 6 in the sequence listing; and 8) Sequences of the sequence listing The Fc sequence is added to the C-terminal side of amino acids 1 to 1036 of the amino acid sequence shown in No. 6, and a DNA encoding a chimeric protein having a dimer structure is added to the expression vector pMKITNeo by a disulfide bond at the hinge portion. Each was ligated separately to produce an extracellular part expression vector for human seroto1.

また、ヒトセレイト−1の全長タンパク質を発現する発現ベクターとして、
9)配列表の配列番号7の1番から1187番のアミノ酸をコードするDNA、および
10)配列表の配列番号7の1番から1187番のアミノ酸のC末端側にFLAG配列を持つポリペプチドを付加したキメラタンパク質をコードするDNAを発現ベクターpMKITNeoに各々別々につなぎ、ヒトセレイト−1の全長発現ベクターを作製した。このようにして構築された該ヒトセレイト−1をコードするDNAを含有する発現プラスミドを用いて、形質転換体を製造する。
In addition, as an expression vector for expressing the full-length protein of human selete-1,
9) DNA encoding amino acids 1 to 1187 of SEQ ID NO: 7 in the sequence listing, and 10) Polypeptide having a FLAG sequence on the C-terminal side of amino acids 1 to 1187 of SEQ ID NO: 7 in the sequence listing The DNA encoding the added chimeric protein was separately ligated to the expression vector pMKITNeo to prepare a full-length expression vector for human serate-1. A transformant is produced using the expression plasmid containing the DNA encoding human selate-1 constructed as described above.

宿主としては例えばエシェリヒア属菌、バチルス属菌、酵母、動物細胞などが挙げられる。動物細胞としては、例えばサル細胞であるCOS−7、Vero、チャイニーズハムスター細胞CHO、カイコ細胞SF9などが挙げられる。   Examples of the host include Escherichia bacteria, Bacillus bacteria, yeast, animal cells, and the like. Examples of animal cells include monkey cells such as COS-7, Vero, Chinese hamster cell CHO, and silkworm cell SF9.

実施例7に示したごとく、上記の1)〜10)の発現ベクターをそれぞれ別々に遺伝子導入し、ヒトデルタ−1もしくはヒトセレイト−1をCOS−7細胞(理化学研究所、細胞開発銀行から入手可能、RCB0539)で発現させ、これら発現プラスミドで形質転換された形質転換体が得られる。さらに、各形質転換体をそれぞれ公知の方法により、適当な培地中で適当な培養条件により培養することによって各種ヒトデルタ−1ポリペプチド、ヒトセレイト−1ポリペプチドを製造することができる。   As shown in Example 7, each of the above expression vectors 1) to 10) was separately transfected, and human delta-1 or human serate-1 was obtained from COS-7 cells (available from RIKEN, Cell Development Bank, RCB0539) and transformants transformed with these expression plasmids are obtained. Furthermore, various human delta-1 polypeptides and human selete-1 polypeptides can be produced by culturing each transformant by a known method in an appropriate medium under an appropriate culture condition.

実施例8に示したごとく、上記の様な培養物からヒトデルタ−1ポリペプチド、ヒトセレイト−1ポリペプチドを分離精製することができる。また、一般的には下記の方法により行うことができる。   As shown in Example 8, human delta-1 polypeptide and human selete-1 polypeptide can be separated and purified from the culture as described above. Moreover, generally it can carry out by the following method.

すなわち、培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法、たとえば遠心分離法などで菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチーム及び/または凍結融解などによって菌体あるいは細胞を破砕した後、遠心分離や濾過により粗抽出液を得る方法などを適宜用いることができる。緩衝液の中に尿素、塩酸グアニジンなどのタンパク変性剤や、トリトンX−100などの界面活性剤が含まれていてもよい。培養溶液中に分泌される場合には、培養液を公知の方法、たとえば遠心分離法などで菌体あるいは細胞と分離し、上清を集める。   That is, when extracting from cultured microbial cells or cells, after culturing, the microbial cells or cells are collected by a known method, such as centrifugation, and suspended in an appropriate buffer, and subjected to ultrasound, lysozyme and / or A method of obtaining a crude extract by centrifugation or filtration after disrupting cells or cells by freeze-thawing or the like can be appropriately used. The buffer solution may contain a protein denaturant such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100. When secreted into the culture solution, the culture solution is separated from the cells or cells by a known method such as centrifugation, and the supernatant is collected.

このようにして得られた細胞抽出液あるいは細胞上清に含まれるヒトデルタ−1、ヒトセレイト−1は公知のタンパク質精製法を用いることで、精製できる。その精製の過程でタンパク質の存在を確認するために、上記に示したFLAG、ヒトIgGFcなどの融合タンパクの場合には、それら既知抗原エピトープに対する抗体を用いたイムノアッセイで検出して精製を進めることができる。また、このような融合タンパク質として発現させない場合には、実施例9に記載した抗体を用いて検出することができる。   The human delta-1 and human selete-1 contained in the cell extract or cell supernatant thus obtained can be purified by using a known protein purification method. In order to confirm the presence of the protein during the purification process, in the case of the above-mentioned fusion proteins such as FLAG and human IgG Fc, it is possible to proceed with purification by detecting by immunoassay using antibodies against these known antigenic epitopes. it can. Moreover, when not expressing as such a fusion protein, it can detect using the antibody described in Example 9.

ヒトデルタ−1、セレイト−1を特異的に認識する抗体は実施例9に示したように作製することができる。また成書(Antibodies a laboratory manual,E.Harlow et al.,Cold Spring Harbor Laboratory)に示された各種の方法ならびに遺伝子クローニング法などにより分離されたイムノグロブリン遺伝子を用いて、細胞に発現させた遺伝子組換え体抗体によっても作製することができる。このように作製された抗体はヒトデルタ−1、デルタ−1の精製に利用できる。すなわち、実施例9に示したこれらのヒトデルタ−1、セレイト−1を特異的に認識する抗体を用いれば、本発明のヒトデルタ−1、セレイト−1の検出、測定が可能であり、細胞の分化異常に伴う疾患例えば悪性腫瘍など疾患の診断薬として使用でき得る。   Antibodies specifically recognizing human delta-1 and selete-1 can be prepared as shown in Example 9. In addition, genes expressed in cells using immunoglobulin genes isolated by various methods and gene cloning methods shown in the books (Antibodies a laboratory manual, E. Harlow et al., Cold Spring Harbor Laboratory) It can also be produced by recombinant antibodies. The antibody thus prepared can be used for purification of human delta-1 and delta-1. That is, by using these antibodies specifically recognizing human delta-1 and selete-1 shown in Example 9, it is possible to detect and measure human delta-1 and selete-1 of the present invention, and to differentiate cells. It can be used as a diagnostic agent for diseases associated with abnormalities such as malignant tumors.

精製方法としてより有効な方法としては抗体を用いたアフィニティークロマトグラフィーが挙げられる。この際に用いる抗体としては実施例9記載した抗体を用いることができる。また、融合タンパクの場合には、実施例8に示したように、FLAGであればFLAGに対する抗体、ヒトIgGFcであればProtein G、Protein Aを用いることができる。   A more effective method as a purification method is affinity chromatography using an antibody. As the antibody used in this case, the antibody described in Example 9 can be used. In the case of a fusion protein, as shown in Example 8, an antibody against FLAG can be used for FLAG, and Protein G and Protein A can be used for human IgG Fc.

これらの融合蛋白としてはここに示した2例以外のあらゆる融合蛋白が可能である。例えば、ヒスチジンTag、myc−tagなどが挙げられるが、現在までの公知の方法以外にも、現在の遺伝子工学的な手法を用いればあらゆる融合蛋白を作製することが可能であり、それらの融合蛋白に由来する本発明ポリペプチドも本発明に含まれる。   As these fusion proteins, all fusion proteins other than the two examples shown here are possible. For example, histidine Tag, myc-tag, and the like can be mentioned. In addition to the known methods up to now, any fusion protein can be prepared using current genetic engineering techniques. The polypeptide of the present invention derived from is also included in the present invention.

このように精製されたヒトデルタ−1、ヒトセレイト−1タンパクの生理機能を、各種細胞株、マウス、ラットなどの生物個体を用いた各種生理活性アッセイ法、分子生物学的手法に基づく細胞内シグナル伝達の各種アッセイ法、ノッチリセプターとの結合などの色々なアッセイ法にて知ることができる。   Intracellular signal transduction based on the physiological functions of human delta-1 and human serate-1 protein purified in this way based on various biological activity assays using biological individuals such as various cell lines, mice and rats, and molecular biological techniques. And various assay methods such as binding to a notch receptor.

本発明者らはヒトデルタ−1、ヒトセレイト−1のIgG1キメラ蛋白質を用いて、血液未分化細胞への作用を観察した。   The present inventors have observed the effect on blood undifferentiated cells using IgG1 chimeric protein of human delta-1 and human selete-1.

すなわち、実施例10に示したようにCD34陽性細胞画分を濃縮した臍帯血由来血液未分化細胞において、各種サイトカイン存在下でコロニー形成する血液未分化細胞に対して本発明ポリペチドがコロニー形成作用の抑制活性を有することを見いだした。また、この抑制活性はSCF存在下にのみ観察される過去にない活性を有していると考えられた。   That is, as shown in Example 10, in the cord blood-derived blood undifferentiated cells enriched with the CD34 positive cell fraction, the polypeptide of the present invention has a colony-forming effect on blood undifferentiated cells that form colonies in the presence of various cytokines. It was found to have inhibitory activity. Moreover, this inhibitory activity was considered to have an unprecedented activity observed only in the presence of SCF.

また、実施例11に示したように、SCF、IL−3、IL−6、GM−CSF、Epoの各種サイトカイン存在下での長期(8週間)液体培養へのヒトデルタ−1もしくはヒトセレイト−1のIgG1キメラ蛋白質の添加により、有意にコロニー形成細胞の維持が延長される作用が見いだした。さらにコロニー形成細胞の増殖を抑制しない作用を見いだした。一方、血液細胞の遊走、分化抑制作用を有するサイトカインであるMIP−1α(Verfaillie et al.,J.Exp.Med.179,643−649,1994)は血液未分化細胞の未分化維持の作用を有さなかった。   As shown in Example 11, human delta-1 or human serate-1 was subjected to long-term (8 weeks) liquid culture in the presence of various cytokines such as SCF, IL-3, IL-6, GM-CSF, and Epo. It was found that the addition of the IgG1 chimeric protein significantly prolonged the maintenance of colony forming cells. Furthermore, the effect | action which does not suppress the proliferation of colony forming cells was found. On the other hand, MIP-1α (Verfaillie et al., J. Exp. Med. 179, 643-649, 1994), a cytokine having blood cell migration and differentiation inhibitory action, has the effect of maintaining undifferentiation of blood undifferentiated cells. I didn't have it.

さらに、実施例12に示したように、サイトカイン存在下での液体培養へのヒトデルタ−1もしくはヒトセレイト−1のIgG1キメラ蛋白質の添加により、ヒト血液未分化細胞の中で最も未分化な血液幹細胞と位置付けられているLTC−IC(Long−Term Culture−Initiating Cells)の数を有意に維持する活性を有していることを見いだした。   Furthermore, as shown in Example 12, the most undifferentiated blood stem cell among human blood undifferentiated cells can be obtained by adding IgG1 chimeric protein of human delta-1 or human selete-1 to liquid culture in the presence of cytokines. It was found to have an activity that significantly maintains the number of LTC-IC (Long-Term Culture-Initiating Cells) that have been positioned.

これらの結果から、ヒトデルタ−1及びヒトセレイト−1は血液未分化細胞の分化を抑制し、それらの作用は血液幹細胞からコロニー形成細胞にわたって作用することが明らかである。これらの生理作用は血液未分化細胞の体外増殖に必要な作用であり、特にヒトデルタ−1もしくはヒトセレイト−1を含有する細胞培養培地で培養した細胞は抗癌剤投与後の骨髄抑制回復に有効であり、他の条件を整えることにより体外での造血幹細胞の増幅を可能とするであろう。さらに、医薬品として用いた場合には、抗癌剤などの副作用で見られる骨髄抑制作用を保護し、軽減する作用がある。   From these results, it is clear that human delta-1 and human selete-1 suppress the differentiation of blood undifferentiated cells, and their actions act from blood stem cells to colony forming cells. These physiological actions are necessary for the in vitro proliferation of blood undifferentiated cells. Particularly, cells cultured in a cell culture medium containing human delta-1 or human selete-1 are effective for recovery of bone marrow suppression after administration of an anticancer agent. Other conditions will allow for the expansion of hematopoietic stem cells in vitro. Furthermore, when used as a pharmaceutical, it has the effect of protecting and reducing the myelosuppressive action seen from side effects such as anticancer agents.

さらに、血液細胞以外の未分化細胞においても、細胞の分化を抑制する作用が主に期待でき、また組織再生を促す作用等が期待できる。   Furthermore, in the undifferentiated cells other than blood cells, the action of suppressing cell differentiation can be mainly expected, and the action of promoting tissue regeneration can be expected.

医薬品として用いるならば、本発明のポリペプチドを適当な安定化剤、例えばヒト血清アルブミンなどと共に凍結乾燥品を作製し、用時注射用蒸留水にて溶解もしくは懸濁して使用し得る形状が望ましい。例えば0.1から1000μg/mlの濃度に調製した注射剤、点滴剤として提供することができる。本発明者らは本発明の化合物1mg/ml、ヒト血清アルブミン1mg/mlとなるようにバイアルに小分けし、長期にわたって該化合物の活性は保持された。さらに、細胞を体外にて培養、活性化させる場合には医薬品同様に、凍結乾燥品、もしくは溶液剤を作製して、培地に加える、もしくは培養に使用する容器に固定化することができる。また、本発明のポリペプチドの毒性については、マウスに対していずれのポリペプチドも10mg/Kgを腹腔内投与したがマウスの死亡例は確認されなかった。   For use as a pharmaceutical product, it is desirable that the polypeptide of the present invention be prepared in the form of a freeze-dried product together with an appropriate stabilizer such as human serum albumin and dissolved or suspended in distilled water for injection before use. . For example, it can be provided as an injection or infusion prepared at a concentration of 0.1 to 1000 μg / ml. The present inventors subdivided into vials so that the compound of the present invention was 1 mg / ml and human serum albumin 1 mg / ml, and the activity of the compound was retained over a long period of time. Further, when cells are cultured and activated in vitro, a lyophilized product or a solution can be prepared and added to a medium or immobilized on a container used for culture, as in the case of pharmaceuticals. Regarding the toxicity of the polypeptide of the present invention, 10 mg / Kg of any polypeptide was intraperitoneally administered to mice, but no mouse death was confirmed.

また、本発明のインビトロの生理活性は、あらゆる疾患モデルマウス、またはそれらに準ずる疾患に似た症状を呈するラット、サル等の動物をモデルとして投与を行い、その身体的、生理的な機能の回復、異常を調べることにより可能となる。例えば、造血細胞に関する異常であれば、5−FU系の抗癌剤を投与して、骨髄抑制モデルマウスを作製し、このマウスに本発明の化合物を投与した群としなかった群の骨髄細胞、末梢血細胞の数、生理的な機能を調べることで明らかになる。また更に、体外で造血幹細胞を含む造血未分化細胞の培養、増殖を調べる場合には、マウス骨髄細胞を培養器などを利用して、培養を行い、その際に本発明の化合物を加えた群と加えなかった群で培養後の細胞を致死量放射線照射マウスに細胞移植を行い、その結果の回復の度合いを、生存率、血球数の変動などを指標にすることで調べることが出来る。勿論、これらの結果が人にも外挿できるため、本化合物の薬効としての評価として有効なデータを得ることが出来る。   In addition, the in vitro physiological activity of the present invention can be administered to any disease model mouse, or an animal such as a rat or monkey that exhibits symptoms similar to those of the disease, and the recovery of its physical and physiological functions. It becomes possible by examining abnormalities. For example, if the abnormality is related to hematopoietic cells, a myelopathy model mouse is prepared by administering a 5-FU anticancer agent, and the bone marrow cells and peripheral blood cells of the group not treated with the compound of the present invention are administered to this mouse. It becomes clear by examining the number and physiological function. Furthermore, when examining the culture and proliferation of hematopoietic undifferentiated cells containing hematopoietic stem cells outside the body, the mouse bone marrow cells are cultured using an incubator or the like, and the compound of the present invention is added at that time. In the group not added, the cells after culturing were transplanted into lethal dose-irradiated mice, and the degree of recovery of the result can be examined by using the survival rate, fluctuation of blood cell count, etc. as indicators. Of course, since these results can be extrapolated to humans, it is possible to obtain effective data as an evaluation of the efficacy of the present compound.

本発明の化合物を医薬品として利用する場合、その適応として、細胞の分化異常に伴う疾患、例えば白血病、悪性腫瘍の治療があげられ、体外でヒト由来細胞を培養して、その本来の機能を保ったまま増殖させる、もしくは新たな機能を持たせる等を行う細胞治療、組織損傷後の再生時に投与することにより本来その組織が有していた機能を損なうことなく再生させる治療法などの応用が可能である。その際の投与量としてはその形態などにもよるが、具体的には10μg/Kgから10mg/Kg程度投与すればよい。   When the compound of the present invention is used as a pharmaceutical, its indication is treatment of diseases associated with abnormal cell differentiation, such as leukemia and malignant tumors, and human-derived cells are cultured in vitro to maintain their original functions. Can be applied to cell therapy that allows cells to proliferate or have new functions, etc., or treatment that regenerates without damaging the functions originally possessed by the tissue when administered after regeneration after tissue damage. It is. The dose at that time depends on the form and the like, but specifically, it may be about 10 μg / Kg to about 10 mg / Kg.

また、さらに強い生理活性を有する形態として、多量体を形成し得る形態で発現させることが望ましい。   Moreover, it is desirable to express in a form capable of forming a multimer as a form having stronger physiological activity.

実施例10に示したようにヒトデルタ−1及びヒトセレイト−1の抑制活性は2量体構造を有するIgGキメラ蛋白質の方が高いことから、強い生理活性を有する形態として、多量体を形成し得る形態で発現させることが望ましい。   As shown in Example 10, since the inhibitory activity of human delta-1 and human selete-1 is higher in the IgG chimeric protein having a dimer structure, a form capable of forming a multimer as a form having strong physiological activity It is desirable to express in

多量体構造を有するヒトデルタ−1及びヒトセレイト−1は、実施例に記載したヒトIgGのFc部分とのキメラタンパク質として発現させて抗体のヒンジ部分によりジスルフィド結合をした多量体として発現させる方法、また、抗体認識部位をC末端もしくはN末端に発現するキメラタンパクとして発現させ、発現させた該ヒトセレイトの細胞外部分を含むポリペプチドをC末端もしくはN末端の抗体認識部位を特異的に認識する抗体と反応させることにより多量体を形成させる方法が挙げられる。さらに、別の方法として、抗体のヒンジ領域部分のみとの融合タンパクを発現させて、ジスルフィド結合にて2量体を形成させる方法、もしくはその他のヒトデルタ−1、ヒトセレイト−1の活性に何等影響を与えない方法でジスルフィド結合を生じさせる形のペプチドをC末端、N末端もしくはその他の部位に発現するように作成された融合タンパクから構成された2量体以上の高い比活性を有する多量体型ヒトデルタ−1及びヒトセレイト−1を得ることもできる。また、さらに配列表の配列番号2、3、5もしくは6のアミノ酸配列を含むポリペプチドから選ばれる1つ以上のポリペプチドを遺伝子工学的に2つ以上直列にもしくは並列に並べ多量体構造を発現させる方法などもある。その他、現在知られている2量体以上の多量体構造を持たせるあらゆる方法が適応可能である。したがって、遺伝子工学的な技術により作製される2量体もしくはそれ以上の形態を有する形の配列表の配列番号2、3、5もしくは6に記載のアミノ酸配列を含むポリペプチドを含む化合物に関しても本発明に含まれる。   Human delta-1 and human selete-1 having a multimeric structure are expressed as a chimeric protein with the Fc part of human IgG described in the Examples and expressed as a multimer having a disulfide bond formed by the hinge part of the antibody, The antibody recognition site is expressed as a chimeric protein that expresses at the C-terminus or N-terminus, and the expressed polypeptide containing the extracellular portion of the human serate reacts with an antibody that specifically recognizes the antibody recognition site at the C-terminus or N-terminus The method of forming a multimer by carrying out is mentioned. Furthermore, as another method, a fusion protein with only the hinge region part of an antibody is expressed to form a dimer by disulfide bond, or other effects on human delta-1 and human serate-1 activities are affected. A multimeric human delta having a high specific activity of a dimer or more composed of a fusion protein prepared so as to express a peptide in the form of generating a disulfide bond in a non-given manner at the C-terminal, N-terminal or other site 1 and human selete-1 can also be obtained. In addition, one or more polypeptides selected from polypeptides containing the amino acid sequence of SEQ ID NO: 2, 3, 5 or 6 in the sequence listing are genetically engineered in two or more in series or in parallel to express a multimeric structure. There is also a method to make it. In addition, any currently known method of giving a dimeric or higher multimeric structure can be applied. Therefore, the present invention also relates to a compound comprising a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 3, 5 or 6 in the sequence listing having a dimer or higher form produced by genetic engineering techniques. Included in the invention.

また、その他の方法として、化学的な架橋剤を用いて多量体化する方法が挙げられる。例えば、リシン残基を架橋するジメチルスベロイミデート2塩酸塩など、システイン残基のチオール基で架橋するN−(γ−マレイミドブチリルオキシ)スクシンイミドなど、アミノ基とアミノ基を架橋するグルタールアルデヒドなどが挙げられ、これらの架橋反応を利用して、2量体以上の多量体を形成させることができる。したがって、化学的な架橋剤により作製される2量体もしくはそれ以上の多量体の形態を有す形の配列表の配列番号2、3、5もしくは6に記載のアミノ酸配列を含むポリペプチドを含む化合物に関しても本発明に含まれる。   In addition, as another method, there is a method of multimerization using a chemical cross-linking agent. For example, dimethylsuberoimidate dihydrochloride that crosslinks lysine residues, N- (γ-maleimidobutyryloxy) succinimide that crosslinks with thiol groups of cysteine residues, and glutaraldehyde that crosslinks amino groups and amino groups A dimer or higher multimer can be formed using these cross-linking reactions. Accordingly, a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2, 3, 5 or 6 in the sequence listing in the form of a dimer or higher multimer produced by a chemical cross-linking agent is included. The compounds are also included in the present invention.

体外において細胞を増殖、活性化し、体内に細胞を戻す医療方法への適応には、上記のような形態を有したヒトデルタ−1もしくはヒトセレイト−1を直接培地中に加えることも可能だが、固定化する事も同様に可能である。固定化の方法としてはこれらのポリペプチドのアミノ基、カルボキシル基を利用したり、適当なスペーサーを用いたり、上記の架橋剤を用いたりして、培養容器にポリペプチドを共有結合させることができる。したがって、固体表面に存在する形態を有す配列表の配列番号2、3、5もしくは6のアミノ酸配列を含有するポリペプチドに関しても本発明に含まれる。   For adaptation to a medical method of proliferating and activating cells outside the body and returning the cells to the body, human delta-1 or human selete-1 having the above-mentioned form can be added directly to the medium, but it is immobilized. It is possible to do that as well. As an immobilization method, the polypeptide can be covalently bound to a culture vessel by using amino groups or carboxyl groups of these polypeptides, using an appropriate spacer, or using the above-mentioned crosslinking agent. . Therefore, a polypeptide containing the amino acid sequence of SEQ ID NO: 2, 3, 5 or 6 in the sequence listing having a form existing on the solid surface is also included in the present invention.

また、自然界に存在するヒトデルタ−1及びヒトセレイト−1は細胞膜蛋白質であることから、これらの分子を発現する細胞と血液未分化細胞を共培養することによっても、実施例で行った分化抑制作用を発現させることができる。したがって、配列表の配列番号2〜7のアミノ酸配列をコードするDNAを用いて形質転換した細胞と未分化細胞を共培養する方法についても本発明に含まれる。   In addition, since human delta-1 and human selete-1 existing in nature are cell membrane proteins, the differentiation-inhibiting action performed in the examples can also be achieved by co-culturing cells expressing these molecules and blood undifferentiated cells. Can be expressed. Therefore, a method for co-culturing a cell transformed with a DNA encoding the amino acid sequence of SEQ ID NO: 2 to 7 in the sequence listing and an undifferentiated cell is also included in the present invention.

発現させる細胞は実施例で示したCOS−7細胞でもかまわないが、ヒト由来の細胞が望ましく、また更に発現させる細胞は細胞株ではなくヒトの体内の血液細胞でも体細胞でもかまわない。したがって、遺伝子治療用のベクターに組み込んで体内で発現させることもできる。   The cells to be expressed may be COS-7 cells shown in the Examples, but human-derived cells are desirable, and further cells to be expressed may be blood cells or somatic cells in the human body, not cell lines. Therefore, it can also be incorporated into gene therapy vectors and expressed in vivo.

実施例10に示したように低濃度の単量体であるヒトデルタ−1もしくはヒトセレイト−1のFLAGキメラ蛋白質はコロニー形成抑制ではなく、逆にコロニー形成促進作用を示す。この作用は血液未分化細胞が細胞分裂する際に、ノッチリセプターとノッチリガンド分子を発現し、本発明のポリペプチドがその作用のアンタゴニストとして働いたと考えられる。このことから配列表の配列番号1、2、4もしくは5のアミノ酸配列を有するポリペプチドはその作用濃度をコントロールすることによりコロニー形成促進作用も有する。したがって、コロニー形成促進作用を有する配列表の配列番号2、3、5もしくは6のアミノ酸配列を有するポリペプチドも本発明に含まれる。   As shown in Example 10, the FLAG chimeric protein of human delta-1 or human selete-1, which is a low concentration monomer, does not suppress colony formation but conversely promotes colony formation. It is considered that this action expressed Notch receptor and Notch ligand molecule when blood undifferentiated cells divide, and the polypeptide of the present invention worked as an antagonist of the action. Therefore, the polypeptide having the amino acid sequence of SEQ ID NO: 1, 2, 4 or 5 in the sequence listing also has a colony formation promoting action by controlling its action concentration. Therefore, a polypeptide having the amino acid sequence of SEQ ID NO: 2, 3, 5 or 6 in the sequence listing having a colony formation promoting action is also included in the present invention.

更にこのことから、本発明分子、すなわち配列表の配列番号2〜7のアミノ酸配列を有するポリペプチドとこれらのリセプターとの結合を阻害することは細胞分化を促進する分子、化合物を見つけだす手段として利用できる。その方法としては、ラジオアイソトープなどを用いた結合実験、ノッチリセプターの下流分子である転写調節因子群を用いたルシフェラーゼアッセイ、X線構造解析を行いコンピューター上でのシュミレーションなどあらゆる方法が応用できる。したがって、配列表の配列番号2〜7のポリペプチドを用いた薬剤スクリーニング方法に関しても本発明に含まれる。   Further, from this fact, inhibiting the binding of the present invention molecule, that is, the polypeptide having the amino acid sequence of SEQ ID NO: 2 to 7 in the sequence listing and these receptors can be used as a means for finding a molecule or compound that promotes cell differentiation. it can. As the method, various methods such as a binding experiment using a radioisotope, a luciferase assay using a transcriptional regulatory factor group which is a downstream molecule of a Notch receptor, and a simulation on a computer by performing an X-ray structural analysis can be applied. Therefore, the present invention also includes a drug screening method using the polypeptides of SEQ ID NOs: 2 to 7 in the Sequence Listing.

また、次に実施例13に示したようにヒトデルタ−1もしくはヒトセレイト−1のIgGキメラタンパクを用いることにより特定の白血病細胞株を分別できる。したがって、このことは白血病の診断薬として使用でき、また特定の血液細胞の分離に応用できる。この結果はヒトデルタ−1、ヒトセレイト−1分子はそのリセプターであるノッチリセプター分子と特異的な結合をするためと考えられ、例えば上記の細胞外部分とヒトIgGFcの融合タンパクを用いれば、ノッチリセプターの発現を検出できる。ノッチはある種の白血病に関連していることが知られており(Ellisen et al.,Cell 66,649−661,1991)、したがって、配列表の配列番号2、3、5及び6のアミノ酸配列を含有するポリペプチドは体外もしくは体内の診断薬として使用が可能である。   In addition, as shown in Example 13, a specific leukemia cell line can be fractionated by using an IgG chimeric protein of human delta-1 or human selete-1. This can therefore be used as a diagnostic agent for leukemia and can be applied to the separation of specific blood cells. This result is considered to be because human delta-1 and human serate-1 molecule specifically bind to the receptor Notch receptor molecule. For example, when the above-mentioned extracellular portion and human IgG Fc fusion protein are used, the Notch receptor Expression can be detected. Notch is known to be associated with certain types of leukemia (Ellisen et al., Cell 66, 649-661, 1991), and therefore the amino acid sequences of SEQ ID NOs: 2, 3, 5 and 6 in the sequence listing Can be used as an in vitro or in vivo diagnostic agent.

以下に発明を実施する形態について例を示すが、必ずしもこれらに限定されるものではない。   Examples of embodiments for carrying out the invention will be shown below, but the present invention is not necessarily limited thereto.

実施例1 ヒトデルタ−1プライマーによるPCR産物のクローニングおよび塩基配列の決定
C−デルタ−1およびX−デルタ−1に保存されたアミノ酸配列に対応した混合プライマー、すなわちセンスプライマーDLTS1(配列表の配列番号11に記載)及びアンチセンスプライマーDLTA2(配列表の配列番号12に記載)を用いた。
Example 1 Cloning of PCR product with human delta-1 primer and determination of nucleotide sequence Mixed primer corresponding to the amino acid sequence conserved in C-delta-1 and X-delta-1, ie, sense primer DLTS1 (SEQ ID NO: in the sequence listing) 11) and the antisense primer DLTA2 (described in SEQ ID NO: 12).

合成オリゴヌクレオチドは固相法を原理とする全自動DNA合成機を使用して作成した。全自動DNA合成機としては米国アプライドバイオシステム社391PCR−MATEを使用した。ヌクレオチド、3'-ヌクレオチドを固定した担体、溶液、および試薬は同社の指示に従って使用した。所定のカップリング反応を終了し、トリクロロ酢酸で5'末端の保護基を除去したオリゴヌクレオチド担体を濃アンモニア中にて室温で1時間放置することにより担体からオリゴヌクレオチドを遊離させた。次に、核酸及びリン酸の保護基を遊離させるために、核酸を含む反応液を、封をしたバイアル内において濃アンモニア溶液中で55℃にて14時間以上放置した。担体及び保護基を遊離した各々のオリゴヌクレオチドの精製をアプライドバイオシステム社のOPCカートリッジを使用して行い、2%トリフルオロ酢酸で脱トリチル化した。精製後のプライマーは最終濃度が100pmol/μlとなるように脱イオン水に溶解してPCRに使用した。   Synthetic oligonucleotides were prepared using a fully automatic DNA synthesizer based on the solid phase method. As a fully automatic DNA synthesizer, 391 PCR-MATE, Applied Biosystems, USA was used. Nucleotides, 3′-nucleotide immobilized carriers, solutions and reagents were used according to the company's instructions. The predetermined coupling reaction was completed, and the oligonucleotide carrier from which the 5'-terminal protecting group had been removed with trichloroacetic acid was left in concentrated ammonia for 1 hour at room temperature to release the oligonucleotide from the carrier. Next, in order to release the protecting group for nucleic acid and phosphate, the reaction solution containing the nucleic acid was left in a sealed vial at 55 ° C. for 14 hours or more in a concentrated ammonia solution. Purification of each oligonucleotide liberated carrier and protecting group was performed using an Applied Biosystems OPC cartridge and detritylated with 2% trifluoroacetic acid. The purified primer was dissolved in deionized water so as to have a final concentration of 100 pmol / μl and used for PCR.

これらプライマーを用いたPCRによる増幅は以下のように行った。ヒト胎児脳由来cDNA混合溶液(QUICK−Clone cDNA、米国CLONTECH社)1μlを使用し、10×緩衝液(500mM KCl、100mM Tris−HCl(pH8.3)、15mM MgCl2、0.01%ゼラチン)5μl、dNTP Mixture(日本国宝酒造社製)4μl、前述の脊椎動物デルタホモログに特異的なセンスプライマーDLTS1(100pmol/μl)5μlおよびアンチセンスプライマーDLTA2(100pmol/μl)5μl、及びTaqDNAポリメラーゼ(AmpliTaq:日本国宝酒造社製、5U/μl)0.2μlを加え、最後に脱イオン水を加えて全量を50μlとして、95℃で45秒間、42℃で45秒間、72℃を2分間からなる行程を1サイクルとして、この行程を5サイクル行い、さらに95℃で45秒間、50℃で45秒間、72℃を2分間からなる行程を1サイクルとして、この行程を35サイクル行い最後に72℃にて7分間放置してPCRを行った。このPCR産物の一部を2%アガロースゲル電気泳動を行い、エチジウムブロマイド(日本国日本ジーン社製)にて染色後、紫外線下で観察し、約400bpのcDNAが増幅されていることを確認した。 Amplification by PCR using these primers was performed as follows. Using 1 μl of human fetal brain-derived cDNA mixed solution (QUICK-Clone cDNA, CLONTECH, USA), 10 × buffer (500 mM KCl, 100 mM Tris-HCl (pH 8.3), 15 mM MgCl 2 , 0.01% gelatin) 5 μl, dNTP Mixture (manufactured by Japan Takara Shuzo Co., Ltd.) 4 μl, sense primer DLTS1 (100 pmol / μl) specific to the above vertebrate delta homolog and 5 μl of antisense primer DLTA2 (100 pmol / μl), and Taq DNA polymerase (AmpliTaq: (Nippon Kokuho Shuzo Co., Ltd., 5 U / μl) 0.2 μl is added. Finally, deionized water is added to make the total volume 50 μl. The process consists of 95 ° C. for 45 seconds, 42 ° C. for 45 seconds, and 72 ° C. for 2 minutes. This line as one cycle The cycle consisting of 95 ° C for 45 seconds, 50 ° C for 45 seconds, and 72 ° C for 2 minutes is defined as one cycle. This cycle is performed for 35 cycles, and finally the sample is left at 72 ° C for 7 minutes to perform PCR. went. A portion of this PCR product was subjected to 2% agarose gel electrophoresis, stained with ethidium bromide (Nihon Gene, Japan), and observed under ultraviolet light to confirm that about 400 bp cDNA was amplified. .

PCR産物の全量を低融点アガロース(米国GIBCO BRL社製)にて作成した2%アガロースゲルにて電気泳動し、エチジウムブロマイドにて染色後、紫外線照射下にてデルタプライマーによるPCR産物の約400bpのバンドを切り出し、ゲルと同体積の蒸留水を加え、65℃にて10分間加熱し、ゲルを完全に溶かしたのち、等量のTE飽和フェノール(日本国日本ジーン社製)を加えて、15000rpm5分間遠心分離後上清を分離し、さらに同様な分離作業をTE飽和フェノール:クロロフォルム(1:1)溶液、さらにクロロフォルムにて行った。最終的に得られた溶液からDNAをエタノール沈澱して回収した。   The total amount of the PCR product was electrophoresed on a 2% agarose gel prepared with low melting point agarose (manufactured by GIBCO BRL, USA), stained with ethidium bromide, and after UV irradiation, about 400 bp of the PCR product by the delta primer. Cut out the band, add distilled water of the same volume as the gel, heat at 65 ° C. for 10 minutes to completely dissolve the gel, add an equal amount of TE saturated phenol (manufactured by Nippon Gene Co., Ltd. in Japan), 15000 rpm 5 After centrifuging for 5 minutes, the supernatant was separated, and a similar separation operation was carried out with TE saturated phenol: chloroform (1: 1) solution and further chloroform. DNA was recovered from the finally obtained solution by ethanol precipitation.

ベクターとしてpCRII Vector(米国Invitorogen社製、以下pCRIIと示す)を用い、ベクターと先のDNAのモル比が1:3となるように混ぜ合わせて、T4 DNAリガーゼ(米国Invitorogen社製)にてベクターにDNAを組み込んだ。DNAが組み込まれたpCRIIを大腸菌one Shot Competent Cells(米国Invitrogen社製)に遺伝子導入し、アンピシリン(米国Sigma社製)を50μg/ml含むL−Broth(日本国宝酒造社製)半固型培地のプレートに蒔き、12時間程度37℃に放置し、現れてきたコロニーを無作為選択し、同濃度のアンピシリンを含むL−Broth液体培地2mlに植え付け、18時間程度37℃で振盪培養し、菌体を回収し、ウィザードミニプレップ(米国Promega社製)を用いて添付の説明書に従ってプラスミドを分離し、このプラスミドを制限酵素EcoRIにて消化して、約400bpのDNAが切れ出されてくることで該PCR産物が組み込まれていることを確認し、確認されたクローンについて、組み込まれているDNAの塩基配列を米国アプライドバイオシステム社の螢光DNAシークエンサー(モデル373S)にて決定した。   PCRII Vector (manufactured by Invitrogen, USA, hereinafter referred to as pCRII) was used as a vector, mixed so that the molar ratio of the vector and the previous DNA was 1: 3, and the vector was used with T4 DNA ligase (manufactured by Invitrogen, USA). DNA was incorporated into the. PCRII into which DNA is incorporated is introduced into Escherichia coli One Shot Competent Cells (manufactured by Invitrogen, USA), and L-Broth (manufactured by Sigma, USA) semi-solid medium containing 50 μg / ml of ampicillin (manufactured by Sigma, USA) Seed on a plate and left at 37 ° C. for about 12 hours. The appearing colonies were randomly selected, planted in 2 ml of L-Broth liquid medium containing the same concentration of ampicillin, and cultured with shaking at 37 ° C. for about 18 hours. The plasmid is separated using a wizard miniprep (manufactured by Promega, USA) according to the attached instructions, and this plasmid is digested with the restriction enzyme EcoRI to cleave about 400 bp of DNA. Confirm that the PCR product is integrated, and confirm the clone The base sequence of the incorporated DNA was determined with a fluorescent DNA sequencer (Model 373S) manufactured by Applied Biosystems, USA.

実施例2 新規ヒトデルター1遺伝子の全長クローニングおよびその解折
ヒト胎盤由来のcDNAライブラリー(λgt−11にcDNAが挿入されたもの、米国CLONTECH社製)からプラークハイブリダイゼーションにて全長cDNAを持ったクローンの検索を1×106相当のプラークから行った。出現したプラークをナイロンフィルター(Hybond N+:米国Amersham社製)に転写し、転写したナイロンフィルターをアルカリ処理(1.5M NaCl、0.5M NaOHを染み込ませたろ紙上に7分間放置)し、次いで中和処理(1.5M NaCl、0.5M Tris−HCl(pH7.2)、1mM EDTAを染み込ませたろ紙上に3分間放置)を2回行い、次にSSPE溶液(0.36M NaCl、0.02M リン酸ナトリウム(pH7.7)、2mM EDTA)の2倍溶液中で5分間振とう後洗浄し、風乾した。その後、0.4M NaOHを染み込ませたろ紙上に20分間放置し、5倍濃度のSSPE溶液で5分間振とう後洗浄し、再度風乾した。このフィルターを用いて放射性同位元素32Pにて標識されたヒトデルタ−1プローブにてスクリーニングを行った。
Example 2 Full-Length Cloning and Disruption of a Novel Human Delta-1 Gene A clone having a full-length cDNA by plaque hybridization from a human placenta-derived cDNA library (cDNA inserted into λgt-11, manufactured by CLONTECH, USA) The search was performed from plaques corresponding to 1 × 10 6 . The appearing plaque was transferred to a nylon filter (Hybond N +: manufactured by Amersham, USA), and the transferred nylon filter was treated with alkali (left on filter paper soaked with 1.5 M NaCl and 0.5 M NaOH for 7 minutes), then Neutralization treatment (1.5 M NaCl, 0.5 M Tris-HCl (pH 7.2), left on a filter paper soaked with 1 mM EDTA for 3 minutes) was performed twice, and then an SSPE solution (0.36 M NaCl, 0 .02M sodium phosphate (pH 7.7), 2 mM EDTA) in 2 times solution, shaken for 5 minutes, washed, and air dried. Then, it was left on a filter paper soaked with 0.4 M NaOH for 20 minutes, washed with 5 times concentrated SSPE solution for 5 minutes, washed and air-dried again. Using this filter, screening was performed with a human delta-1 probe labeled with radioisotope 32 P.

放射性同位元素32Pにて標識された実施例1で作製されたDNAプローブは以下のように作成した。すなわち、遺伝子配列が決定されたヒトデルタ−1プライマーによる精製PCR産物(約400bp)が組み込まれたpCRIIより、EcoRIにてベクターより切り出し、低融点アガロースゲルからDNA断片を精製回収した。得られたDNA断片をDNAラベリングキット(Megaprime DNA labeling system:米国Amersham社製)を用いて標識した。すなわち、DNA25ngにプライマー液5μl及び脱イオン水を加えて全量を33μlとして沸騰水浴を5分間行い、その後、dNTPを含む反応緩衝液10μl、α−32P−dCTP5μl、及びT4DNAポリヌクレオチドキナーゼ溶液2μlを加えて、37℃で10分間水浴し、更にその後、セファデックスカラム(Quick Spin Column Sephadex G−50:独逸国ベーリンガーマンハイム社製)で精製し、5分間沸騰水浴をしたのち、2分間氷冷後使用した。 The DNA probe prepared in Example 1 labeled with the radioactive isotope 32 P was prepared as follows. Specifically, a pCRII into which a purified PCR product (about 400 bp) using a human delta-1 primer whose gene sequence was determined was cut out from a vector with EcoRI, and a DNA fragment was purified and recovered from a low melting point agarose gel. The obtained DNA fragment was labeled using a DNA labeling kit (Megaprime DNA labeling system: manufactured by Amersham, USA). Specifically, 5 μl of primer solution and deionized water were added to 25 ng of DNA to make a total volume of 33 μl, followed by boiling water bath for 5 minutes. Thereafter, 10 μl of reaction buffer containing dNTP, 5 μl of α- 32 P-dCTP, and 2 μl of T4 DNA polynucleotide kinase solution were added. In addition, it was bathed at 37 ° C. for 10 minutes, and then purified with a Sephadex column (Quick Spin Column Sephadex G-50: manufactured by Boehringer Mannheim, Germany), followed by boiling in a boiling water bath for 5 minutes and then ice-cooling for 2 minutes. used.

前述の方法にて作成したフィルターを、各々の成分の最終濃度が5倍濃度のSSPE溶液、5倍濃度のデンハルト液(日本国和光純薬社製)、0.5%SDS(ドデシル硫酸ナトリウム、日本国和光純薬社製)、及び10μg/mlの沸騰水浴により変性したサケ精子DNA(米国Sigma社製)であるプレハイブリダイゼーション液中に浸し、65℃にて2時間振とうしたのち、前述の方法で32P標識されたプローブを含むプレハイブリダイゼーション液と同一組成のハイブリダイゼーション液に浸し、55℃にて16時間振盪し、ハイブリダイゼーションを行った。 A filter prepared by the above-described method was prepared by adding a SSPE solution having a final concentration of 5 times each component, a Denhardt solution having a concentration of 5 times (manufactured by Japan Wako Pure Chemical Industries, Ltd.), 0.5% SDS (sodium dodecyl sulfate, After soaking in a prehybridization solution, which is a salmon sperm DNA (manufactured by Sigma, USA) denatured in a boiling water bath of 10 μg / ml, and shaken at 65 ° C. for 2 hours, In this method, the sample was immersed in a hybridization solution having the same composition as the prehybridization solution containing the 32 P-labeled probe, and shaken at 55 ° C. for 16 hours to perform hybridization.

次に、フィルターを0.1%SDSを含むSSPE溶液に浸し、55℃にて振盪し2回洗浄後、さらに0.1%SDSを含む10倍希釈したSSPE溶液に浸し、55℃にて4回洗浄した。洗浄を終了したフィルターを増感スクリーンを使用して、オートラジオグラフィーを行った。その結果、強く露光された部分のクローンを拾い、再度プラークを蒔き直し前述の方法にてスクリーニングを行い、完全に単独のクローンを分離した。   Next, the filter is immersed in an SSPE solution containing 0.1% SDS, shaken at 55 ° C., washed twice, and further immersed in an SSPE solution diluted 10-fold containing 0.1% SDS, and 4 ° C. at 55 ° C. Washed twice. The filter after washing was subjected to autoradiography using an intensifying screen. As a result, a clone of the strongly exposed portion was picked up, the plaque was re-wound and screened by the above-mentioned method, and a single clone was completely separated.

単離されたファージクローンは7クローンであった。成書の方法に従い、これらのすべてのクローンのファージを約1×109pfu調製し、ファージDNAを精製し、制限酵素EcoRIにて消化し、同様にEcoRIで消化したpBluescript(米国Stratagene社製)に組み込んだ。これらのクローンの両端のDNA配列をDNAシークエンサーにより解析したところ、D5、D6、D7の3クローンは共に配列表の配列番号8のDNA配列の1番から2244番の配列を含むクローンであり、D4のクローンは配列表の配列番号8のDNA配列の999番から2663番を含むクローンであった。D5とD4の2クローンはキロシークエンス用デリションキット(日本国宝酒造社製)を用いて添付の説明書に従ってデリションミュータントを作製し、該DNAシークエンサーを用いて5'方向、3'方向の両方向から、本発明の全長のcDNA塩基配列を決定した。 The isolated phage clone was 7 clones. According to the method of the written book, about 1 × 10 9 pfu of phages of all these clones are prepared, phage DNA is purified, digested with restriction enzyme EcoRI, and similarly digested with EcoRI (produced by Stratagene, USA) Incorporated. When the DNA sequences at both ends of these clones were analyzed with a DNA sequencer, the three clones D5, D6, and D7 were all clones containing the 1st to 2244th sequences of the DNA sequence of SEQ ID NO: 8 in the sequence listing, and D4 These clones were clones containing 999 to 2663 of the DNA sequence of SEQ ID NO: 8 in the Sequence Listing. For the clones D5 and D4, a deletion mutant was prepared using a kilo-sequence deletion kit (manufactured by Nippon Treasure Shuzo Co., Ltd.) according to the attached instructions, and both 5 ′ and 3 ′ directions were prepared using the DNA sequencer. From the above, the full-length cDNA base sequence of the present invention was determined.

さらに配列表の配列番号8のDNA配列の1214番にあるXhoIサイトを利用し、D4とD5を制限酵素XhoIによって消化して、配列表の配列番号7のDNA配列全長を含むプラスミドpBSDe1−1を作製した。   Further, using the XhoI site at position 1214 of the DNA sequence of SEQ ID NO: 8 in the sequence listing, D4 and D5 were digested with the restriction enzyme XhoI, and plasmid pBSDe1-1 containing the full length DNA sequence of SEQ ID NO: 7 in the sequence listing was obtained. Produced.

実施例3 ヒトセレイト−1特異的なPCR産物のクローニングおよび塩基配列の決定
ショウジョウバエセレイトおよびラットジャグドに保存されたアミノ酸配列に対応した混合プライマー、すなわちセンスプライマーSRTS1(配列表の配列番号13に記載)およびアンチセンスプライマーSRTA2(配列表の配列番号14に記載)を用いた。作製法は実施例1に記載した方法で行った。
Example 3 Cloning of Human Serate-1 Specific PCR Product and Determination of Base Sequence Mixed primer corresponding to the amino acid sequence conserved in Drosophila selete and rat jagd, ie, sense primer SRTS1 (described in SEQ ID NO: 13 in the sequence listing) and Antisense primer SRTA2 (described in SEQ ID NO: 14 in the sequence listing) was used. The manufacturing method was performed by the method described in Example 1.

これらプライマーを用いたPCRによる増幅は以下のように行った。該ヒト胎児脳由来cDNA混合溶液1μlを使用し、10×緩衝液(実施例1に記載)5μl、該dNTP Mixture4μl、前述のセレイト−1ホモログに特異的なセンスプライマーSRTS1(100pmol/μl)5μlおよびアンチセンスプライマーSRTA2(100pmol/μl)5μl、及び該TaqDNAポリメラーゼ0.2μlを加え、最後に脱イオン水を加えて全量を50μlとして、95℃で45秒間、42℃で45秒間、72℃を2分間からなる行程を1サイクルとして、この行程を5サイクル行い、さらに95℃で45秒間、50℃で45秒間、72℃を2分間からなる行程を1サイクルとして、この行程を35サイクル行い最後に72℃にて7分間放置してPCRを行った。このPCR産物の一部を2%アガロースゲル電気泳動を行い、エチジウムブロマイドにて染色後、紫外線下で観察し、約500bpのcDNAが増幅されていることを確認した。   Amplification by PCR using these primers was performed as follows. Using 1 μl of the human fetal brain-derived cDNA mixed solution, 5 μl of 10 × buffer solution (described in Example 1), 4 μl of the dNTP Mixture, 5 μl of the sense primer SRTS1 (100 pmol / μl) specific for the above-mentioned Serate-1 homolog and Add 5 μl of the antisense primer SRTA2 (100 pmol / μl) and 0.2 μl of the Taq DNA polymerase, and finally add deionized water to make a total volume of 50 μl to 95 ° C. for 45 seconds, 42 ° C. for 45 seconds, 72 ° C. for 2 The process consisting of minutes is defined as one cycle, and this process is performed for 5 cycles. Furthermore, the process consisting of 95 ° C for 45 seconds, 50 ° C for 45 seconds, and 72 ° C for 2 minutes is performed as one cycle, and this process is performed for 35 cycles. PCR was carried out by standing at 72 ° C. for 7 minutes. A portion of this PCR product was subjected to 2% agarose gel electrophoresis, stained with ethidium bromide, and observed under ultraviolet light to confirm that about 500 bp of cDNA was amplified.

PCR産物の全量を該低融点アガロースにて作製した2%アガロースゲルにて電気泳動し、エチジウムブロマイドにて染色後、紫外線照射下にて約500bpのバンドを切り出し、ゲルと同体積の蒸留水を加え、65℃にて10分間加熱し、ゲルを完全に溶かしたのち、等量のTE飽和フェノールを加えて、15000rpm5分間遠心分離後上清を分離し、さらに同様な分離作業をTE飽和フェノール:クロロフォルム(1:1)溶液、さらにクロロフォルムにて行った。最終的に得られた溶液からDNAをエタノール沈澱して回収した。   The entire amount of the PCR product was electrophoresed on a 2% agarose gel prepared with the low melting point agarose, stained with ethidium bromide, and a band of about 500 bp was cut out under ultraviolet irradiation, and distilled water having the same volume as the gel was used. In addition, after heating at 65 ° C. for 10 minutes to completely dissolve the gel, an equal amount of TE saturated phenol is added, the supernatant is separated after centrifugation at 15,000 rpm for 5 minutes, and a similar separation operation is performed with TE saturated phenol: The reaction was carried out in a chloroform (1: 1) solution and further in chloroform. DNA was recovered from the finally obtained solution by ethanol precipitation.

ベクターとして該pCRII Vectorを用い、ベクターと先のDNAのモル比が1:3となるように混ぜ合わせて、実施例1と同様に、ベクターpCRIIにDNA断片を組み込み、同様に大腸菌に遺伝子導入し、現れてきたコロニーを無作為選択し、同濃度のアンピシリンを含むL−Broth液体培地2mlに植え付け、18時間程度37℃で振盪培養し、菌体を回収し、該ウィザードミニプレップを用いて添付の説明書に従ってプラスミドを分離し、このプラスミドを制限酵素EcoRIにて消化して、約500bpのDNAが切り出されてくることで該PCR産物が組み込まれていることを確認し、確認されたクローンについて、組み込まれているDNAの塩基配列を該DNAシークエンサーにて決定した。   Using the pCRII Vector as a vector, the vector and the previous DNA were mixed so that the molar ratio was 1: 3, the DNA fragment was incorporated into the vector pCRII as in Example 1, and the gene was similarly introduced into Escherichia coli. The colonies that emerged were randomly selected, planted in 2 ml of L-Broth liquid medium containing the same concentration of ampicillin, cultured at 37 ° C. for about 18 hours with shaking, and the cells were collected and attached using the wizard miniprep. The plasmid was isolated according to the instructions in (2) and digested with the restriction enzyme EcoRI to confirm that the PCR product had been incorporated by cutting out about 500 bp of DNA. The base sequence of the incorporated DNA was determined with the DNA sequencer.

実施例4 新規ヒトセレイト−1遺伝子の全長クローニングおよびその解析
前述のヒト胎盤由来のcDNAライブラリーからプラークハイブリダイゼーションにて全長cDNAを持ったクローンの検索を1×106相当のプラークから行った。フィルターの作製は実施例2に記載した方法で作製し、このフィルターを用いて放射性同位元素32Pにて標識されたヒトセレイト−1プローブにてスクリーニングを行った。
Example 4 Full-Length Cloning and Analysis of Novel Human Serate-1 Gene A clone having a full-length cDNA was searched from plaques corresponding to 1 × 10 6 by plaque hybridization from the aforementioned human placenta-derived cDNA library. A filter was prepared by the method described in Example 2, and screening was performed using this filter with a human serate-1 probe labeled with a radioactive isotope 32 P.

放射性同位元素32Pにて標識された先のDNAプローブは実施例2に記載した方法にしたがって作製し、ハイブリダイゼーション、フィルターの洗浄、クローンの分離は実施例2に記載した方法にて行った。 The previous DNA probe labeled with the radioactive isotope 32 P was prepared according to the method described in Example 2, and hybridization, filter washing, and clone separation were performed according to the method described in Example 2.

単離されたファージクローンは22クローンであった。成書の方法に従い、これらのすべてのクローンのファージを約1×109pfu調製し、ファージDNAを精製し、制限酵素EcoR1にて消化し、同様にEcoR1で消化したpBluescriptに組み込んだ。これらのクローンの両端のDNA配列をDNAシークエンサーにより解析したところ、S16およびS20の2クローンは共に配列表の配列番号9のDNA配列の1番から1873番の配列を含むクローンであり、S5およびS14の2クローンは配列表の配列番号9のDNA配列の990番から4005番を含むクローンであった。これらのクローンは該キロシークエンス用デリションキットを用いて添付の説明書に従ってデリションミュータントを作製し、該DNAシークエンサーを用いて5'方向、3'方向の両方向から、本発明のポリペプチドをコードするcDNA塩基配列を決定した。 Isolated phage clones were 22 clones. According to the written method, phages of all these clones were prepared at about 1 × 10 9 pfu, and the phage DNA was purified, digested with restriction enzyme EcoR1, and incorporated into pBluescript similarly digested with EcoR1. When the DNA sequences at both ends of these clones were analyzed with a DNA sequencer, both clones S16 and S20 were clones containing the 1st to 1873th sequences of the DNA sequence of SEQ ID NO: 9 in the sequence listing, and S5 and S14 These 2 clones were clones containing DNA sequences 990 to 4005 of SEQ ID NO: 9 in the Sequence Listing. These clones produced a deletion mutant according to the attached instructions using the kilosequence deletion kit, and encoded the polypeptide of the present invention from both the 5 ′ direction and the 3 ′ direction using the DNA sequencer. The cDNA base sequence to be determined was determined.

さらに、配列表の配列番号9のDNA配列の1293番にあるBglIIサイトを利用し、S20とS5を制限酵素BglIIによって消化して、配列表の配列番号9の遺伝子配列の1番から4005番のDNAを大腸菌ベクターpBluescriptにサブクローニングし、このプラスミドをpBSSRTとする。   Further, using the BglII site at position 1293 of the DNA sequence of SEQ ID NO: 9 in the sequence listing, S20 and S5 were digested with the restriction enzyme BglII, and the gene sequences from 1 to 4005 of the gene sequence of SEQ ID NO: 9 in the sequence listing were The DNA is subcloned into the E. coli vector pBluescript, and this plasmid is designated as pBSSRT.

この結果、C末端に終止コドンが認められず、細胞内部分のC末端のアミノ酸配列をコードしている領域がクローニングできていないことが判明したため、全長遺伝子をクローニングを米国GIBCO−BRL社製3'RACEシステムキットを用いて、添付のマニュアルに従って、ヒト胎盤由来polyA+RNA(米国CLONTECH社製)から3'方向の遺伝子のcDNAのクローニングを行い、遺伝子配列を決定した。 As a result, it was found that a stop codon was not observed at the C-terminal, and the region encoding the C-terminal amino acid sequence of the intracellular portion could not be cloned. Therefore, the full-length gene was cloned from GIBCO-BRL, USA 3 Using the 'RACE system kit, the cDNA of the 3'-directional gene was cloned from human placenta-derived polyA + RNA (manufactured by CLONTECH, USA), and the gene sequence was determined.

このように遺伝子クローニングした3つの遺伝子断片を配列表の配列番号9のDNA配列の1293番にある制限酵素Bgl2サイトと3943番にあるAcc1サイトを利用し、配列表の配列番号5のDNA配列全長を含むプラスミドをpUC18のマルチクローニングサイトのEcoR1とXba1の間につなぎ込み、ヒトセレイト−1の全長遺伝子を含むpUCSR−1を作製した。この遺伝子の配列を配列表の配列番号9にアミノ酸配列とともに示す。   Using the restriction enzyme Bgl2 site at position 1293 and the Acc1 site at position 3943 of the DNA sequence of SEQ ID NO: 9 in the sequence listing, the three gene fragments thus gene cloned were used to obtain the full length DNA sequence of SEQ ID NO: 5 in the sequence listing. Was ligated between EcoR1 and Xba1 of the multi-cloning site of pUC18 to prepare pUCSR-1 containing the full-length gene of human serate-1. The sequence of this gene is shown in SEQ ID NO: 9 in the sequence listing together with the amino acid sequence.

実施例5 ヒトデルタ−1発現ベクターの作製
配列表の配列番号7に記載のDNA配列からなる遺伝子を用いて、次の1)から5)に挙げるヒトデルター1蛋白質の発現ベクターを作製した。制限酵素サイトの付加、短い遺伝子配列の挿入は全て米国Stratagene社製ExSite PCR−Based Site−Directed Mutagenesis Kitを用い、添付の取扱い説明書に従って行った。
Example 5 Preparation of Human Delta-1 Expression Vector Using the gene consisting of the DNA sequence shown in SEQ ID NO: 7 in the Sequence Listing, the following expression vectors for human delta-1 protein listed in 1) to 5) were prepared. The addition of restriction enzyme sites and the insertion of a short gene sequence were all carried out according to the attached instruction manual using ExSite PCR-Based Site-Directed Mutagenesis Kit manufactured by Stratagene.

1)分泌型ヒトデルター1蛋白質(HDEX)発現ベクター
配列表の配列番号3のアミノ酸配列の1番から520番のポリペプチドをコードするcDNAを、SRαのプロモーターとネオマイシン耐性遺伝子を含む発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
1) Secreted human delta-1 protein (HDEX) expression vector A cDNA encoding the polypeptide of No. 1 to No. 520 of the amino acid sequence of SEQ ID No. 3 in the sequence listing is linked to the expression vector pMKITNeo containing SRα promoter and neomycin resistance gene. An expression vector was prepared.

ヒトデルタ−1の発現ベクターを作製するにあたって、遺伝子産物のより安定的に発現させるために、開始コドン(配列表の配列番号8の遺伝子配列の179番)の5'方向に20bp上流の部分にEcoRIサイトを付加した。すなわち、上記のMutagenesis Kitを用い、配列表の配列番号8に記載のDNA配列、ヒトデルタ−1の全長のcDNAを含むプラスミドpBSDel−1をテンプレートとし、配列表の配列番号15及び配列番号16の遺伝子配列を有するをオリゴヌクレオチドをプライマーとして、5'方向に20bp上流の部分にEcoRIサイトを付加したDNAを作成した。以下このプラスミドをpBS/Eco−Deltaと示す。   In preparing the expression vector of human delta-1, in order to express the gene product more stably, EcoRI is located in the upstream portion of 20 bp in the 5 ′ direction of the start codon (the number 179 of the gene sequence of SEQ ID NO: 8 in the sequence listing). Added a site. That is, using the above Mutagenesis Kit, the DNA sequence described in SEQ ID NO: 8 in the sequence listing, and the plasmid pBSDel-1 containing the full-length cDNA of human delta-1 as a template, the genes of SEQ ID NO: 15 and SEQ ID NO: 16 in the sequence listing Using an oligonucleotide having a sequence as a primer, a DNA having an EcoRI site added to the portion 20 bp upstream in the 5 ′ direction was prepared. This plasmid is hereinafter referred to as pBS / Eco-Delta.

次に、このpBS/Eco−Deltaをテンプレートとして、カルボキシル末端部分に終止コドン、更に制限酵素MluIサイトを付加するため、同様にMutagenesis Kitを用い、配列表の配列番号17及び配列番号18の遺伝子配列を有するをオリゴヌクレオチドをプライマーとして、終止コドン、さらにMluIサイトの付加を行った。次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約1600bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHDEXと命名した。   Next, using this pBS / Eco-Delta as a template, a termination codon and further a restriction enzyme MluI site are added to the carboxyl terminal portion. Similarly, using Mutagenesis Kit, the gene sequences of SEQ ID NO: 17 and SEQ ID NO: 18 in the sequence listing are used. A stop codon and further an MluI site were added using the oligonucleotide having an oligonucleotide as a primer. Next, this vector was digested with EcoRI and MluI, and the gene fragment of about 1600 bp cut out was connected to pMKITNeo treated with the same restriction enzyme to construct an expression vector. This vector was named pHDEX.

2)分泌型ヒトデルター1のFLAGキメラ蛋白質(HDEXFLAG)発現ベクター
配列表の配列番号3のアミノ酸配列の1番から520番のポリペプチドのC末端にFLAG配列をコードするcDNAを付加したキメラ蛋白質をコードするcDNAを、SRαのプロモーターとネオマイシン耐性遺伝子を含む発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
2) Expression vector of secreted human delta-1 FLAG chimeric protein (HDEXFLAG) encoding a chimeric protein in which a cDNA encoding a FLAG sequence is added to the C-terminal of the polypeptide of amino acids 1 to 520 of SEQ ID NO: 3 in the sequence listing The cDNA to be ligated was ligated to an expression vector pMKITNeo containing an SRα promoter and a neomycin resistance gene to prepare an expression vector.

pBS/Eco−Deltaをテンプレートとして用い、細胞外部分のカルボキシル末端部分、すなわち配列表の配列番号3の520番目のGlyの後にFLAG配列を付加し、ついで終止コドン、更に制限酵素MluIサイトを付加するため同様にMutagenesis Kitを用い、配列表の配列番号19及び配列番号18の遺伝子配列を有するをオリゴヌクレオチドをプライマーとして、C末端にFLAG配列をコードする遺伝子並びに終止コドン、さらにMluIサイトの付加を行った。次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約1700bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHDEXFLAGと命名した。   Using pBS / Eco-Delta as a template, add a FLAG sequence after the carboxy terminal portion of the extracellular portion, that is, the 520th Gly of SEQ ID NO: 3 in the sequence listing, and then add a stop codon and then a restriction enzyme MluI site. Therefore, similarly, using Mutagenesis Kit, using the oligonucleotides having the gene sequences of SEQ ID NO: 19 and SEQ ID NO: 18 in the sequence listing as primers, adding a gene encoding a FLAG sequence at the C-terminus, a stop codon, and further an MluI site It was. Next, this vector was digested with EcoRI and MluI, and the expression vector was constructed by connecting the excised gene fragment of about 1700 bp to pMKITNeo treated with the same restriction enzyme. This vector was named pHDEXFLAG.

3)分泌型ヒトデルター1のIgG1Fcキメラ蛋白質(HDEXIg)発現ベクター
配列表の配列番号3に記載のアミノ酸配列を有するポリペプチドのC末にヒトIgG1のヒンジ部分以下のFc部分のアミノ酸配列を付加したポリペプチドをコードする遺伝子配列をpMKITNeoにつなぎ、発現ベクターを作製した。
3) Expression vector of secreted human delta-1 IgG1 Fc chimeric protein (HDEXIg) Poly having the amino acid sequence of SEQ ID NO: 3 in the sequence listing added the amino acid sequence of the Fc part below the hinge part of human IgG1 to the C-terminal of the polypeptide The gene sequence encoding the peptide was connected to pMKITNeo to prepare an expression vector.

イムノグロブリンFcタンパクとの融合タンパクの作製はZettlmeisslらの方法(Zettlmeissl et al.,DNA cell Biol.,9,347−354,1990)にしたがって、イントロンを含むゲノムDNAを用いた遺伝子を利用し、その遺伝子をPCR法を用いて作製した。すなわち、ヒトゲノムDNAをテンプレートとして使用して、ヒトIgG1Fc部分をコードする遺伝子配列を制限酵素BamHIサイトのついた配列表の配列番号20の配列を有するオリゴヌクレオチド、制限酵素XbaIサイトのついた配列表の配列番号21の配列を有するオリゴヌクレオチドをプライマーとして用いてPCRを行い、およそ1.4kbpのバンドを精製し、制限酵素BamHI及びXbaI(日本国宝酒造社製)で処理をして、同様の制限酵素処理をしたpBluescriptにT4 DNAリガーゼにて遺伝子をつないでサブクローニングした。その後、このプラスミドDNAを精製して、シークエンスをして遺伝子配列を確認し、遺伝子配列が確かにヒトIgG1の重鎖のヒンジ部分にあたるゲノムDNAであることを確認した(その配列はKabat et al.,Sequence of Immunological Interest,NIH publication No91−3242,1991を参照)。以下、このプラスミドをpBShIgFcとする。   Preparation of a fusion protein with an immunoglobulin Fc protein uses a gene using genomic DNA containing an intron according to the method of Zettlmeissl et al. (Zettlmeissl et al., DNA cell Biol., 9, 347-354, 1990) The gene was produced using the PCR method. That is, using human genomic DNA as a template, the gene sequence encoding the human IgG1 Fc portion is an oligonucleotide having the sequence of SEQ ID NO: 20 in the sequence listing with the restriction enzyme BamHI site, and the sequence listing with the restriction enzyme XbaI site. PCR was performed using the oligonucleotide having the sequence of SEQ ID NO: 21 as a primer, a band of about 1.4 kbp was purified, treated with restriction enzymes BamHI and XbaI (manufactured by Takara Shuzo Co., Ltd.), and the same restriction enzyme The treated pBluescript was ligated with T4 DNA ligase and subcloned. Thereafter, this plasmid DNA was purified and sequenced to confirm the gene sequence, and it was confirmed that the gene sequence was indeed the genomic DNA corresponding to the hinge part of the heavy chain of human IgG1 (the sequence was determined by Kabat et al. , Sequence of Immunological Interest, NIH publication No 91-3242, 1991). Hereinafter, this plasmid is referred to as pBShIgFc.

次に、該pBS/Eco−Deltaをテンプレートとして用い、同様にMutagenesis Kitを用い、細胞外部分のカルボキシル末端部分、すなわち配列表の配列番号3の520番目のGlyの後に、制限酵素BamHIサイトを付加し、さらにその下流に制限酵素XbaIおよびMluIサイトを付加するために、配列表の配列番号22と配列番号23のオリゴヌクレオチドにて、同様にMutagenesis Kitを用い、BamHI、XbaI,MluIのサイトの付加を行った。このベクターをXbaI、BamHIにて消化し、上記のpBShIgFcをXbaI、BamHIにて消化し切り出されてくる約1200bpの遺伝子断片をつないで最終的に目的の分泌型ヒトデルタ−1のIgG1Fcキメラ蛋白質をコードする遺伝子断片を含むベクターを作成した。最後に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約3000bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHDEXIgと命名した。   Next, using the pBS / Eco-Delta as a template, similarly, using Mutagenesis Kit, a restriction enzyme BamHI site was added after the carboxyl terminal portion of the extracellular portion, that is, the 520th Gly of SEQ ID NO: 3 in the Sequence Listing. Further, in order to add restriction enzyme XbaI and MluI sites downstream thereof, addition of BamHI, XbaI, and MluI sites using the Mutagenesis Kit in the same manner as the oligonucleotides of SEQ ID NO: 22 and SEQ ID NO: 23 in the sequence listing. Went. This vector is digested with XbaI and BamHI, and the above-mentioned pBShIgFc is digested with XbaI and BamHI to connect the gene fragment of about 1200 bp, which finally encodes the target secreted human delta-1 IgG1Fc chimeric protein. A vector containing the gene fragment to be prepared was prepared. Finally, this vector was digested with EcoRI and MluI, and an expression vector was constructed by connecting the excised gene fragment of about 3000 bp to pMKITNeo treated with the same restriction enzyme. This vector was named pHDEXIg.

4)全長型ヒトデルター1の蛋白質(HDF)発現ベクター
配列表の配列番号4のアミノ酸配列の1番から702番のポリペプチドをコードするcDNAを、SRαのプロモーターとネオマイシン耐性遺伝子を含む発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
4) Full-length human delta-1 protein (HDF) expression vector A cDNA encoding the polypeptide from No. 1 to No. 702 of the amino acid sequence of SEQ ID NO: 4 in the sequence listing is transferred to the expression vector pMKITNeo containing the SRα promoter and the neomycin resistance gene. The expression vector was produced by ligation.

pBS/Eco−Deltaをテンプレートとして用い、全長のカルボキシル末端部分、すなわち配列表の配列番号4の702番目のValの後に終止コドン、更に制限酵素MluIサイトを付加するため同様にMutagenesis Kitを用い、配列表の配列番号24及び配列番号25の遺伝子配列を有するオリゴヌクレオチドをプライマーとして、C末端に終止コドン、さらにMluIサイトの付加を行った。次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約2200bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHDFと命名した。   Using pBS / Eco-Delta as a template, similarly using Mutagenesis Kit to add a stop codon and a restriction enzyme MluI site after the 702th Val of SEQ ID NO: 4 in the sequence listing Using oligonucleotides having the gene sequences of SEQ ID NO: 24 and SEQ ID NO: 25 in the column table as primers, a stop codon and further an MluI site were added to the C-terminus. Next, this vector was digested with EcoRI and MluI, and an about 2200 bp gene fragment excised was connected to pMKITNeo treated with the same restriction enzyme to construct an expression vector. This vector was named pHDF.

5)全長型ヒトデルター1のFLAGキメラ蛋白質(HDFLAG)発現ベクター
配列表の配列番号4のアミノ酸配列の1番から702番のポリペプチドのC末端にFLAG配列をコードするcDNAを付加したキメラ蛋白質をコードするcDNAを、SRαのプロモーターとネオマイシン耐性遺伝子を含む発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
5) FLAG chimeric protein (HDFLAG) expression vector of full-length human delta-1 encoding a chimeric protein in which a cDNA encoding the FLAG sequence is added to the C-terminal of the polypeptide of amino acids 1 to 702 of SEQ ID NO: 4 in the sequence listing The cDNA to be ligated was ligated to an expression vector pMKITNeo containing an SRα promoter and a neomycin resistance gene to prepare an expression vector.

pBS/Eco−Deltaをテンプレートとして、カルボキシル末端部分にFLAG配列を付加し、ついで終止コドン、更に制限酵素MluIサイトを付加するため同様に配列表の配列番号26及び配列番号25の遺伝子配列を有するをオリゴヌクレオチドをプライマーとして、C末端にFLAG配列をコードする遺伝子並びに終止コドン、さらにMluIサイトの付加を行った。   Using pBS / Eco-Delta as a template, a FLAG sequence is added to the carboxyl terminal portion, followed by a stop codon and a restriction enzyme MluI site. Using an oligonucleotide as a primer, a gene encoding a FLAG sequence at the C-terminus, a stop codon, and an MluI site were added.

このベクターからヒトデルタ−1の全長をコードするDNAを大腸菌ベクターpUC19にクローニングして全長ヒトデルタ−1をコードするベクターpUCDL−1Fを作製した。   From this vector, DNA encoding the full length of human delta-1 was cloned into E. coli vector pUC19 to prepare vector pUCDL-1F encoding full length human delta-1.

次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約2200bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHDFLAGと命名した。   Next, this vector was digested with EcoRI and MluI, and an about 2200 bp gene fragment excised was connected to pMKITNeo treated with the same restriction enzyme to construct an expression vector. This vector was named pHDFLAG.

実施例6 新規ヒトセレイト−1発現ベクターの作製
配列表の配列番号9に記載のDNA配列からなる遺伝子を用いて、次の6)および10)に挙げるヒトセレイト−1蛋白質の発現ベクターを作製した。制限酵素サイトの付加、短い遺伝子配列の挿入は全てExSite PCR−Based Site−Directed Mutagenesis Kitを用い、添付の取扱い説明書に従って行った。
Example 6 Preparation of New Human Serite-1 Expression Vector Using the gene consisting of the DNA sequence shown in SEQ ID NO: 9 in the Sequence Listing, the following 6) and 10) human serate-1 protein expression vectors were prepared. The addition of restriction enzyme sites and the insertion of short gene sequences were all performed using ExSite PCR-Based Site-Directed Mutagenesis Kit according to the attached instruction manual.

6)分泌型ヒトセレイトー1(HSEX)発現ベクター
配列表の配列番号6のアミノ酸配列の1番から1036番のポリペプチドをコードするcDNAを付加したキメラ蛋白質をコードするcDNAを、発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
6) Secreted human Serreito 1 (HSEX) expression vector A cDNA encoding a chimeric protein added with a cDNA encoding the polypeptide of No. 1 to No. 1036 of the amino acid sequence of SEQ ID No. 6 in the sequence listing was linked to the expression vector pMKITNeo, An expression vector was prepared.

配列表の配列番号6のアミノ酸配列の1番から1036番のアミノ酸配列を有するポリペプチド発現細胞の発現ベクター作製にあたって、遺伝子産物をより安定的に発現させるために、開始コドン(配列表の配列番号9の遺伝子配列の409番)の5'方向に10bp上流の部分にEcoRIサイトを付加した。すなわち、上記のMutagenesis Kitを用い、配列表の配列番号9に記載のDNA配列の1番から4005番のヒトセレイト−1cDNAを含むプラスミドpBSSRTをテンプレートとし、配列表の配列番号27の遺伝子配列を有するオリゴヌクレオチドと配列表の配列番号28の遺伝子配列を有するオリゴヌクレオチドをプライマーとして、5'方向に10bp上流の部分にEcoRIサイトを付加したDNAを作成した。   In producing an expression vector of a polypeptide-expressing cell having the amino acid sequence from 1 to 1036 of the amino acid sequence of SEQ ID NO: 6 in the sequence listing, in order to express the gene product more stably, a start codon (SEQ ID NO: An EcoRI site was added to the 10 bp upstream portion in the 5 ′ direction of No. 409 of 9 gene sequences). That is, using the above-mentioned Mutagenesis Kit, a plasmid pBSSRT containing the human selate-1 cDNA of No. 1 to No. 4005 of the DNA sequence shown in SEQ ID No. 9 of the Sequence Listing as a template, and an oligo having the gene sequence of SEQ ID No. 27 of the Sequence Listing Using an oligonucleotide having the nucleotide and the gene sequence of SEQ ID NO: 28 in the Sequence Listing as a primer, DNA having an EcoRI site added to the 10 bp upstream portion in the 5 ′ direction was prepared.

次に、この様にして作成されたベクター(以下pBS/Eco−Serrate−1と示す)をテンプレートとして、細胞外部分のカルボキシル末端部分、すなわち配列表の配列番号6のポリペプチドのカルボキシル末端に終止コドン、更に制限酵素MluIサイトを付加するため、同様にMutagenesis Kitを用い、配列表の配列番号29の遺伝子配列を有するオリゴヌクレオチドと配列表の配列番号30の遺伝子配列を有するオリゴヌクレオチドをプライマーとして、終止コドン並びにMluIサイトを付加した。次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約3200bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHSEXと命名した。   Next, using the thus prepared vector (hereinafter referred to as pBS / Eco-Serrate-1) as a template, it terminates at the carboxyl terminal portion of the extracellular portion, that is, the carboxyl terminal of the polypeptide of SEQ ID NO: 6 in the sequence listing. In order to add a codon and further a restriction enzyme MluI site, similarly, using Mutagenesis Kit, using an oligonucleotide having the gene sequence of SEQ ID NO: 29 of the sequence listing and an oligonucleotide having the gene sequence of SEQ ID NO: 30 of the sequence listing as primers, A stop codon and an MluI site were added. Next, this vector was digested with EcoRI and MluI, and an expression vector was constructed by connecting the excised gene fragment of about 3200 bp to pMKITNeo treated with the same restriction enzyme. This vector was named pHSEX.

7)分型ヒトセレイト−1のFLAGキメラ蛋白質(HSEXFLAG)発現ベクター
配列表の配列番号6のアミノ酸配列の1番から1036番のポリペプチドのC末端にFLAG配列を有するFLAGキメラ蛋白質をコードするcDNAを、SRαのプロモーターとネオマイシン耐性遺伝子を含む発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
7) Expression vector of FLAG chimeric protein (HSEXFLAG) of split human selate-1 cDNA encoding a FLAG chimeric protein having a FLAG sequence at the C-terminal of the polypeptide of amino acids 1 to 1036 of SEQ ID NO: 6 in the sequence listing The expression vector was constructed by connecting to the expression vector pMKITNeo containing the SRα promoter and the neomycin resistance gene.

pBS/Eco−Serrate−1をテンプレートとして、細胞外部分のカルボキシル末端部分、すなわち配列表の配列番号6のポリペプチドのカルボキシル末端にFLAG配列を付加し、ついで終止コドン、更に制限酵素MluIサイトを付加するため、同様にMutagenesis Kitを用い、配列表の配列番号31の遺伝子配列を有するオリゴヌクレオチドと配列表の配列番号30の遺伝子配列を有するオリゴヌクレオチドをプライマーとして、FLAG配列をコードする遺伝子並びに終止コドン及びMluIサイトを付加した。次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約3200bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHSEXFLAGと命名した。   Using pBS / Eco-Serrate-1 as a template, add a FLAG sequence to the carboxyl terminal part of the extracellular portion, that is, the carboxyl terminal of the polypeptide of SEQ ID NO: 6 in the sequence listing, and then add a stop codon and further a restriction enzyme MluI site. Similarly, using Mutagenesis Kit, using the oligonucleotide having the gene sequence of SEQ ID NO: 31 of the Sequence Listing and the oligonucleotide having the gene sequence of SEQ ID NO: 30 of the Sequence Listing as primers, a gene encoding a FLAG sequence and a stop codon And an MluI site was added. Next, this vector was digested with EcoRI and MluI, and an expression vector was constructed by connecting the excised gene fragment of about 3200 bp to pMKITNeo treated with the same restriction enzyme. This vector was named pHSEXFLAG.

8)分泌型ヒトセレイト−1のIgG1Fcキメラ蛋白質(HSEXIg)発現ベクター
配列表の配列番号6に記載のアミノ酸配列を有するポリペプチドのC末にヒトIgG1のヒンジ部分以下のFc部分のアミノ酸配列を付加したポリペプチドをコードする遺伝子配列をpMKITNeoにつなぎ、発現ベクターを作製した。
8) Expression vector of secreted human selete-1 IgG1Fc chimeric protein (HSEXIg) The amino acid sequence of the Fc part below the hinge part of human IgG1 was added to the C-terminal of the polypeptide having the amino acid sequence shown in SEQ ID NO: 6 in the Sequence Listing. The gene sequence encoding the polypeptide was connected to pMKITNeo to prepare an expression vector.

pBS/Eco−Serrateをテンプレートとして用い、同様にMutagenesis Kitを用い、細胞外部分のカルボキシル末端部分、すなわち配列表の配列番号6の配列を有すポリペプチドの後に、制限酵素BamHIサイトを付加し、さらにその下流に制限酵素XbaIおよびMluIサイトを付加するために、配列表の配列番号32の遺伝子配列を有すオリゴヌクレオチドと配列表の配列番号33の配列を有すオリゴヌクレオチドをプライマーとして、BamHI、XbaI、MluIのサイトの付加を行った。このベクターをXbaI、BamHIにて消化し、上記のpBShIgFcをXbaI、BamHIにて消化し切り出されてくる約1200bpの遺伝子断片をつないで最終的に目的の分泌型ヒトセレイト−1のIgG1Fcキメラ蛋白質をコードする遺伝子断片を含むベクターを作成した。最後に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約4400bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHSEXIgと命名した。   Using pBS / Eco-Serrate as a template, similarly using Mutagenesis Kit, a restriction enzyme BamHI site was added after the polypeptide having the carboxyl terminal portion of the extracellular portion, that is, the sequence of SEQ ID NO: 6 in the sequence listing, Furthermore, in order to add restriction enzyme XbaI and MluI sites downstream thereof, using an oligonucleotide having the gene sequence of SEQ ID NO: 32 of the sequence listing and an oligonucleotide having the sequence of SEQ ID NO: 33 of the sequence listing as primers, BamHI, XbaI and MluI sites were added. This vector is digested with XbaI and BamHI, and the above-mentioned pBShIgFc is digested with XbaI and BamHI, and then the gene fragment of about 1200 bp that is excised is connected to finally encode the IgG1Fc chimeric protein of the target secreted human serate-1 A vector containing the gene fragment to be prepared was prepared. Finally, this vector was digested with EcoRI and MluI, and an expression vector was constructed by connecting the excised gene fragment of about 4400 bp to pMKITNeo treated with the same restriction enzyme. This vector was named pHSEXIg.

9)全長型ヒトセレイトー1の蛋白質(HSF)発現ベクター
配列表の配列番号7のアミノ酸配列の1番から1187番のポリペプチドをコードするcDNAを、SRαのプロモーターとネオマイシン耐性遺伝子を含む発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
9) Protein (HSF) expression vector of full-length human serato 1 The cDNA encoding the polypeptide of amino acids 1 to 1187 of SEQ ID NO: 7 in the sequence listing is transferred to the expression vector pMKITNeo containing SRα promoter and neomycin resistance gene. The expression vector was produced by ligation.

全長の発現ベクター作製にあってはpBS/Eco−Serrate−1を制限酵素EcoRIとBglIIにて消化し、切り出されてくる約900bpの遺伝子断片をpUCSR−1を同様な制限酵素で消化し、ライゲーションしてヒトセレイト−1全長遺伝子をコードするベクターpUC/Eco−Serrate−1を作製した。   For the production of a full-length expression vector, pBS / Eco-Serrate-1 is digested with restriction enzymes EcoRI and BglII, and the excised gene fragment of about 900 bp is digested with pUCSR-1 with the same restriction enzyme, and then ligated. Thus, a vector pUC / Eco-Serrate-1 encoding the human selate-1 full-length gene was prepared.

このpUC/Eco−Serrate−1をテンプレートとして用い、全長のカルボキシル末端部分、すなわち配列表の配列番号7の1187番目のValの後に終止コドン、更に制限酵素MluIサイトを付加するため同様にMutagenesis Kitを用い、配列表の配列番号34及び配列番号35の遺伝子配列を有するオリゴヌクレオチドをプライマーとして、C末端に終止コドン、さらにMluIサイトの付加を行った。次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約3700bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHSFと命名した。   Using this pUC / Eco-Sererate-1 as a template, in order to add a stop codon and a restriction enzyme MluI site after the 1187th Val of SEQ ID NO: 7 in the sequence listing, a Mutagenesis Kit is similarly used. Using the oligonucleotides having the gene sequences of SEQ ID NO: 34 and SEQ ID NO: 35 in the sequence listing as primers, a stop codon and further an MluI site were added to the C-terminus. Next, this vector was digested with EcoRI and MluI, and an expression vector was constructed by connecting the excised gene fragment of about 3700 bp to pMKITNeo treated with the same restriction enzyme. This vector was named pHSF.

10)全長型ヒトセレイト-1のFLAGキメラ蛋白質(HSFLAG)発現ベクター
配列表の配列番号7のアミノ酸配列の1番から1187番のポリペプチドのC末端にFLAG配列をコードするcDNAを付加したキメラ蛋白質をコードするcDNAを、SRαのプロモーターとネオマイシン耐性遺伝子を含む発現ベクターpMKITNeoにつなぎ、発現ベクターを作製した。
10) FLAG chimeric protein (HSFLAG) expression vector of full-length human selete-1 A chimeric protein in which a cDNA encoding a FLAG sequence is added to the C-terminal of the polypeptide of amino acids 1 to 1187 of SEQ ID NO: 7 in the sequence listing The encoding cDNA was ligated to the expression vector pMKITNeo containing the SRα promoter and the neomycin resistance gene to prepare an expression vector.

pUC/Eco−Serrate−1をテンプレートとして、カルボキシル末端部分にFLAG配列を付加し、ついで終止コドン、更に制限酵素MluIサイトを付加するため同様に配列表の配列番号36及び配列番号35の遺伝子配列を有するをオリゴヌクレオチドをプライマーとして、C末端にFLAG配列をコードする遺伝子並びに終止コドン、さらにMluIサイトの付加を行った。次に、このベクターをEcoRIおよびMluIにて消化し、切り出されてくる約3700bpの遺伝子断片を同様な制限酵素処理したpMKITNeoにつないで発現ベクターを構築した。このベクターをpHSFLAGと命名した。   Using pUC / Eco-Serrate-1 as a template, add a FLAG sequence to the carboxyl terminal portion, then add a stop codon and a restriction enzyme MluI site in the same manner as shown in SEQ ID NO: 36 and SEQ ID NO: 35 in the sequence listing. Using the oligonucleotide as a primer, a gene encoding a FLAG sequence at the C-terminus, a stop codon, and an MluI site were added. Next, this vector was digested with EcoRI and MluI, and an expression vector was constructed by connecting the excised gene fragment of about 3700 bp to pMKITNeo treated with the same restriction enzyme. This vector was named pHSFLAG.

実施例7 各種発現ベクターの細胞への遺伝子導入と発現
実施例5及び6で作製した発現ベクターはCOS−7細胞(日本国理化学研究所、細胞開発銀行から入手可能、RCB0539)に遺伝子導入した。
Example 7 Gene Introduction and Expression of Various Expression Vectors into Cells The expression vectors prepared in Examples 5 and 6 were introduced into COS-7 cells (available from RIKEN, Cell Development Bank, RCB0539).

遺伝子導入前の細胞の培養はD−MEM(ダルベッコ改変MEM培地、米国GIBCO−BRL社製)10%FCSにて培養した。遺伝子導入の前日に細胞の培地を交換し、細胞数を5×105cells/mlにして一晩培養した。遺伝子導入の当日、遠心分離にて細胞を沈澱させ、PBS(−)にて2回遠心洗浄後、1mM MgCl2、PBS(−)に1×107cells/mlとなるようにして細胞を調製した。遺伝子導入は米国Bio−Rad社製遺伝子導入装置ジーンパルサーを用いたエレクトロポレーション法で行った。上記の細胞懸濁液を500μlエレクトロポレーション専用セル(0.4cm)に取り、発現ベクターを20μg加え、氷中で5分間放置した。その後、3μF,450Vの条件で2回電圧をかけ、その2回の間は1分間室温で放置した。その後、氷中で5分間放置後、上記の培地10mlをあらかじめ分注した直径10cm細胞培養用ディシュに細胞を播種し、37℃、5%炭酸ガスインキュベーターで培養した。 The cells before gene introduction were cultured in D-MEM (Dulbecco's modified MEM medium, manufactured by GIBCO-BRL, USA) 10% FCS. The cell culture medium was changed on the day before gene transfer, and the cells were cultured overnight at 5 × 10 5 cells / ml. On the day of gene introduction, the cells are precipitated by centrifugation, washed twice by centrifugation with PBS (−), and then prepared to 1 × 10 7 cells / ml in 1 mM MgCl 2 and PBS (−). did. Gene transfer was performed by electroporation using a gene transfer device Gene Pulser manufactured by Bio-Rad, USA. The above cell suspension was placed in a 500 μl electroporation dedicated cell (0.4 cm), 20 μg of the expression vector was added, and the mixture was left on ice for 5 minutes. Thereafter, voltage was applied twice under the conditions of 3 μF and 450 V, and the two times were left at room temperature for 1 minute. Thereafter, the cells were allowed to stand in ice for 5 minutes, and then the cells were seeded on a 10 cm diameter cell culture dish in which 10 ml of the above medium had been dispensed in advance, and cultured in a 37 ° C., 5% carbon dioxide incubator.

その翌日、培養上清を除去し、ディッシュに付着した細胞をPBS(−)10mlで2回洗浄し、発現ベクターpHDEX、pHDEXFLAG、pHDEXIg、pHSEX、pHSEXFLAG、及びpHSEXIgの場合は無血清のD−MEM10mlを加えてさらに7日間培養し、培養上清を回収し、セントリコン30(米国アミコン社製)にてバッファーをPBS(−)に置換すると同時に10倍濃縮を行い、細胞培養上清を得た。   The next day, the culture supernatant is removed, and the cells attached to the dish are washed twice with 10 ml of PBS (−). In the case of the expression vectors pHDEX, pHDEXFLAG, pHDEXIg, pHSEX, pHSEXFLAG, and pHSEXIg, 10 ml of serum-free D-MEM The culture supernatant was recovered, and the buffer was replaced with PBS (-) with Centricon 30 (Amicon, USA), and at the same time 10-fold concentrated to obtain a cell culture supernatant.

また、pHDF、pHDFLAG、pHSF、及びpHSFLAGの場合は、10%FCSを含むD−MEMに培地を交換し、さらに3日間培養し、細胞破砕物を調製した。すなわち、2×106個の細胞をセルリシスバッファー(50mM Hepes(pH7.5)、1% TritonX100、10% グリセロール、4mM EDTA、50μg/ml Aprotinin、100μM Leupeptin、25μM PepstatinA、1mM PMSF)200μlに懸濁し、氷中に20分間放置し、その後14000rpmで20分間遠心し上清を取り細胞破砕物を得た。 In the case of pHDF, pHDFLAG, pHSF, and pHSFLAG, the medium was replaced with D-MEM containing 10% FCS, and the cells were further cultured for 3 days to prepare cell disruptions. That is, 2 × 10 6 cells were suspended in 200 μl of cell lysis buffer (50 mM Hepes (pH 7.5), 1% TritonX100, 10% glycerol, 4 mM EDTA, 50 μg / ml Aprotinin, 100 μM Leupeptin, 25 μM Pepstatin A, 1 mM PMSF). It became cloudy, left in ice for 20 minutes, and then centrifuged at 14,000 rpm for 20 minutes to remove the supernatant and obtain a cell disruption.

こうして得られたサンプルを用いてウェスタンブロッティング法にて蛋白の発現を確認した。   Using the sample thus obtained, protein expression was confirmed by Western blotting.

すなわち、濃縮した培養上清もしくは細胞破砕物を日本国ACIジャパン社製のSDS−PAGE用電気泳動槽及びSDS−PAGE用ポリアクリルアミドゲル(グラジエントゲル5〜15%)を用い、添付の取扱い説明書に従ってSDS−PAGEを行った。サンプルは2−メルカプトエタノール(2−ME)を加えて5分間の沸騰水浴加熱処理により還元処理を行ったものと、この処理を行わない非還元状態のものを用い、マーカーとしてはAmersham社製レインボーマーカー(高分子量用)を用い、サンプルバッファー、泳動バッファーについては添付の取扱い説明書に従って作製した。SDS−PAGE終了後、アクリルアミドゲルをPVDFメンブランフィルター(米国BioRad社製)に同社製ミニトランスブロットセルにより転写した。   That is, using the SDS-PAGE electrophoresis tank and SDS-PAGE polyacrylamide gel (gradient gel 5-15%) manufactured by ACI Japan, the concentrated culture supernatant or cell disrupted product, the attached instruction manual SDS-PAGE was performed according to Samples were 2-mercaptoethanol (2-ME) added and reduced by boiling water bath treatment for 5 minutes, and non-reduced samples not subjected to this treatment, and the marker was Amersham's Rainbow A marker (for high molecular weight) was used, and a sample buffer and a migration buffer were prepared according to the attached instruction manual. After completion of SDS-PAGE, the acrylamide gel was transferred to a PVDF membrane filter (manufactured by BioRad, USA) using a mini-transblot cell manufactured by the same company.

このように作製されたフィルターをブロックエース(日本国大日本製薬社製)、TBS−T(20mM Tris、137mM NaCl(pH7.6)、0.1%Tween 20)に4℃一晩振盪してブロッキングした。ECLウェスタンブロッティング検出システム(米国Amersham社)に添付の説明書に従い、目的の蛋白質がヒトデルタ−1由来の場合には1次抗体として実施例9に記載した抗ヒトデルタ−1マウスモノクローナル抗体を用い、ヒトセレイト−1由来の場合には1次抗体として実施例9に記載した抗ヒトセレイト−1マウスモノクローナル抗体を用い、FLAGキメラの場合は一次抗体としてマウスモノクローナル抗体Anti−FLAG M2(米国コダック社製)を用い、二次抗体としてペルオキシダーゼ標識抗マウスIg羊抗体(米国Amersham社製)を反応させた。また、IgGキメラの場合は、ペルオキシダーゼ標識抗ヒトIgヒツジ抗体(米国Amersham社製)を反応させた。   The filter thus prepared was shaken at 4 ° C. overnight in Block Ace (manufactured by Nippon Nippon Pharmaceutical Co., Ltd.), TBS-T (20 mM Tris, 137 mM NaCl (pH 7.6), 0.1% Tween 20). Blocked. According to the instructions attached to the ECL Western blotting detection system (Amersham, USA), when the target protein is derived from human delta-1, the anti-human delta-1 mouse monoclonal antibody described in Example 9 was used as the primary antibody, Anti-human selete-1 mouse monoclonal antibody described in Example 9 is used as the primary antibody when derived from -1, and mouse monoclonal antibody Anti-FLAG M2 (manufactured by Kodak, USA) is used as the primary antibody in the case of FLAG chimera. Then, a peroxidase-labeled anti-mouse Ig sheep antibody (Amersham, USA) was reacted as a secondary antibody. In the case of IgG chimera, a peroxidase-labeled anti-human Ig sheep antibody (Amersham, USA) was reacted.

抗体の反応時間は各々室温で一時間反応させ、各反応間はTBS−Tにて10分間室温で振盪洗浄する操作を3回ずつ繰り返した。最後の洗浄後、フィルターをECLウエスタンブロッティング検出システム(米国Amersham社製)の反応液に5分間浸し、ポリ塩化ビニリデンラップに包んでX線フィルムに感光させた。   The reaction time of each antibody was allowed to react at room temperature for 1 hour, and the operation of shaking and washing with TBS-T for 10 minutes at room temperature was repeated three times between each reaction. After the final washing, the filter was immersed in a reaction solution of an ECL western blotting detection system (manufactured by Amersham, USA) for 5 minutes, wrapped in polyvinylidene chloride wrap and exposed to X-ray film.

その結果、還元処理を行ったサンプルはpHDEXとpHDEXFLAGの導入によって得られた蛋白質は約65kダルトン、pHDEXIgの導入によって得られた蛋白質は約95kダルトン、pHDF、pHDFLAGの導入によって得られた蛋白質は約85kダルトンのバンドを検出した。一方、非還元状態のサンプルはpHDEXIgを導入した場合、120kから200kダルトンの若干スメア状のバンドで主に約180kダルトンのバンドを検出し、還元条件のほぼ2倍の分子量であることから、2量体が形成されていることを確認した。   As a result, in the reduced sample, the protein obtained by introducing pHDEX and pHDEXFLAG was about 65 kDalton, the protein obtained by introducing pHDEXIg was about 95 kDalton, and the protein obtained by introducing pHDF and pHDFLAG was about A band of 85 kDalton was detected. On the other hand, in the non-reduced sample, when pHDEXIg is introduced, a slightly smeared band from 120 k to 200 k dalton mainly detects a band of about 180 k dalton, and has a molecular weight almost twice that of the reducing condition. It was confirmed that a monomer was formed.

また同様に、還元処理を行ったサンプルはpHSEXとpHSEXFLAGの導入によって得られた蛋白質は約140kダルトン、pHSEXIgの導入によって得られた蛋白質は約170kダルトン、pHSF、pHSFLAGの導入によって得られた蛋白質は約150kダルトンのバンドを検出した。一方、非還元状態のサンプルはpHSEXIgを導入した場合、250kから400kダルトンの若干スメア状のバンドで主に約300kダルトンのバンドを検出し、還元条件のほぼ2倍の分子量であることから、2量体が形成されていることを確認した。   Similarly, in the reduced sample, the protein obtained by introducing pHSEX and pHSEXFLAG is about 140 kDalton, the protein obtained by introducing pHSEXIg is about 170 kDalton, and the protein obtained by introducing pHSF and pHSFLAG is A band of about 150 kDalton was detected. On the other hand, in the non-reduced sample, when pHSEXIg is introduced, a slightly smeared band of 250 k to 400 k dalton is mainly detected and a band of about 300 k dalton is detected, and the molecular weight is almost twice that of the reducing condition. It was confirmed that a monomer was formed.

これらの実験では、コントロールとしてpMKITNeoベクターを導入したCOS−7細胞の細胞破砕物および培養上清を同様に試験したが、抗ヒトデルタ−1マウスモノクローナル抗体、抗ヒトセレイト−1マウスモノクローナル抗体、抗FLAG抗体、抗ヒトIg抗体に反応するバンドは検出されなかった。   In these experiments, COS-7 cell lysate and culture supernatant into which pMKITNeo vector was introduced as a control were tested in the same manner. However, anti-human delta-1 mouse monoclonal antibody, anti-human selete-1 mouse monoclonal antibody, anti-FLAG antibody were tested. No band reacting with anti-human Ig antibody was detected.

以上の結果から、これら10種の発現ベクターはいずれも目的のポリペプチドを生産することができた。   From the above results, all of these 10 expression vectors were able to produce the desired polypeptide.

実施例8 遺伝子導入細胞による分泌型ヒトデルタ−1、ヒトセレイト−1蛋白質の精製
実施例7の方法で発現が検出されたHDEXFLAG、HDEXIgおよびHSEXFLAG、HSEXIgを含むCOS−7細胞培養上清を大量調製し、アフィニティーカラムによって各々のキメラ蛋白質を精製した。
Example 8 Purification of Secreted Human Delta-1 and Human Serite-1 Proteins Using Transfected Cells A large amount of COS-7 cell culture supernatant containing HDEXFLAG, HDEXIg, HSEXFLAG, and HSEXIg whose expression was detected by the method of Example 7 was prepared. Each chimeric protein was purified by an affinity column.

HDEXFLAG、HSEXFLAGに関しては、実施例7に記載した方法によって取得した2リットルの培養上清をAnti−FLAG M2 Affinity Gel(米国コダック社製)を充填したカラムに通して、キメラ蛋白質が有するFLAG配列とゲルのAnti−FLAG抗体のアフィニティーによりキメラ蛋白質をカラムに吸着させた。カラムは内径10mmのディスポカラム(米国BioRad社製)を用い、上記ゲルを5ml充填した。吸着は培地ボトル→カラム→ペリスターポンプ→培地ボトルの環流式回路を組み立て、流速1ml/分で72時間循環させた。その後、カラムをPBS(−)35mlで洗浄し、0.5MTris−グリシン(pH3.0)50mlで溶出した。あらかじめ小チューブ(米国ファルコン社製2063)に0.5MTris−HCl(pH9.5)を200μl分注しておき、溶出液は2mlずつ25画分をそのチューブに分取し、各々の画分を中和した。   For HDEXFLAG and HSEXFLAG, the 2 liter culture supernatant obtained by the method described in Example 7 was passed through a column packed with Anti-FLAG M2 Affinity Gel (manufactured by Kodak, USA), and the FLAG sequence possessed by the chimeric protein and The chimeric protein was adsorbed onto the column by the affinity of the gel Anti-FLAG antibody. As the column, a disposable column (manufactured by BioRad, USA) having an inner diameter of 10 mm was used, and 5 ml of the gel was packed. Adsorption was performed by assembling a circulating circuit of medium bottle → column → peristor pump → medium bottle and circulating for 72 hours at a flow rate of 1 ml / min. Thereafter, the column was washed with 35 ml of PBS (−) and eluted with 50 ml of 0.5 M Tris-glycine (pH 3.0). In advance, 200 μl of 0.5 M Tris-HCl (pH 9.5) is dispensed in a small tube (Falcon, USA 2063) in advance, and 25 ml each of the eluate is dispensed into the tube. Neutralized.

上記の方法で精製された分泌型FLAGキメラ蛋白質の溶出画分の各10μlは実施例7に記載の還元処理を行い、5−15%濃度勾配ポリアクリルアミドゲルによるSDS−PAGE電気泳動を行い、電気泳動終了後、日本国和光純薬社製ワコー銀染キットIIを用いて、添付の説明書に従って銀染色を行った。結果として、HSFLAGは第4番から第8番の溶出画分にバンドが検出され、この分子量は実施例6で得られた抗FLAG抗体によるウェスタンブロッティングの結果とHDEXFLAG、HSEXFLAGとも一致した。この結果からHDEXFLAG、HSEXFLAGの純品が精製された。   10 μl of each of the elution fractions of the secreted FLAG chimeric protein purified by the above method was subjected to the reduction treatment described in Example 7, and subjected to SDS-PAGE electrophoresis using a 5-15% concentration gradient polyacrylamide gel. After completion of the electrophoresis, silver staining was performed using Wako Silver Dye Kit II manufactured by Wako Pure Chemical Industries, Ltd. according to the attached instructions. As a result, HSFLAG showed bands in the elution fractions from No. 4 to No. 8, and this molecular weight was consistent with the results of Western blotting using anti-FLAG antibody obtained in Example 6 and HDEXFLAG and HSEXFLAG. From these results, HDEXFLAG and HSEXFLAG pure products were purified.

IgG1Fcキメラ蛋白質、すなわちHDEXIgとHSEXIgに関しては、FLAGキメラ蛋白質と同様の操作で培養上清の2リットルをスウェーデン国ファルマシア社製Protein Aセファロースカラムに吸着させ、溶出画分を分取した。   Regarding IgG1Fc chimeric proteins, ie, HDEXIg and HSEXIg, 2 liters of the culture supernatant was adsorbed on a Protein A Sepharose column manufactured by Pharmacia, Sweden, in the same manner as the FLAG chimeric protein, and the eluted fraction was fractionated.

FLAGキメラ蛋白質と同様に溶出液の一部を用いて、還元条件でのSDS−PAGE電気泳動および銀染色により溶出画分の決定、サイズの確認、純度検定を行った。結果として、溶出画分の第4番から第15番にバンドが検出され、サイズは抗ヒトIg抗体を用いたウェスタンブロッティングの結果とHDEXIg、HSEXIgとも一致した。この結果からHDEXIg、HSEXIgの純品が精製された。   Similarly to the FLAG chimeric protein, a part of the eluate was used to determine the elution fraction, confirm the size, and test the purity by SDS-PAGE electrophoresis and silver staining under reducing conditions. As a result, bands were detected from No. 4 to No. 15 in the eluted fraction, and the size was consistent with the results of Western blotting using anti-human Ig antibody and HDEXIg and HSEXIg. From these results, HDEXIg and HSEXIg pure products were purified.

実施例9 ヒトデルタ−1、ヒトセレイト−1を認識する抗体作成
実施例8に記載の方法で精製されたHDEXFLAG、HSEXFLAGを各々免疫原としてウサギに免疫して、抗体価の測定後、全血の採血を行い、血清を採取して、米国BioRad社製のエコノパック血清IgG精製キットを用いて、添付の取扱い説明書に従って、抗ヒトデルター1ウサギポリクローナル抗体、抗ヒトセレイトー1ウサギポリクローナル抗体を各々精製して作製した。
Example 9 Production of antibodies recognizing human delta-1 and human serate-1 Rabbits were immunized with HDEXFLAG and HSEXFLAG purified by the method described in Example 8, respectively, and after antibody titer measurement, whole blood was collected. The serum was collected, and the anti-human delta-1 rabbit polyclonal antibody and the anti-human seraito 1 rabbit polyclonal antibody were respectively purified using an Econopack serum IgG purification kit manufactured by BioRad, USA according to the attached instruction manual. did.

また、実施例8に記載した方法で精製されたHDEXFLAG、HSEXFLAGを各々免疫原として、成書の方法に従いマウスモノクローナル抗体を作成した。すなわち、上記のように精製されたHDEXFLAG、HSEXFLAGを各々別々にBalb/cマウス(日本国日本エスエルシー社製)に1匹あたり10μgを皮下・皮内に免疫した。2回の免疫後、眼底採血を行い血清中の抗体価の上昇を認めた後、3回目の免疫を行ってからマウスの脾臓細胞を取り出し、マウスミエローマ細胞株P3X63Ag8(ATCC TIB9)とポリエチレングリコール法にて細胞融合を行った。HAT培地(日本国免疫生物研究所製)にてハイブリドーマを選択し、酵素抗体法にてヒトデルター1もしくはヒトセレイト−1の細胞外部分を認識する抗体を培地中に産生しているハイブリドーマ株を分離し、ヒトデルタ−1もしくはヒトセレイト−1を特異的に認識するマウスモノクローナル抗体を産生するハイブリドーマ産生株が樹立された。   A mouse monoclonal antibody was prepared according to the method described in the literature, using HDEXFLAG and HSEXFLAG purified by the method described in Example 8 as immunogens. Specifically, HDEXFLAG and HSEXFLAG purified as described above were separately immunized subcutaneously and intradermally in Balb / c mice (manufactured by Nippon SLC, Japan). After the second immunization, blood was collected from the fundus and the increase in the antibody titer in the serum was observed. After the third immunization, the mouse spleen cells were taken out, the mouse myeloma cell line P3X63Ag8 (ATCC TIB9) and the polyethylene glycol method Cell fusion. A hybridoma is selected in a HAT medium (manufactured by Japan Immunobiological Research Laboratories), and a hybridoma strain producing an antibody that recognizes the extracellular portion of human delta-1 or human serate-1 in the medium is isolated by an enzyme antibody method. A hybridoma-producing strain that produces a mouse monoclonal antibody that specifically recognizes human delta-1 or human selete-1 was established.

このようにして樹立されたハイブリドーマの培養上清をスウェーデン国ファルマシア社製Mab TrapG II を用いて、添付の取扱い説明書に従って、抗ヒトデルタ−1モノクローナル抗体、抗ヒトセレイト−1モノクローナル抗体を精製し作製した。   The hybridoma culture supernatant thus established was prepared by purifying anti-human delta-1 monoclonal antibody and anti-human selete-1 monoclonal antibody using Mab TrapG II manufactured by Pharmacia, Sweden, according to the attached instruction manual. .

これらモノクローナル抗体を用いてアフィニティーカラムを作製した。アフィニティーカラムの作製はスウェーデン国ファルマシア社製CNBr活性化Sepharose4Bにて添付の取扱い説明書に従い行った。このゲルの2mlを2cm2×1cmのサイズのカラムを作製した。 An affinity column was prepared using these monoclonal antibodies. The affinity column was prepared using CNBr activated Sepharose 4B manufactured by Pharmacia, Sweden, according to the attached instruction manual. A column having a size of 2 cm 2 × 1 cm was prepared from 2 ml of this gel.

抗ヒトデルタ−1モノクローナル抗体を結合させたカラムに対してはpHDEXを遺伝子導入したCOS−7細胞培養上清濃縮液を、抗ヒトセレイト−1モノクローナル抗体を結合させたカラムに対してはpHSEXを遺伝子導入したCOS−7細胞培養上清濃縮液を各々20ml/hrの速度で流し、その後同一速度でPBS(−)を15ml流して洗浄し、最終的に0.1M酢酸ナトリウム、0.5MNaCl(PH4.0)にて溶出した。この溶離液を1mlづつ分取し、各画分に1MTris−HCl(pH9.5)を200μlづつ加えて、中和した。   The COS-7 cell culture supernatant concentrate into which pHDEX was introduced was introduced into the column to which the anti-human delta-1 monoclonal antibody was bound, and pHSEX was introduced into the column to which the anti-human selete-1 monoclonal antibody was bound. Each of the COS-7 cell culture supernatant concentrates was washed at a rate of 20 ml / hr, then washed with 15 ml of PBS (−) at the same rate, and finally washed with 0.1 M sodium acetate, 0.5 M NaCl (PH4. 0). 1 ml of this eluent was collected and neutralized by adding 200 μl of 1M Tris-HCl (pH 9.5) to each fraction.

さらに実施例8に記載の方法に従って、各々の精製蛋白質を還元条件下でSDS−PAGEを行い、銀染色、及びウエスタンブロッティングを行ない、分子量の推定を行った。この結果、pHDEXを遺伝子導入したCOS−7細胞培養上清濃縮液からは約65kダルトンのHDEXが、pHSEXを遺伝子導入したCOS−7細胞培養上清濃縮液からは約140kダルトンのHDSEXが精製されていることが確認され、これらアフィニティーカラムでヒトデルタ−1、ヒトセレイト−1が精製可能であることが明らかとなった。   Furthermore, according to the method described in Example 8, each purified protein was subjected to SDS-PAGE under reducing conditions, silver staining and Western blotting were performed to estimate the molecular weight. As a result, about 65 kDalton HDEX was purified from the COS-7 cell culture supernatant concentrate into which pHDEX was introduced, and about 140 kDalton HDSEX was purified from the COS-7 cell culture supernatant concentrate into which pHSEX was introduced. It was confirmed that human delta-1 and human selete-1 can be purified using these affinity columns.

実施例10 HDEXIg、HSEXIgの血液未分化細胞のコロニー形成に対する作用
HDEXIg、HSEXIgの血液未分化細胞に対する生理作用を観察するため、CD34陽性細胞をHDEXIgもしくはHSEXIgおよび既存のサイトカイン存在下で無血清半固形培地で培養し、コロニー形成細胞の増減を観察した。
Example 10 Effect of HDEXIg and HSEXIg on colonization of blood undifferentiated cells To observe the physiological effect of HDEXIg and HSEXIg on blood undifferentiated cells, CD34 positive cells were treated with serum-free semisolid in the presence of HDEXIg or HSEXIg and existing cytokines. The cells were cultured in a medium, and the increase or decrease in colony forming cells was observed.

ヒト臍帯血もしくはヒト正常骨髄血のCD34陽性細胞は臍帯血もしくは成人正常骨髄血をシリカ液(日本国免疫生物研究所製)により添付の説明書にしたがって処理し、その後フィコールパック(スエーデン国ファルマシア社製)による比重遠心分離法により低密度細胞画分(<1.077g/ml)を分画した単核球より分離した。   For human umbilical cord blood or human normal bone marrow blood CD34 positive cells, umbilical cord blood or adult normal bone marrow blood is treated with silica solution (manufactured by Japan Immunobiological Research Institute) according to the attached instructions, and then Ficoll pack (Pharmacia, Sweden). The low density cell fraction (<1.077 g / ml) was separated from the fractionated mononuclear cells by a specific gravity centrifugation method.

CD34陽性細胞の分離は米国AIS社製マイクロセレクターステムもしくはノルウェー国Dynal社製DynabeadsM−450 CD34とDETACHaBEADS CD34を用い、添付の取扱説明書に従って分離した。分離後、その純度はFITC標識抗CD34抗体HPCA2(米国ベクトンデッキンソン社製)で染色し、同社のフローサイトメーター(FACSCalibur)にて検定し、85%以上の純度を有していることを確認して用いた。   Separation of CD34 positive cells was performed according to the attached instruction manual using a microselector stem manufactured by AIS, USA or Dynabeads M-450 CD34 manufactured by Dynal, Norway, and DETAChaBEADS CD34. After separation, the purity is stained with FITC-labeled anti-CD34 antibody HPCA2 (manufactured by Becton Decktonson, USA) and tested with its flow cytometer (FACSCalibur) to confirm that it has a purity of 85% or higher. Used.

このようにして分離したCD34陽性細胞400個が下記の培地1ml中に存在するように均一に懸濁し、35mmディッシュ(米国ファルコン社製)にまき、37℃、5%炭酸ガス、5%酸素ガス、90%窒素ガス、100%湿度雰囲気下の炭酸ガスインキュベーターで2週間の培養後、形成された血球コロニーを倒立顕微鏡下で計測した。   400 CD34 positive cells thus separated are uniformly suspended so as to be present in 1 ml of the following medium, seeded in a 35 mm dish (Falcon, USA), 37 ° C., 5% carbon dioxide gas, 5% oxygen gas. After culturing for 2 weeks in a carbon dioxide incubator under an atmosphere of 90% nitrogen gas and 100% humidity, the formed blood cell colonies were counted under an inverted microscope.

培養に用いた培地はα−medium(米国GIBCO−BRL製)に2%Deionized Bovine Serum Albumin(BSA、米国Sigma社製)、10μg/ml ヒトインスリン(米国Sigma社製)、200μg/ml トランスフェリン(米国Sigma社製)、10-5M 2−メルカプトエタノール(日本国ナカライテスク社製)、160μg/ml ソイビーンレクチン(米国Sigma社製)、96μg/ml コレステロール(米国Sigma社製)、0.9% メチルセルロース(日本国和光純薬社製)で行った。 The medium used for the culture was α-medium (manufactured by GIBCO-BRL, USA), 2% Deionized Bovine Serum Albumin (BSA, Sigma USA), 10 μg / ml human insulin (Sigma USA), 200 μg / ml transferrin (USA) Sigma), 10 −5 M 2-mercaptoethanol (Nacalai Tesque, Japan), 160 μg / ml soybean lectin (Sigma, USA), 96 μg / ml cholesterol (Sigma, USA), 0.9% methylcellulose (Japan Wako Pure Chemical Industries, Ltd.)

上記の培地に下記の3種の条件のサイトカイン存在下に対し、最終的に1μg/mlの濃度となるようにヒトデルタ−1細胞外Igキメラ蛋白質(HDEXIg)もしくはヒトセレイト−1細胞外Igキメラ蛋白質(HSEXIg)を加え、比較区にはIgGFc部分の影響を見るため、ヒトIgGl(米国Athens Research and Technology社製)を同濃度加えた。   Human delta-1 extracellular Ig chimeric protein (HDEXIg) or human selete-1 extracellular Ig chimeric protein (final concentration of 1 μg / ml in the presence of cytokine under the following three conditions in the above medium ( HSEXIg) was added, and human IgGl (manufactured by Athens Research and Technology, USA) was added to the comparison group at the same concentration in order to see the effect of the IgGFc portion.

サイトカイン条件下記の通りである。
条件1:100ng/ml ヒトSCF(米国Intergen社製)、10ng/ml ヒトIL−3(米国Intergen社製)、100ng/mlヒトIL−6(米国Intergen社製)。
条件2:100ng/ml ヒトSCF、10ng/ml ヒトIL−3、4ng/ml ヒトトロンボポエチン(米国Pepro Tech社製)。
条件3:100ng/ml ヒトSCF、10ng/ml ヒトIL−3、100ng/ml ヒトIL−6、2U/ml Epo(日本国中外製薬製)、10ng/ml ヒトG−CSF(日本国中外製薬製)。
Cytokine conditions are as follows.
Condition 1: 100 ng / ml human SCF (Intergen, USA), 10 ng / ml human IL-3 (Intergen, USA), 100 ng / ml human IL-6 (Intergen, USA).
Condition 2: 100 ng / ml human SCF, 10 ng / ml human IL-3, 4 ng / ml human thrombopoietin (manufactured by Pepro Tech, USA).
Condition 3: 100 ng / ml human SCF, 10 ng / ml human IL-3, 100 ng / ml human IL-6, 2 U / ml Epo (manufactured by Chugai Pharmaceutical, Japan), 10 ng / ml human G-CSF (manufactured by Chugai Pharmaceutical, Japan) ).

結果を第2図に示す。第2図のAはヒトデルタ−1細胞外Igキメラ蛋白質(HDEXIg)の場合であり、Bはヒトセレイト−1細胞外Igキメラ蛋白質(HSEXIg)の場合である。AとBは各々異なった由来のヒト臍帯血CD34陽性細胞を用いた。縦軸はコロニー数を示し、白カラムは比較区、黒カラムは各々HDEXIgもしくはHSEXIgを含むデータである。   The results are shown in FIG. FIG. 2A shows the case of human delta-1 extracellular Ig chimeric protein (HDEXIg), and B shows the case of human selete-1 extracellular Ig chimeric protein (HSEXIg). A and B were human umbilical cord blood CD34-positive cells derived from different sources. The vertical axis represents the number of colonies, the white column is a comparison group, and the black column is data including HDEXIg or HSEXIg, respectively.

HDEXIgとHSEXIgはいずれもコロニー形成を抑制する活性を有していた。これら結果のコロニー形成細胞の種類には違いが認められなかった。したがって、本発明の分子は血液未分化細胞のコロニー形成細胞に対して、コロニー形成抑制作用を有する。すなわち、分化抑制作用を有することが明らかになった。この活性に関してSCF存在下と非存在下の比較を行ったところ、この抑制活性はSCF存在下にのみ観察される傾向が見られた。   Both HDEXIg and HSEXIg had an activity to suppress colony formation. There was no difference in the types of colony forming cells in these results. Therefore, the molecule of the present invention has a colony formation inhibitory effect on colony-forming cells of blood undifferentiated cells. That is, it became clear that it has a differentiation inhibitory action. When this activity was compared in the presence and absence of SCF, this inhibitory activity tended to be observed only in the presence of SCF.

また、更にこの活性に関して濃度依存性の検討を行った。また、2量体であるHSEXIgと単量体であるHSEXFLAGの比較も行った。結果を第3図に示す。この場合の濃度はモル濃度として示すが、2量体と単量体との比較を行うため、2量体のHSEXIgは正確なモル濃度の2倍濃度として示し、ヒトセレイト−1部分のモル濃度が同じとなるようにプロットした。縦軸はコロニー形成数で、横軸はモル濃度である。ノッチリガンドを含まない場合のコロニー形成数は0濃度の縦軸上にプロットした。また比較として行った1μg/mlのヒトIgG1のコロニー形成数はおよそ100個であった。   Further, the concentration dependence of this activity was examined. In addition, the dimer HSEXIg and the monomer HSEXFLAG were also compared. The results are shown in FIG. Although the concentration in this case is shown as a molar concentration, in order to compare the dimer and the monomer, the dimer HSEXIg is shown as twice the exact molar concentration, and the molar concentration of the human selete-1 moiety is Plots were made to be the same. The vertical axis is the number of colonies formed, and the horizontal axis is the molar concentration. The number of colonies formed without notch ligand was plotted on the vertical axis of 0 concentration. For comparison, the number of colonies formed of 1 μg / ml human IgG1 was about 100.

この結果からHSEXIg、HSEXFLAGとも濃度依存的にコロニー形成を抑制したが、その活性は明らかに2量体であるHSEXIgの方が強かった。また、単量体のHSEXFLAGは低濃度領域で逆にコロニー形成を促進する作用が観察された。   From these results, although HSEXIg and HSEXFLAG inhibited colony formation in a concentration-dependent manner, the activity of HSEXIg, which is a dimer, was clearly stronger. Monomer HSEXFLAG was also observed to promote colony formation in the low concentration region.

実施例11 HDEXIg、HSEXIgのコロニー形成血液未分化細胞の長期液体培養に対する作用
HDEXIg、HSEXIgの血液未分化細胞に対する生理作用を観察するため、臍帯血CD34陽性細胞をHDEXIgもしくはHSEXIgおよび既存のサイトカイン存在下で無血清培地で長期液体培養し、コロニー形成細胞の増減を観察した。
Example 11 Effects of HDEXIg and HSEXIg on long-term liquid culture of colony-forming blood undifferentiated cells In order to observe the physiological effects of HDEXIg and HSEXIg on blood undifferentiated cells, cord blood CD34 positive cells were treated with HDEXIg or HSEXIg and existing cytokines. Then, liquid culture was carried out for a long time in a serum-free medium, and the increase or decrease in colony forming cells was observed.

実施例10に記載した方法で分離した臍帯血単核球CD34陽性細胞を24well細胞培養プレート(米国ファルコン社製)に1000cells/wellで液体培養した。培養は37℃、5%炭酸ガス、100%湿度雰囲気下の炭酸ガスインキュベーターで行った。液体培養の培地は無血清のイスコフ改変ダルベッコ培地(IMDM、米国GIBCO−BRL社製)に2% BSA、10μg/mlヒトインスリン、200μg/mlトランスフェリン、40μg/ml低密度リポプロテイン(米国GIBCO−BRL社)、10-5M2−メルカプトエタノール、50ng/mlヒトSCF、5ng/mlヒトIL−3、10ng/mlヒトIL−6、5ng/mlヒトGM−CSF(米国Intergen社製)、3U/ml Epoを加えたものを用いた。条件によって500ng HSIg、もしくは50ng/ml MIP−1α(米国Intergen社)を加えた。この培地を1wellあたり1mlを加え、週に3回の半量培地交換を行い、培養2、4、6、8週後にセルスクレイパーを用いてwellからすべての細胞を1.5mlマイクロチューブに回収し、遠心分離によって細胞を沈降させ、新鮮なIMDM 1mlに再懸濁し、細胞数を血球計算盤を用いてカウントし、5000cells/mlで血球コロニー形成アッセイを行った。 Umbilical cord blood mononuclear cells CD34 positive cells separated by the method described in Example 10 were subjected to liquid culture at 1000 cells / well in a 24-well cell culture plate (Falcon, USA). The culture was performed in a carbon dioxide incubator at 37 ° C., 5% carbon dioxide, and 100% humidity. The liquid culture medium was serum-free Iskov modified Dulbecco medium (IMDM, manufactured by GIBCO-BRL, USA), 2% BSA, 10 μg / ml human insulin, 200 μg / ml transferrin, 40 μg / ml low density lipoprotein (US GIBCO-BRL). 10-5 M2-mercaptoethanol, 50 ng / ml human SCF, 5 ng / ml human IL-3, 10 ng / ml human IL-6, 5 ng / ml human GM-CSF (manufactured by Intergen, USA), 3 U / ml What added Epo was used. Depending on conditions, 500 ng HSIg or 50 ng / ml MIP-1α (Intergen, USA) was added. 1 ml of this medium was added per well, and a half-volume medium was changed three times a week. After 2, 4, 6, and 8 weeks of culture, all cells were collected from the well into a 1.5 ml microtube using a cell scraper. The cells were sedimented by centrifugation, resuspended in 1 ml of fresh IMDM, the number of cells was counted using a hemocytometer, and a blood cell colony formation assay was performed at 5000 cells / ml.

血球コロニー形成アッセイはイスコフメチルセルロースコンプリートレディミックス(カナダ国Stem Cell Technologies社製)を使用し、35mmディッシュ(米国ファルコン社)2枚に各1mlをシリンジを用いて植え付け、炭酸ガスインキュベーターで2週間培養した。血球コロニーは倒立顕微鏡下で顆粒球単球コロニー(CFU−GM)および赤芽球コロニー(BFU−E)をカウントし、総数をCFU−Cとした。ここで得られたCFU−C数と血球計算盤で求めた細胞数を掛け合わせ、液体培養で植え付けた1000cellsあたりのCFU−C数を求めた。この結果をHDEXIgの場合を第1表に、HSEXIgの場合を第2表に示す。実験はn=3で行い、値は(平均値±SD)で表した。なお表中のNDはコロニーが検出できなかったことを示す。   The hematopoietic colony formation assay uses Iskov methylcellulose complete ready mix (manufactured by Stem Cell Technologies, Canada), 1 ml each was planted on two 35 mm dishes (Falcon, USA) using a syringe, and cultured in a carbon dioxide incubator for 2 weeks. did. Blood cell colonies were counted as granulocyte monocyte colonies (CFU-GM) and erythroid colonies (BFU-E) under an inverted microscope, and the total number was taken as CFU-C. The number of CFU-C obtained here was multiplied by the number of cells determined with a hemocytometer, and the number of CFU-C per 1000 cells planted in liquid culture was determined. The results are shown in Table 1 for HDEXIg and in Table 2 for HSEXIg. The experiment was performed with n = 3, and the value was expressed as (mean value ± SD). Note that ND in the table indicates that no colonies could be detected.

Figure 2006212033
Figure 2006212033

Figure 2006212033
Figure 2006212033

結果として未分化な状態を維持するサイトカインがない条件、およびMIP−1α存在下での条件ではCFU−Cは6週までしか観察されなかったが、HDEXIgもしくはHSEXIg存在下では8週にも観察された。MIP−1αとHDEXIg及びHSEXIgの比較では、MIP−1αは培養2週でのコロニー形成を強く抑制すること観察されたが、HDEXIg、HSEXIgでの抑制は観察されなかった。また培養6週、8週でのCFU−C数の維持はHDEXIg、HSEXIgが優れていることが観察された。   As a result, CFU-C was observed only up to 6 weeks in the absence of cytokines that maintained an undifferentiated state, and in the presence of MIP-1α, but also in the presence of HDEXIg or HSEXIg. It was. In comparison of MIP-1α with HDEXIg and HSEXIg, MIP-1α was observed to strongly suppress colony formation at 2 weeks of culture, but inhibition with HDEXIg and HSEXIg was not observed. In addition, it was observed that HDEXIg and HSEXIg were excellent in maintaining the CFU-C number at 6 weeks and 8 weeks of culture.

実施例12 HDEXIg、HSEXIgの血液未分化細胞LTC−ICの液体培養に対する作用
HDEXIg、HSEXIgの血液未分化細胞に対する生理作用を観察するため、臍帯血CD34陽性細胞をHDEXIgもしくはHSEXIgおよび既存のサイトカイン存在下で無血清培地で2週間液体培養し、現在最も未分化な血液細胞群と考えられるLTC−ICの増減を観察した。
Example 12 Effects of HDEXIg and HSEXIg on liquid culture of blood undifferentiated cells LTC-IC In order to observe physiological effects of HDEXIg and HSEXIg on blood undifferentiated cells, cord blood CD34 positive cells were treated with HDEXIg or HSEXIg and existing cytokines. Then, liquid culture was performed in a serum-free medium for 2 weeks, and the increase or decrease in LTC-IC, which is considered to be the most undifferentiated blood cell group, was observed.

実施例10に記載した方法で分離した臍帯血単核球CD34陽性細胞を100000から20000個を下記の培地で2週間培養し、培養前区、HDEXIg存在区、HSEXIg存在区と比較区の4つの実験区に存在するLTC−IC数の違いを調べた。   Umbilical cord blood mononuclear cells CD34-positive cells isolated by the method described in Example 10 were cultured in 100,000 to 20,000 cells in the following medium for 2 weeks, and were divided into 4 groups: the pre-culture group, the HDEXIg presence group, the HSEXIg presence group, and the comparison group. The difference in the number of LTC-IC present in the experimental plot was examined.

液体培養に用いた培地はα−mediumに2%BSA、10μg/mlヒトインスリン、200μg/mlトランスフェリン、40μg/ml低密度リポプロテイン、10-5M2−メルカプトエタノールを加え、更に100ng/mlヒトSCF、10ng/mlヒトIL−3、100ng/mlヒトIL−6加えた培地を用い、これにHDEXIgもしくはHSEXIgを1μg/ml加え、比較区には前述のヒトIgG1を同濃度加えた。 The medium used for liquid culture was α-medium with 2% BSA, 10 μg / ml human insulin, 200 μg / ml transferrin, 40 μg / ml low density lipoprotein, 10 −5 M2-mercaptoethanol, and further 100 ng / ml human SCF. A medium supplemented with 10 ng / ml human IL-3 and 100 ng / ml human IL-6 was used, HDEXIg or HSEXIg was added thereto at 1 μg / ml, and the above-mentioned human IgG1 was added to the comparison group at the same concentration.

LTC−ICに使用するヒト骨髄ストローマ細胞層の作製、限界希釈法によるLTC−ICの頻度の定量はSutherlandらの方法(Blood、74、1563−、1989;Proc.Natl.Acad.Sci.USA、87、3584−、1990)に従って行った。   Preparation of human bone marrow stromal cell layer to be used for LTC-IC, and quantification of the frequency of LTC-IC by limiting dilution method is the method of Sutherland et al. (Blood, 74, 1563-1989, Proc. Natl. Acad. Sci. USA, 87, 3584, 1990).

すなわち、実施例10で得られた分離前のシリカ液処理しない骨髄単核球を1〜2X107細胞を1μMハイドロコルチゾン(日本国日本アップジョン社製)添加したLTC培地(MyeloCult、カナダ国Stem Cell Technologies社製)5mlでT−25フラスコ(米国ファルコン社製)にて、37℃、5%炭酸ガス、100%湿度雰囲気下の炭酸ガスインキュベーター中で培養し、付着細胞層であるストローマ細胞形成が底面積の80%以上の状態になるまで培養し、その後トリプシンEDTA液(日本国コスモバイオ社製)で処理して剥がした。96穴プレート(米国ベクトンデッキンソン社製)に1ウェルあたり約2×104個蒔き、再度培養を同培地にて培養を続け、ストローマ細胞の再構成を行った後、250Kilovolt PeakのX線を15Gy照射して、ストローマ細胞の増殖とストローマ細胞中の血液細胞を除去した物をストローマ細胞層として実験に用いた。 That is, the LTC medium (MyeloCult, Stem Cell, Canada) supplemented with 1 μM hydrocortisone (manufactured by Upjohn, Japan) of the bone marrow mononuclear cells obtained in Example 10 that were not treated with the silica solution was added to 1 × 2 × 10 7 cells. In 5 ml of Technologies (manufactured by Technologies) in a T-25 flask (manufactured by Falcon, USA) in a carbon dioxide incubator under an atmosphere of 37 ° C., 5% carbon dioxide and 100% humidity, formation of stromal cells as an adherent cell layer The culture was continued until it reached 80% or more of the bottom area, and then treated with a trypsin EDTA solution (manufactured by Cosmo Bio, Japan) and peeled off. About 2 × 10 4 cells per well are placed in a 96-well plate (made by Becton Decktonson, USA), and the culture is continued again in the same medium to reconstitute stromal cells, and then 250 Kilovolt Peak X-rays are used. A product obtained by irradiating with 15 Gy and removing stromal cell proliferation and blood cells in the stromal cell was used as a stromal cell layer in the experiment.

上記の方法で培養した各実験区の細胞をLTC−ICアッセイに共するにあたって、1ウェルあたり培養前のCD34陽性細胞細胞は25〜400個、培養後の各実験区の細胞は625〜20000個の範囲で6段階希釈し、上記のストローマ細胞形成した96穴プレートにて、1希釈段階について16ウェルで共培養行った。培養の培地はストローマ形成で用いた培地、条件は37℃、5%炭酸ガス、100%湿度雰囲気下の炭酸ガスインキュベーター中で5週間にわたって培養を行った。培養後の細胞は1ウェルづつ浮遊細胞、付着細胞とも回収し、α−mediumに0.9%メチルセルロース、30%牛胎児血清(FCS、日本国ICNバイオメディカルジャパン)、1%BSA、10-5M2−メルカブトエタノール、100ng/mlヒトSCF、10ng/mlヒトIL−3、100ng/mlヒトIL−6、2U/ml Epo、10ng/mlヒトG−CSF添加した半固形培地に移し、2週間の培養後、実施例10、11同様のコロニー形成細胞の検出を行い、コロニー形成細胞が存在したウェル数を検出した。このデータをもとにTaswellらの方法(J.Immunol.,126、1614−、1981)に従ってLTC−ICの頻度の算出を行った。 When the cells of each experimental group cultured by the above method are used in the LTC-IC assay, 25 to 400 CD34 positive cell cells before culturing per well, and 625 to 20000 cells in each experimental group after culturing. In the 96-well plate formed with the above stromal cells, the cells were co-cultured in 16 wells for each dilution step. The culture medium was the medium used for stroma formation, and the conditions were 37 ° C., 5% carbon dioxide gas, carbon dioxide gas incubator under 100% humidity atmosphere for 5 weeks. Cells after culture were collected as floating cells and adherent cells per well, 0.9% methylcellulose, 30% fetal calf serum (FCS, ICN Biomedical Japan, Japan), 1% BSA, 10 −5 in α-medium. Transfer to semi-solid medium supplemented with M2-merkabutethanol, 100 ng / ml human SCF, 10 ng / ml human IL-3, 100 ng / ml human IL-6, 2 U / ml Epo, 10 ng / ml human G-CSF, 2 weeks After culturing, colony-forming cells were detected in the same manner as in Examples 10 and 11, and the number of wells in which colony-forming cells were present was detected. Based on this data, the frequency of LTC-IC was calculated according to the method of Taswell et al. (J. Immunol., 126, 1614-, 1981).

算出に用いたグラフを第4図に示す。第4図は液体培養後の算出のグラフで縦軸にコロニーが現れなかったwellの割合を対数で示し、横軸はwellあたりの細胞数を示す。各実験区ごとにコロニーが現れなかったwell数と細胞数をプロットし、最小自乗法にて回帰直線を求め、コロニーが現れなかったwell数が0.37(自然対数の底の逆数)である細胞数を算出し、その細胞数の逆数がLTC−ICの頻度となる。さらに、はじめの細胞数とLTC−ICの頻度からLTC−ICの絶対数を算出した。   The graph used for the calculation is shown in FIG. FIG. 4 is a graph of calculation after liquid culture. The vertical axis shows the ratio of wells where colonies did not appear in logarithm, and the horizontal axis shows the number of cells per well. The number of wells and cells in which colonies did not appear in each experimental plot were plotted, and a regression line was obtained by the method of least squares. The number of wells in which no colonies appeared was 0.37 (the reciprocal of the base of natural logarithm) The number of cells is calculated, and the reciprocal of the number of cells is the frequency of LTC-IC. Furthermore, the absolute number of LTC-IC was calculated from the initial cell number and the frequency of LTC-IC.

その結果、液体培養前は25,000細胞中に243個のLTC−ICが存在し、比較区では2週間の培養で細胞数が1,510,000個に増えたが、LTC−ICは49個に減少した。しかしながら、ヒトデルタ−1すなわちHDEXIgもしくはヒトセレイト−1すなわちHSEXIgを含む培地で培養した場合にはそれらの細胞数が各々1,310,000個、1,140,000個とほぼ同様な数を増えていたが、LTC−ICはそれぞれ115個、53個とその減少幅を小さくした。この結果から、本発明のポリペプチド、特にヒトデルタ−1は液体培養におけるLTC−ICの維持作用を有することが明らかとなった。   As a result, 243 LTC-IC existed in 25,000 cells before liquid culture, and in the comparison plot, the number of cells increased to 1,5150,000 after 2 weeks of culture. Reduced to pieces. However, when cultured in a medium containing human delta-1 or HDEXIg or human selete-1 or HSEXIg, the number of cells increased to almost the same number as 1,310,000 and 1,140,000, respectively. However, the number of LTC-ICs was reduced to 115 and 53, respectively. From this result, it was clarified that the polypeptide of the present invention, particularly human delta-1, has the effect of maintaining LTC-IC in liquid culture.

実施例13 HDEXIg、HSEXIgの血液細胞株に対する結合
ノッチリガンド分子はノッチリセプターに特異的に結合する性質を用いて、ノッチリガンド分子の各種血液細胞株に対する結合を調べた。
Example 13 Binding of HDEXIg and HSEXIg to blood cell lines Using the property that Notch ligand molecules specifically bind to Notch receptors, the binding of Notch ligand molecules to various blood cell lines was examined.

細胞株は血液細胞株としてJurkat(ATCC TIB−152)、Namalwa(ATCC CRL−1432)、HL−60(ATCC CRL−1964)、K562(ATCC CCL−243)、THP−1(ATCCTIB−202)、UT−7(Komatsu et al.,Cancer Res.,51,341−348、1991)、Mo7e(Avanzi et al.,Br.J.Haematol.、69、359−、1988)、CMK(Sato et al.,Exp.Hematol.,15、495−502、1987)を調べた。これらの細胞株の培養培地は各々の引用文献、もしくはATCC CELL LINES & HYBRIDOMAS 8th ed(1994)に記載の培地で行った。   The cell lines are blood cell lines such as Jurkat (ATCC TIB-152), Namalwa (ATCC CRL-1432), HL-60 (ATCC CRL-1964), K562 (ATCC CCL-243), THP-1 (ATCCTIB-202), UT-7 (Komatsu et al., Cancer Res., 51, 341-348, 1991), Mo7e (Avanzi et al., Br. J. Haematol., 69, 359-, 1988), CMK (Sato et al. , Exp. Hematol., 15, 495-502, 1987). The culture medium of these cell lines was the medium described in each of the cited references or ATCC CELL LINES & HYBRIDOMAS 8th ed (1994).

各種細胞を1×106個を2%FCS、10mM Hepesを含むハンクス液で懸濁し、HDEXIgもしくはHSEXIgを1μg/ml添加し、4℃一晩放置した。同様なハンクス液で2回洗浄後、PE標識ヤギ抗ヒトIgGモノクローナル抗体を1μg/ml添加し、30分間氷中で放置し、ハンクス液で2回洗浄後、最後に1mlのハンクス液に懸濁して解析に供した。測定はフローサイトメーター(FACSCalibur)で行った。また、コントロールとしてHDEXIg、HSEXIgのかわりに該ヒトIgG1で染色したものを用いた。 1 × 10 6 cells were suspended in Hank's solution containing 2% FCS and 10 mM Hepes, HDEXIg or HSEXIg was added at 1 μg / ml, and left overnight at 4 ° C. After washing twice with the same Hanks solution, 1 μg / ml of PE-labeled goat anti-human IgG monoclonal antibody was added, left on ice for 30 minutes, washed twice with Hanks solution, and finally suspended in 1 ml Hanks solution. For analysis. The measurement was performed with a flow cytometer (FACSCalibur). Moreover, what was dye | stained with this human IgG1 instead of HDEXIg and HSEXIg was used as control.

それらの結果を第5図に示す。縦軸は細胞数で横軸は蛍光強度である。HDEXIg、HSEXIgで染色しものは実線で、コントロールのヒトIgG1で染色したものは破線で示し、左のカラムはHDEXIg、右のカラムはHSEXIgを各々示す。これらの結果からJurkatは反応、Namalwaは未反応、HL−60は未反応、K562は未反応、THP−1は未反応、UT−7は反応、Mo7eは未反応、CMKは反応した。また、これらの結果は、HDEXIg、HSEXIgとも同一の結果が得られたことから、同一の分子を認識することが明らかであり、またこれらの細胞を分別することができることが明らかになった。   The results are shown in FIG. The vertical axis represents the number of cells, and the horizontal axis represents the fluorescence intensity. Those stained with HDEXIg and HSEXIg are indicated by solid lines, those stained with control human IgG1 are indicated by broken lines, the left column indicates HDEXIg, and the right column indicates HSEXIg. From these results, Jurkat reacted, Namalwa unreacted, HL-60 unreacted, K562 unreacted, THP-1 unreacted, UT-7 reacted, Mo7e unreacted, and CMK reacted. Moreover, since these results were the same for HDEXIg and HSEXIg, it was clear that the same molecules were recognized, and that these cells could be sorted.

第1図は本発明分子を含む各種生物で同定されたノッチリガンド分子のDSLドメインのアラインメントである。FIG. 1 is an alignment of DSL domains of Notch ligand molecules identified in various organisms containing the molecule of the present invention. 第2図は本発明分子の血液未分化細胞のコロニー形成抑制を示すものである。FIG. 2 shows suppression of colony formation of blood undifferentiated cells by the molecule of the present invention. 第3図は本発明分子の血液未分化細胞のコロニー形成抑制作用の濃度依存性を示すものである。FIG. 3 shows the concentration dependence of the colony formation inhibitory action of blood undifferentiated cells of the molecule of the present invention. 第4図は本発明分子を用いた液体培養後のLTC−ICの算出を行った際のグラフを示すものである。FIG. 4 shows a graph when calculating LTC-IC after liquid culture using the molecule of the present invention. 第5図は本発明分子によって染色された細胞を示すものである。FIG. 5 shows cells stained with the molecule of the present invention.

[配列表]
SEQUENCE LISTING
<110> ASAHI KASEI KABUSHIKI KAISHA
<120> DIFFERENTIATION-SUPPRESSIVE POLYPEPTIDE
<130> A61213A
<160> 36
<210> 1
<211> 43
<212> PRT
<213> Homo sapiens
<220>
<221> Modified-site
<222> 2..4
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 7..9
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 11..13
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 20
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 24..25
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 27..29
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 31..33
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 35..36
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 39
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 41..42
<223> Xaa is unknown
<400> 1
Cys Xaa Xaa Xaa Tyr Tyr Xaa Xaa Xaa Cys Xaa Xaa Xaa Cys Arg Pro
1 5 10 15
Arg Asx Asp Xaa Phe Gly His Xaa Xaa Cys Xaa Xaa Xaa Gly Xaa Xaa
20 25 30
Xaa Cys Xaa Xaa Gly Trp Xaa Gly Xaa Xaa Cys
35 40
<210> 2
<211> 200
<212> PRT
<213> Homo sapiens
<400> 2
Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys Gly
1 5 10 15
Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly Ala Gly Pro Pro Pro
20 25 30
Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala
35 40 45
Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly Ser Ala Val Thr Pro
50 55 60
Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp Gly Gly Gly Ala Asp
65 70 75 80
Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro
85 90 95
Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp
100 105 110
Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Ala Thr
115 120 125
Gln Arg His Leu Thr Val Gly Glu Glu Thr Ser Gln Asp Leu His Ser
130 135 140
Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg Phe Val Cys Asp Glu
145 150 155 160
His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp
165 170 175
Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly Glu Lys Val Cys Asn
180 185 190
Pro Gly Trp Lys Gly Pro Tyr Cys
195 200
<210> 3
<211> 520
<212> PRT
<213> Homo sapiens
<400> 3
Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys Gly
1 5 10 15
Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly Ala Gly Pro Pro Pro
20 25 30
Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala
35 40 45
Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly Ser Ala Val Thr Pro
50 55 60
Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp Gly Gly Gly Ala Asp
65 70 75 80
Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro
85 90 95
Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp
100 105 110
Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Ala Thr
115 120 125
Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser Gln Asp Leu His Ser
130 135 140
Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg Phe Val Cys Asp Glu
145 150 155 160
His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp
165 170 175
Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly Glu Lys Val Cys Asn
180 185 190
Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro Ile Cys Leu Pro Gly
195 200 205
Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro Gly Glu Cys Lys Cys
210 215 220
Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu Cys Ile Arg Tyr Pro
225 230 235 240
Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp Gln Cys Asn Cys Gln
245 250 255
Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp Leu Asn Tyr Cys Thr
260 265 270
His His Lys Pro Cys Lys Asn Gly Ala Thr Cys Thr Asn Thr Gly Gln
275 280 285
Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr Thr Gly Ala Thr Cys
290 295 300
Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro Cys Lys Asn Gly Gly
305 310 315 320
Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly
325 330 335
Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly
340 345 350
Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser Pro Asp Gly Gly Tyr
355 360 365
Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys
370 375 380
Ile Asp Tyr Cys Ser Ser Ser Pro Cys Ser Asn Gly Ala Lys Cys Val
385 390 395 400
Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln Ala Gly Phe Ser Gly
405 410 415
Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala Ser Ser Pro Cys Ala
420 425 430
Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp Phe Ser Cys Thr Cys
435 440 445
Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala Pro Val Ser Arg Cys
450 455 460
Glu His Ala Pro Cys His Asn Gly Ala Thr Cys His Glu Arg Gly His
465 470 475 480
Arg Tyr Val Cys Glu Cys Ala Arg Gly Tyr Gly Gly Pro Asn Cys Gln
485 490 495
Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala Val Val Asp Leu Thr
500 505 510
Glu Lys Leu Glu Gly Gln Gly Gly
515 520
<210> 4
<211> 702
<212> PRT
<213> Homo sapiens
<400> 4
Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys Gly
1 5 10 15
Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly Ala Gly Pro Pro Pro
20 25 30
Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala
35 40 45
Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly Ser Ala Val Thr Pro
50 55 60
Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp Gly Gly Gly Ala Asp
65 70 75 80
Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro
85 90 95
Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp
100 105 110
Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Ala Thr
115 120 125
Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser Gln Asp Leu His Ser
130 135 140
Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg Phe Val Cys Asp Glu
145 150 155 160
His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp
165 170 175
Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly Glu Lys Val Cys Asn
180 185 190
Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro Ile Cys Leu Pro Gly
195 200 205
Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro Gly Glu Cys Lys Cys
210 215 220
Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu Cys Ile Arg Tyr Pro
225 230 235 240
Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp Gln Cys Asn Cys Gln
245 250 255
Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp Leu Asn Tyr Cys Thr
260 265 270
His His Lys Pro Cys Lys Asn Gly Ala Thr Cys Thr Asn Thr Gly Gln
275 280 285
Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr Thr Gly Ala Thr Cys
290 295 300
Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro Cys Lys Asn Gly Gly
305 310 315 320
Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly
325 330 335
Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly
340 345 350
Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser Pro Asp Gly Gly Tyr
355 360 365
Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys
370 375 380
Ile Asp Tyr Cys Ser Ser Ser Pro Cys Ser Asn Gly Ala Lys Cys Val
385 390 395 400
Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln Ala Gly Phe Ser Gly
405 410 415
Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala Ser Ser Pro Cys Ala
420 425 430
Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp Phe Ser Cys Thr Cys
435 440 445
Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala Pro Val Ser Arg Cys
450 455 460
Glu His Ala Pro Cys His Asn Gly Ala Thr Cys His Glu Arg Gly His
465 470 475 480
Arg Tyr Val Cys Glu Cys Ala Arg Gly Tyr Gly Gly Pro Asn Cys Gln
485 490 495
Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala Val Val Asp Leu Thr
500 505 510
Glu Lys Leu Glu Gly Gln Gly Gly Pro Phe Pro Trp Val Ala Val Cys
515 520 525
Ala Gly Val Ile Leu Val Leu Met Leu Leu Leu Gly Cys Ala Ala Val
530 535 540
Val Val Cys Val Arg Leu Arg Leu Gln Lys His Arg Pro Pro Ala Asp
545 550 555 560
Pro Cys Arg Gly Glu Thr Glu Thr Met Asn Asn Leu Ala Asn Cys Gln
565 570 575
Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly Ala Thr Gln Ile Lys
580 585 590
Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp His Ser Ala Asp Lys
595 600 605
Asn Gly Phe Lys Ala Arg Tyr Pro Ala Val Asp Tyr Asn Leu Val Gln
610 615 620
Asp Leu Lys Gly Asp Asp Thr Ala Val Arg Asp Ala His Ser Lys Arg
625 630 635 640
Asp Thr Lys Cys Gln Pro Gln Gly Ser Ser Gly Glu Glu Lys Gly Thr
645 650 655
Pro Thr Thr Leu Arg Gly Gly Glu Ala Ser Glu Arg Lys Arg Pro Asp
660 665 670
Ser Gly Cys Ser Thr Ser Lys Asp Thr Lys Tyr Gln Ser Val Tyr Val
675 680 685
Ile Ser Glu Glu Lys Asp Glu Cys Val Ile Ala Thr Glu Val
690 695 700
<210> 5
<211> 198
<212> PRT
<213> Homo sapiens
<400> 5
Ser Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly
1 5 10 15
Glu Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp
20 25 30
Arg Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu
35 40 45
Lys Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly
50 55 60
Ser Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala
65 70 75 80
Ser Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala
85 90 95
Trp Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn
100 105 110
Asp Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly
115 120 125
Met Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly
130 135 140
Val Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr
145 150 155 160
Tyr Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe
165 170 175
Gly His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly
180 185 190
Trp Met Gly Pro Glu Cys
195
<210> 6
<211> 1036
<212> PRT
<213> Homo sapiens
<400> 6
Ser Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly
1 5 10 15
Glu Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp
20 25 30
Arg Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu
35 40 45
Lys Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly
50 55 60
Ser Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala
65 70 75 80
Ser Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala
85 90 95
Trp Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn
100 105 110
Asp Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly
115 120 125
Met Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly
130 135 140
Val Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr
145 150 155 160
Tyr Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe
165 170 175
Gly His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly
180 185 190
Trp Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser
195 200 205
Pro Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr
210 215 220
Gly Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys
225 230 235 240
Val His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn
245 250 255
Trp Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His
260 265 270
Gln Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys
275 280 285
Tyr Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile
290 295 300
Ala Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys
305 310 315 320
Lys Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr
325 330 335
Gly Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys
340 345 350
Ser His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val
355 360 365
Cys Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu
370 375 380
Cys Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile
385 390 395 400
Ala Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys
405 410 415
Asp Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser
420 425 430
Cys Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr
435 440 445
Ala Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro
450 455 460
Cys Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys
465 470 475 480
Leu Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp
485 490 495
Tyr Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg
500 505 510
Ala Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn
515 520 525
Cys Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile
530 535 540
Asp Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val
545 550 555 560
Arg Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser
565 570 575
Gln Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly
580 585 590
Thr Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg
595 600 605
Asn Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys
610 615 620
Ser Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys
625 630 635 640
Ser Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn
645 650 655
Asp Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His
660 665 670
Ser Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr
675 680 685
Cys Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp
690 695 700
Glu Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn
705 710 715 720
Pro Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr
725 730 735
Cys Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr
740 745 750
Asn Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp
755 760 765
Gly Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro
770 775 780
Asp Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe
785 790 795 800
Gly Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro
805 810 815
Pro Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys
820 825 830
Ile Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp
835 840 845
Cys Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val
850 855 860
Trp Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys
865 870 875 880
Pro Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val
885 890 895
His Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro
900 905 910
Val Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala
915 920 925
Asn Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr
930 935 940
Thr Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn
945 950 955 960
Val Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser
965 970 975
Ala Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp
980 985 990
Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu Val
995 1000 1005
Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala Glu Val
1010 1015 1020
Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp
1025 1030 1035
<210> 7
<211> 1187
<212> PRT
<213> Homo sapiens
<400> 7
Ser Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly
1 5 10 15
Glu Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp
20 25 30
Arg Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu
35 40 45
Lys Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly
50 55 60
Ser Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala
65 70 75 80
Ser Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala
85 90 95
Trp Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn
100 105 110
Asp Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly
115 120 125
Met Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly
130 135 140
Val Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr
145 150 155 160
Tyr Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe
165 170 175
Gly His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly
180 185 190
Trp Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser
195 200 205
Pro Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr
210 215 220
Gly Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys
225 230 235 240
Val His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn
245 250 255
Trp Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His
260 265 270
Gln Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys
275 280 285
Tyr Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile
290 295 300
Ala Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys
305 310 315 320
Lys Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr
325 330 335
Gly Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys
340 345 350
Ser His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val
355 360 365
Cys Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu
370 375 380
Cys Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile
385 390 395 400
Ala Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys
405 410 415
Asp Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser
420 425 430
Cys Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr
435 440 445
Ala Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro
450 455 460
Cys Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys
465 470 475 480
Leu Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp
485 490 495
Tyr Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg
500 505 510
Ala Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn
515 520 525
Cys Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile
530 535 540
Asp Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val
545 550 555 560
Arg Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser
565 570 575
Gln Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly
580 585 590
Thr Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg
595 600 605
Asn Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys
610 615 620
Ser Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys
625 630 635 640
Ser Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn
645 650 655
Asp Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His
660 665 670
Ser Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr
675 680 685
Cys Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp
690 695 700
Glu Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn
705 710 715 720
Pro Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr
725 730 735
Cys Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr
740 745 750
Asn Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp
755 760 765
Gly Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro
770 775 780
Asp Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe
785 790 795 800
Gly Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro
805 810 815
Pro Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys
820 825 830
Ile Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp
835 840 845
Cys Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val
850 855 860
Trp Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys
865 870 875 880
Pro Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val
885 890 895
His Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro
900 905 910
Val Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala
915 920 925
Asn Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr
930 935 940
Thr Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn
945 950 955 960
Val Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser
965 970 975
Ala Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp
980 985 990
Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu Val
995 1000 1005
Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala Glu Val
1010 1015 1020
Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp Phe Leu Val Pro
1025 1030 1035 1040
Leu Leu Ser Ser Val Leu Thr Val Ala Trp Ile Cys Cys Leu Val Thr
1045 1050 1055
Ala Phe Tyr Trp Cys Leu Arg Lys Arg Arg Lys Pro Gly Ser His Thr
1060 1065 1070
His Ser Ala Ser Glu Asp Asn Thr Thr Asn Asn Val Arg Glu Gln Leu
1075 1080 1085
Asn Gln Ile Lys Asn Pro Ile Glu Lys His Gly Ala Asn Thr Val Pro
1090 1095 1100
Ile Lys Asp Tyr Glu Asn Lys Asn Ser Lys Met Ser Lys Ile Arg Thr
1105 1110 1115 1120
His Asn Ser Glu Val Glu Glu Asp Asp Met Asp Lys His Gln Gln Lys
1125 1130 1135
Ala Arg Phe Ala Lys Gln Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu
1140 1145 1150
Lys Pro Pro Asn Gly Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys
1155 1160 1165
Gln Asp Asn Arg Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu
1170 1175 1180
Tyr Ile Val
1185
<210> 8
<211> 2663
<212> DNA
<213> Homo sapiens
<400> 8
cttgggaaga ggcggagacc ggcttttaaa gaaagaagtc ctgggtcctg cggtctgggg 60
cgaggcaagg gcgcttttct gcccacgctc cccgtggccc atcgatcccc cgcgcgtccg 120
ccgctgttct aaggagagaa gtgggggccc cccaggctcg cgcgtggagc gaagcagc 178
atg ggc agt cgg tgc gcg ctg gcc ctg gcg gtg ctc tcg gcc ttg ctg 226
Met Gly Ser Arg Cys Ala Leu Ala Leu Ala Val Leu Ser Ala Leu Leu
1 5 10 15
tgt cag gtc tgg agc tct ggg gtg ttc gaa ctg aag ctg cag gag ttc 274
Cys Gln Val Trp Ser Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe
20 25 30
gtc aac aag aag ggg ctg ctg ggg aac cgc aac tgc tgc cgc ggg ggc 322
Val Asn Lys Lys Gly Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly
35 40 45
gcg ggg cca ccg ccg tgc gcc tgc cgg acc ttc ttc cgc gtg tgc ctc 370
Ala Gly Pro Pro Pro Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu
50 55 60
aag cac tac cag gcc agc gtg tcc ccc gag ccg ccc tgc acc tac ggc 418
Lys His Tyr Gln Ala Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly
65 70 75 80
agc gcc gtc acc ccc gtg ctg ggc gtc gac tcc ttc agt ctg ccc gac 466
Ser Ala Val Thr Pro Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp
85 90 95
ggc ggg ggc gcc gac tcc gcg ttc agc aac ccc atc cgc ttc ccc ttc 514
Gly Gly Gly Ala Asp Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe
100 105 110
ggc ttc acc tgg ccg ggc acc ttc tct ctg att att gaa gct ctc cac 562
Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His
115 120 125
aca gat tct cct gat gac ctc gca aca gaa aac cca gaa aga ctc atc 610
Thr Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile
130 135 140
agc cgc ctg gcc acc cag agg cac ctg acg gtg ggc gag gag tgg tcc 658
Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser
145 150 155 160
cag gac ctg cac agc agc ggc cgc acg gac ctc aag tac tcc tac cgc 706
Gln Asp Leu His Ser Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg
165 170 175
ttc gtg tgt gac gaa cac tac tac gga gag ggc tgc tcc gtt ttc tgc 754
Phe Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys
180 185 190
cgt ccc cgg gac gat gcc ttc ggc cac ttc acc tgt ggg gag cgt ggg 802
Arg Pro Arg Asp Asp Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly
195 200 205
gag aaa gtg tgc aac cct ggc tgg aaa ggg ccc tac tgc aca gag ccg 850
Glu Lys Val Cys Asn Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro
210 215 220
atc tgc ctg cct gga tgt gat gag cag cat gga ttt tgt gac aaa cca 898
Ile Cys Leu Pro Gly Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro
225 230 235 240
ggg gaa tgc aag tgc aga gtg ggc tgg cag ggc cgg tac tgt gac gag 946
Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu
245 250 255
tgt atc cgc tat cca ggc tgt ctc cat ggc acc tgc cag cag ccc tgg 994
Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp
260 265 270
cag tgc aac tgc cag gaa ggc tgg ggg ggc ctt ttc tgc aac cag gac 1042
Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp
275 280 285
ctg aac tac tgc aca cac cat aag ccc tgc aag aat gga gcc acc tgc 1090
Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr Cys
290 295 300
acc aac acg ggc cag ggg agc tac act tgc tct tgc cgg cct ggg tac 1138
Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr
305 310 315 320
aca ggt gcc acc tgc gag ctg ggg att gac gag tgt gac ccc agc cct 1186
Thr Gly Ala Thr Cys Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro
325 330 335
tgt aag aac gga ggg agc tgc acg gat ctc gag aac agc tac tcc tgt 1234
Cys Lys Asn Gly Gly Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys
340 345 350
acc tgc cca ccc ggc ttc tac ggc aaa atc tgt gaa ttg agt gcc atg 1282
Thr Cys Pro Pro Gly Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met
355 360 365
acc tgt gcg gac ggc cct tgc ttt aac ggg ggt cgg tgc tca gac agc 1330
Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser
370 375 380
ccc gat gga ggg tac agc tgc cgc tgc ccc gtg ggc tac tcc ggc ttc 1378
Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe
385 390 395 400
aac tgt gag aag aaa att gac tac tgc agc tct tca ccc tgt tct aat 1426
Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Ser Pro Cys Ser Asn
405 410 415
ggt gcc aag tgt gtg gac ctc ggt gat gcc tac ctg tgc cgc tgc cag 1474
Gly Ala Lys Cys Val Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln
420 425 430
gcc ggc ttc tcg ggg agg cac tgt gac gac aac gtg gac gac tgc gcc 1522
Ala Gly Phe Ser Gly Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala
435 440 445
tcc tcc ccg tgc gcc aac ggg ggc acc tgc cgg gat ggc gtg aac gac 1570
Ser Ser Pro Cys Ala Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp
450 455 460
ttc tcc tgc acc tgc ccg cct ggc tac acg ggc agg aac tgc agt gcc 1618
Phe Ser Cys Thr Cys Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala
465 470 475 480
ccc gtc agc agg tgc gag cac gca ccc tgc cac aat ggg gcc acc tgc 1666
Pro Val Ser Arg Cys Glu His Ala Pro Cys His Asn Gly Ala Thr Cys
485 490 495
cac gag agg ggc cac cgc tat gtg tgc gag tgt gcc cga ggc tac ggg 1714
His Glu Arg Gly His Arg Tyr Val Cys Glu Cys Ala Arg Gly Tyr Gly
500 505 510
ggt ccc aac tgc cag ttc ctg ctc ccc gag ctg ccc ccg ggc cca gcg 1762
Gly Pro Asn Cys Gln Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala
515 520 525
gtg gtg gac ctc act gag aag cta gag ggc cag ggc ggg cca ttc ccc 1810
Val Val Asp Leu Thr Glu Lys Leu Glu Gly Gln Gly Gly Pro Phe Pro
530 535 540
tgg gtg gcc gtg tgc gcc ggg gtc atc ctt gtc ctc atg ctg ctg ctg 1858
Trp Val Ala Val Cys Ala Gly Val Ile Leu Val Leu Met Leu Leu Leu
545 550 555 560
ggc tgt gcc gct gtg gtg gtc tgc gtc cgg ctg agg ctg cag aag cac 1906
Gly Cys Ala Ala Val Val Val Cys Val Arg Leu Arg Leu Gln Lys His
565 570 575
cgg ccc cca gcc gac ccc tgc cgg ggg gag acg gag acc atg aac aac 1954
Arg Pro Pro Ala Asp Pro Cys Arg Gly Glu Thr Glu Thr Met Asn Asn
580 585 590
ctg gcc aac tgc cag cgt gag aag gac atc tca gtc agc atc atc ggg 2002
Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly
595 600 605
gcc acg cag atc aag aac acc aac aag aag gcg gac ttc cac ggg gac 2050
Ala Thr Gln Ile Lys Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp
610 615 620
cac agc gcc gac aag aat ggc ttc aag gcc cgc tac cca gcg gtg gac 2098
His Ser Ala Asp Lys Asn Gly Phe Lys Ala Arg Tyr Pro Ala Val Asp
625 630 635 640
tat aac ctc gtg cag gac ctc aag ggt gac gac acc gcc gtc agg gac 2146
Tyr Asn Leu Val Gln Asp Leu Lys Gly Asp Asp Thr Ala Val Arg Asp
645 650 655
gcg cac agc aag cgt gac acc aag tgc cag ccc cag ggc tcc tca ggg 2194
Ala His Ser Lys Arg Asp Thr Lys Cys Gln Pro Gln Gly Ser Ser Gly
660 665 670
gag gag aag ggg acc ccg acc aca ctc agg ggt gga gaa gca tct gaa 2242
Glu Glu Lys Gly Thr Pro Thr Thr Leu Arg Gly Gly Glu Ala Ser Glu
675 680 685
aga aaa agg ccg gac tcg ggc tgt tca act tca aaa gac acc aag tac 2290
Arg Lys Arg Pro Asp Ser Gly Cys Ser Thr Ser Lys Asp Thr Lys Tyr
690 695 700
cag tcg gtg tac gtc ata tcc gag gag aag gat gag tgc gtc ata gca 2338
Gln Ser Val Tyr Val Ile Ser Glu Glu Lys Asp Glu Cys Val Ile Ala
705 710 715 720
act gag gtg taaaatggaa gtgagatggc aagactcccg tttctcttaa 2387
Thr Glu Val

aataagtaaa attccaagga tatatgcccc aacgaatgct gctgaagagg agggaggcct 2447
cgtggactgc tgctgagaaa ccgagttcag accgagcagg ttctcctcct gaggtcctcg 2507
acgcctgccg acagcctgtc gcggcccggc cgcctgcggc actgccttcc gtgacgtcgc 2567
cgttgcacta tggacagttg ctcttaagag aatatatatt taaatgggtg aactgaatta 2627
cgcataagaa gcatgcactg cctgagtgta tatttt 2663
<210> 9
<211> 4208
<212> DNA
<213> Homo sapiens
<400> 9
ggccggcccg cgagctaggc tggttttttt ttttctcccc tccctccccc ctttttccat 60
gcagctgatc taaaagggaa taaaaggctg cgcataatca taataataaa agaaggggag 120
cgcgagagaa ggaaagaaag ccgggaggtg gaagaggagg gggagcgtct caaagaagcg 180
atcagaataa taaaaggagg ccgggctctt tgccttctgg aacgggccgc tcttgaaagg 240
gcttttgaaa agtggtgttg ttttccagtc gtgcatgctc caatcggcgg agtatattag 300
agccgggacg cggcggccgc aggggcagcg gcgacggcag caccggcggc agcaccagcg 360
cgaacagcag cggcggcgtc ccgagtgccc gcggcgcgcg gcgcagcg atg cgt tcc 417
Met Arg Ser
1
cca cgg acg cgc ggc cgg tcc ggg cgc ccc cta agc ctc ctg ctc gcc 465
Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu Leu Leu Ala
5 10 15
ctg ctc tgt gcc ctg cga gcc aag gtg tgt ggg gcc tcg ggt cag ttc 513
Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser Gly Gln Phe
20 25 30 35
gag ttg gag atc ctg tcc atg cag aac gtg aac ggg gag ctg cag aac 561
Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu Leu Gln Asn
40 45 50
ggg aac tgc tgc ggc ggc gcc cgg aac ccg gga gac cgc aag tgc acc 609
Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg Lys Cys Thr
55 60 65
cgc gac gag tgt gac aca tac ttc aaa gtg tgc ctc aag gag tat cag 657
Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys Glu Tyr Gln
70 75 80
tcc cgc gtc acg gcc ggg ggg ccc tgc agc ttc ggc tca ggg tcc acg 705
Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser Gly Ser Thr
85 90 95
cct gtc atc ggg ggc aac acc ttc aac ctc aag gcc agc cgc ggc aac 753
Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser Arg Gly Asn
100 105 110 115
gac cgc aac cgc atc gtg ctg cct ttc agt ttc gcc tgg ccg agg tcc 801
Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp Pro Arg Ser
120 125 130
tat acg ttg ctt gtg gag gcg tgg gat tcc agt aat gac acc gtt caa 849
Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp Thr Val Gln
135 140 145
cct gac agt att att gaa aag gct tct cac tcg ggc atg atc aac ccc 897
Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met Ile Asn Pro
150 155 160
agc cgg cag tgg cag acg ctg aag cag aac acg ggc gtt gcc cac ttt 945
Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val Ala His Phe
165 170 175
gag tat cag atc cgc gtg acc tgt gat gac tac tac tat ggc ttt ggc 993
Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr Gly Phe Gly
180 185 190 195
tgc aat aag ttc tgc cgc ccc aga gat gac ttc ttt gga cac tat gcc 1041
Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly His Tyr Ala
200 205 210
tgt gac cag aat ggc aac aaa act tgc atg gaa ggc tgg atg ggc ccc 1089
Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp Met Gly Pro
215 220 225
gaa tgt aac aga gct att tgc cga caa ggc tgc agt cct aag cat ggg 1137
Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro Lys His Gly
230 235 240
tct tgc aaa ctc cca ggt gac tgc agg tgc cag tac ggc tgg caa ggc 1185
Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly Trp Gln Gly
245 250 255
ctg tac tgt gat aag tgc atc cca cac ccg gga tgc gtc cac ggc atc 1233
Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val His Gly Ile
260 265 270 275
tgt aat gag ccc tgg cag tgc ctc tgt gag acc aac tgg ggc ggc cag 1281
Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp Gly Gly Gln
280 285 290
ctc tgt gac aaa gat ctc aat tac tgt ggg act cat cag ccg tgt ctc 1329
Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln Pro Cys Leu
295 300 305
aac ggg gga act tgt agc aac aca ggc cct gac aaa tat cag tgt tcc 1377
Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys Tyr Gln Cys Ser
310 315 320
tgc cct gag ggg tat tca gga ccc aac tgt gaa att gct gag cac gcc 1425
Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala Glu His Ala
325 330 335
tgc ctc tct gat ccc tgt cac aac aga ggc agc tgt aag gag acc tcc 1473
Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys Glu Thr Ser
340 345 350 355
ctg ggc ttt gag tgt gag tgt tcc cca ggc tgg acc ggc ccc aca tgc 1521
Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly Pro Thr Cys
360 365 370
tct aca aac att gat gac tgt tct cct aat aac tgt tcc cac ggg ggc 1569
Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser His Gly Gly
375 380 385
acc tgc cag gac ctg gtt aac gga ttt aag tgt gtg tgc ccc cca cag 1617
Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys Pro Pro Gln
390 395 400
tgg act ggg aaa acg tgc cag tta gat gca aat gaa tgt gag gcc aaa 1665
Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys Glu Ala Lys
405 410 415
cct tgt gta aac gcc aaa tcc tgt aag aat ctc att gcc agc tac tac 1713
Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala Ser Tyr Tyr
420 425 430 435
tgc gac tgt ctt ccc ggc tgg atg ggt cag aat tgt gac ata aat att 1761
Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp Ile Asn Ile
440 445 450
aat gac tgc ctt ggc cag tgt cag aat gac gcc tcc tgt cgg gat ttg 1809
Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys Arg Asp Leu
455 460 465
gtt aat ggt tat cgc tgt atc tgt cca cct ggc tat gca ggc gat cac 1857
Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala Gly Asp His
470 475 480
tgt gag aga gac atc gat gaa tgt gcc agc aac ccc tgt ttg aat ggg 1905
Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Leu Asn Gly
485 490 495
ggt cac tgt cag aat gaa atc aac aga ttc cag tgt ctg tgt ccc act 1953
Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu Cys Pro Thr
500 505 510 515
ggt ttc tct gga aac ctc tgt cag ctg gac atc gat tat tgt gag cct 2001
Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr Cys Glu Pro
520 525 530
aat ccc tgc cag aac ggt gcc cag tgc tac aac cgt gcc agt gac tat 2049
Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala Ser Asp Tyr
535 540 545
ttc tgc aag tgc ccc gag gac tat gag ggc aag aac tgc tca cac ctg 2097
Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn Cys Ser His Leu
550 555 560
aaa gac cac tgc cgc acg acc ccc tgt gaa gtg att gac agc tgc aca 2145
Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile Asp Ser Cys Thr
565 570 575
gtg gcc atg gct tcc aac gac aca cct gaa ggg gtg cgg tat att tcc 2193
Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val Arg Tyr Ile Ser
580 585 590 595
tcc aac gtc tgt ggt cct cac ggg aag tgc aag agt cag tcg gga ggc 2241
Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln Ser Gly Gly
600 605 610
aaa ttc acc tgt gac tgt aac aaa ggc ttc acg gga aca tac tgc cat 2289
Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr Tyr Cys His
615 620 625
gaa aat att aat gac tgt gag agc aac cct tgt aga aac ggt ggc act 2337
Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn Gly Gly Thr
630 635 640
tgc atc gat ggt gtc aac tcc tac aag tgc atc tgt agt gac ggc tgg 2385
Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser Asp Gly Trp
645 650 655
gag ggg gcc tac tgt gaa acc aat att aat gac tgc agc cag aac ccc 2433
Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser Gln Asn Pro
660 665 670 675
tgc cac aat ggg ggc acg tgt cgc gac ctg gtc aat gac ttc tac tgt 2481
Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp Phe Tyr Cys
680 685 690
gac tgt aaa aat ggg tgg aaa gga aag acc tgc cac tca cgt gac agt 2529
Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser Arg Asp Ser
695 700 705
cag tgt gat gag gcc acg tgc aac aac ggt ggc acc tgc tat gat gag 2577
Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys Tyr Asp Glu
710 715 720
ggg gat gct ttt aag tgc atg tgt cct ggc ggc tgg gaa gga aca acc 2625
Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu Gly Thr Thr
725 730 735
tgt aac ata gcc cga aac agt agc tgc ctg ccc aac ccc tgc cat aat 2673
Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro Cys His Asn
740 745 750 755
ggg ggc aca tgt gtg gtc aac ggc gag tcc ttt acg tgc gtc tgc aag 2721
Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys Val Cys Lys
760 765 770
gaa ggc tgg gag ggg ccc atc tgt gct cag aat acc aat gac tgc agc 2769
Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn Asp Cys Ser
775 780 785
cct cat ccc tgt tac aac agc ggc acc tgt gtg gat gga gac aac tgg 2817
Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly Asp Asn Trp
790 795 800
tac cgg tgc gaa tgt gcc ccg ggt ttt gct ggg ccc gac tgc aga ata 2865
Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp Cys Arg Ile
805 810 815
aac atc aat gaa tgc cag tct tca cct tgt gcc ttt gga gcg acc tgt 2913
Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly Ala Thr Cys
820 825 830 835
gtg gat gag atc aat ggc tac cgg tgt gtc tgc cct cca ggg cac agt 2961
Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro Gly His Ser
840 845 850
ggt gcc aag tgc cag gaa gtt tca ggg aga cct tgc atc acc atg ggg 3009
Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile Thr Met Gly
855 860 865
agt gtg ata cca gat ggg gcc aaa tgg gat gat gac tgt aat acc tgc 3057
Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys Asn Thr Cys
870 875 880
cag tgc ctg aat gga cgg atc gcc tgc tca aag gtc tgg tgt ggc cct 3105
Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp Cys Gly Pro
885 890 895
cga cct tgc ctg ctc cac aaa ggg cac agc gag tgc ccc agc ggg cag 3153
Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro Ser Gly Gln
900 905 910 915
agc tgc atc ccc atc ctg gac gac cag tgc ttc gtc cac ccc tgc act 3201
Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His Pro Cys Thr
920 925 930
ggt gtg ggc gag tgt cgg tct tcc agt ctc cag ccg gtg aag aca aag 3249
Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro Val Lys Thr Lys
935 940 945
tgc acc tct gac tcc tat tac cag gat aac tgt gcg aac atc aca ttt 3297
Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn Ile Thr Phe
950 955 960
acc ttt aac aag gag atg atg tca cca ggt ctt act acg gag cac att 3345
Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr Glu His Ile
965 970 975
tgc agt gaa ttg agg aat ttg aat att ttg aag aat gtt tcc gct gaa 3393
Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val Ser Ala Glu
980 985 990 995
tat tca atc tac atc gct tgc gag cct tcc cct tca gcg aac aat gaa 3441
Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala Asn Asn Glu
1000 1005 1010
ata cat gtg gcc att tct gct gaa gat ata cgg gat gat ggg aac ccg 3489
Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp Asp Gly Asn Pro
1015 1020 1025
atc aag gaa atc act gac aaa ata atc gat ctt gtt agt aaa cgt gat 3537
Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu Val Ser Lys Arg Asp
1030 1035 1040
gga aac agc tcg ctg att gct gcc gtt gca gaa gta aga gtt cag agg 3585
Gly Asn Ser Ser Leu Ile Ala Ala Val Ala Glu Val Arg Val Gln Arg
1045 1050 1055
cgg cct ctg aag aac aga aca gat ttc ctt gtt ccc ttg ctg agc tct 3633
Arg Pro Leu Lys Asn Arg Thr Asp Phe Leu Val Pro Leu Leu Ser Ser
1060 1065 1070 1075
gtc tta act gtg gct tgg atc tgt tgc ttg gtg acg gcc ttc tac tgg 3681
Val Leu Thr Val Ala Trp Ile Cys Cys Leu Val Thr Ala Phe Tyr Trp
1080 1085 1090
tgc ctg cgg aag cgg cgg aag ccg ggc agc cac aca cac tca gcc tct 3729
Cys Leu Arg Lys Arg Arg Lys Pro Gly Ser His Thr His Ser Ala Ser
1095 1100 1105
gag gac aac acc acc aac aac gtg cgg gag cag ctg aac cag atc aaa 3777
Glu Asp Asn Thr Thr Asn Asn Val Arg Glu Gln Leu Asn Gln Ile Lys
1110 1115 1120
aac ccc att gag aaa cat ggg gcc aac acg gtc ccc atc aag gat tat 3825
Asn Pro Ile Glu Lys His Gly Ala Asn Thr Val Pro Ile Lys Asp Tyr
1125 1130 1135
gag aac aag aac tcc aaa atg tct aaa ata agg aca cac aat tct gaa 3873
Glu Asn Lys Asn Ser Lys Met Ser Lys Ile Arg Thr His Asn Ser Glu
1140 1145 1150 1155
gta gaa gag gac gac atg gac aaa cac cag cag aaa gcc cgg ttt gcc 3921
Val Glu Glu Asp Asp Met Asp Lys His Gln Gln Lys Ala Arg Phe Ala
1160 1165 1170
aag cag ccg gcg tac acg ctg gta gac aga gaa gag aag ccc ccc aac 3969
Lys Gln Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu Lys Pro Pro Asn
1175 1180 1185
ggc acg ccg aca aaa cac cca aac tgg aca aac aaa cag gac aac aga 4017
Gly Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys Gln Asp Asn Arg
1190 1195 1200
gac ttg gaa agt gcc cag agc tta aac cga atg gag tac atc gta 4062
Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu Tyr Ile Val
1205 1210 1215
tagcagaccg cgggcactgc cgccgctagg tagagtctga gggcttgtag ttctttaaac 4122
tgtcgtgtca tactcgagtc tgaggccgtt gctgacttag aatccctgtg ttaatttaag 4182
ttttgacaag ctggcttaca ctggca 4208
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 10
gat tat aaa gat gat gat gat aaa tga 27
Asp Tyr Lys Asp Asp Asp Asp Lys
1 5
<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 11
tggcartgya aytgycarga 20
<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 12
atyttyttyt crcarttraa 20
<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 13
tgcststgyg anaccaactg 20
<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 14
tttatktcrc awktckgwcc 20
<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 15
tcgcgcgtgg agcgaagcag catgg 25
<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 16
ggaattcgat atcaagctta tcgat 25
<210> 17
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 17
tcacccgccc tggccctcta gcttctca 28
<210> 18
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 18
ggacgcgtgg atccactagt tctagagc 28
<210> 19
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 19
tcatttatca tcatcatctt tataatcccc gccctggccc tctagcttct cagtg 55
<210> 20
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 20
aaggatcccg agggtgtctg ctggaagcca ggctca 36
<210> 21
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 21
cctctagagt cgcggccgtc gcactcattt acc 33
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 22
aaggatcccc gccctggccc tctagcttc 29
<210> 23
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 23
cctctagacg cgtagagcgg ccgccaccgc ggtgga 36
<210> 24
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 24
tcacacctca gttgctatga cgcac 25
<210> 25
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 25
ggacgcgtgg atccactagt tctagagc 28
<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 26
tcatttatca tcatcatctt tataatccac ctcagttgct atgacgcact c 51
<210> 27
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 27
cggcgcagcg atgcgttccc cacgg 25
<210> 28
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 28
ggaattcgat atcaagctta tcgat 25
<210> 29
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 29
tcaatctgtt ctgttgttca gaggccg 27
<210> 30
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 30
ggacgcgtgg atccactagt tctagagc 28
<210> 31
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 31
tcatttatca tcatcatctt tataatcatc tgttctgttg ttcagaggcc g 51
<210> 32
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 32
aaggatccgt tctgttgttc agaggccgcc t 31
<210> 33
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 33
cctctagacg cgtagagcgg ccgccaccgc ggtgga 36
<210> 34
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 34
ctatacgatg tactccattc ggtttaag 28
<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 35
ggacgcgtct agagtcgacc tgcaggcatg c 31
<210> 36
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 36
ctatttatca tcatcatctt tataatctac gatgtactcc attcggttta ag 52
[Sequence Listing]
SEQUENCE LISTING
<110> ASAHI KASEI KABUSHIKI KAISHA
<120> DIFFERENTIATION-SUPPRESSIVE POLYPEPTIDE
<130> A61213A
<160> 36
<210> 1
<211> 43
<212> PRT
<213> Homo sapiens
<220>
<221> Modified-site
<222> 2..4
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 7..9
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 11..13
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 20
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 24..25
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 27..29
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 31..33
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 35..36
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 39
<223> Xaa is unknown
<220>
<221> Modified-site
<222> 41..42
<223> Xaa is unknown
<400> 1
Cys Xaa Xaa Xaa Tyr Tyr Xaa Xaa Xaa Cys Xaa Xaa Xaa Cys Arg Pro
1 5 10 15
Arg Asx Asp Xaa Phe Gly His Xaa Xaa Cys Xaa Xaa Xaa Gly Xaa Xaa
20 25 30
Xaa Cys Xaa Xaa Gly Trp Xaa Gly Xaa Xaa Cys
35 40
<210> 2
<211> 200
<212> PRT
<213> Homo sapiens
<400> 2
Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys Gly
1 5 10 15
Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly Ala Gly Pro Pro Pro
20 25 30
Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala
35 40 45
Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly Ser Ala Val Thr Pro
50 55 60
Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp Gly Gly Gly Ala Asp
65 70 75 80
Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro
85 90 95
Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp
100 105 110
Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Ala Thr
115 120 125
Gln Arg His Leu Thr Val Gly Glu Glu Thr Ser Gln Asp Leu His Ser
130 135 140
Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg Phe Val Cys Asp Glu
145 150 155 160
His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp
165 170 175
Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly Glu Lys Val Cys Asn
180 185 190
Pro Gly Trp Lys Gly Pro Tyr Cys
195 200
<210> 3
<211> 520
<212> PRT
<213> Homo sapiens
<400> 3
Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys Gly
1 5 10 15
Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly Ala Gly Pro Pro Pro
20 25 30
Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala
35 40 45
Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly Ser Ala Val Thr Pro
50 55 60
Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp Gly Gly Gly Ala Asp
65 70 75 80
Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro
85 90 95
Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp
100 105 110
Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Ala Thr
115 120 125
Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser Gln Asp Leu His Ser
130 135 140
Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg Phe Val Cys Asp Glu
145 150 155 160
His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp
165 170 175
Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly Glu Lys Val Cys Asn
180 185 190
Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro Ile Cys Leu Pro Gly
195 200 205
Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro Gly Glu Cys Lys Cys
210 215 220
Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu Cys Ile Arg Tyr Pro
225 230 235 240
Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp Gln Cys Asn Cys Gln
245 250 255
Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp Leu Asn Tyr Cys Thr
260 265 270
His His Lys Pro Cys Lys Asn Gly Ala Thr Cys Thr Asn Thr Gly Gln
275 280 285
Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr Thr Gly Ala Thr Cys
290 295 300
Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro Cys Lys Asn Gly Gly
305 310 315 320
Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly
325 330 335
Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly
340 345 350
Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser Pro Asp Gly Gly Tyr
355 360 365
Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys
370 375 380
Ile Asp Tyr Cys Ser Ser Pro Pro Cys Ser Asn Gly Ala Lys Cys Val
385 390 395 400
Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln Ala Gly Phe Ser Gly
405 410 415
Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala Ser Ser Pro Cys Ala
420 425 430
Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp Phe Ser Cys Thr Cys
435 440 445
Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala Pro Val Ser Arg Cys
450 455 460
Glu His Ala Pro Cys His Asn Gly Ala Thr Cys His Glu Arg Gly His
465 470 475 480
Arg Tyr Val Cys Glu Cys Ala Arg Gly Tyr Gly Gly Pro Asn Cys Gln
485 490 495
Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala Val Val Asp Leu Thr
500 505 510
Glu Lys Leu Glu Gly Gln Gly Gly
515 520
<210> 4
<211> 702
<212> PRT
<213> Homo sapiens
<400> 4
Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe Val Asn Lys Lys Gly
1 5 10 15
Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly Ala Gly Pro Pro Pro
20 25 30
Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala
35 40 45
Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly Ser Ala Val Thr Pro
50 55 60
Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp Gly Gly Gly Ala Asp
65 70 75 80
Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro
85 90 95
Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp
100 105 110
Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile Ser Arg Leu Ala Thr
115 120 125
Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser Gln Asp Leu His Ser
130 135 140
Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg Phe Val Cys Asp Glu
145 150 155 160
His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys Arg Pro Arg Asp Asp
165 170 175
Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly Glu Lys Val Cys Asn
180 185 190
Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro Ile Cys Leu Pro Gly
195 200 205
Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro Gly Glu Cys Lys Cys
210 215 220
Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu Cys Ile Arg Tyr Pro
225 230 235 240
Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp Gln Cys Asn Cys Gln
245 250 255
Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp Leu Asn Tyr Cys Thr
260 265 270
His His Lys Pro Cys Lys Asn Gly Ala Thr Cys Thr Asn Thr Gly Gln
275 280 285
Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr Thr Gly Ala Thr Cys
290 295 300
Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro Cys Lys Asn Gly Gly
305 310 315 320
Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly
325 330 335
Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met Thr Cys Ala Asp Gly
340 345 350
Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser Pro Asp Gly Gly Tyr
355 360 365
Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys
370 375 380
Ile Asp Tyr Cys Ser Ser Pro Pro Cys Ser Asn Gly Ala Lys Cys Val
385 390 395 400
Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln Ala Gly Phe Ser Gly
405 410 415
Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala Ser Ser Pro Cys Ala
420 425 430
Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp Phe Ser Cys Thr Cys
435 440 445
Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala Pro Val Ser Arg Cys
450 455 460
Glu His Ala Pro Cys His Asn Gly Ala Thr Cys His Glu Arg Gly His
465 470 475 480
Arg Tyr Val Cys Glu Cys Ala Arg Gly Tyr Gly Gly Pro Asn Cys Gln
485 490 495
Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala Val Val Asp Leu Thr
500 505 510
Glu Lys Leu Glu Gly Gln Gly Gly Pro Phe Pro Trp Val Ala Val Cys
515 520 525
Ala Gly Val Ile Leu Val Leu Met Leu Leu Leu Gly Cys Ala Ala Val
530 535 540
Val Val Cys Val Arg Leu Arg Leu Gln Lys His Arg Pro Pro Ala Asp
545 550 555 560
Pro Cys Arg Gly Glu Thr Glu Thr Met Asn Asn Leu Ala Asn Cys Gln
565 570 575
Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly Ala Thr Gln Ile Lys
580 585 590
Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp His Ser Ala Asp Lys
595 600 605
Asn Gly Phe Lys Ala Arg Tyr Pro Ala Val Asp Tyr Asn Leu Val Gln
610 615 620
Asp Leu Lys Gly Asp Asp Thr Ala Val Arg Asp Ala His Ser Lys Arg
625 630 635 640
Asp Thr Lys Cys Gln Pro Gln Gly Ser Ser Gly Glu Glu Lys Gly Thr
645 650 655
Pro Thr Thr Leu Arg Gly Gly Glu Ala Ser Glu Arg Lys Arg Pro Asp
660 665 670
Ser Gly Cys Ser Thr Ser Lys Asp Thr Lys Tyr Gln Ser Val Tyr Val
675 680 685
Ile Ser Glu Glu Lys Asp Glu Cys Val Ile Ala Thr Glu Val
690 695 700
<210> 5
<211> 198
<212> PRT
<213> Homo sapiens
<400> 5
Ser Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly
1 5 10 15
Glu Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp
20 25 30
Arg Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu
35 40 45
Lys Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly
50 55 60
Ser Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala
65 70 75 80
Ser Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala
85 90 95
Trp Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn
100 105 110
Asp Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly
115 120 125
Met Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly
130 135 140
Val Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr
145 150 155 160
Tyr Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe
165 170 175
Gly His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly
180 185 190
Trp Met Gly Pro Glu Cys
195
<210> 6
<211> 1036
<212> PRT
<213> Homo sapiens
<400> 6
Ser Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly
1 5 10 15
Glu Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp
20 25 30
Arg Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu
35 40 45
Lys Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly
50 55 60
Ser Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala
65 70 75 80
Ser Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala
85 90 95
Trp Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn
100 105 110
Asp Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly
115 120 125
Met Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly
130 135 140
Val Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr
145 150 155 160
Tyr Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe
165 170 175
Gly His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly
180 185 190
Trp Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser
195 200 205
Pro Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr
210 215 220
Gly Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys
225 230 235 240
Val His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn
245 250 255
Trp Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His
260 265 270
Gln Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys
275 280 285
Tyr Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile
290 295 300
Ala Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys
305 310 315 320
Lys Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr
325 330 335
Gly Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys
340 345 350
Ser His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val
355 360 365
Cys Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu
370 375 380
Cys Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile
385 390 395 400
Ala Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys
405 410 415
Asp Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser
420 425 430
Cys Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr
435 440 445
Ala Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro
450 455 460
Cys Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys
465 470 475 480
Leu Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp
485 490 495
Tyr Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg
500 505 510
Ala Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn
515 520 525
Cys Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile
530 535 540
Asp Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val
545 550 555 560
Arg Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser
565 570 575
Gln Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly
580 585 590
Thr Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg
595 600 605
Asn Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys
610 615 620
Ser Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys
625 630 635 640
Ser Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn
645 650 655
Asp Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His
660 665 670
Ser Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr
675 680 685
Cys Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp
690 695 700
Glu Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn
705 710 715 720
Pro Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr
725 730 735
Cys Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr
740 745 750
Asn Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp
755 760 765
Gly Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro
770 775 780
Asp Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe
785 790 795 800
Gly Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro
805 810 815
Pro Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys
820 825 830
Ile Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp
835 840 845
Cys Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val
850 855 860
Trp Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys
865 870 875 880
Pro Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val
885 890 895
His Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro
900 905 910
Val Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala
915 920 925
Asn Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr
930 935 940
Thr Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn
945 950 955 960
Val Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser
965 970 975
Ala Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp
980 985 990
Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu Val
995 1000 1005
Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala Glu Val
1010 1015 1020
Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp
1025 1030 1035
<210> 7
<211> 1187
<212> PRT
<213> Homo sapiens
<400> 7
Ser Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly
1 5 10 15
Glu Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp
20 25 30
Arg Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu
35 40 45
Lys Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly
50 55 60
Ser Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala
65 70 75 80
Ser Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala
85 90 95
Trp Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn
100 105 110
Asp Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly
115 120 125
Met Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly
130 135 140
Val Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr
145 150 155 160
Tyr Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe
165 170 175
Gly His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly
180 185 190
Trp Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser
195 200 205
Pro Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr
210 215 220
Gly Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys
225 230 235 240
Val His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn
245 250 255
Trp Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His
260 265 270
Gln Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys
275 280 285
Tyr Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile
290 295 300
Ala Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys
305 310 315 320
Lys Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr
325 330 335
Gly Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys
340 345 350
Ser His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val
355 360 365
Cys Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu
370 375 380
Cys Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile
385 390 395 400
Ala Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys
405 410 415
Asp Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser
420 425 430
Cys Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr
435 440 445
Ala Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro
450 455 460
Cys Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys
465 470 475 480
Leu Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp
485 490 495
Tyr Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg
500 505 510
Ala Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn
515 520 525
Cys Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile
530 535 540
Asp Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val
545 550 555 560
Arg Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser
565 570 575
Gln Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly
580 585 590
Thr Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg
595 600 605
Asn Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys
610 615 620
Ser Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys
625 630 635 640
Ser Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn
645 650 655
Asp Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His
660 665 670
Ser Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr
675 680 685
Cys Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp
690 695 700
Glu Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn
705 710 715 720
Pro Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr
725 730 735
Cys Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr
740 745 750
Asn Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp
755 760 765
Gly Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro
770 775 780
Asp Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe
785 790 795 800
Gly Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro
805 810 815
Pro Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys
820 825 830
Ile Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp
835 840 845
Cys Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val
850 855 860
Trp Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys
865 870 875 880
Pro Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val
885 890 895
His Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro
900 905 910
Val Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala
915 920 925
Asn Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr
930 935 940
Thr Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn
945 950 955 960
Val Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser
965 970 975
Ala Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp
980 985 990
Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu Val
995 1000 1005
Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala Glu Val
1010 1015 1020
Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp Phe Leu Val Pro
1025 1030 1035 1040
Leu Leu Ser Ser Val Leu Thr Val Ala Trp Ile Cys Cys Leu Val Thr
1045 1050 1055
Ala Phe Tyr Trp Cys Leu Arg Lys Arg Arg Lys Pro Gly Ser His Thr
1060 1065 1070
His Ser Ala Ser Glu Asp Asn Thr Thr Asn Asn Val Arg Glu Gln Leu
1075 1080 1085
Asn Gln Ile Lys Asn Pro Ile Glu Lys His Gly Ala Asn Thr Val Pro
1090 1095 1100
Ile Lys Asp Tyr Glu Asn Lys Asn Ser Lys Met Ser Lys Ile Arg Thr
1105 1110 1115 1120
His Asn Ser Glu Val Glu Glu Asp Asp Met Asp Lys His Gln Gln Lys
1125 1130 1135
Ala Arg Phe Ala Lys Gln Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu
1140 1145 1150
Lys Pro Pro Asn Gly Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys
1155 1160 1165
Gln Asp Asn Arg Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu
1170 1175 1180
Tyr Ile Val
1185
<210> 8
<211> 2663
<212> DNA
<213> Homo sapiens
<400> 8
cttgggaaga ggcggagacc ggcttttaaa gaaagaagtc ctgggtcctg cggtctgggg 60
cgaggcaagg gcgcttttct gcccacgctc cccgtggccc atcgatcccc cgcgcgtccg 120
ccgctgttct aaggagagaa gtgggggccc cccaggctcg cgcgtggagc gaagcagc 178
atg ggc agt cgg tgc gcg ctg gcc ctg gcg gtg ctc tcg gcc ttg ctg 226
Met Gly Ser Arg Cys Ala Leu Ala Leu Ala Val Leu Ser Ala Leu Leu
1 5 10 15
tgt cag gtc tgg agc tct ggg gtg ttc gaa ctg aag ctg cag gag ttc 274
Cys Gln Val Trp Ser Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe
20 25 30
gtc aac aag aag ggg ctg ctg ggg aac cgc aac tgc tgc cgc ggg ggc 322
Val Asn Lys Lys Gly Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly
35 40 45
gcg ggg cca ccg ccg tgc gcc tgc cgg acc ttc ttc cgc gtg tgc ctc 370
Ala Gly Pro Pro Pro Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu
50 55 60
aag cac tac cag gcc agc gtg tcc ccc gag ccg ccc tgc acc tac ggc 418
Lys His Tyr Gln Ala Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly
65 70 75 80
agc gcc gtc acc ccc gtg ctg ggc gtc gac tcc ttc agt ctg ccc gac 466
Ser Ala Val Thr Pro Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp
85 90 95
ggc ggg ggc gcc gac tcc gcg ttc agc aac ccc atc cgc ttc ccc ttc 514
Gly Gly Gly Ala Asp Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe
100 105 110
ggc ttc acc tgg ccg ggc acc ttc tct ctg att att gaa gct ctc cac 562
Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His
115 120 125
aca gat tct cct gat gac ctc gca aca gaa aac cca gaa aga ctc atc 610
Thr Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile
130 135 140
agc cgc ctg gcc acc cag agg cac ctg acg gtg ggc gag gag tgg tcc 658
Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser
145 150 155 160
cag gac ctg cac agc agc ggc cgc acg gac ctc aag tac tcc tac cgc 706
Gln Asp Leu His Ser Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg
165 170 175
ttc gtg tgt gac gaa cac tac tac gga gag ggc tgc tcc gtt ttc tgc 754
Phe Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys
180 185 190
cgt ccc cgg gac gat gcc ttc ggc cac ttc acc tgt ggg gag cgt ggg 802
Arg Pro Arg Asp Asp Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly
195 200 205
gag aaa gtg tgc aac cct ggc tgg aaa ggg ccc tac tgc aca gag ccg 850
Glu Lys Val Cys Asn Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro
210 215 220
atc tgc ctg cct gga tgt gat gag cag cat gga ttt tgt gac aaa cca 898
Ile Cys Leu Pro Gly Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro
225 230 235 240
ggg gaa tgc aag tgc aga gtg ggc tgg cag ggc cgg tac tgt gac gag 946
Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu
245 250 255
tgt atc cgc tat cca ggc tgt ctc cat ggc acc tgc cag cag ccc tgg 994
Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp
260 265 270
cag tgc aac tgc cag gaa ggc tgg ggg ggc ctt ttc tgc aac cag gac 1042
Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp
275 280 285
ctg aac tac tgc aca cac cat aag ccc tgc aag aat gga gcc acc tgc 1090
Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr Cys
290 295 300
acc aac acg ggc cag ggg agc tac act tgc tct tgc cgg cct ggg tac 1138
Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr
305 310 315 320
aca ggt gcc acc tgc gag ctg ggg att gac gag tgt gac ccc agc cct 1186
Thr Gly Ala Thr Cys Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro
325 330 335
tgt aag aac gga ggg agc tgc acg gat ctc gag aac agc tac tcc tgt 1234
Cys Lys Asn Gly Gly Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys
340 345 350
acc tgc cca ccc ggc ttc tac ggc aaa atc tgt gaa ttg agt gcc atg 1282
Thr Cys Pro Pro Gly Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met
355 360 365
acc tgt gcg gac ggc cct tgc ttt aac ggg ggt cgg tgc tca gac agc 1330
Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser
370 375 380
ccc gat gga ggg tac agc tgc cgc tgc ccc gtg ggc tac tcc ggc ttc 1378
Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe
385 390 395 400
aac tgt gag aag aaa att gac tac tgc agc tct tca ccc tgt tct aat 1426
Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Ser Pro Cys Ser Asn
405 410 415
ggt gcc aag tgt gtg gac ctc ggt gat gcc tac ctg tgc cgc tgc cag 1474
Gly Ala Lys Cys Val Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln
420 425 430
gcc ggc ttc tcg ggg agg cac tgt gac gac aac gtg gac gac tgc gcc 1522
Ala Gly Phe Ser Gly Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala
435 440 445
tcc tcc ccg tgc gcc aac ggg ggc acc tgc cgg gat ggc gtg aac gac 1570
Ser Ser Pro Cys Ala Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp
450 455 460
ttc tcc tgc acc tgc ccg cct ggc tac acg ggc agg aac tgc agt gcc 1618
Phe Ser Cys Thr Cys Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala
465 470 475 480
ccc gtc agc agg tgc gag cac gca ccc tgc cac aat ggg gcc acc tgc 1666
Pro Val Ser Arg Cys Glu His Ala Pro Cys His Asn Gly Ala Thr Cys
485 490 495
cac gag agg ggc cac cgc tat gtg tgc gag tgt gcc cga ggc tac ggg 1714
His Glu Arg Gly His Arg Tyr Val Cys Glu Cys Ala Arg Gly Tyr Gly
500 505 510
ggt ccc aac tgc cag ttc ctg ctc ccc gag ctg ccc ccg ggc cca gcg 1762
Gly Pro Asn Cys Gln Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala
515 520 525
gtg gtg gac ctc act gag aag cta gag ggc cag ggc ggg cca ttc ccc 1810
Val Val Asp Leu Thr Glu Lys Leu Glu Gly Gln Gly Gly Pro Phe Pro
530 535 540
tgg gtg gcc gtg tgc gcc ggg gtc atc ctt gtc ctc atg ctg ctg ctg 1858
Trp Val Ala Val Cys Ala Gly Val Ile Leu Val Leu Met Leu Leu Leu
545 550 555 560
ggc tgt gcc gct gtg gtg gtc tgc gtc cgg ctg agg ctg cag aag cac 1906
Gly Cys Ala Ala Val Val Val Cys Val Arg Leu Arg Leu Gln Lys His
565 570 575
cgg ccc cca gcc gac ccc tgc cgg ggg gag acg gag acc atg aac aac 1954
Arg Pro Pro Ala Asp Pro Cys Arg Gly Glu Thr Glu Thr Met Asn Asn
580 585 590
ctg gcc aac tgc cag cgt gag aag gac atc tca gtc agc atc atc ggg 2002
Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly
595 600 605
gcc acg cag atc aag aac acc aac aag aag gcg gac ttc cac ggg gac 2050
Ala Thr Gln Ile Lys Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp
610 615 620
cac agc gcc gac aag aat ggc ttc aag gcc cgc tac cca gcg gtg gac 2098
His Ser Ala Asp Lys Asn Gly Phe Lys Ala Arg Tyr Pro Ala Val Asp
625 630 635 640
tat aac ctc gtg cag gac ctc aag ggt gac gac acc gcc gtc agg gac 2146
Tyr Asn Leu Val Gln Asp Leu Lys Gly Asp Asp Thr Ala Val Arg Asp
645 650 655
gcg cac agc aag cgt gac acc aag tgc cag ccc cag ggc tcc tca ggg 2194
Ala His Ser Lys Arg Asp Thr Lys Cys Gln Pro Gln Gly Ser Ser Gly
660 665 670
gag gag aag ggg acc ccg acc aca ctc agg ggt gga gaa gca tct gaa 2242
Glu Glu Lys Gly Thr Pro Thr Thr Leu Arg Gly Gly Glu Ala Ser Glu
675 680 685
aga aaa agg ccg gac tcg ggc tgt tca act tca aaa gac acc aag tac 2290
Arg Lys Arg Pro Asp Ser Gly Cys Ser Thr Ser Lys Asp Thr Lys Tyr
690 695 700
cag tcg gtg tac gtc ata tcc gag gag aag gat gag tgc gtc ata gca 2338
Gln Ser Val Tyr Val Ile Ser Glu Glu Lys Asp Glu Cys Val Ile Ala
705 710 715 720
act gag gtg taaaatggaa gtgagatggc aagactcccg tttctcttaa 2387
Thr Glu Val

aataagtaaa attccaagga tatatgcccc aacgaatgct gctgaagagg agggaggcct 2447
cgtggactgc tgctgagaaa ccgagttcag accgagcagg ttctcctcct gaggtcctcg 2507
acgcctgccg acagcctgtc gcggcccggc cgcctgcggc actgccttcc gtgacgtcgc 2567
cgttgcacta tggacagttg ctcttaagag aatatatatt taaatgggtg aactgaatta 2627
cgcataagaa gcatgcactg cctgagtgta tatttt 2663
<210> 9
<211> 4208
<212> DNA
<213> Homo sapiens
<400> 9
ggccggcccg cgagctaggc tggttttttt ttttctcccc tccctccccc ctttttccat 60
gcagctgatc taaaagggaa taaaaggctg cgcataatca taataataaa agaaggggag 120
cgcgagagaa ggaaagaaag ccgggaggtg gaagaggagg gggagcgtct caaagaagcg 180
atcagaataa taaaaggagg ccgggctctt tgccttctgg aacgggccgc tcttgaaagg 240
gcttttgaaa agtggtgttg ttttccagtc gtgcatgctc caatcggcgg agtatattag 300
agccgggacg cggcggccgc aggggcagcg gcgacggcag caccggcggc agcaccagcg 360
cgaacagcag cggcggcgtc ccgagtgccc gcggcgcgcg gcgcagcg atg cgt tcc 417
Met Arg Ser
1
cca cgg acg cgc ggc cgg tcc ggg cgc ccc cta agc ctc ctg ctc gcc 465
Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu Leu Leu Leu Ala
5 10 15
ctg ctc tgt gcc ctg cga gcc aag gtg tgt ggg gcc tcg ggt cag ttc 513
Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser Gly Gln Phe
20 25 30 35
gag ttg gag atc ctg tcc atg cag aac gtg aac ggg gag ctg cag aac 561
Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu Leu Gln Asn
40 45 50
ggg aac tgc tgc ggc ggc gcc cgg aac ccg gga gac cgc aag tgc acc 609
Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg Lys Cys Thr
55 60 65
cgc gac gag tgt gac aca tac ttc aaa gtg tgc ctc aag gag tat cag 657
Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys Glu Tyr Gln
70 75 80
tcc cgc gtc acg gcc ggg ggg ccc tgc agc ttc ggc tca ggg tcc acg 705
Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser Gly Ser Thr
85 90 95
cct gtc atc ggg ggc aac acc ttc aac ctc aag gcc agc cgc ggc aac 753
Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser Arg Gly Asn
100 105 110 115
gac cgc aac cgc atc gtg ctg cct ttc agt ttc gcc tgg ccg agg tcc 801
Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp Pro Arg Ser
120 125 130
tat acg ttg ctt gtg gag gcg tgg gat tcc agt aat gac acc gtt caa 849
Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp Thr Val Gln
135 140 145
cct gac agt att att gaa aag gct tct cac tcg ggc atg atc aac ccc 897
Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met Ile Asn Pro
150 155 160
agc cgg cag tgg cag acg ctg aag cag aac acg ggc gtt gcc cac ttt 945
Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val Ala His Phe
165 170 175
gag tat cag atc cgc gtg acc tgt gat gac tac tac tat ggc ttt ggc 993
Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr Gly Phe Gly
180 185 190 195
tgc aat aag ttc tgc cgc ccc aga gat gac ttc ttt gga cac tat gcc 1041
Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly His Tyr Ala
200 205 210
tgt gac cag aat ggc aac aaa act tgc atg gaa ggc tgg atg ggc ccc 1089
Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp Met Gly Pro
215 220 225
gaa tgt aac aga gct att tgc cga caa ggc tgc agt cct aag cat ggg 1137
Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro Lys His Gly
230 235 240
tct tgc aaa ctc cca ggt gac tgc agg tgc cag tac ggc tgg caa ggc 1185
Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly Trp Gln Gly
245 250 255
ctg tac tgt gat aag tgc atc cca cac ccg gga tgc gtc cac ggc atc 1233
Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val His Gly Ile
260 265 270 275
tgt aat gag ccc tgg cag tgc ctc tgt gag acc aac tgg ggc ggc cag 1281
Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp Gly Gly Gln
280 285 290
ctc tgt gac aaa gat ctc aat tac tgt ggg act cat cag ccg tgt ctc 1329
Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln Pro Cys Leu
295 300 305
aac ggg gga act tgt agc aac aca ggc cct gac aaa tat cag tgt tcc 1377
Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys Tyr Gln Cys Ser
310 315 320
tgc cct gag ggg tat tca gga ccc aac tgt gaa att gct gag cac gcc 1425
Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala Glu His Ala
325 330 335
tgc ctc tct gat ccc tgt cac aac aga ggc agc tgt aag gag acc tcc 1473
Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys Glu Thr Ser
340 345 350 355
ctg ggc ttt gag tgt gag tgt tcc cca ggc tgg acc ggc ccc aca tgc 1521
Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly Pro Thr Cys
360 365 370
tct aca aac att gat gac tgt tct cct aat aac tgt tcc cac ggg ggc 1569
Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser His Gly Gly
375 380 385
acc tgc cag gac ctg gtt aac gga ttt aag tgt gtg tgc ccc cca cag 1617
Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys Pro Pro Gln
390 395 400
tgg act ggg aaa acg tgc cag tta gat gca aat gaa tgt gag gcc aaa 1665
Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys Glu Ala Lys
405 410 415
cct tgt gta aac gcc aaa tcc tgt aag aat ctc att gcc agc tac tac 1713
Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala Ser Tyr Tyr
420 425 430 435
tgc gac tgt ctt ccc ggc tgg atg ggt cag aat tgt gac ata aat att 1761
Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp Ile Asn Ile
440 445 450
aat gac tgc ctt ggc cag tgt cag aat gac gcc tcc tgt cgg gat ttg 1809
Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys Arg Asp Leu
455 460 465
gtt aat ggt tat cgc tgt atc tgt cca cct ggc tat gca ggc gat cac 1857
Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala Gly Asp His
470 475 480
tgt gag aga gac atc gat gaa tgt gcc agc aac ccc tgt ttg aat ggg 1905
Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Leu Asn Gly
485 490 495
ggt cac tgt cag aat gaa atc aac aga ttc cag tgt ctg tgt ccc act 1953
Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu Cys Pro Thr
500 505 510 515
ggt ttc tct gga aac ctc tgt cag ctg gac atc gat tat tgt gag cct 2001
Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr Cys Glu Pro
520 525 530
aat ccc tgc cag aac ggt gcc cag tgc tac aac cgt gcc agt gac tat 2049
Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala Ser Asp Tyr
535 540 545
ttc tgc aag tgc ccc gag gac tat gag ggc aag aac tgc tca cac ctg 2097
Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn Cys Ser His Leu
550 555 560
aaa gac cac tgc cgc acg acc ccc tgt gaa gtg att gac agc tgc aca 2145
Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile Asp Ser Cys Thr
565 570 575
gtg gcc atg gct tcc aac gac aca cct gaa ggg gtg cgg tat att tcc 2193
Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val Arg Tyr Ile Ser
580 585 590 595
tcc aac gtc tgt ggt cct cac ggg aag tgc aag agt cag tcg gga ggc 2241
Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln Ser Gly Gly
600 605 610
aaa ttc acc tgt gac tgt aac aaa ggc ttc acg gga aca tac tgc cat 2289
Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr Tyr Cys His
615 620 625
gaa aat att aat gac tgt gag agc aac cct tgt aga aac ggt ggc act 2337
Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn Gly Gly Thr
630 635 640
tgc atc gat ggt gtc aac tcc tac aag tgc atc tgt agt gac ggc tgg 2385
Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser Asp Gly Trp
645 650 655
gag ggg gcc tac tgt gaa acc aat att aat gac tgc agc cag aac ccc 2433
Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser Gln Asn Pro
660 665 670 675
tgc cac aat ggg ggc acg tgt cgc gac ctg gtc aat gac ttc tac tgt 2481
Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp Phe Tyr Cys
680 685 690
gac tgt aaa aat ggg tgg aaa gga aag acc tgc cac tca cgt gac agt 2529
Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser Arg Asp Ser
695 700 705
cag tgt gat gag gcc acg tgc aac aac ggt ggc acc tgc tat gat gag 2577
Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys Tyr Asp Glu
710 715 720
ggg gat gct ttt aag tgc atg tgt cct ggc ggc tgg gaa gga aca acc 2625
Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu Gly Thr Thr
725 730 735
tgt aac ata gcc cga aac agt agc tgc ctg ccc aac ccc tgc cat aat 2673
Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro Cys His Asn
740 745 750 755
ggg ggc aca tgt gtg gtc aac ggc gag tcc ttt acg tgc gtc tgc aag 2721
Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys Val Cys Lys
760 765 770
gaa ggc tgg gag ggg ccc atc tgt gct cag aat acc aat gac tgc agc 2769
Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn Asp Cys Ser
775 780 785
cct cat ccc tgt tac aac agc ggc acc tgt gtg gat gga gac aac tgg 2817
Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly Asp Asn Trp
790 795 800
tac cgg tgc gaa tgt gcc ccg ggt ttt gct ggg ccc gac tgc aga ata 2865
Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp Cys Arg Ile
805 810 815
aac atc aat gaa tgc cag tct tca cct tgt gcc ttt gga gcg acc tgt 2913
Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly Ala Thr Cys
820 825 830 835
gtg gat gag atc aat ggc tac cgg tgt gtc tgc cct cca ggg cac agt 2961
Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro Gly His Ser
840 845 850
ggt gcc aag tgc cag gaa gtt tca ggg aga cct tgc atc acc atg ggg 3009
Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile Thr Met Gly
855 860 865
agt gtg ata cca gat ggg gcc aaa tgg gat gat gac tgt aat acc tgc 3057
Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys Asn Thr Cys
870 875 880
cag tgc ctg aat gga cgg atc gcc tgc tca aag gtc tgg tgt ggc cct 3105
Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp Cys Gly Pro
885 890 895
cga cct tgc ctg ctc cac aaa ggg cac agc gag tgc ccc agc ggg cag 3153
Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro Ser Gly Gln
900 905 910 915
agc tgc atc ccc atc ctg gac gac cag tgc ttc gtc cac ccc tgc act 3201
Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His Pro Cys Thr
920 925 930
ggt gtg ggc gag tgt cgg tct tcc agt ctc cag ccg gtg aag aca aag 3249
Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro Val Lys Thr Lys
935 940 945
tgc acc tct gac tcc tat tac cag gat aac tgt gcg aac atc aca ttt 3297
Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn Ile Thr Phe
950 955 960
acc ttt aac aag gag atg atg tca cca ggt ctt act acg gag cac att 3345
Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr Glu His Ile
965 970 975
tgc agt gaa ttg agg aat ttg aat att ttg aag aat gtt tcc gct gaa 3393
Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val Ser Ala Glu
980 985 990 995
tat tca atc tac atc gct tgc gag cct tcc cct tca gcg aac aat gaa 3441
Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala Asn Asn Glu
1000 1005 1010
ata cat gtg gcc att tct gct gaa gat ata cgg gat gat ggg aac ccg 3489
Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp Asp Gly Asn Pro
1015 1020 1025
atc aag gaa atc act gac aaa ata atc gat ctt gtt agt aaa cgt gat 3537
Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu Val Ser Lys Arg Asp
1030 1035 1040
gga aac agc tcg ctg att gct gcc gtt gca gaa gta aga gtt cag agg 3585
Gly Asn Ser Ser Leu Ile Ala Ala Val Ala Glu Val Arg Val Gln Arg
1045 1050 1055
cgg cct ctg aag aac aga aca gat ttc ctt gtt ccc ttg ctg agc tct 3633
Arg Pro Leu Lys Asn Arg Thr Asp Phe Leu Val Pro Leu Leu Ser Ser
1060 1065 1070 1075
gtc tta act gtg gct tgg atc tgt tgc ttg gtg acg gcc ttc tac tgg 3681
Val Leu Thr Val Ala Trp Ile Cys Cys Leu Val Thr Ala Phe Tyr Trp
1080 1085 1090
tgc ctg cgg aag cgg cgg aag ccg ggc agc cac aca cac tca gcc tct 3729
Cys Leu Arg Lys Arg Arg Lys Pro Gly Ser His Thr His Ser Ala Ser
1095 1100 1105
gag gac aac acc acc aac aac gtg cgg gag cag ctg aac cag atc aaa 3777
Glu Asp Asn Thr Thr Asn Asn Val Arg Glu Gln Leu Asn Gln Ile Lys
1110 1115 1120
aac ccc att gag aaa cat ggg gcc aac acg gtc ccc atc aag gat tat 3825
Asn Pro Ile Glu Lys His Gly Ala Asn Thr Val Pro Ile Lys Asp Tyr
1125 1130 1135
gag aac aag aac tcc aaa atg tct aaa ata agg aca cac aat tct gaa 3873
Glu Asn Lys Asn Ser Lys Met Ser Lys Ile Arg Thr His Asn Ser Glu
1140 1145 1150 1155
gta gaa gag gac gac atg gac aaa cac cag cag aaa gcc cgg ttt gcc 3921
Val Glu Glu Asp Asp Met Asp Lys His Gln Gln Lys Ala Arg Phe Ala
1160 1165 1170
aag cag ccg gcg tac acg ctg gta gac aga gaa gag aag ccc ccc aac 3969
Lys Gln Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu Lys Pro Pro Asn
1175 1180 1185
ggc acg ccg aca aaa cac cca aac tgg aca aac aaa cag gac aac aga 4017
Gly Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys Gln Asp Asn Arg
1190 1195 1200
gac ttg gaa agt gcc cag agc tta aac cga atg gag tac atc gta 4062
Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu Tyr Ile Val
1205 1210 1215
tagcagaccg cgggcactgc cgccgctagg tagagtctga gggcttgtag ttctttaaac 4122
tgtcgtgtca tactcgagtc tgaggccgtt gctgacttag aatccctgtg ttaatttaag 4182
ttttgacaag ctggcttaca ctggca 4208
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 10
gat tat aaa gat gat gat gat aaa tga 27
Asp Tyr Lys Asp Asp Asp Asp Lys
1 5
<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 11
tggcartgya aytgycarga 20
<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 12
atyttyttyt crcarttraa 20
<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 13
tgcststgyg anaccaactg 20
<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 14
tttatktcrc awktckgwcc 20
<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 15
tcgcgcgtgg agcgaagcag catgg 25
<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 16
ggaattcgat atcaagctta tcgat 25
<210> 17
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 17
tcacccgccc tggccctcta gcttctca 28
<210> 18
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 18
ggacgcgtgg atccactagt tctagagc 28
<210> 19
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 19
tcatttatca tcatcatctt tataatcccc gccctggccc tctagcttct cagtg 55
<210> 20
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 20
aaggatcccg agggtgtctg ctggaagcca ggctca 36
<210> 21
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 21
cctctagagt cgcggccgtc gcactcattt acc 33
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 22
aaggatcccc gccctggccc tctagcttc 29
<210> 23
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 23
cctctagacg cgtagagcgg ccgccaccgc ggtgga 36
<210> 24
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 24
tcacacctca gttgctatga cgcac 25
<210> 25
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 25
ggacgcgtgg atccactagt tctagagc 28
<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 26
tcatttatca tcatcatctt tataatccac ctcagttgct atgacgcact c 51
<210> 27
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 27
cggcgcagcg atgcgttccc cacgg 25
<210> 28
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 28
ggaattcgat atcaagctta tcgat 25
<210> 29
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 29
tcaatctgtt ctgttgttca gaggccg 27
<210> 30
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 30
ggacgcgtgg atccactagt tctagagc 28
<210> 31
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 31
tcatttatca tcatcatctt tataatcatc tgttctgttg ttcagaggcc g 51
<210> 32
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 32
aaggatccgt tctgttgttc agaggccgcc t 31
<210> 33
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 33
cctctagacg cgtagagcgg ccgccaccgc ggtgga 36
<210> 34
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 34
ctatacgatg tactccattc ggtttaag 28
<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 35
ggacgcgtct agagtcgacc tgcaggcatg c 31
<210> 36
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 36
ctatttatca tcatcatctt tataatctac gatgtactcc attcggttta ag 52

Claims (18)

配列表の配列番号5に記載のアミノ酸配列を含有するポリペプチド。 A polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 5 in the sequence listing. 配列表の配列番号6に記載のアミノ酸配列を含有する請求項1に記載のポリペプチド。 The polypeptide of Claim 1 containing the amino acid sequence set forth in SEQ ID NO: 6 in the Sequence Listing. 配列表の配列番号7に記載のアミノ酸配列を含有する請求項1に記載のポリペプチド。 The polypeptide of Claim 1 containing the amino acid sequence set forth in SEQ ID NO: 7 in the Sequence Listing. 配列表の配列番号1に記載のアミノ酸配列を含有する請求項1乃至3に記載のポリペプチド。 The polypeptide according to claims 1 to 3, comprising the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing. 請求項1乃至4に記載のポリペプチドを用いて未分化細胞の分化をin vitroで抑制する方法。 A method for inhibiting differentiation of undifferentiated cells in vitro using the polypeptide according to claim 1. 未分化細胞が脳神経、筋肉系未分化細胞以外の未分化細胞である、請求項5に記載の方法。 The method according to claim 5, wherein the undifferentiated cells are undifferentiated cells other than cranial nerves and muscle undifferentiated cells. 未分化細胞が血液未分化細胞である請求項5に記載の方法。 The method according to claim 5, wherein the undifferentiated cells are blood undifferentiated cells. 請求項1乃至4に記載のポリペプチドを含有する分化抑制剤。 A differentiation inhibitor containing the polypeptide according to claim 1. 請求項1乃至4に記載のポリペプチドを含有する細胞培養培地。 A cell culture medium containing the polypeptide according to claim 1. 細胞が血液未分化細胞である請求項9に記載の細胞培養培地。 The cell culture medium according to claim 9, wherein the cells are blood undifferentiated cells. 請求項1乃至3に記載のポリペプチドをコードするDNA。 A DNA encoding the polypeptide according to claim 1. 配列表の配列番号9に記載の502番から1095番のDNA配列を含有する請求項11に記載のDNA。 The DNA according to claim 11, comprising the DNA sequence of No. 502 to No. 1095 described in SEQ ID No. 9 of the Sequence Listing. 配列表の配列番号9に記載の502番から3609番のDNA配列を含有する請求項11に記載のDNA。 The DNA according to claim 11, comprising the DNA sequence of Nos. 502 to 3609 described in SEQ ID No. 9 of the Sequence Listing. 配列表の配列番号9に記載の502番から4062番のDNA配列を含有する請求項11に記載のDNA。 The DNA according to claim 11, comprising the DNA sequence of Nos. 502 to 4062 described in SEQ ID No. 9 of the Sequence Listing. 請求項11乃至14に記載のDNA群から選ばれるDNAと、宿主細胞中で発現可能なベクターDNAとを連結してなる組み換えDNA。 A recombinant DNA obtained by ligating a DNA selected from the DNA group according to claim 11 and a vector DNA that can be expressed in a host cell. 請求項15に記載した組み換えDNAによって形質転換された細胞。 A cell transformed with the recombinant DNA according to claim 15. 請求項16に記載の細胞を培養し、該培養物より生産された化合物を採取することを特徴とする請求項1乃至4に記載のポリペプチドの製造方法。 The method for producing a polypeptide according to any one of claims 1 to 4, wherein the cell according to claim 16 is cultured, and a compound produced from the culture is collected. 配列表の配列番号7に記載のアミノ酸配列を有するポリペプチドを特異的に認識する抗体。 An antibody that specifically recognizes a polypeptide having the amino acid sequence set forth in SEQ ID NO: 7 in the Sequence Listing.
JP2006059729A 1995-11-17 2006-03-06 Differentiation-suppressive polypeptide Pending JP2006212033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059729A JP2006212033A (en) 1995-11-17 2006-03-06 Differentiation-suppressive polypeptide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29961195 1995-11-17
JP31181195 1995-11-30
JP2006059729A JP2006212033A (en) 1995-11-17 2006-03-06 Differentiation-suppressive polypeptide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51958497A Division JP4283891B2 (en) 1995-11-17 1996-11-15 Differentiation-inhibiting polypeptide

Publications (1)

Publication Number Publication Date
JP2006212033A true JP2006212033A (en) 2006-08-17

Family

ID=36975742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059729A Pending JP2006212033A (en) 1995-11-17 2006-03-06 Differentiation-suppressive polypeptide

Country Status (1)

Country Link
JP (1) JP2006212033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038793A (en) * 2020-01-31 2022-09-09 中外制药株式会社 Method for preparing composition containing polypeptide for inhibiting coloration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038793A (en) * 2020-01-31 2022-09-09 中外制药株式会社 Method for preparing composition containing polypeptide for inhibiting coloration

Similar Documents

Publication Publication Date Title
JP4283891B2 (en) Differentiation-inhibiting polypeptide
JP4714235B2 (en) Novel differentiation inhibitor
JP3922726B2 (en) Differentiation inhibitor
JP4139508B2 (en) Human delta 3
JP4332581B2 (en) Human delta-3
JP2006212033A (en) Differentiation-suppressive polypeptide
JP4020945B2 (en) Differentiation-inhibiting polypeptide
JP4171762B2 (en) Novel differentiation inhibitor
JP3989589B2 (en) Vascular cell regulator
CA2236679C (en) Differentiation-suppressive polypeptide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605