JP2006212015A - Electrolyte type water tank pump - Google Patents

Electrolyte type water tank pump Download PDF

Info

Publication number
JP2006212015A
JP2006212015A JP2005061452A JP2005061452A JP2006212015A JP 2006212015 A JP2006212015 A JP 2006212015A JP 2005061452 A JP2005061452 A JP 2005061452A JP 2005061452 A JP2005061452 A JP 2005061452A JP 2006212015 A JP2006212015 A JP 2006212015A
Authority
JP
Japan
Prior art keywords
oxygen
water tank
electrolytic
mixed gas
tank pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005061452A
Other languages
Japanese (ja)
Inventor
Toshiyasu Takura
敏靖 田倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005061452A priority Critical patent/JP2006212015A/en
Publication of JP2006212015A publication Critical patent/JP2006212015A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an long-life oxygen feeder free from vibration and noise as a simple structure having no operation part. <P>SOLUTION: In the electrolyte type water tank pump, a plurality of pairs of electrodes are provided in an alkali electrolytic solution and direct current pulsating current is passed between electrodes to generate a mixed gas of oxygen with hydrogen and the generated gas is discharged from discharge stones having many pores into a water tank or a waste water for rearing fishes to supply oxygen. As a result, the water tank pump solves large defects generating vibration and noise and a defect causing breakage of inlet and discharge valves in a short time in conventional pumps increasing oxygen dissolved in the water tank for rearing aquarium fishes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鑑賞魚を飼育する水槽や、濾過水槽や、活魚を輸送運搬するときの水槽中に溶存する酸素を増加させるため、酸素含有ガスを放出するごとくした水槽ポンプに関するものである。The present invention relates to an aquarium pump for releasing an oxygen-containing gas in order to increase oxygen dissolved in an aquarium for breeding appreciation fish, a filtration aquarium, and an aquarium when transporting and transporting live fish.

従来、この種の酸素供給用の水槽ポンプは、モータやバイブレータにより発生させた空気圧によって吸入弁及び吐出弁を開閉させ、空中の空気を水中に吐出させて、空気中の酸素を溶解させる、エア・ポンプが主流であった。このようなエア・ポンプでは、耳障りな作動音が発生するという大きな欠点があった。水槽中の残存酸素を富化できる様にした別の装置には、例えば、
特開平7−246039の“水槽用酸素富化装置”が提案されている。また、酸素含有ガス発生装置として、 特許第3130014号の“横列式電解槽を含むブラウンガス大量発生装置”のようなガス大量発生装置や、 特許第2742893号の“水電解/燃料電池装置”に開示されているような水素と酸素ガスを分離して発生させるガス発生装置が公知とされている。
Conventionally, this type of water tank pump for supplying oxygen has an air pressure generated by a motor or a vibrator, which opens and closes a suction valve and a discharge valve, and discharges air in the water to dissolve oxygen in the air.・ Pumps were mainstream. Such an air pump has a major drawback in that harsh operating noise is generated. Another device that can enrich the residual oxygen in the aquarium is, for example,
Japanese Patent Application Laid-Open No. 7-246039 proposes a “water tank oxygen enricher”. As an oxygen-containing gas generator, Mass gas generator such as “Brown gas mass generator including row type electrolytic cell” of Patent No. 3130014, A gas generator for separating and generating hydrogen and oxygen gas as disclosed in “Water electrolysis / fuel cell device” of Japanese Patent No. 2742893 is known.

しかしながら、従来のエア・ポンプによる方法では、振動と騒音を発生させる大きな欠点がある上、吸入弁や吐出弁、圧縮ゴムに亀裂ができ易く比較的短時間で使用できなくなる欠点が問題点とされていた。また、酸素を単独に取り出す装置にあっては効率が悪く、装置が高価になり、実用性に乏しいものであった。本発明は、このような問題点を解決するもので、稼動部のない簡単な構造で、水の電気分解により発生させた酸素と水素の混合ガスを水中に吐出させ、そのガス中の酸素を水中に溶け込ませて、水槽中の残存酸素を飽和させる装置としたものである。However, the conventional air pump method has the disadvantages that it generates vibration and noise, and the suction valve, the discharge valve, and the compressed rubber are easily cracked and cannot be used in a relatively short time. It was. In addition, the apparatus for taking out oxygen alone is inefficient, the apparatus becomes expensive, and is impractical. The present invention solves such a problem, and has a simple structure without an operating part, and discharges a mixed gas of oxygen and hydrogen generated by electrolysis of water into water, and the oxygen in the gas is discharged. It is an apparatus that dissolves in water and saturates residual oxygen in the water tank.

上記目的を達成するために、請求項1記載の発明は、水を注入するための給水口と発生ガスを排出するための吐出孔を具備する電解容器と、該電解容器内に設けてなる電極に電流を供給するための電源部を有する、酸素水素混合ガス発生装置と、該酸素水素混合ガス発生装置から酸素水素混合ガスを水槽中に導く連通チューブと、該連通チューブの先端部に、前記酸素水素混合ガスを細かく分散して排出する多細孔吐出ストーンを具備せしめたことにある。In order to achieve the above object, an invention according to claim 1 is directed to an electrolytic vessel having a water supply port for injecting water and a discharge hole for discharging generated gas, and an electrode provided in the electrolytic vessel. An oxygen-hydrogen mixed gas generator having a power supply for supplying current to the gas, a communication tube for introducing the oxygen-hydrogen mixed gas from the oxygen-hydrogen mixed gas generator into the water tank, and a tip of the communication tube This is because a multi-pore discharge stone for discharging the oxygen-hydrogen mixed gas finely dispersed is provided.

請求項2記載の発明は、前記酸素水素混合ガス発生装置において、直流の脈動電流、又は、直流通電期間と通電休止期間を設けて制御したことにある。The invention according to claim 2 is that the oxygen-hydrogen mixed gas generator is controlled by providing a DC pulsating current or a DC energization period and an energization stop period.

請求項3記載の発明は、前記酸素水素混合ガス発生装置において、過電流抑制手段を設けたことにある。According to a third aspect of the present invention, in the oxygen-hydrogen mixed gas generator, an overcurrent suppressing means is provided.

請求項4記載の発明は、前記酸素水素混合ガス発生装置において、複数の電極対が分離壁により囲繞され、互いに直列に接続される構造としたことにある。According to a fourth aspect of the present invention, in the oxygen-hydrogen mixed gas generator, a plurality of electrode pairs are surrounded by a separation wall and connected in series.

請求項5記載の発明は、前記酸素水素混合ガス発生装置において、水酸化カリウム、又は水酸化ナトリウム、又は水酸化カルシウムから成るアルカリ電解溶液中に正負の電極対を設けて、前記電解水溶液の濃度を3%〜10%としたことにある。According to a fifth aspect of the present invention, in the oxygen-hydrogen mixed gas generator, a positive and negative electrode pair is provided in an alkaline electrolytic solution made of potassium hydroxide, sodium hydroxide, or calcium hydroxide, and the concentration of the electrolytic aqueous solution 3 to 10%.

請求項6記載の発明は、前記給水口に、着脱自在の密閉栓を嵌合させ、該密閉栓の周囲に受水壁を設けたことにある。The invention described in claim 6 is that a detachable sealing plug is fitted to the water supply port, and a water receiving wall is provided around the sealing plug.

請求項7記載の発明は、前記電解容器内の電源の正又は負端子に直接接続された電極の下端部位置を、電解容器底部より上方所定の位置に定められた最低水位レベルと成るようにしたことにある。According to the seventh aspect of the present invention, the position of the lower end of the electrode directly connected to the positive or negative terminal of the power supply in the electrolytic vessel is set to a minimum water level set at a predetermined position above the bottom of the electrolytic vessel. It is to have done.

請求項1記載の発明は、アルカリ水を電気分解する気密容器とした電解容器から、酸素:水素=1:2の混合ガスを発生させ、水槽や汚水中の多細孔を持つ吐出孔から吐出させるので、酸素の濃度は、空気を吐出させる場合に比べて約1.5倍と多くすることができ、より少量体積であっても、水中酸素を富化させる効果を高めることができる。また、機械的振動音が皆無となり、機械的磨耗部を有しないため長寿命とすることができる。さらに又、発生ガス圧力は容易に高圧にすることが出来るので、多細孔の孔径をより小さくして気泡を極めて小さくすることが容易となり、同体積当りの接触面を増加させることが出来、また水素の効果によりガスの上昇力が大きくできるので、水面上への水滴のジャンピング作用を強くすることができる。このジャンピング作用や水との接触面積増加作用により、水中に酸素を溶け込ませる効果を高めることが出来る。水上にでた残りの水素酸素ガスは還元反応により水蒸気となり、水上の蓋等に付着して、水滴となり、部屋の湿度を高める効果も得られるものである。According to the first aspect of the present invention, a mixed gas of oxygen: hydrogen = 1: 2 is generated from an electrolytic container that is an airtight container that electrolyzes alkaline water, and discharged from a discharge hole having multiple pores in a water tank or sewage. Therefore, the concentration of oxygen can be increased to about 1.5 times that in the case of discharging air, and the effect of enriching oxygen in water can be enhanced even with a smaller volume. In addition, there is no mechanical vibration noise, and there is no mechanical wear part, so that a long life can be achieved. In addition, since the generated gas pressure can be easily increased, it becomes easy to make the bubbles extremely small by reducing the pore diameter of the multipores, and the contact surface per volume can be increased. Moreover, since the gas ascending force can be increased by the effect of hydrogen, the jumping action of water droplets on the water surface can be strengthened. This jumping action and the action of increasing the contact area with water can enhance the effect of dissolving oxygen in water. The remaining hydrogen-oxygen gas on the water becomes water vapor by a reduction reaction, adheres to a lid or the like on the water and becomes water droplets, and the effect of increasing the humidity of the room is also obtained.

請求項2記載の発明は、連続使用に伴って電極が酸化され見かけ抵抗が増加して通電電流が下がり、ガス発生が停止する問題を回避する効果が得られる。According to the second aspect of the present invention, an effect of avoiding the problem that the gas generation is stopped due to the electrode being oxidized and the apparent resistance increasing as the continuous use is increased to decrease the energization current can be obtained.

請求項3記載の発明は、外気温度の上昇や電極の酸化反応に伴う発熱によって見かけ抵抗が低下し、大電流が流れる現象を回避することができる。According to the third aspect of the present invention, it is possible to avoid a phenomenon in which a large current flows due to a decrease in apparent resistance due to an increase in the outside air temperature or heat generated by the oxidation reaction of the electrode.

請求項4記載の発明は、必要量のガスを発生させるために必要となる通電電流を減少させることが出来、電極へのリード線径を細くし、組立が容易に出来る。商用電源からの直接的なサイリスタ制御が容易になる。According to the fourth aspect of the present invention, it is possible to reduce the energization current necessary for generating a necessary amount of gas, and to reduce the lead wire diameter to the electrode and facilitate assembly. Direct thyristor control from a commercial power supply becomes easy.

請求項5記載の発明は、電気抵抗を低下させて効率を向上させることが出来ると同時に、水槽へのアルカリ水の漏れを防止することが出来る。According to the fifth aspect of the present invention, the electrical resistance can be reduced to improve the efficiency, and at the same time, the leakage of alkaline water to the water tank can be prevented.

請求項6記載の発明は、給水操作を容易にするとともに異常圧力発生時にガスをリークさせる安全弁とすることが出来る。The invention according to claim 6 can be a safety valve that facilitates the water supply operation and leaks gas when an abnormal pressure is generated.

請求項7記載の発明は、高濃度で過少量での運転を回避させるための、水位センサを不用とすることが出来る。According to the seventh aspect of the present invention, a water level sensor for avoiding operation at a high concentration and an excessive amount can be made unnecessary.

以下、本発明の実施の形態を、図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の電解式水槽ポンプの1実施例を示す説明図である。本電解式水槽ポンプ1は電解容器2内にステンレスパイプ又はステンレス棒の電極3(正電極3−1、負電極3−2)にステンレスワイヤ4(正電極ワイヤ4−1、富電極ワイヤ4−2)が設けられている。又、前記電解容器2内には3%〜10%の水酸化カリウム、又は水酸化ナトリウム、又は水酸化カルシウムなどのアルカリ水溶液が入れられている。電源部13には半波整流による低電圧が作られ、前記電極3(3−1、3−2)に印加するようにされている。陽極3−1で発生した酸素ガスと、陰極3−2で発生した水素ガスは、酸素と水素の混合ガスとなり、電解容器2の上部に設けられたガス吐出孔7を通り、連通チューブ8を経て、5μm乃至30μm程度の多数の細孔を有する多細孔ストーン11から、水槽12中の水中に放出され、水中の残存酸素が富化されるものである。FIG. 1 is an explanatory view showing an embodiment of the electrolytic water tank pump of the present invention. The electrolytic water tank pump 1 has a stainless steel pipe 4 or a stainless rod electrode 3 (positive electrode 3-1, negative electrode 3-2) and a stainless steel wire 4 (positive electrode wire 4-1, rich electrode wire 4-4) in an electrolytic vessel 2. 2) is provided. In the electrolytic vessel 2, an alkaline aqueous solution such as 3% to 10% potassium hydroxide, sodium hydroxide, or calcium hydroxide is placed. A low voltage is generated in the power supply unit 13 by half-wave rectification and applied to the electrode 3 (3-1, 3-2). The oxygen gas generated at the anode 3-1 and the hydrogen gas generated at the cathode 3-2 become a mixed gas of oxygen and hydrogen, pass through the gas discharge hole 7 provided in the upper part of the electrolytic vessel 2, and pass through the communication tube 8. After that, the multi-pore stone 11 having a large number of pores of about 5 μm to 30 μm is released into the water in the water tank 12 and the remaining oxygen in the water is enriched.

また、電解容器2の上部には、電気分解によって消費された水を補充するための小孔が設けられ、ゴム製の密閉栓6によって封止され、該密閉栓6及びガス吐出孔7の外周には、受水壁5が設けられている。水は容器の中間水位レベルに達すると、図示されていないが、自然停止する制御が行われて、このとき、前記密閉栓6と連通チューブ8を取り外した後、受水壁5内に水を注ぐことによりガス吐出孔7からは圧縮ガスが抜け、前記密閉栓6が取り付けられていた小孔から、水が補給できる構造とされている。In addition, a small hole for replenishing water consumed by electrolysis is provided in the upper part of the electrolytic vessel 2 and sealed with a rubber sealing plug 6, and the outer periphery of the sealing plug 6 and the gas discharge hole 7. Is provided with a water receiving wall 5. When the water reaches the intermediate water level of the container, although not shown in the figure, control to stop naturally is performed. At this time, after removing the sealing plug 6 and the communication tube 8, the water is put into the water receiving wall 5. By pouring, the compressed gas is released from the gas discharge hole 7 and water can be supplied from the small hole to which the sealing plug 6 is attached.

図2はトランスレスによる制御方法を示す1実施例である。この回路では、サイリスタ21の位相制御によって、負荷22に低電圧を供給し、負荷電流が過大に増大した場合には、永久磁石とコイルを備えたリードスイッチから成る過電流センサ24のコイルに主電流を通すことで、該コイルによる磁界を生ずるようにされている。定常時には永久磁石からの磁界によってオン状態となっているが、過電流時にはコイルによる磁界によりリードスイッチの接点間抵抗が増加され、さらに大きな過電流の場合にはオフ状態となるようにされている。過電流が流れると、コンパレータ25の出力電圧はロウからハイに動作され、遅延回路26によりトランジスタ27を一定時間通電させる。該遅延回路26はタイマーICに代えることが出来る。トランジスタ27がオンするとコンデンサ20のピーク電圧が下がり、ダイアック23を非導通状態として、サイリスタ21は停止され、気泡の発生が停止される。このような過電流抑制手段を設けることによって、電解水の温度を下げ、見かけ抵抗を増大させるように制御されている。FIG. 2 shows an embodiment showing a control method using a transformer. In this circuit, when a low voltage is supplied to the load 22 by the phase control of the thyristor 21 and the load current increases excessively, the coil of the overcurrent sensor 24 including a reed switch including a permanent magnet and a coil is mainly used. By passing an electric current, a magnetic field is generated by the coil. In the steady state, it is turned on by the magnetic field from the permanent magnet, but in the case of overcurrent, the resistance between the contacts of the reed switch is increased by the magnetic field of the coil, and in the case of a larger overcurrent, it is turned off. . When an overcurrent flows, the output voltage of the comparator 25 is operated from low to high, and the transistor 27 is energized for a certain time by the delay circuit 26. The delay circuit 26 can be replaced with a timer IC. When the transistor 27 is turned on, the peak voltage of the capacitor 20 is lowered, the diac 23 is turned off, the thyristor 21 is stopped, and the generation of bubbles is stopped. By providing such an overcurrent suppressing means, the temperature of the electrolyzed water is lowered and the apparent resistance is increased.

図3は制御方法の違いによって異なる電流変化の特徴を比較した電流波形図で、(a)は図1の電源部13中のコンデンサ10の容量を小さくして、最大値が最小値の2倍以上に脈動を大きくしたときの電流波形である。(b)はコンデンサ10を取り外した場合で、トランスにより2V〜8Vに降圧した後、半波整流とした場合の電流波形である。この場合は、電極構造が簡単になる利点はあるが、トランスのスペースと重量の増加が欠点となっている。(c)は交流100Vの入力を図2に示した制御回路のようにSCRによる位相制御とした場合の電流波形である。回路スペースが非常に小さく出来、安価なものとすることが出来る利点がある。また(d)はTRIACを位相制御してから全波整流した場合の電流波形を示したものである。これらの電流波形のように、電流を停止させたり脈動させたりして流すことにより、電極表面に発生したガスの気泡が電極上に停留することと、電極表面に酸化絶縁膜ができることを防ぐ効果が得られる。電極実効面積の減少と酸化皮膜による電流減少、即ち発生ガスの減少を回避させることができるとともに、電流の停止または減少させる周期により、多細孔ストーン11からの気泡の吐出が微少期間一時停止されるので、気泡をより小さいものとすることができ、同一吐出ガス量当りの気泡と水との接触面が増加して、酸素の溶解を良好とする効果が得られる。FIG. 3 is a current waveform diagram comparing characteristics of different current changes depending on the control method. FIG. 3A is a diagram in which the capacity of the capacitor 10 in the power supply unit 13 in FIG. 1 is reduced and the maximum value is twice the minimum value. The current waveform when the pulsation is increased as described above. (B) shows the current waveform when the capacitor 10 is removed and half-wave rectification is performed after the voltage is lowered to 2V to 8V by the transformer. In this case, there is an advantage that the electrode structure is simplified, but an increase in space and weight of the transformer is a disadvantage. (C) is a current waveform in the case where AC 100V input is phase-controlled by SCR as in the control circuit shown in FIG. There is an advantage that the circuit space can be made very small and inexpensive. (D) shows the current waveform when full-wave rectification is performed after phase control of the TRIAC. The effect of preventing gas bubbles generated on the electrode surface from stopping on the electrode and forming an oxide insulating film on the electrode surface by flowing the current stopped or pulsated like these current waveforms. Is obtained. It is possible to avoid a decrease in the effective electrode area and a decrease in the current due to the oxide film, that is, a decrease in the generated gas, and the discharge of bubbles from the multi-pore stone 11 is temporarily suspended for a short period of time due to the current stopping or decreasing period. Therefore, the bubbles can be made smaller, and the contact surface between the bubbles and water per the same discharge gas amount is increased, so that the effect of improving the dissolution of oxygen can be obtained.

図4(a)はアルカリ電解液の濃度と水槽中へのアルカリ水の漏れの関係をプロットしたグラフで幅35cm、奥行き25cm、深さ20cmの水槽に1週間連続吐出させて、前後のペーハー値変化を比較してプロットした図である。これによると電解液濃度は10%以下とすれば全く漏れが検出されることがなく、安全であることが知られる。また、(b)は電極間の印加電圧を電流で除して求めた見かけ抵抗と電解液濃度との関係を調べた結果で、電解液濃度が3%以下になると抵抗が急激に増大することが知られる。見かけ抵抗が大きいと、損失が増大して温度上昇が大きくなり、さらに電流が増加し、消費電力が大きくなるのみでなく、温度上昇のために電解容器2を大きくしなければならなくなるものである。図4(a)、(b)の結果より、適切なアルカリ電解液の濃度としては、3%〜10%の範囲が適切であることがわかる。Fig. 4 (a) is a graph plotting the relationship between the concentration of the alkaline electrolyte and the leakage of alkaline water into the water tank, and the pH values before and after being continuously discharged into a water tank having a width of 35 cm, a depth of 25 cm, and a depth of 20 cm for one week. It is the figure which compared and plotted the change. According to this, it is known that if the electrolytic solution concentration is 10% or less, no leakage is detected and it is safe. (B) shows the result of investigating the relationship between the apparent resistance obtained by dividing the applied voltage between the electrodes by the current and the electrolytic solution concentration. When the electrolytic solution concentration becomes 3% or less, the resistance increases rapidly. Is known. If the apparent resistance is large, the loss increases and the temperature rise increases, and further, the current increases and the power consumption increases. In addition, the electrolytic vessel 2 must be enlarged for the temperature rise. . From the results of FIGS. 4 (a) and 4 (b), it can be seen that the appropriate concentration of the alkaline electrolyte is in the range of 3% to 10%.

図5は電解容器2中の電極の構造を複数対として簡易的な隔壁14で分離した別の実施例を示す電解容器の正面断面図である。第1の陽極15−1と陰極15−2は、第1の隔壁14−1により囲繞され、第2の陽極16−1と陰極16−2は、第2の隔壁14−2に、第3の陽極17−1と陰極17−2は、第3の隔壁14−3に、第4の陽極18−1と陰極18−2は、第4の隔壁14−4によって囲繞されている。各隔壁14−1、14−2、14−3、14−4は、夫々底部と上部が開放されており、電解液と発生ガスの出入りが自由な状態とされている。このような電極構造とすることにより、ステンレス電線4(4−1、4−2)間に加える電圧を約4倍として、電流は約4分の1に低下させることができる。このような構造とすることでサイリスタ位相制御角を大きくすることが出来、安定した低電圧とすることができるものである。更に、電極対数を増やすと、トランスレスでの制御は容易になる反面、電解タンク内の構造が複雑、高価となる。FIG. 5 is a front sectional view of an electrolytic container showing another embodiment in which a plurality of pairs of electrode structures in the electrolytic container 2 are separated by a simple partition 14. The first anode 15-1 and the cathode 15-2 are surrounded by the first partition 14-1, and the second anode 16-1 and the cathode 16-2 are connected to the second partition 14-2 by the third partition 14-1. The anode 17-1 and the cathode 17-2 are surrounded by the third partition 14-3, and the fourth anode 18-1 and the cathode 18-2 are surrounded by the fourth partition 14-4. Each of the partition walls 14-1, 14-2, 14-3, and 14-4 is open at the bottom and top, so that the electrolyte solution and the generated gas can freely enter and exit. By setting it as such an electrode structure, the voltage applied between the stainless steel electric wires 4 (4-1, 4-2) can be about 4 times, and an electric current can be reduced to about 1/4. With such a structure, the thyristor phase control angle can be increased and a stable low voltage can be obtained. Further, when the number of electrode pairs is increased, control without a transformer is facilitated, but the structure in the electrolytic tank is complicated and expensive.

図6は電解容器2内の電極対28、29、30、31を横置きとし、上下に位置をずらして設けてなる別の実施例である。また、図7は上方からの電極配置を示す上方視図である。この様な電極対の配置とすると、発生ガスの気泡は電極の上方で白濁した泡となって停留するが、電極は其の泡によって覆われることがなくなり、電流減少によるガス発生量の減少がなくなり、また水が消費されて電解液面がA−A′のレベルまで下がると、通電が自動的に停止させることができ、水位センサを設ける必要がなくなるものである。FIG. 6 shows another embodiment in which the electrode pairs 28, 29, 30, and 31 in the electrolytic vessel 2 are horizontally placed and shifted in the vertical direction. FIG. 7 is a top view showing the electrode arrangement from above. With such an electrode pair arrangement, the generated gas bubbles remain as white turbid bubbles above the electrodes, but the electrodes are not covered by the bubbles, and the amount of gas generated is reduced by reducing the current. Further, when water is consumed and the electrolytic solution level is lowered to the level A-A ', the energization can be automatically stopped, and there is no need to provide a water level sensor.

電解容器2の上部には給水口37が開けられており、ゴム製蓋34が加圧バネ35、及び押さえ蓋36のキャップによって、封止されている。多細孔ストーンの孔がつまるなどにより、内部のガス圧力が異常に高くなった場合、この部分が調圧安全弁として働く。また同時に、水の補給孔としての機能を果たすものである。即ち、液面がA−A′まで低下するとガス発生が自動的に停止し、水補充の必要性が分る。この時、連通チューブを外すと共に、押さえ蓋36を開け、加圧バネ35およびゴム製蓋34を外して、給水することが出来るようにされている。給水の上限レベルは容器が透明の樹脂としてその位置を目視により知ることが出来るようにされている。A water supply port 37 is opened at the top of the electrolytic vessel 2, and a rubber lid 34 is sealed by a pressure spring 35 and a cap of a pressing lid 36. If the internal gas pressure becomes abnormally high due to clogging of holes in the multi-pore stone, this part functions as a pressure-regulating safety valve. At the same time, it functions as a water supply hole. That is, when the liquid level drops to A-A ', gas generation automatically stops, and the necessity for water replenishment can be recognized. At this time, the communication tube is removed, the presser lid 36 is opened, the pressure spring 35 and the rubber lid 34 are removed, and water can be supplied. The upper limit level of the water supply is such that the container can be visually recognized as a transparent resin.

プラス電極から第1の電極対28−1、28−2に至るステンレス電線4や、隔壁14によって仕切られた4対の電極対28、29、30、31間それぞれに接続されたステンレス電線4には、絶縁チューブ33が被服されていて、電解液中でステンレス電線4に酸素、水素ガスが接触して電池作用によって短絡電流が流れ、ガス発生効率を低下させることを防止している。The stainless steel wire 4 extending from the plus electrode to the first electrode pair 28-1, 28-2, and the stainless steel wire 4 connected between the four electrode pairs 28, 29, 30, 31 separated by the partition wall 14 Is covered with an insulating tube 33 to prevent oxygen and hydrogen gas from coming into contact with the stainless steel wire 4 in the electrolytic solution, causing a short-circuit current to flow due to battery action, thereby reducing gas generation efficiency.

このような酸素水素混合ガス発生装置の圧力容器の構造を強固にし通電電流及び電圧を上げることによって、発生ガス圧力は数気圧以上の高圧にすることが容易にでき、汚水に酸素を送り込み、水質の浄化を行う曝気装置として利用することができる。By strengthening the pressure vessel structure of such an oxygen-hydrogen mixed gas generator and increasing the energization current and voltage, the generated gas pressure can be easily increased to a high pressure of several atmospheres or more, sending oxygen into the sewage, It can be used as an aeration apparatus that purifies the water.

本発明の電解式水槽ポンプの1実施例を示す説明図である。It is explanatory drawing which shows one Example of the electrolytic water tank pump of this invention. 本発明の別の制御方法を示す実施例である。It is an Example which shows another control method of this invention. 制御方法別に電流変化の特徴を比較した電流波形図Current waveform chart comparing current change characteristics by control method 本発明にもちいるアルカリ電解液の濃度に対する液漏れと見掛抵抗値の関係を示すグラフである。It is a graph which shows the relationship between the liquid leakage with respect to the density | concentration of the alkaline electrolyte used for this invention, and an apparent resistance value. 本発明に於ける第2の実施の形態を示す電解容器説明図である。It is electrolytic vessel explanatory drawing which shows 2nd Embodiment in this invention. 本発明に於ける第3の実施の形態を示す電解容器説明図である。It is electrolytic vessel explanatory drawing which shows 3rd Embodiment in this invention. 第3の実施の形態に於ける電解容器内の電極配置を示す上方視図である。It is an upper view which shows the electrode arrangement | positioning in the electrolytic vessel in 3rd Embodiment.

符号の説明Explanation of symbols

1: 酸素水素混合ガス発生装置
2: 電解容器
3: 電極
4: ステンレス電線
5: 受水壁
6: 密閉栓
7: ガス吐出孔
8: 連通チューブ
11: 多細孔ストーン
12: 水槽
13: 電源部
14: 隔壁
15,16,17,18: 電極対(垂直型)
28,29,30,31: 電極対(水平型)
33: 絶縁チューブ
34: ゴム製蓋
35: 加圧バネ
36: 押さえ蓋
37: 給水口
1: Oxygen-hydrogen mixed gas generator 2: Electrolysis vessel 3: Electrode 4: Stainless steel wire 5: Receiving wall 6: Sealing plug 7: Gas discharge hole 8: Communication tube 11: Multi-pore stone 12: Water tank 13: Power supply 14: Partition 15, 16, 17, 18: Electrode pair (vertical type)
28, 29, 30, 31: Electrode pair (horizontal type)
33: Insulating tube 34: Rubber lid 35: Pressure spring 36: Presser lid 37: Water supply port

Claims (7)

水を注入するための給水口と発生ガスを排出するための吐出孔を具備する電解容器と、該電解容器内に設けてなる電極に電流を供給するための電源部を有する、酸素水素混合ガス発生装置と、該酸素水素混合ガス発生装置から酸素水素混合ガスを水槽中に導く連通チューブと、該連通チューブの先端部に、前記酸素水素混合ガスを細かく分散して排出する多細孔吐出ストーンを具備せしめたことを特徴とする、電解式水槽ポンプ。An oxygen-hydrogen mixed gas having an electrolytic vessel having a water supply port for injecting water and a discharge hole for discharging generated gas, and a power supply unit for supplying current to an electrode provided in the electrolytic vessel Generator, a communication tube for introducing the oxygen-hydrogen mixed gas from the oxygen-hydrogen mixed gas generating device into the water tank, and a multi-pore discharge stone for finely dispersing and discharging the oxygen-hydrogen mixed gas at the tip of the communication tube An electrolytic water tank pump characterized by comprising: 前記酸素水素混合ガス発生装置は、直流の最大値が最小値の2倍以上となる脈動電流、又は、直流通電期間と通電休止期間を設けてなる通電制御を行ったことを特徴とする、請求項1記載の電解式水槽ポンプ。The oxygen-hydrogen mixed gas generator performs pulsating current in which the maximum value of DC is twice or more than the minimum value, or energization control in which a DC energization period and an energization stop period are provided. Item 2. The electrolytic water tank pump according to Item 1. 前記酸素水素混合ガス発生装置は、過電流抑制手段を具備して成る請求項2記載の電解式水槽ポンプ。The electrolytic water tank pump according to claim 2, wherein the oxygen-hydrogen mixed gas generator comprises an overcurrent suppressing means. 前記酸素水素混合ガス発生装置は、複数の電極対が分離壁により囲繞された、互いに直列に接続される構造とされたことを特徴とする、請求項1、2、及び3何れか1つ記載の電解式水槽ポンプ。4. The oxygen-hydrogen mixed gas generating apparatus according to any one of claims 1, 2, and 3, wherein a plurality of electrode pairs are surrounded by a separation wall and connected in series. Electrolytic water tank pump. 前記酸素水素混合ガス発生装置は、水酸化カリウム、又は水酸化ナトリウム、又は水酸化カルシウムから成るアルカリ電解溶液中に正負の電極対を設けて成り、前記電解水溶液の濃度を3%〜10%としたことを特徴とする、請求項1、2、3、及び4何れか1つ記載の電解式水槽ポンプ。The oxygen-hydrogen mixed gas generating device is formed by providing positive and negative electrode pairs in an alkaline electrolytic solution made of potassium hydroxide, sodium hydroxide, or calcium hydroxide, and the concentration of the electrolytic aqueous solution is 3% to 10%. The electrolytic water tank pump according to any one of claims 1, 2, 3, and 4, wherein 前記給水口には、着脱自在の密閉栓を嵌合させ、該密閉栓の周囲に受水壁を設けて成ることを特徴とする、請求項1記載の電解式水槽ポンプ。The electrolytic water tank pump according to claim 1, wherein a detachable sealing plug is fitted to the water supply port, and a water receiving wall is provided around the sealing plug. 前記電解容器内の電源の正又は負端子に直接接続された電極の下端部位置を、電解容器底部より上方所定の位置に定められた最低水位レベルと成るようにしたことを特徴とする、請求項1記載の電解式水槽ポンプ。The lower end position of the electrode directly connected to the positive or negative terminal of the power source in the electrolytic vessel is set to a minimum water level set at a predetermined position above the bottom of the electrolytic vessel. Item 2. The electrolytic water tank pump according to Item 1.
JP2005061452A 2005-02-07 2005-02-07 Electrolyte type water tank pump Pending JP2006212015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061452A JP2006212015A (en) 2005-02-07 2005-02-07 Electrolyte type water tank pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061452A JP2006212015A (en) 2005-02-07 2005-02-07 Electrolyte type water tank pump

Publications (1)

Publication Number Publication Date
JP2006212015A true JP2006212015A (en) 2006-08-17

Family

ID=36975728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061452A Pending JP2006212015A (en) 2005-02-07 2005-02-07 Electrolyte type water tank pump

Country Status (1)

Country Link
JP (1) JP2006212015A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212723A (en) * 2013-04-25 2014-11-17 三菱化工機株式会社 Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant
CN105379667A (en) * 2015-12-09 2016-03-09 重庆蜂糖妹农业开发有限公司 Electrolytic oxygenation transport case for living aquatic animals
CN105475220A (en) * 2016-01-29 2016-04-13 陈培安 Mobile type pond aerator
CN114027249A (en) * 2021-11-10 2022-02-11 浙江大学中原研究院 Intelligent automatic fish tank water replenishing device and method
CN116171926A (en) * 2023-04-06 2023-05-30 广东卡沃罗小家电有限公司 Water body hydrogen-rich aerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212723A (en) * 2013-04-25 2014-11-17 三菱化工機株式会社 Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant
CN105379667A (en) * 2015-12-09 2016-03-09 重庆蜂糖妹农业开发有限公司 Electrolytic oxygenation transport case for living aquatic animals
CN105475220A (en) * 2016-01-29 2016-04-13 陈培安 Mobile type pond aerator
CN105475220B (en) * 2016-01-29 2018-06-22 泉州市家园网信息科技有限公司 A kind of movable type pond oxygen-increasing device
CN114027249A (en) * 2021-11-10 2022-02-11 浙江大学中原研究院 Intelligent automatic fish tank water replenishing device and method
CN116171926A (en) * 2023-04-06 2023-05-30 广东卡沃罗小家电有限公司 Water body hydrogen-rich aerator

Similar Documents

Publication Publication Date Title
JP5736037B2 (en) Portable hydrogen-rich water production equipment
JP6384886B2 (en) Hydrogen generator
CN101892493B (en) Electrolytic device for preparing hypochlorous acid water
JP2006212015A (en) Electrolyte type water tank pump
CN108060430A (en) A kind of device and method that hydrogen and oxygen are generated using membrane electrode for inhaling hydrogen machine
CN111825205A (en) Oxygenation type aeration equipment for sewage treatment
JP2018001069A (en) Electrolytic hydrogen water generation method and electrolytic hydrogen water generator
US9481575B2 (en) Method for producing electrolyzed water
JP2002210340A (en) Ozone water producer
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP2014100648A (en) Cleaning water generator
CN208949422U (en) Pickling formula integration hypochlorite generator
CN104761023B (en) A kind of ozone water apparatus
CN207498109U (en) A kind of hydrogen-rich water generating device with independent electrolysis water
CN210683958U (en) Large-volume oxyhydrogen breathing machine
US20140332399A1 (en) Low Capacity Sodium Hypochlorite Generation System
JP6539131B2 (en) Functional water generator
JP2008073189A (en) Apparatus for producing carbonated spring using circulating bathtub water
CN210262022U (en) Hydrogen breathing machine
CN111118528A (en) Instant sterilizing liquid generator
CN207243533U (en) A kind of water element water generator
CN208104562U (en) Faintly acid hypochlorous acid thimerosal generating means
KR100725658B1 (en) Sterilizing system of drinking water using silver electrolysis
JP6503054B2 (en) Electrolyzed water generating device, electrode unit, and electrolytic water generating method
CN206486607U (en) A kind of hypochlorite generator