JP2006211460A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2006211460A
JP2006211460A JP2005022665A JP2005022665A JP2006211460A JP 2006211460 A JP2006211460 A JP 2006211460A JP 2005022665 A JP2005022665 A JP 2005022665A JP 2005022665 A JP2005022665 A JP 2005022665A JP 2006211460 A JP2006211460 A JP 2006211460A
Authority
JP
Japan
Prior art keywords
defective pixel
imaging
detection
signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005022665A
Other languages
Japanese (ja)
Inventor
Takeshi Morofuji
剛 諸藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005022665A priority Critical patent/JP2006211460A/en
Publication of JP2006211460A publication Critical patent/JP2006211460A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect the white flaw of a CCD while operating a camera. <P>SOLUTION: When a mode is not a white flaw detecting mode (S101), positional information of the white flaw in a memory is checked and white flaw correction is performed by a white flaw correction circuit (S112). When the mode is in the white flaw detecting mode, levels of luminance signals are compared (S102), gain data from an AGC circuit are detected (S103), and temperature data of an imaging device are acquired from a temperature detecting sensor (S104). On the basis of these data, a defective pixel detection threshold level is calculated (S105). When the number of times of detection does not reach the predetermined number of times (S106), white flaw detection is performed by a white flaw detection circuit (S107), and a detected defective pixel position is temporarily stored (S108). Panning and tilting are performed (S109), processing is returned to S103 and the next detection is performed. When the number of times of detection reaches the predetermined number of times, a detected pixel position and the level in each of detection are compared (S110) and when they match each other, a pixel defect is determined and written into the memory (S111), and white flaw correction is performed (S112). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばテレビ会議や遠隔監視システム等で使用する撮像装置に関するものである。   The present invention relates to an imaging apparatus used in, for example, a video conference or a remote monitoring system.

テレビカメラでは、CCDやCMOSセンサなどの撮像素子に被写体像を所望の時間露光し、これにより得られた画像信号をデジタル信号に変換して、YC処理などの所定の処理を施し、所定の形式の画像信号を得ている。   In a television camera, a subject image is exposed to an image sensor such as a CCD or CMOS sensor for a desired time, and an image signal obtained thereby is converted into a digital signal, subjected to a predetermined process such as a YC process, and a predetermined format. The image signal is obtained.

撮像素子の欠陥画素補正機能としては、絞り等の遮光手段により被写体からの入射光を遮り、その状態において得られた画像信号を、画素欠陥による画像の異常信号の検出レベルと比較し、このレベル以上であった場合に欠陥画素と判定し、欠陥画素位置を記憶し補正を行うものが広く知られている。   As a defective pixel correction function of the image sensor, the incident light from the subject is blocked by a light blocking means such as a diaphragm, and the image signal obtained in that state is compared with the detection level of the abnormal signal of the image due to the pixel defect. It is widely known that if it is above, it is determined as a defective pixel and the defective pixel position is stored and corrected.

また、撮像素子は光電変換を行うものであるが、熱エネルギも電気信号に変換する性質を持っている。この熱エネルギにより電気信号に変換された信号成分は暗電流と呼ばれ、温度依存性が強く、温度が10℃上昇するとその値はほぼ2倍となることが知られている。   In addition, the image sensor performs photoelectric conversion, but has a property of converting heat energy into an electrical signal. The signal component converted into an electrical signal by this thermal energy is called dark current, and it is known that the temperature dependence is strong, and its value almost doubles when the temperature rises by 10 ° C.

一般に、白キズは暗電流が画素欠陥により、他の画素に比べて異常に増加することによって生ずるものであり、温度、自動利得制御(AGC)、低速シャッタ制御によってもレベルが変化する。このような点を考慮し、撮像素子の画素欠陥を信号処理により補正するテレビカメラにおいて、白キズ判定のスレッショルドレベルを、撮像素子又はその周辺温度、AGC利得に応じて可変する技術が特許文献1に開示されている。   In general, white flaws are caused by a dark current that is abnormally increased compared to other pixels due to a pixel defect, and the level is also changed by temperature, automatic gain control (AGC), and low-speed shutter control. In consideration of such points, in a television camera that corrects pixel defects of an image sensor by signal processing, a technique for changing a threshold level for white defect determination in accordance with the image sensor or its ambient temperature and AGC gain is disclosed in Patent Document 1. Is disclosed.

特許第3014895号公報Japanese Patent No. 3014895

しかしながら上記特許文献1では、温度、AGCにより正常な信号成分についても同様に変化するので、通常撮影時における白キズ検出は困難である。   However, in the above-mentioned Patent Document 1, since a normal signal component similarly changes depending on the temperature and AGC, it is difficult to detect a white flaw during normal photographing.

本発明の目的は、上述の問題点を解消し、通常撮影に影響を生じないように、撮像素子の画素欠陥による白キズ検出を行い、これに基づく白キズ補正を良好に行い得る撮像装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an imaging apparatus capable of performing white defect detection based on pixel defects of an image sensor and satisfactorily correcting white defects based on the defect so as to solve the above-described problems and not affect normal shooting. It is to provide.

上記目的を達成するための本発明に係る撮像装置の技術的特徴は、撮像面上に結像する光信号を電気信号に変換する撮像素子と、被写体像の光を前記撮像素子に導くための光学系と、前記撮像素子の欠陥画素を検出する欠陥画素検出手段と、検出した前記欠陥画素の位置情報を記憶する欠陥画素位置記憶手段と、前記欠陥画素に対応する信号を前記欠陥画素の周辺画素の信号又は演算値により補正する欠陥画素補正手段とを備える演算部と、前記光学系の撮像方向を変更し得る撮像方向変更手段とを有し、該撮像方向変更手段による撮像方向変更中に前記撮像素子への入射光量が所定値以下となると前記欠陥画素検出手段により前記欠陥画素の検出を行うことにある。   In order to achieve the above object, the technical features of the imaging apparatus according to the present invention include an imaging device that converts an optical signal imaged on an imaging surface into an electrical signal, and a light for guiding a subject image to the imaging device. An optical system; defective pixel detection means for detecting defective pixels of the image sensor; defective pixel position storage means for storing position information of the detected defective pixels; and a signal corresponding to the defective pixels around the defective pixels A calculation unit including a defective pixel correction unit that corrects the pixel based on a pixel signal or a calculation value; and an imaging direction changing unit that can change an imaging direction of the optical system. During the imaging direction change by the imaging direction changing unit When the amount of light incident on the image sensor becomes a predetermined value or less, the defective pixel detection means detects the defective pixel.

また、本発明に係る撮像装置の技術的特徴は、撮像面上に結像する光信号を電気信号に変換する撮像素子と、被写体像の光を前記撮像素子に導くための光学系と、前記撮像素子の欠陥画素を検出する欠陥画素検出手段と、検出した前記欠陥画素の位置情報を記憶する欠陥画素位置記憶手段と、前記欠陥画素に対応する信号を前記欠陥画素の周辺画素の信号又は演算値により補正する欠陥画素補正手段とを備える演算部と、前記光学系の撮像方向を変化させる撮像方向変更手段と、前記撮像素子の画面上の動きを検出する動き検出手段とを有し、該動き検出手段による動きの非検出と、前記撮像素子への入射光量が所定値以下となった時点で前記欠陥画素検出手段により前記欠陥画素の検出を行うことにある。   Further, the technical features of the imaging apparatus according to the present invention include an imaging device that converts an optical signal imaged on an imaging surface into an electrical signal, an optical system that guides light of a subject image to the imaging device, and A defective pixel detecting unit for detecting a defective pixel of the image sensor; a defective pixel position storing unit for storing the detected positional information of the defective pixel; and a signal corresponding to the defective pixel as a signal or calculation of a peripheral pixel of the defective pixel A calculation unit including a defective pixel correction unit that corrects by a value, an imaging direction changing unit that changes an imaging direction of the optical system, and a motion detection unit that detects a movement of the imaging element on a screen, The non-detection of motion by the motion detection means, and the detection of the defective pixels by the defective pixel detection means when the amount of light incident on the image sensor becomes a predetermined value or less.

更に、本発明に係る撮像装置の技術的特徴は、撮像面上に結像する光信号を電気信号に変換する撮像素子と、撮像画角の変更を行う撮像画角変更手段と、被写体像の光を前記撮像素子に導くための光学系と、前記撮像素子の欠陥画素を検出する欠陥画素検出手段と、検出した前記欠陥画素の位置情報を記憶する欠陥画素位置記憶手段と、前記欠陥画素に対応する信号を前記欠陥画素の周辺画素の信号又は演算値を基に補正する欠陥画素補正手段とを有し、前記撮像画角変更手段による撮像画角変更中に前記撮像素子への入射光量が所定値以下になると前記欠陥画素検出手段により前記欠陥画素の検出を行うことにある。   Furthermore, the technical features of the imaging apparatus according to the present invention include an imaging element that converts an optical signal imaged on an imaging surface into an electrical signal, an imaging field angle changing unit that changes an imaging field angle, and a subject image. An optical system for guiding light to the image sensor, a defective pixel detection unit that detects a defective pixel of the image sensor, a defective pixel position storage unit that stores position information of the detected defective pixel, and a defective pixel A defective pixel correction unit that corrects a corresponding signal based on a signal or a calculation value of a peripheral pixel of the defective pixel, and the amount of incident light on the imaging element is changed during the change of the imaging field angle by the imaging field angle changing unit. When the predetermined value or less is reached, the defective pixel detection means detects the defective pixel.

本発明に係る撮像装置によれば、フォーカシング、ズーミング、画角移動による通常映像の変動に対して、AGCの変化がなければ、撮像素子の欠陥画素位置、レベルに変化はないので、撮影画像が変化したときの各画素のレベル変化を検出することで、撮像素子の画素欠陥による白キズ検出を精度良く行うことが可能となる。   According to the imaging apparatus of the present invention, if there is no change in AGC with respect to normal image fluctuations due to focusing, zooming, and movement of the angle of view, there is no change in the defective pixel position and level of the imaging element. By detecting the level change of each pixel at the time of the change, it becomes possible to accurately detect the white defect due to the pixel defect of the image sensor.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は実施例1に係るカメラシステムのブロック構成図であり、撮影光学系として、第1群レンズを構成する固定の前玉レンズ1、第2レンズ群を構成しステッピングモータ2により駆動するズームレンズ3、絞り駆動手段4により駆動される絞り5、固定の第3群レンズ6、ステッピングモータ7を介して焦点調節を行うフォーカスレンズ8、CCD、CMOSセンサなどの撮影素子9が配列されている。   FIG. 1 is a block diagram of the camera system according to the first embodiment. As a photographing optical system, a fixed front lens 1 constituting a first lens group, a zoom lens driven by a stepping motor 2 constituting a second lens group. An imaging element 9 such as a lens 3, a diaphragm 5 driven by a diaphragm driving means 4, a fixed third group lens 6, a focus lens 8 that performs focus adjustment via a stepping motor 7, a CCD, a CMOS sensor, and the like are arranged. .

撮像素子9の出力は、AGC(自動利得制御)回路11、A/D変換器12、白キズ検出回路13、白キズ補正回路14、信号処理回路15を介してD/A変換器16に接続され、信号処理回路15の出力はAE(自動露出調整)/AWB(オートホワイトバランス調整)の評価値を検出する評価処理回路17、AF(合焦)の評価値を検出するAF評価値検出処理回路18に接続され、処理回路17、18の出力は、マイクロコンピュータから成り、AF、AE、AWB等のシステム全体を統括的に制御するコントローラ19に接続されている。   The output of the image sensor 9 is connected to a D / A converter 16 via an AGC (automatic gain control) circuit 11, an A / D converter 12, a white defect detection circuit 13, a white defect correction circuit 14, and a signal processing circuit 15. The output of the signal processing circuit 15 is an evaluation processing circuit 17 that detects an evaluation value of AE (automatic exposure adjustment) / AWB (auto white balance adjustment), and an AF evaluation value detection process that detects an evaluation value of AF (focusing). The output of the processing circuits 17 and 18 is connected to a circuit 18 and is composed of a microcomputer, and is connected to a controller 19 that comprehensively controls the entire system such as AF, AE, and AWB.

また、同期信号発生回路(Timing Generator)20の出力は、撮像素子9、自動利得制御回路11、A/D変換器12に接続されている。コントローラ19の出力はステッピングモータ2、絞り駆動手段4、ステッピングモータ7、パンニング、チルトティング機構を有する電動旋回雲台21に接続されている。更に、コントローラ19には、白キズ検出回路13、白キズ補正回路14、撮像素子9の近傍に配置された温度検出センサ22の出力が接続され、メモリ23が接続されている。   The output of the synchronizing signal generation circuit (Timing Generator) 20 is connected to the image sensor 9, automatic gain control circuit 11, and A / D converter 12. The output of the controller 19 is connected to the stepping motor 2, the aperture driving means 4, the stepping motor 7, and the electric swivel head 21 having a panning and tilting mechanism. Further, the controller 19 is connected to the output of the white defect detection circuit 13, the white defect correction circuit 14, and the temperature detection sensor 22 disposed in the vicinity of the image sensor 9, and is connected to the memory 23.

上述の構成において、被写体の光像はレンズ1、3、6、8によって、撮像素子9の撮像面に結像され、電気信号に変換される。ここで、絞り5が全開状態であり、かつ撮像素子9の受光量の輝度信号レベルが所定値に達しないときには、AGC回路11で被写体の明るさに応じた信号増幅が行われ、A/D変換器12でデジタル信号に変換される。   In the above-described configuration, the optical image of the subject is formed on the imaging surface of the imaging device 9 by the lenses 1, 3, 6, and 8, and is converted into an electrical signal. Here, when the diaphragm 5 is fully opened and the luminance signal level of the amount of light received by the image sensor 9 does not reach a predetermined value, the AGC circuit 11 performs signal amplification in accordance with the brightness of the subject, and A / D The signal is converted into a digital signal by the converter 12.

正常な映像信号は白キズ検出回路13、白キズ補正回路14を通過し、信号処理回路15で色分離、ホワイトバランス、ガンマ補正等の映像信号規格に準拠した適宜処理を施された後に、D/A変換器16で適当なフォーマットのビデオ信号に変換され出力される。   A normal video signal passes through a white defect detection circuit 13 and a white defect correction circuit 14 and is subjected to appropriate processing in accordance with a video signal standard such as color separation, white balance, and gamma correction in a signal processing circuit 15, and then D The A / A converter 16 converts the video signal into an appropriate format and outputs it.

白キズ検出回路13において周辺画素と比較し、1画素のみの大信号は白キズと判断でき、この結果、検出された白キズは白キズ補正回路14で補正されることとなる。白キズ補正回路14では、例えばAGC回路11の利得が2倍となった場合にはスレッショルドレベルを2倍とし、また温度が10℃上昇した場合にもスレッショルドレベルを2倍とするように、演算によって白キズ検出のスレッショルドレベルを算出する。そして、白キズ検出回路13で検出された欠陥画素位置をメモリ23に記憶する。また、白キズ補正回路14ではメモリ23に記憶された欠陥画素位置に応じて、欠陥画素の周辺画素信号又は演算値で補正する。   Compared with surrounding pixels in the white flaw detection circuit 13, a large signal of only one pixel can be determined as a white flaw. As a result, the detected white flaw is corrected by the white flaw correction circuit 14. In the white defect correction circuit 14, for example, when the gain of the AGC circuit 11 is doubled, the threshold level is doubled, and when the temperature rises by 10 ° C., the threshold level is doubled. Is used to calculate the threshold level for white flaw detection. The defective pixel position detected by the white defect detection circuit 13 is stored in the memory 23. In addition, the white defect correction circuit 14 corrects the peripheral pixel signal or the calculated value of the defective pixel according to the defective pixel position stored in the memory 23.

AF評価値検出処理回路18は映像信号中から撮像面内に設定された所定の測距枠内に相当する映像信号をゲートするゲート回路であり、合焦検出を行うために必要な鮮鋭度を示す評価値としての高周波成分を抽出するためのBPF(バンドパスフィルタ)等により構成されている。   The AF evaluation value detection processing circuit 18 is a gate circuit that gates a video signal corresponding to a predetermined distance measurement frame set in the imaging surface from the video signal, and has a sharpness necessary for performing focus detection. It is configured by a BPF (band pass filter) or the like for extracting a high frequency component as an evaluation value to be shown.

図2は白キズの検出、及びこれに基づく補正動作のフローチャート図を示している。なお、カメラシステムの各部が十分に昇温しており、回路系が安定した状態で白キズ検出を行うことが好ましい。例えば、通電時間、撮像素子9の昇温をモニタし、所定値を超えた場合に検出を行う等の処理の追加も有効である。   FIG. 2 is a flowchart showing detection of white flaws and a correction operation based on the detection. It should be noted that it is preferable to detect white flaws in a state where the temperature of each part of the camera system is sufficiently raised and the circuit system is stable. For example, it is also effective to add processing such as monitoring the energization time and the temperature rise of the image sensor 9 and performing detection when a predetermined value is exceeded.

白キズ検出の指示を確認し(ステップS101)、白キズ検出モードであればステップS102に進み、白キズ検出モードでなければステップS112に進み、メモリ23に既に書き込まれている白キズ位置情報をチェックし、白キズ位置情報がある場合にはこれに基づいて白キズ補正を行う(ステップS112)。   The white flaw detection instruction is confirmed (step S101). If the white flaw detection mode is selected, the process proceeds to step S102. If the white flaw detection mode is not selected, the process proceeds to step S112, and the white flaw position information already written in the memory 23 is obtained. If there is white scratch position information, white scratch correction is performed based on this (step S112).

白キズ検出モードであれば、輝度信号のレベルを所定値と比較し(ステップS102)、所定値以下であればステップS103に、そうでなければステップS112に進む。輝度信号レベルが所定値以下であれば、AGC回路11からの利得データを検出し(ステップS103)、温度検出センサ22から撮像素子9又はその近傍の温度データを取得する(ステップS104)。このデータに基づいて、コントローラ19は欠陥画素検出スレッショルドレベルを算出する(ステップS105)。次に、検出回数を計数してチェックする(ステップS106)。   If it is the white flaw detection mode, the level of the luminance signal is compared with a predetermined value (step S102). If it is equal to or lower than the predetermined value, the process proceeds to step S103, and if not, the process proceeds to step S112. If the luminance signal level is equal to or lower than the predetermined value, the gain data from the AGC circuit 11 is detected (step S103), and the temperature data of the image sensor 9 or its vicinity is acquired from the temperature detection sensor 22 (step S104). Based on this data, the controller 19 calculates a defective pixel detection threshold level (step S105). Next, the number of detections is counted and checked (step S106).

検出回数が所定回数に達していなければ、白キズ検出回路13で白キズ画素検出を行い(ステップS107)、白キズがなければステップS109に進み、白キズが検出されるとその欠陥画素位置を白キズ画素位置仮記憶する(ステップS108)。パンニング移動、チルティング移動を行い(ステップS109)、或いは旋回動作指示を待って、ステップS103に戻り次の検出を行う。   If the number of detections has not reached the predetermined number, the white flaw detection circuit 13 performs white flaw pixel detection (step S107). If there is no white flaw, the process proceeds to step S109. The white scratch pixel position is temporarily stored (step S108). Panning movement and tilting movement are performed (step S109), or after waiting for a turning operation instruction, the process returns to step S103 to perform the next detection.

検出回数が所定回数に達した場合に、検出毎の検出画素位置・レベルを比較し(ステップS110)、一致していなければステップS112に進み、一致していれば画素欠陥と判定し、白キズ画素位置のメモリ23への書き込みを行い(ステップS111)、白キズ補正回路14で白キズ補正を行う(ステップS112)。   When the number of detections reaches a predetermined number, the detection pixel position / level for each detection is compared (step S110). If they do not match, the process proceeds to step S112. The pixel position is written in the memory 23 (step S111), and the white defect correction circuit 14 performs white defect correction (step S112).

図3はステップS102における輝度信号レベルの比較・判定についての説明図であり、AE、AWBへの1つの評価値を算出するための画面分割を示している。図4のフローチャート図に示すように、細かく分割されたエリア毎に、輝度値を比較してゆくことで、画面全体の露光均一性が確認できる(ステップS201)。次に、フォーカス評価値が所定置以下であるかどうかチェックし(ステップS202)、フォーカス評価値が小さければ主要被写体が観測されていないことが分かり、これらの条件下で白キズ検出を行うことで、精度良い白キズの検出が可能となる(ステップS203)。   FIG. 3 is an explanatory diagram of the comparison / determination of the luminance signal level in step S102, and shows screen division for calculating one evaluation value for AE and AWB. As shown in the flowchart of FIG. 4, the exposure uniformity of the entire screen can be confirmed by comparing the luminance values for each of the finely divided areas (step S201). Next, it is checked whether or not the focus evaluation value is equal to or less than a predetermined position (step S202). If the focus evaluation value is small, it can be seen that the main subject is not observed, and white scratch detection is performed under these conditions. Therefore, it is possible to detect white scratches with high accuracy (step S203).

このように、通常撮影時での白キズ補正は、得られた大信号が撮像素子9に入射した光信号によるものか、白キズによるものかを見分けなければならない。そこで、例えば電動旋回雲台21の動作中に複数回の白キズ検出を行い、検出欠陥画素位置、検出レベルを比較することで、撮像素子9への入射光信号との判別を容易とし、白キズ検出を適切に行うことが可能となる。或いは、監視中に雲台21の旋回に合わせて画素欠陥検出を行うことで、撮像素子9への入射光信号との判別を容易とし、白キズ検出を適切に行う。   As described above, in the white defect correction during the normal photographing, it is necessary to distinguish whether the obtained large signal is due to the optical signal incident on the image sensor 9 or due to the white defect. Therefore, for example, white defect detection is performed a plurality of times during the operation of the electric swivel head 21 and the detection defect pixel position and detection level are compared to facilitate discrimination from the incident light signal to the image sensor 9. Scratch detection can be performed appropriately. Alternatively, pixel defect detection is performed in accordance with the turning of the camera platform 21 during monitoring, thereby facilitating discrimination from the incident light signal to the image sensor 9 and appropriately detecting white flaws.

図5はパンニング、チルティング、ズームを行うPTZカメラ31の一例であり、PTZカメラ31は電動旋回雲台21により、パンニング画角移動P、チルティング画角移動Tが可能とされ、ビデオサーバ32に接続されている。   FIG. 5 shows an example of a PTZ camera 31 that performs panning, tilting, and zooming. The PTZ camera 31 is capable of panning angle of view movement P and tilting angle of view movement T by an electric swivel head 21, and a video server 32. It is connected to the.

図6はビデオサーバ32からPTZカメラ31を制御し、その出力映像と、パンニング画角移動P、チルティング画角移動Tとから、パノラマ映像P0を合成する概略を示している。Pa、Pb、Pcのそれぞれは、PTZカメラ31から得られる1画像である。それらをビデオサーバ32において合成することで、図6に示すようなパノラマ映像P0を得ることができる。勿論、PTZカメラ31とビデオサーバ32を一体とした機器においても同様である。   FIG. 6 shows an outline of controlling the PTZ camera 31 from the video server 32 and synthesizing the panoramic video P0 from the output video, the panning field angle movement P, and the tilting field angle movement T. Each of Pa, Pb, and Pc is one image obtained from the PTZ camera 31. By combining them in the video server 32, a panoramic image P0 as shown in FIG. 6 can be obtained. Of course, the same applies to a device in which the PTZ camera 31 and the video server 32 are integrated.

このパノラマ映像P0から、撮像素子9からの輝度信号の受光量が所定値以下で、均一な位置を検出し、そこに画角を向けて、白キズ検出を行うとも有効である。同時に、設定日時により検出を行うことも有効である。   From this panoramic video P0, it is also effective to detect a white flaw by detecting a uniform position where the amount of received light of the luminance signal from the image sensor 9 is equal to or less than a predetermined value and directing the angle of view there. At the same time, it is also effective to perform detection based on the set date and time.

このように、常に撮像状態である監視システムや、絞り機構を持たない電子アイリスのみのカメラシステムにおいて、画像の中断をすることが無く、白キズ検出を可能とすることができる。   In this way, in a monitoring system that is always in an imaging state or a camera system that uses only an electronic iris that does not have an aperture mechanism, it is possible to detect white flaws without interrupting the image.

図7は実施例2における白キズの検出、及びこれに基づく補正動作のフローチャート図である。図2のフローチャート図の動作とほぼ同じであるが、図2においては、ステップS109において撮像画像の変更を行うのに対し、図7では撮像画角変更或いはデフォーカス処理を行って(ステップS309)、次の検出を行う。   FIG. 7 is a flowchart of white defect detection and correction operation based on this in Example 2. 2 is substantially the same as the operation in the flowchart of FIG. 2, but in FIG. 2, the captured image is changed in step S109, whereas in FIG. 7, the imaging field angle is changed or defocus processing is performed (step S309). The following detection is performed.

このように、通常撮影時での白キズ補正は、得られた大信号が撮像素子9に入射した光信号によるものか、白キズによるものかを見分けなければならない。そこで、ズーミング処理により撮像画像を変更しながら、複数回の白キズ検出を行い、検出欠陥画素位置、検出レベルを比較することで、撮像素子9への入射光信号との判別を容易とし、白キズ検出を適切に行うことが可能となる。或いは、監視中のズーミング処理に合わせて画素欠陥検出を行うことで、撮像素子9への入射光信号との判別を容易とし、白キズ検出を適切に行うことが可能となる。   As described above, in the white defect correction during the normal photographing, it is necessary to distinguish whether the obtained large signal is due to the optical signal incident on the image sensor 9 or due to the white defect. Thus, white flaw detection is performed a plurality of times while changing the picked-up image by zooming processing, and the detection defect pixel position and the detection level are compared to facilitate discrimination from the incident light signal to the image pickup device 9. Scratch detection can be performed appropriately. Alternatively, by performing pixel defect detection in accordance with the zooming process being monitored, it is possible to easily discriminate the incident light signal from the image sensor 9 and to detect white defects appropriately.

また、フォーカスの合焦状態と非合焦(デフォーカス)状態とで、複数回の白キズ検出を行い、検出欠陥画素位置、検出レベルを比較することで、撮像素子9への入射光信号との判別を容易とし、白キズ検出を適切に行うことも可能である。   In addition, the white defect detection is performed a plurality of times in the focused state and the out-of-focus (defocused) state, and the detection defect pixel position and the detection level are compared, so that the incident light signal to the image sensor 9 is It is also possible to easily detect white scratches.

図8は実施例3のブロック構成図であり、実施例1の図1に加えて信号処理回路15の出力が動体検知回路24を介してコントローラ19に接続されている。   FIG. 8 is a block diagram of the third embodiment. In addition to FIG. 1 of the first embodiment, the output of the signal processing circuit 15 is connected to the controller 19 via the moving object detection circuit 24.

図9はその動作フローチャート図である。白キズの検出指示を確認し(ステップS401)、検出指示がない場合はステップS413に進み、メモリ23に既に書き込まれている白キズ位置情報をチェックし、白キズ位置情報がある場合はこれに基づいて白キズ補正を行う(ステップS413)。   FIG. 9 is a flowchart of the operation. A white flaw detection instruction is confirmed (step S401). If there is no detection instruction, the process proceeds to step S413, where the white flaw position information already written in the memory 23 is checked. Based on this, white defect correction is performed (step S413).

白キズ検出指示がある場合には、画面上に動きがあるか動体検知を行い(ステップS402)、更に輝度信号を所定の大きさと比較する(ステップS403)。動体検知があり、輝度信号が小さい場合に、ステップS404以下に進むが、これらのステップは図7のステップS303以下と同じである。   If there is a white flaw detection instruction, a moving object is detected to see if there is any movement on the screen (step S402), and the luminance signal is compared with a predetermined magnitude (step S403). If there is moving object detection and the luminance signal is small, the process proceeds to step S404 and subsequent steps, which are the same as those in step S303 and subsequent steps in FIG.

この実施例3では、動体検知回路24による動体検知が行われている場合は、白キズ検出を行わないことで、不要な撮影ミスを防止できる。このように、白キズ検出条件として、動体検知回路24による検知、非検知判定結果を用いることで、白キズに対する精度の良い検出が可能となる。   In the third embodiment, when the moving object detection is performed by the moving object detection circuit 24, unnecessary shooting mistakes can be prevented by not detecting white flaws. As described above, by using the detection / non-detection determination result by the moving object detection circuit 24 as the white defect detection condition, it is possible to detect the white defect with high accuracy.

実施例1のブロック構成図である。1 is a block configuration diagram of Embodiment 1. FIG. 実施例1のフローチャート図である。FIG. 3 is a flowchart of the first embodiment. AE/AWB評価値検出分割エリアの説明図である。It is explanatory drawing of an AE / AWB evaluation value detection division area. 分割エリアに対するフローチャート図である。It is a flowchart figure with respect to a division area. PTZカメラの説明図である。It is explanatory drawing of a PTZ camera. 合成したパノラマ画像の説明図である。It is explanatory drawing of the synthesized panoramic image. 実施例2のフローチャート図である。FIG. 6 is a flowchart of the second embodiment. 実施例3のブロック構成図である。FIG. 10 is a block diagram of a third embodiment. 実施例3のフローチャート図である。FIG. 10 is a flowchart of the third embodiment.

符号の説明Explanation of symbols

3 ズームレンズ
8 フォーカスレンズ
9 撮像素子
11 AGC回路
13 白キズ検出回路
14 白キズ補正回路
17 評価処理回路
18 AF評価値検出処理回路
19 コントローラ
21 電動旋回雲台
23 メモリ
24 動体検知回路
31 PTZカメラ
DESCRIPTION OF SYMBOLS 3 Zoom lens 8 Focus lens 9 Image pick-up element 11 AGC circuit 13 White defect detection circuit 14 White defect correction circuit 17 Evaluation processing circuit 18 AF evaluation value detection processing circuit 19 Controller 21 Electric turning pan head 23 Memory 24 Moving object detection circuit 31 PTZ camera

Claims (9)

撮像面上に結像する光信号を電気信号に変換する撮像素子と、被写体像の光を前記撮像素子に導くための光学系と、前記撮像素子の欠陥画素を検出する欠陥画素検出手段と、検出した前記欠陥画素の位置情報を記憶する欠陥画素位置記憶手段と、前記欠陥画素に対応する信号を前記欠陥画素の周辺画素の信号又は演算値により補正する欠陥画素補正手段とを備える演算部と、前記光学系の撮像方向を変更し得る撮像方向変更手段とを有し、該撮像方向変更手段による撮像方向変更中に前記撮像素子への入射光量が所定値以下となると前記欠陥画素検出手段により前記欠陥画素の検出を行うことを特徴とする撮像装置。   An image sensor that converts an optical signal formed on the imaging surface into an electrical signal, an optical system for guiding light of a subject image to the image sensor, a defective pixel detection unit that detects a defective pixel of the image sensor, A calculation unit comprising: defective pixel position storage means for storing position information of the detected defective pixel; and defective pixel correction means for correcting a signal corresponding to the defective pixel by a signal or calculation value of a peripheral pixel of the defective pixel; An imaging direction changing unit capable of changing an imaging direction of the optical system, and when the amount of incident light on the imaging element becomes equal to or less than a predetermined value while the imaging direction is changed by the imaging direction changing unit, the defective pixel detecting unit An image pickup apparatus that detects the defective pixel. 撮像面上に結像する光信号を電気信号に変換する撮像素子と、被写体像の光を前記撮像素子に導くための光学系と、前記撮像素子の欠陥画素を検出する欠陥画素検出手段と、検出した前記欠陥画素の位置情報を記憶する欠陥画素位置記憶手段と、前記欠陥画素に対応する信号を前記欠陥画素の周辺画素の信号又は演算値により補正する欠陥画素補正手段とを備える演算部と、前記光学系の撮像方向を変化させる撮像方向変更手段と、前記撮像素子の画面上の動きを検出する動き検出手段とを有し、該動き検出手段による動きの非検出と、前記撮像素子への入射光量が所定値以下となった時点で前記欠陥画素検出手段により前記欠陥画素の検出を行うことを特徴とする撮像装置。   An image sensor that converts an optical signal formed on the imaging surface into an electrical signal, an optical system for guiding light of a subject image to the image sensor, a defective pixel detection unit that detects a defective pixel of the image sensor, A calculation unit comprising: defective pixel position storage means for storing position information of the detected defective pixel; and defective pixel correction means for correcting a signal corresponding to the defective pixel by a signal or calculation value of a peripheral pixel of the defective pixel; And an imaging direction changing means for changing the imaging direction of the optical system, and a motion detecting means for detecting a motion of the imaging element on the screen, and non-detection of the movement by the motion detecting means, and to the imaging element An image pickup apparatus, wherein the defective pixel is detected by the defective pixel detection means when the incident light quantity of the light becomes equal to or less than a predetermined value. 撮像面上に結像する光信号を電気信号に変換する撮像素子と、撮像画角の変更を行う撮像画角変更手段と、被写体像の光を前記撮像素子に導くための光学系と、前記撮像素子の欠陥画素を検出する欠陥画素検出手段と、検出した前記欠陥画素の位置情報を記憶する欠陥画素位置記憶手段と、前記欠陥画素に対応する信号を前記欠陥画素の周辺画素の信号又は演算値を基に補正する欠陥画素補正手段とを有し、前記撮像画角変更手段による撮像画角変更中に前記撮像素子への入射光量が所定値以下になると前記欠陥画素検出手段により前記欠陥画素の検出を行うことを特徴とする撮像装置。   An image sensor that converts an optical signal imaged on the imaging surface into an electrical signal, an imaging field angle changing unit that changes an imaging field angle, an optical system that guides light of a subject image to the image sensor, and A defective pixel detecting unit for detecting a defective pixel of the image sensor; a defective pixel position storing unit for storing the detected positional information of the defective pixel; and a signal corresponding to the defective pixel as a signal or calculation of a peripheral pixel of the defective pixel A defective pixel correcting means for correcting based on the value, and the defective pixel detecting means detects the defective pixel when the amount of incident light on the imaging element becomes a predetermined value or less during the changing of the imaging angle of view by the imaging angle of view changing means. An imaging apparatus characterized by performing detection. 前記撮像素子の出力を増幅する信号増幅手段を有し、該信号増幅手段の利得に応じて、前記欠陥画素の検出基準を変更する手段を備えることを特徴とする請求項1又は2又は3に記載の撮像装置。   4. The apparatus according to claim 1, further comprising: a signal amplifying unit that amplifies an output of the image pickup device, and a unit that changes a detection reference of the defective pixel in accordance with a gain of the signal amplifying unit. The imaging device described. 前記撮像素子又はその周辺温度を検出する温度検出手段を有し、前記温度に応じて前記欠陥画素の検出基準を変更する手段を備えることを特徴とする請求項1又は2又は3に記載の撮像装置。   4. The imaging according to claim 1, further comprising a temperature detection unit that detects a temperature of the imaging device or its surroundings, and a unit that changes a detection standard of the defective pixel in accordance with the temperature. apparatus. 前記欠陥画素の検出時に、前記撮像素子に対するフォーカスが合焦しないように前記光学系を制御すること特徴とする請求項1又は2又は3に記載の撮像装置。   The imaging apparatus according to claim 1, wherein the optical system is controlled so that a focus on the imaging element is not focused when the defective pixel is detected. 日時設定、時計計測手段を有し、前記撮像素子の撮像方向と、検出日時とを設定可能としたことを特徴とする請求項1又は2又は3に記載の撮像装置。   The image pickup apparatus according to claim 1, further comprising a date and time setting and clock measurement means, wherein the image pickup direction of the image pickup device and a detection date and time can be set. ネットワーク接続手段を有し、外部装置に対し検出した前記欠陥画素の位置情報と検出信号レベルとを伝達する手段を備えることを特徴とする請求項1又は2又は3に記載の撮像装置。   The imaging apparatus according to claim 1, further comprising a network connection unit, and a unit that transmits position information and a detection signal level of the detected defective pixel to an external device. 請求項1〜6の何れか1つの請求項に記載の撮像装置を搭載したテレビカメラ。   A television camera equipped with the imaging device according to any one of claims 1 to 6.
JP2005022665A 2005-01-31 2005-01-31 Imaging apparatus Pending JP2006211460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022665A JP2006211460A (en) 2005-01-31 2005-01-31 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022665A JP2006211460A (en) 2005-01-31 2005-01-31 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006211460A true JP2006211460A (en) 2006-08-10

Family

ID=36967797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022665A Pending JP2006211460A (en) 2005-01-31 2005-01-31 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006211460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105872A (en) * 2007-10-01 2009-05-14 Sony Corp Defective pixel correction circuit and solid-state imaging device
JP2009224937A (en) * 2008-03-14 2009-10-01 Sanyo Electric Co Ltd Electronic camera
WO2021256321A1 (en) * 2020-06-17 2021-12-23 ソニーグループ株式会社 Image processing device, image processing method, and image processing program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105872A (en) * 2007-10-01 2009-05-14 Sony Corp Defective pixel correction circuit and solid-state imaging device
JP2009224937A (en) * 2008-03-14 2009-10-01 Sanyo Electric Co Ltd Electronic camera
WO2021256321A1 (en) * 2020-06-17 2021-12-23 ソニーグループ株式会社 Image processing device, image processing method, and image processing program

Similar Documents

Publication Publication Date Title
US7551222B2 (en) Image pickup apparatus with automatic focus lens, when auto focusing cannot be conducted focus lens is driven based on stored information of distance to object
US8823857B2 (en) Image apparatus
JP5322783B2 (en) IMAGING DEVICE AND CONTROL METHOD OF IMAGING DEVICE
CN107255900B (en) Control method of photographing apparatus
US7499088B2 (en) Imaging apparatus, imaging method and imaging processing program
JP4310309B2 (en) Optical device and method for controlling optical device
US8259219B2 (en) Detection system for autofocus function of image capture device and control method thereof
US6333761B2 (en) Image pickup apparatus having focus detection area size dependent on aspect ratio
CN101873433B (en) Automatic backlight adjusting device of camera and method thereof
US11190704B2 (en) Imaging apparatus and control method for performing live view display of a tracked object
KR20080061629A (en) Photographing apparatus and the same control method
JP2006211460A (en) Imaging apparatus
JP2011137916A (en) Imaging apparatus, fault detection method, and program
JP2005328134A (en) Imaging apparatus and defect detecting method of solid-state imaging element
JP5159295B2 (en) Automatic focusing device and imaging device
JP2012029194A (en) Electronic camera and exposure control program
JP2016200741A (en) Imaging device
JP2007129328A (en) Imaging apparatus
JP5384173B2 (en) Auto focus system
JP2006121478A (en) Imaging apparatus
JP2005136859A (en) Image pickup apparatus
KR101527123B1 (en) Diagnosis method and the device of mechanical shutter for camera module
JP2016142776A (en) Imaging device
JP2008160405A (en) Imaging apparatus
JP2009069739A (en) Image pickup apparatus