JP2006210572A - Member for shielding electromagnetic waves - Google Patents

Member for shielding electromagnetic waves Download PDF

Info

Publication number
JP2006210572A
JP2006210572A JP2005019461A JP2005019461A JP2006210572A JP 2006210572 A JP2006210572 A JP 2006210572A JP 2005019461 A JP2005019461 A JP 2005019461A JP 2005019461 A JP2005019461 A JP 2005019461A JP 2006210572 A JP2006210572 A JP 2006210572A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
shielding member
wave shielding
coating film
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005019461A
Other languages
Japanese (ja)
Other versions
JP4867172B2 (en
Inventor
Atsuro Tsuzuki
淳朗 續木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005019461A priority Critical patent/JP4867172B2/en
Publication of JP2006210572A publication Critical patent/JP2006210572A/en
Application granted granted Critical
Publication of JP4867172B2 publication Critical patent/JP4867172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for shielding electromagnetic waves having high light transmission properties and image definition. <P>SOLUTION: When manufacturing the member for shielding electromagnetic waves in which a mesh-like metal layer is formed on a transparent base 1 and a number of light-transmitting sections are demarcated, the mesh-like metal layer and a number of light-transmitting sections are covered with a curing paint film 15 of a transparent resin, and the average inclination angle of a raised section formed on a thin-line section 10a in the mesh-like metal layer in the curing paint film 15 is set to 10° or smaller. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電磁波遮蔽部材に関し、更に詳しくは、光透過性の高い電磁波遮蔽部材に関する。   The present invention relates to an electromagnetic wave shielding member, and more particularly to an electromagnetic wave shielding member having high light transmittance.

今日では、種々の電子機器が必需品となっている。これらの電子機器の動作時には、程度の差こそあれ必ず電磁波が放射され、その強度が強い場合には周辺の電子機器が誤作動を起こしたり、人体に弊害を及ぼしたりする。このため、電子機器から放射された電磁波が周囲に及ばないようにするために、あるいは、電磁波から電子機器又は人体を保護するために、種々の電磁波遮蔽材料ないし電磁波遮蔽部材が開発されている。   Today, various electronic devices have become a necessity. During the operation of these electronic devices, electromagnetic waves are always radiated to a certain degree, and if the intensity is high, peripheral electronic devices may malfunction or cause adverse effects on the human body. For this reason, various electromagnetic shielding materials or electromagnetic shielding members have been developed in order to prevent electromagnetic waves radiated from electronic devices from reaching the surroundings or to protect electronic devices or human bodies from electromagnetic waves.

電磁波は導電性材料により遮蔽することが可能である。電磁波遮蔽材料や電磁波遮蔽部材が光透過性を有しているか否かは電磁波の遮蔽と無関係であるが、例えばプラズマディスプレイパネルのような表示装置では、表示面から放射される電磁波が周囲に及ばないように遮蔽することが望まれるので、このような用途の電磁波遮蔽部材については、電磁波遮蔽性能に加えて、高い光透過性が要求される。   Electromagnetic waves can be shielded by a conductive material. Whether or not the electromagnetic wave shielding material or the electromagnetic wave shielding member has optical transparency is irrelevant to the shielding of the electromagnetic wave, but in a display device such as a plasma display panel, the electromagnetic wave radiated from the display surface reaches the surroundings. Since it is desired to shield the electromagnetic wave so as to prevent it, the electromagnetic wave shielding member for such an application is required to have high light transmittance in addition to the electromagnetic wave shielding performance.

高い光透過性を有する電磁波遮蔽部材としては、例えば特許文献1に記載された電磁波遮蔽部材が知られている。この電磁波遮蔽部材では、メッシュ状に成形された金属薄膜(以下、「メッシュ状金属層」という。)が接着剤又は粘着剤を介して透明なフィルム基材上に積層されている。   As an electromagnetic wave shielding member having high light transmittance, for example, an electromagnetic wave shielding member described in Patent Document 1 is known. In this electromagnetic wave shielding member, a metal thin film (hereinafter referred to as “mesh metal layer”) formed in a mesh shape is laminated on a transparent film substrate via an adhesive or a pressure-sensitive adhesive.

上記のメッシュ状金属層は、例えば、透明なフィルム基材上に接着剤又は粘着剤を介して金属箔を積層し、その後、この金属箔をメッシュ状にパターニングすることによって形成される。金属箔は比較的厚いので、メッシュ状に成形しても充分な導電性を確保し易く、結果として、電磁波遮蔽性能の高い電磁波遮蔽部材を得易い。また、金属箔がメッシュ状に成形されているので、メッシュの目に相当する領域が光透過部として機能し、高い光透過性を得易い。   The mesh metal layer is formed, for example, by laminating a metal foil on a transparent film substrate via an adhesive or a pressure-sensitive adhesive, and then patterning the metal foil into a mesh. Since the metal foil is relatively thick, it is easy to ensure sufficient conductivity even if it is formed into a mesh, and as a result, it is easy to obtain an electromagnetic wave shielding member having high electromagnetic wave shielding performance. In addition, since the metal foil is formed in a mesh shape, a region corresponding to the mesh eye functions as a light transmitting portion, and high light transmittance is easily obtained.

ただし、金属箔の表面が比較的粗いことから、金属箔の接合に用いた接着剤又は粘着剤のうちでその後に金属箔がパターニングにより除去されて光透過部となった領域は、金属箔の表面形状が表面に転写された粗面領域として残り、光透過性を低下させる一因となる。また、メッシュ状金属層の側面での光の乱反射は、電磁波遮蔽部材の光透過性を低下させる要因となる。このため、必要に応じて、メッシュ状金属層及び各光透過部を被覆するようにして透明樹脂からなる平坦化層が形成される。また、平坦化層の表面の平坦性が低いと、この電磁波遮蔽部材を表示装置上に配置したときにモワレ、干渉ムラ等が生じることから、表面の平坦性が高い平坦化層を形成するために、透明樹脂を硬化させる前にその上に平面性に優れた基材等をラミネートし、透明樹脂の硬化後(平坦化層の形成後)に前記平面性に優れた基材等が剥離される。
特開2002−311843号公報(特許請求の範囲、第0030段、及び第0060段参照)
However, since the surface of the metal foil is relatively rough, the region of the adhesive or pressure-sensitive adhesive used for joining the metal foil, where the metal foil is subsequently removed by patterning and becomes a light transmitting portion, The surface shape remains as a rough surface area transferred to the surface, which contributes to a decrease in light transmittance. Moreover, the irregular reflection of light on the side surface of the mesh-like metal layer becomes a factor of reducing the light transmittance of the electromagnetic wave shielding member. For this reason, the planarization layer which consists of transparent resin is formed so that a mesh-shaped metal layer and each light transmission part may be coat | covered as needed. In addition, when the flatness of the surface of the flattening layer is low, moire and interference unevenness occur when this electromagnetic wave shielding member is placed on the display device, so that a flattening layer with high surface flatness is formed. In addition, a substrate having excellent flatness is laminated on the transparent resin before curing, and the substrate having excellent flatness is peeled off after the transparent resin is cured (after the flattening layer is formed). The
Japanese Patent Application Laid-Open No. 2002-311843 (refer to the claims, the 0030th stage and the 0060th stage)

しかしながら、特許文献1に記載された電磁波遮蔽部材では、材料として用いる金属箔が前述のように比較的厚いので、メッシュ状金属層及び各光透過部を被覆するようにして平坦化層形成用の透明樹脂を塗工すると、得られる平坦化層の表面に大きな凹凸が生じ易い。電磁波遮蔽部材の表面に大きな凹凸があると、光透過性や、電磁波遮蔽部材を通して視認される像の鮮明度(以下、単に「像鮮明度」という。)が高い電磁波遮蔽部材を得ることが困難になる。   However, in the electromagnetic wave shielding member described in Patent Document 1, since the metal foil used as a material is relatively thick as described above, the mesh-shaped metal layer and each light transmission portion are covered so as to cover the planarizing layer. When a transparent resin is applied, large irregularities are likely to occur on the surface of the resulting planarized layer. If there are large irregularities on the surface of the electromagnetic wave shielding member, it is difficult to obtain an electromagnetic wave shielding member having high light transmittance and high image sharpness (hereinafter simply referred to as “image sharpness”) viewed through the electromagnetic wave shielding member. become.

また、透明樹脂の硬化前にその上に平面性に優れた基材等をラミネートし、透明樹脂の硬化後(平坦化層の形成後)に前記平面性に優れた基材等を剥離するという手法は、表面の平坦性が高い平坦化層を得るうえで有用なものではあるが、上記の基材は最終的に電磁波遮蔽部材の構成部材とならないものであるので、この手法には電磁波遮蔽部材の製造コストが上昇するという問題がある。   In addition, a substrate having excellent flatness is laminated on the transparent resin before curing, and the substrate having excellent flatness is peeled off after the transparent resin is cured (after the flattening layer is formed). Although the technique is useful for obtaining a planarized layer having a high surface flatness, the above-mentioned base material does not eventually become a constituent member of the electromagnetic wave shielding member. There exists a problem that the manufacturing cost of a member rises.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、光透過性及び像鮮明度がそれぞれ高いものを製造コストを抑えつつ得ることが容易な電磁波遮蔽部材を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electromagnetic wave shielding member that can be easily obtained while suppressing manufacturing costs while having high light transmission and high image clarity. is there.

上記の目的を達成する本発明の電磁波遮蔽部材は、透明基材と、該透明基材上に形成されて多数の光透過部を平面視上画定するメッシュ状金属層と、透明樹脂により形成されて前記メッシュ状金属層及び前記多数の光透過部を被覆する硬化塗膜とを有し、前記硬化塗膜のうちで前記メッシュ状金属層上に位置する領域は、前記光透過部の平面視上の中央部に位置する領域よりも盛り上がって隆起部を形成しており、前記メッシュ状金属層の細線部上での前記隆起部の平均傾斜角度が10°以下であることを特徴とする(以下、この電磁波遮蔽部材を「電磁波遮蔽部材I」ということがある。)。   The electromagnetic wave shielding member of the present invention that achieves the above object is formed of a transparent base material, a mesh-like metal layer that is formed on the transparent base material and defines a number of light transmission portions in plan view, and a transparent resin. The mesh-shaped metal layer and a cured coating film that covers the multiple light-transmitting portions, and the region of the cured coating film that is located on the mesh-shaped metal layer is a plan view of the light-transmitting portion. A raised portion is formed so as to rise from the region located in the upper central portion, and the average inclination angle of the raised portion on the fine line portion of the mesh-like metal layer is 10 ° or less (characterized in that Hereinafter, this electromagnetic wave shielding member may be referred to as “electromagnetic wave shielding member I”).

本発明の電磁波遮蔽部材Iでは、メッシュ状金属層の細線部上での上記隆起部の平均傾斜角度が10°以下に抑えられているので、硬化塗膜の表面での光の乱反射、及び電磁波遮蔽部材での光芒(いわゆる虹ムラ)の発生が抑えられる。また、上記の硬化塗膜は、後述するように、その材料を1回コーティングして塗膜を形成し、この塗膜を硬化させることによって形成することが可能であるので、製造コストを抑え易い。したがって、本発明の電磁波遮蔽部材Iによれば、光透過性及び像鮮明度がそれぞれ高いものを製造コストを抑えつつ得ることが容易になる。   In the electromagnetic wave shielding member I of the present invention, since the average inclination angle of the raised portion on the fine wire portion of the mesh-like metal layer is suppressed to 10 ° or less, irregular reflection of light on the surface of the cured coating film, and electromagnetic waves Generation of light glare (so-called rainbow unevenness) at the shielding member is suppressed. In addition, as described later, the cured coating film can be formed by coating the material once to form a coating film, and then curing the coating film. . Therefore, according to the electromagnetic wave shielding member I of the present invention, it becomes easy to obtain a material having high light transmittance and high image definition while suppressing the manufacturing cost.

なお、本発明でいう「メッシュ状金属層の細線部」とは、メッシュ状金属層のうちで、他の方向に分岐することなく一方向に延びている領域を意味する。   In the present invention, the “fine line portion of the mesh-like metal layer” means a region of the mesh-like metal layer that extends in one direction without branching in the other direction.

本発明の電磁波遮蔽部材Iにおいては、(1)前記メッシュ状金属層が、前記透明基材上に接合剤により接合されている(以下、この電磁波遮蔽部材を「電磁波遮蔽部材II」ということがある。)こと、が好ましい。   In the electromagnetic wave shielding member I of the present invention, (1) the mesh metal layer is joined to the transparent base material with a bonding agent (hereinafter, this electromagnetic wave shielding member is referred to as “electromagnetic wave shielding member II”). Is preferred).

本発明の電磁波遮蔽部材IIによれば、メッシュ状金属層の材料として比較的厚肉の金属箔を用いることができるので、電磁波遮蔽性能が高い電磁波遮蔽部材を得ることが容易になる。また、接合剤の表面のうちで金属箔がパターニングにより除去された領域は、金属箔の表面形状が表面に転写された粗面領域として残るが、この粗面領域は前述した硬化塗膜により被覆されるので、当該粗面領域の表面での光の乱反射が抑えられ、結果として、高い光透過性及び高い像鮮明度を得ることが容易になる。   According to the electromagnetic wave shielding member II of the present invention, a relatively thick metal foil can be used as the material for the mesh-like metal layer, so that it is easy to obtain an electromagnetic wave shielding member having high electromagnetic wave shielding performance. In addition, the area where the metal foil is removed by patterning on the surface of the bonding agent remains as a rough surface area where the surface shape of the metal foil is transferred to the surface, but this rough surface area is covered with the cured coating film described above. Therefore, irregular reflection of light on the surface of the rough surface area is suppressed, and as a result, it becomes easy to obtain high light transmittance and high image definition.

本発明の電磁波遮蔽部材I及び電磁波遮蔽部材IIのいずれにおいても、(2)前記透明樹脂が鎖状構造を有している(以下、この電磁波遮蔽部材を「電磁波遮蔽部材III」 ということがある。)こと、又は、(3)前記透明樹脂が架橋構造を有している(以下、この電磁波遮蔽部材を「電磁波遮蔽部材IV」ということがある。)こと、とすることができる。   In both of the electromagnetic wave shielding member I and the electromagnetic wave shielding member II of the present invention, (2) the transparent resin has a chain structure (hereinafter, this electromagnetic wave shielding member may be referred to as “electromagnetic wave shielding member III”). Or (3) the transparent resin has a crosslinked structure (hereinafter, this electromagnetic wave shielding member may be referred to as “electromagnetic wave shielding member IV”).

本発明の電磁波遮蔽部材I〜IVにおいては、(4)前記透明樹脂のガラス転移点が30〜150℃の範囲内である(以下、この電磁波遮蔽部材を「電磁波遮蔽部材V」ということがある。)こと、又は、(5)前記メッシュ状金属層の細線部上での前記硬化塗膜の最大膜厚の平均値が、1〜20μmの範囲内にある(以下、この電磁波遮蔽部材を「電磁波遮蔽部材VI」ということがある。)こと、が好ましい。   In the electromagnetic wave shielding members I to IV of the present invention, (4) the glass transition point of the transparent resin is within a range of 30 to 150 ° C. (hereinafter, this electromagnetic wave shielding member may be referred to as “electromagnetic wave shielding member V”). .) Or (5) The average value of the maximum film thickness of the cured coating film on the fine line portion of the mesh-like metal layer is in the range of 1 to 20 μm (hereinafter, this electromagnetic wave shielding member is referred to as “ It is sometimes referred to as “electromagnetic wave shielding member VI”).

本発明の電磁波遮蔽部材Vによれば、硬化塗膜の形状保持能が実用上充分に高くなるので、耐久性のよい電磁波遮蔽部材を提供し易くなる。   According to the electromagnetic wave shielding member V of the present invention, the shape retention ability of the cured coating film is sufficiently high in practical use, so that it is easy to provide an electromagnetic wave shielding member with good durability.

本発明の電磁波遮蔽部材VIによれば、メッシュ状金属層の細線部上での硬化塗膜の最大膜厚が上記の範囲内にあるので、硬化塗膜による光の吸収を抑えつつ、硬化塗膜の表面での光の乱反射、及び電磁波遮蔽部材でのいわゆる虹ムラの発生を抑えることが容易になり、結果として、高い光透過性を保ちつつ高い像鮮明度を得ることが更に容易になる。   According to the electromagnetic wave shielding member VI of the present invention, since the maximum film thickness of the cured coating film on the fine line portion of the mesh-like metal layer is within the above range, the cured coating film is suppressed while suppressing the absorption of light by the cured coating film. It becomes easy to suppress irregular reflection of light on the surface of the film and so-called rainbow unevenness on the electromagnetic wave shielding member, and as a result, it becomes easier to obtain high image clarity while maintaining high light transmittance. .

本発明の電磁波遮蔽部材I〜VIにおいては、(6)前記硬化塗膜に赤外線吸収剤が含有されている(以下、この電磁波遮蔽部材を「電磁波遮蔽部材VII」 ということがある。)こと、が好ましい。   In the electromagnetic wave shielding members I to VI of the present invention, (6) the cured coating film contains an infrared absorber (hereinafter, this electromagnetic wave shielding member may be referred to as “electromagnetic wave shielding member VII”), Is preferred.

本発明の電磁波遮蔽部材VII によれば、赤外線を吸収することができるので、電磁波の遮蔽と共に赤外線の吸収が望まれるプラズマディスプレイパネル用の電磁波遮蔽部材、特に表示面上に配置される電磁波遮蔽部材として好適なものを得ることができる。   According to the electromagnetic wave shielding member VII of the present invention, infrared rays can be absorbed. Therefore, an electromagnetic wave shielding member for a plasma display panel, particularly an electromagnetic wave shielding member disposed on a display surface, which is desired to absorb infrared rays together with shielding of electromagnetic waves. Can be obtained.

本発明の電磁波遮蔽部材によれば、製造コストを抑えつつ光透過性及び像鮮明度が高い電磁波遮蔽部材を得ることが容易になるので、プラズマディスプレイパネルのような表示装置の表示面から放射される電磁波を、視認される映像の画質の低下を抑制しつつ遮蔽することが可能な電磁波遮蔽部材を安価に提供することが容易になる。   According to the electromagnetic wave shielding member of the present invention, it becomes easy to obtain an electromagnetic wave shielding member having high light transmittance and high image definition while suppressing the manufacturing cost. Therefore, the electromagnetic wave shielding member is radiated from the display surface of a display device such as a plasma display panel. Therefore, it is easy to provide an electromagnetic wave shielding member that can shield the electromagnetic wave to be shielded while suppressing deterioration of the image quality of the visually recognized image at a low cost.

図1(a)は、本発明の電磁波遮蔽部材の一例を概略的に示す部分切欠き平面図であり、図1(b)は、図1(a)に示したI−I線断面の概略図である。これらの図に示した電磁波遮蔽部材20は、透明基材1と、接合剤5により透明基材1上に接合されたメッシュ状金属層10と、透明樹脂により形成された硬化塗膜15とを有している。以下、これらの部材毎に詳述し、その後、電磁波遮蔽部材の変形例について説明する。   FIG. 1 (a) is a partially cutaway plan view schematically showing an example of the electromagnetic wave shielding member of the present invention, and FIG. 1 (b) is an outline of a cross section taken along the line I-I shown in FIG. 1 (a). FIG. The electromagnetic wave shielding member 20 shown in these drawings includes a transparent base material 1, a mesh-like metal layer 10 joined to the transparent base material 1 with a bonding agent 5, and a cured coating film 15 formed of a transparent resin. Have. Hereinafter, it explains in full detail for each of these members, and the modification of an electromagnetic wave shielding member is demonstrated after that.

(1)透明基材;
透明基材1は、メッシュ状金属層10を支持するためのものである。この透明基材1としては、ガラス基板や透明樹脂基板のように可撓性に乏しい透明なリジッド材を用いることも可能であるが、電磁波遮蔽部材20の設置場所の選択の自由度を高めるという観点から、あるいは、電磁波遮蔽部材20の生産性を高めるという観点からは、ガラスシート、透明樹脂シート、又は透明樹脂フィルムのように可撓性に富んだものを用いることが好ましい。
(1) transparent substrate;
The transparent substrate 1 is for supporting the mesh-like metal layer 10. As this transparent base material 1, it is possible to use a transparent rigid material with poor flexibility such as a glass substrate or a transparent resin substrate, but it increases the degree of freedom in selecting the installation location of the electromagnetic wave shielding member 20. From the viewpoint or from the viewpoint of increasing the productivity of the electromagnetic wave shielding member 20, it is preferable to use a highly flexible material such as a glass sheet, a transparent resin sheet, or a transparent resin film.

透明基材1の材質は、電磁波遮蔽部材20の用途や許容される生産コスト等に応じて適宜選択可能である。また、透明基材1の光透過率についても、電磁波遮蔽部材20の用途に応じて適宜選択可能である。例えば、電磁波遮蔽部材20が表示装置の表示面上に配置されるものである場合には、透明基材1として、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリル樹脂、環状ポリオレフィン、トリアセチルセルロース、ポリエーテルサルファイド、ポリエーテルケトン等により形成された膜厚12〜300μm程度、可視光透過率(全光線透過率)80%程度以上のフィルムないしシートを用いることが好ましい。   The material of the transparent substrate 1 can be appropriately selected according to the use of the electromagnetic wave shielding member 20 and the allowable production cost. Further, the light transmittance of the transparent substrate 1 can be appropriately selected according to the use of the electromagnetic wave shielding member 20. For example, when the electromagnetic wave shielding member 20 is disposed on the display surface of the display device, the transparent substrate 1 may be polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylic resin, cyclic polyolefin, triacetyl cellulose, poly It is preferable to use a film or sheet formed of ether sulfide, polyether ketone or the like and having a film thickness of about 12 to 300 μm and a visible light transmittance (total light transmittance) of about 80% or more.

(2)接合剤;
接合剤5は、メッシュ状金属層10を金属箔のパターニングによって形成する際に、前記の金属箔をドライラミネーション法やウェットラミネーション法等によって透明基材1上に接合させるためのもの、あるいは、所望の金属箔をメッシュ状にパターニングした後にドライラミネーション法やウェットラミネーション法等によって透明基材1上に接合させるためのものである。この接合剤5は、図示のように、透明基材1上に層を形成しているので、以下、「接合剤層5」という。接合剤層5は、実用上充分な接合強度、耐エッチング特性、及び耐光性を有していることが好ましい。
(2) bonding agent;
The bonding agent 5 is used for bonding the metal foil to the transparent substrate 1 by a dry lamination method, a wet lamination method, or the like when the mesh-like metal layer 10 is formed by patterning of the metal foil, or as desired. After the metal foil is patterned into a mesh shape, the metal foil is bonded onto the transparent substrate 1 by a dry lamination method, a wet lamination method, or the like. Since this bonding agent 5 forms a layer on the transparent substrate 1 as shown in the figure, it is hereinafter referred to as “bonding layer 5”. It is preferable that the bonding agent layer 5 has practically sufficient bonding strength, etching resistance, and light resistance.

この接合剤層5の具体例としては、アクリル系、エステル系、ウレタン系、フッ素系、ポリイミド系、エポキシ系、又はポリウレタンエステル系等の熱硬化型もしくは光硬化型の接着剤、あるいは、主成分としてメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、又は2−エチルヘキシル(メタ)アクリレート等を含有したアクリル系粘着剤によって形成された層が挙げられる。なお、本明細書でいう「(メタ)アクリレート」とは、アクリレート及びメタアクリレートの双方を意味する。   Specific examples of the bonding agent layer 5 include thermosetting or photocurable adhesives such as acrylic, ester, urethane, fluorine, polyimide, epoxy, or polyurethane ester, or the main component. Examples include a layer formed of an acrylic pressure-sensitive adhesive containing methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, or the like. In addition, “(meth) acrylate” in the present specification means both acrylate and methacrylate.

接合剤層5の膜厚は、使用する接合剤の種類に応じて、0.5〜50μm程度の範囲内で適宜選定可能である。接合剤層5により透明基材1上に接合された金属箔をウェットエッチングによってパターニングしてメッシュ状金属層10とする場合には、接合剤層5がエッチングストッパとしても機能するように、その種類及び膜厚を選定することが好ましい。光透過性及び像鮮明度がそれぞれ高い電磁波遮蔽部材20を得るうえからは、接合剤層5と透明基材1との屈折率差を小さくすることが好ましく、波長587.6nmの光を測定光としたときの屈折率差で0.2程度以下、更には0.1以下とすることが好ましい。   The film thickness of the bonding agent layer 5 can be appropriately selected within a range of about 0.5 to 50 μm depending on the type of bonding agent used. When the metal foil bonded on the transparent substrate 1 by the bonding agent layer 5 is patterned by wet etching to form the mesh-like metal layer 10, the type is selected so that the bonding agent layer 5 also functions as an etching stopper. It is preferable to select the film thickness. In order to obtain the electromagnetic wave shielding member 20 having high light transmittance and high image definition, it is preferable to reduce the difference in refractive index between the bonding agent layer 5 and the transparent substrate 1, and light having a wavelength of 587.6 nm is measured light. And the refractive index difference is about 0.2 or less, more preferably 0.1 or less.

なお、メッシュ状金属層10は、その母材となる金属層を例えば蒸着法により透明基材1上に形成し、この金属層をパターニングすることによっても、あるいは、所定形状のマスクを介して所望の金属を透明基材1上に蒸着させることによっても、形成可能である。これらの場合には接合剤層5を省略することも可能である。   The mesh metal layer 10 is formed by forming a metal layer as a base material on the transparent substrate 1 by, for example, vapor deposition, and patterning the metal layer, or through a mask having a predetermined shape. The metal can be formed by vapor-depositing the metal on the transparent substrate 1. In these cases, the bonding agent layer 5 can be omitted.

(3)メッシュ状金属層;
メッシュ状金属層10は、電磁波遮蔽部材20の光透過性を高く保ちつつ電磁波を遮蔽するための部材であり、平面視上、透明基材1に多数の光透過部12を画定している。個々の光透過部12の平面形状は、例えば三角形、四角形、六角形等、適宜選定可能である。本形態の電磁波遮蔽部材20での各光透過部12の平面形状は、四角形である。メッシュ状金属層10のうち、光透過部12の辺を平面視上画定する領域それぞれが細線部10aである。以下、4つの細線部10aそれぞれの基点となっている領域を「交差部10b」という。
(3) mesh metal layer;
The mesh-shaped metal layer 10 is a member for shielding electromagnetic waves while keeping the light transmittance of the electromagnetic wave shielding member 20 high, and defines a large number of light transmission portions 12 on the transparent substrate 1 in plan view. The planar shape of each light transmission part 12 can be selected as appropriate, for example, a triangle, a quadrangle, a hexagon, or the like. The planar shape of each light transmission part 12 in the electromagnetic wave shielding member 20 of this embodiment is a quadrangle. In the mesh-like metal layer 10, each region that defines the side of the light transmission part 12 in plan view is a thin line part 10 a. Hereinafter, a region serving as a base point for each of the four thin line portions 10a is referred to as an “intersection 10b”.

このメッシュ状金属層10は、例えば銅、鉄、ニッケル、クロム、アルミニウム、金、銀、ステンレス、タングステン、クロム、チタン等の金属により形成することができる。光透過性及び電磁波遮蔽性能が共に高い電磁波遮蔽部材20を低コストの下に得るという観点からは、銅のように安価で、表面反射率が低く、かつ導電性の高い金属によってメッシュ状金属層10を形成することが好ましい。電磁波遮蔽性能が高い電磁波遮蔽部材20を低コストの下に製造するうえからは、所望の金属箔を上述した接合剤層5により透明基材1上に接合し、この金属箔をウェットエッチングによって所望形状にパターニングしてメッシュ状金属層10とするか、所望の金属箔をメッシュ状にパターニングした後に接合剤層5により透明基材1上に接合してメッシュ状金属層10とすることが好ましい。金属箔としては圧延箔や電解箔を用いることができるが、低コストであるという観点からは圧延箔が好ましい。   The mesh-like metal layer 10 can be formed of a metal such as copper, iron, nickel, chromium, aluminum, gold, silver, stainless steel, tungsten, chromium, or titanium. From the viewpoint of obtaining the electromagnetic wave shielding member 20 having both high light transmittance and high electromagnetic wave shielding performance at low cost, the mesh-like metal layer is made of a metal that is inexpensive, has a low surface reflectance, and is highly conductive, such as copper. 10 is preferably formed. In order to manufacture the electromagnetic wave shielding member 20 having high electromagnetic wave shielding performance at low cost, a desired metal foil is bonded onto the transparent substrate 1 by the bonding agent layer 5 described above, and this metal foil is desired by wet etching. It is preferable to form the mesh-like metal layer 10 by patterning into a shape or to join the transparent metal substrate 1 with the bonding agent layer 5 after patterning a desired metal foil into the mesh shape. A rolled foil or an electrolytic foil can be used as the metal foil, but a rolled foil is preferable from the viewpoint of low cost.

メッシュ状金属層10の開口率(メッシュ状金属層10の平面視上の面積と光透過部12の平面視上の総面積との和に占める光透過部12の平面視上の総面積の百分率を意味する。)を70%程度以上にすることにより、光透過性の高い電磁波遮蔽部材20を得易くなる。このとき、細線部10aの平面視上の平均線幅は20μm程度以下、特に15μm以下とすることが好ましい。   The aperture ratio of the mesh-like metal layer 10 (percentage of the total area of the light-transmitting portion 12 in plan view that occupies the sum of the area of the mesh-like metal layer 10 in plan view and the total area of the light-transmitting portion 12 in plan view) ) Is about 70% or more, it becomes easy to obtain the electromagnetic wave shielding member 20 having a high light transmittance. At this time, the average line width in a plan view of the thin wire portion 10a is preferably about 20 μm or less, particularly preferably 15 μm or less.

一方、電磁波遮蔽部材20の電磁波遮蔽性能を高めるという観点からは、メッシュ状金属層10の導電性を高めることが好ましいので、当該メッシュ状金属層10の材質にもよるが、その平均膜厚を5〜30μm程度、好ましくは5〜15μm程度とし、かつ、細線部10aでの平面視上の平均線幅を5μm以上とすることが望ましい。   On the other hand, from the viewpoint of enhancing the electromagnetic wave shielding performance of the electromagnetic wave shielding member 20, it is preferable to increase the conductivity of the mesh metal layer 10, so depending on the material of the mesh metal layer 10, the average film thickness may be reduced. It is desirable that the thickness is about 5 to 30 μm, preferably about 5 to 15 μm, and that the average line width in plan view at the thin wire portion 10a is 5 μm or more.

電磁波遮蔽部材20が表示装置の表示面上に配置されるものである場合には、電磁波遮蔽部材20の光透過性を高めることの他に、電磁波遮蔽部材20の像鮮明度を高めることが望まれる。電磁波遮蔽部材20の像鮮明度を高めるという観点からは、メッシュ状金属層10の表面の十点平均粗さ(Rz)を0.1μm程度以上、特に0.5μm程度以上とすることが好ましい。メッシュ状金属層10の表面が鏡面であると、メッシュ状金属層10の表面で反射した外光が視認され易くなる結果として、電磁波遮蔽部材20の像鮮明度が低下する。十点平均粗さ(Rz)の値が3μmを超えると、メッシュ状金属層10を透明基材1上に接合させる際に両者の界面に気泡が残り易くなり、適切な接合が困難になる。   When the electromagnetic wave shielding member 20 is disposed on the display surface of the display device, it is desirable to increase the image clarity of the electromagnetic wave shielding member 20 in addition to enhancing the light transmission of the electromagnetic wave shielding member 20. It is. From the viewpoint of increasing the image definition of the electromagnetic wave shielding member 20, the ten-point average roughness (Rz) of the surface of the mesh metal layer 10 is preferably about 0.1 μm or more, particularly about 0.5 μm or more. When the surface of the mesh-like metal layer 10 is a mirror surface, the external image reflected on the surface of the mesh-like metal layer 10 is easily visually recognized. As a result, the image definition of the electromagnetic wave shielding member 20 is lowered. When the value of the ten-point average roughness (Rz) exceeds 3 μm, when the mesh-like metal layer 10 is bonded onto the transparent substrate 1, bubbles easily remain at the interface between the two, and appropriate bonding becomes difficult.

また、メッシュ状金属層10の上下面のうちで、又はメッシュ状金属層10の母材の上下面のうちで、少なくとも電磁波遮蔽部材20を表示面上に配置したときに外側にくる面に、クロメート処理等の方法により黒化処理を施しておくことによっても、電磁波遮蔽部材20の像鮮明度を高めることができる。   Further, among the upper and lower surfaces of the mesh-like metal layer 10 or the upper and lower surfaces of the base material of the mesh-like metal layer 10, at least the surface that comes outside when the electromagnetic wave shielding member 20 is arranged on the display surface, The image definition of the electromagnetic wave shielding member 20 can also be increased by performing blackening treatment by a method such as chromate treatment.

例えば、十点平均粗さ(Rz)が0.1〜3μm程度の銅箔をメッシュ状金属層10の母材として用い、かつ、各光透過部12の平面形状を四角形とする場合には、メッシュ状金属層10の平均膜厚を5〜15μm程度、細線部10aでの平面視上の平均線幅を5〜15μm程度とし、さらに、各光透過部12の平面視上の大きさを150〜400μm□程度とすることにより、電磁波遮蔽性能、光透過性、及び像鮮明度がそれぞれ高い電磁波遮蔽部材20を得ることが容易になる。   For example, when a copper foil having a ten-point average roughness (Rz) of about 0.1 to 3 μm is used as the base material of the mesh-like metal layer 10 and the planar shape of each light transmission part 12 is a rectangle, The average thickness of the mesh-like metal layer 10 is about 5 to 15 μm, the average line width in plan view at the thin line portion 10 a is about 5 to 15 μm, and the size of each light transmission portion 12 in plan view is 150. By setting it to about ˜400 μm □, it becomes easy to obtain the electromagnetic wave shielding member 20 having high electromagnetic wave shielding performance, light transmittance, and high image definition.

(4)硬化塗膜;
硬化塗膜15は、本発明において最も特徴的な構成要素であり、透明樹脂により形成されてメッシュ状金属層10及び各光透過部12を被覆している。この硬化塗膜15のうちでメッシュ状金属層10上に位置する領域は、図1(a)及び図1(b)に示すように、光透過部12の平面視上の中央部に位置する領域よりも盛り上がって隆起部15aを形成している。
(4) Cured coating film;
The cured coating film 15 is the most characteristic component in the present invention, and is formed of a transparent resin and covers the mesh-like metal layer 10 and each light transmission portion 12. A region of the cured coating film 15 located on the mesh-like metal layer 10 is located at the center of the light transmission part 12 in plan view as shown in FIGS. 1 (a) and 1 (b). A raised portion 15a is formed so as to rise from the region.

隆起部15aは、メッシュ状金属層10が比較的厚膜であることから、硬化塗膜15の膜厚をできるだけ薄くしてメッシュ状金属層10及び各光透過部12を被覆しようとしたときに不可避的に生じる。硬化塗膜15の膜厚を厚くすれば隆起部15aの形成を抑制することが可能であるが、硬化塗膜15の膜厚を厚くすればする程、当該硬化塗膜15での吸収光量が増大し、電磁波遮蔽部材20の光透過性や像鮮明度が低下する。また、1回の塗工で硬化塗膜15を形成することが困難になる。   Since the mesh-like metal layer 10 is a relatively thick film, the raised portion 15a is formed when the thickness of the cured coating film 15 is made as thin as possible to cover the mesh-like metal layer 10 and each light transmission portion 12. Inevitable. If the thickness of the cured coating film 15 is increased, it is possible to suppress the formation of the raised portion 15a. However, as the thickness of the cured coating film 15 is increased, the amount of light absorbed by the cured coating film 15 increases. As a result, the light transmittance and image definition of the electromagnetic wave shielding member 20 are lowered. Moreover, it becomes difficult to form the cured coating film 15 by one coating.

硬化塗膜15に隆起部15aが形成されている場合、メッシュ状金属層10の交差部10b上での隆起部15aの最大膜厚は、通常、メッシュ状金属層10の細線部10a上での隆起部15aの最大膜厚よりも厚くなる。隆起部15aは、各交差部10b上においては微小な凸レンズとして機能する。このため、電磁波遮蔽部材20を透過した光の発散、収束の度合いは、メッシュ状金属層10の細線部10aの近傍、メッシュ状金属層10の交差部10bの近傍、及び光透過部12の平面視上の中央部とで互いに相違する。この相違が大きいと、電磁波遮蔽部材20にいわゆる虹ムラ等が生じて像鮮明度が低下する。   When the raised portion 15a is formed on the cured coating film 15, the maximum film thickness of the raised portion 15a on the intersecting portion 10b of the mesh-like metal layer 10 is usually on the fine line portion 10a of the mesh-like metal layer 10. It becomes thicker than the maximum film thickness of the raised portion 15a. The raised portion 15a functions as a minute convex lens on each intersection 10b. For this reason, the degree of divergence and convergence of the light transmitted through the electromagnetic wave shielding member 20 is determined in the vicinity of the thin wire portion 10a of the mesh-like metal layer 10, the vicinity of the intersecting portion 10b of the mesh-like metal layer 10, and the plane of the light transmission portion 12. It differs from the visual center. If this difference is large, so-called rainbow unevenness or the like occurs in the electromagnetic wave shielding member 20 and the image definition is lowered.

しかしながら、電磁波遮蔽部材20では、細線部10a上での隆起部15aの平均傾斜角度が10°以下に抑えられているので、上記の相違が小さい。そのため、電磁波遮蔽部材20では高い像鮮明度が得られる。ここで、本発明でいう「細線部上での硬化塗膜の平均傾斜角度」とは、次のようにして求めた平均傾斜角度を意味する。   However, in the electromagnetic wave shielding member 20, since the average inclination angle of the raised portion 15a on the thin wire portion 10a is suppressed to 10 ° or less, the above difference is small. For this reason, the electromagnetic wave shielding member 20 provides high image definition. Here, the “average inclination angle of the cured coating film on the thin line portion” as used in the present invention means an average inclination angle determined as follows.

まず、図2に示すように、電磁波遮蔽部材20について、細線部10aの長手方向と直交する方向の断面をとり、光透過部12の平面視上の中央部での硬化塗膜15の上面を基準にして、細線部10a上での硬化塗膜15(隆起部15a)の頂部Pの高さL1を測定する。また、頂部Pを通る垂線VL(ただし、透明基材1の表面に対する垂線を意味する。)を仮想的に引いて、この垂線VL上において頂部Pからの距離がL1の90%に相当する点Bを求める。図2においては、頂部Pと点Bとの距離をL2で表している。次いで、透明基材1の表面に水平で点Bを通る水平線HLを仮想的に引き、この水平線HLと硬化塗膜15(隆起部15a)の斜面との交点C1、C2を求めて、点Bと点C1との距離L3、及び点Bと点C2との距離L4を測定する。この後、tanθ1=L2/L3とし、tanθ2=L2/L4として求めたθ1とθ2との平均値Avを求める。同様にして、任意に抽出した複数の細線部10a上での硬化塗膜15(隆起部15a)について平均値Avを求める。これらの平均値Avの算術平均が、本発明でいう「細線部上での硬化塗膜の平均傾斜角度」である。なお、図2においては、便宜上、ハッチングを省略している。   First, as shown in FIG. 2, the electromagnetic shielding member 20 has a cross section in a direction orthogonal to the longitudinal direction of the thin wire portion 10 a, and the upper surface of the cured coating film 15 at the center portion in plan view of the light transmission portion 12. As a reference, the height L1 of the top portion P of the cured coating film 15 (the raised portion 15a) on the thin wire portion 10a is measured. Further, a vertical line VL passing through the apex P (which means a normal to the surface of the transparent substrate 1) is virtually drawn, and the distance from the apex P on the vertical line VL corresponds to 90% of L1. Find B. In FIG. 2, the distance between the apex P and the point B is represented by L2. Next, a horizontal line HL that passes horizontally through the point B is virtually drawn on the surface of the transparent substrate 1, and intersections C1 and C2 between the horizontal line HL and the slope of the cured coating film 15 (the raised portion 15a) are obtained. And a distance L3 between the point B1 and the point C1, and a distance L4 between the point B and the point C2. Thereafter, tan θ1 = L2 / L3 is set, and an average value Av of θ1 and θ2 calculated as tan θ2 = L2 / L4 is obtained. Similarly, average value Av is calculated | required about the cured coating film 15 (protrusion part 15a) on the some thin wire | line part 10a extracted arbitrarily. The arithmetic average of these average values Av is the “average inclination angle of the cured coating film on the thin line portion” in the present invention. In FIG. 2, hatching is omitted for convenience.

このような硬化塗膜15は、鎖状構造を有する透明樹脂によって形成することもできるし、架橋構造を有する透明樹脂によって形成することもできる。具体的には、(i)溶剤を揮散させるだけで固化する溶剤希釈型透明樹脂組成物、(ii)加熱することによって重合反応ないし架橋反応が進行して硬化する熱硬化型透明樹脂組成物、又は、(iii) 電磁波の照射によって重合反応ないし架橋反応が進行して硬化する透明樹脂組成物(以下、本明細書においてはこの透明樹脂組成物を「光硬化型透明樹脂組成物」という。)を用いて形成することができる。本明細書においては、溶剤希釈型透明樹脂組成物の溶剤を揮散させることでこの溶剤希釈型透明樹脂組成物を固化させて得た塗膜も「硬化塗膜」に含まれるものとする。   Such a cured coating film 15 can be formed of a transparent resin having a chain structure, or can be formed of a transparent resin having a crosslinked structure. Specifically, (i) a solvent-diluted transparent resin composition that is solidified only by volatilizing the solvent, (ii) a thermosetting transparent resin composition that cures by polymerization reaction or crosslinking reaction by heating, Or (iii) a transparent resin composition that is cured by a polymerization reaction or a crosslinking reaction by irradiation with electromagnetic waves (hereinafter, this transparent resin composition is referred to as a “photo-curable transparent resin composition”). Can be used. In this specification, the coating film obtained by solidifying this solvent dilution type transparent resin composition by volatilizing the solvent of a solvent dilution type transparent resin composition shall also be contained in a "cured coating film."

上記の溶剤希釈型透明樹脂組成物の具体例としては、アクリル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、フッ素系樹脂、ポリイミド系樹脂等を溶剤で希釈したものが挙げられる。   Specific examples of the solvent-diluted transparent resin composition include acrylic resins, polyester resins, polycarbonate resins, polyurethane resins, cyclic polyolefin resins, polystyrene resins, fluorine resins, polyimide resins and the like as solvents. The one diluted with is mentioned.

また、上記の熱硬化型透明樹脂組成物の具体例としては、重合又は架橋によりアクリル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、フッ素系樹脂、ポリイミド系樹脂になるもの等が挙げられる。   Specific examples of the thermosetting transparent resin composition include an acrylic resin, a polyester resin, a polycarbonate resin, a polyurethane resin, a cyclic polyolefin resin, a polystyrene resin, a fluorine resin by polymerization or crosslinking, The thing etc. which become a polyimide-type resin are mentioned.

そして、上記の光硬化型透明樹脂組成物としては、モノマー成分とオリゴマー成分とを少なくとも含有しているものが好ましい。モノマー成分の具体例としては、(A)酢酸ビニル、スチレン、N−ビニルピロリドン等のビニルモノマー、、(B)ブチルアクリレート、2−エチルヘキシルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、n−デシルアクリレート、イソボニルアクリレート、ジシクロペンテニロキシエチルアクリレート、フェノキシエチルアクリレート等の単官能アクリレート系モノマー、(C)1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ポリエチレングリコール400ジアクリレート、トリプロピレングリコールジアクリレート、ビスフェノールAジエトキシジアクリレート、テトラエチレングリコールジアクリレート、ヒドロキシビバリ酸ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能アクリレート系モノマー、などが挙げられる。また、オリゴマー成分の具体例としては、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、シリコンアクリレート、ポリブタジエンアクリレート、不飽和ポリエステル、ポリエン/チオール、ポリスチリルメタクリレート等が挙げられる。   And as said photocurable transparent resin composition, what contains the monomer component and the oligomer component at least is preferable. Specific examples of the monomer component include (A) vinyl monomers such as vinyl acetate, styrene, N-vinylpyrrolidone, (B) butyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-decyl acrylate, Monofunctional acrylate monomers such as isobornyl acrylate, dicyclopentenyloxyethyl acrylate, phenoxyethyl acrylate, (C) 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, diethylene glycol diacrylate, neopentyl Glycol diacrylate, polyethylene glycol 400 diacrylate, tripropylene glycol diacrylate, bisphenol A diethoxydiacrylate, tetraethylene glycol Over diacrylate, hydroxy Bibari acid neopentyl glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, polyfunctional acrylate monomers such as dipentaerythritol hexaacrylate, and the like. Specific examples of the oligomer component include epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, silicon acrylate, polybutadiene acrylate, unsaturated polyester, polyene / thiol, and polystyryl methacrylate.

なお、溶剤希釈型透明樹脂組成物及び熱硬化型樹脂組成物それぞれの具体例についての説明の中で挙げたフッ素系樹脂としては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとヘキサフルオロプロピレンとの三元共重合体、テトラフルオロエチレンとエチレンもしくはプロピレンとの共重合体、エチレンとクロロトリフルオロエチレンとの共重合体、ペルフルオロアルコキシ樹脂、フッ化ビニリデン系樹脂、フッ化ビニル系樹脂等を例示することができる。同様に、上記のポリイミド系樹脂としては、ポリイミド、ポリアミドイミド、ポリエーテルイミド等を例示することができる。   Examples of the fluorine-based resin mentioned in the description of the specific examples of the solvent-diluted transparent resin composition and the thermosetting resin composition include polytetrafluoroethylene, polychlorotrifluoroethylene, and tetrafluoroethylene. Copolymer of hexafluoropropylene, terpolymer of tetrafluoroethylene, perfluoroalkyl vinyl ether and hexafluoropropylene, copolymer of tetrafluoroethylene and ethylene or propylene, ethylene and chlorotrifluoroethylene Examples include copolymers, perfluoroalkoxy resins, vinylidene fluoride resins, vinyl fluoride resins, and the like. Similarly, examples of the polyimide resin include polyimide, polyamideimide, and polyetherimide.

また、熱硬化型透明樹脂組成物及び光硬化型透明樹脂組成物には、それぞれ、重合開始剤及び増感剤の少なくとも一方を必要に応じて含有させることができる。例えば、光硬化型透明樹脂組成物に含有させる重合開始剤(光重合開始剤)の具体例としては、アセトフェノン、ベンゾフェノン、4,4−ビスジメチルアミノベンゾフェノン、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインブチルエーテル、ベンゾインイソブチルエーテル、2,2−ジメトキシ−2−フェニルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−ジメトキシ−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、アゾビスイソブチルニトリル、2−クロロチオキサンソン、2,4−ジエチルチオキサンソン、2,4−ジイソプロピルチオキサンソン、3,3−ジメチル−4−メトキシベンゾフェノン、2,4−ジメチルチオキサンソン、メチルベンゾイルフォーメート、3,3,4,4−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられ、増感剤の具体例としては、n−ブチルアミン、トリエチルアミン、N−メチルジエタノールアミン、トリエチル−n−ブチルホスフィン、ジエチルアミノエチルメタクリレート、p−ジメチルアミノ安息香酸エチル、p−ジメチルアミノ安息香酸イソブチル、2−ジメチルアミノエチルベンゾエート等が挙げられる。   In addition, the thermosetting transparent resin composition and the photocurable transparent resin composition can each contain at least one of a polymerization initiator and a sensitizer, if necessary. For example, specific examples of the polymerization initiator (photopolymerization initiator) contained in the photocurable transparent resin composition include acetophenone, benzophenone, 4,4-bisdimethylaminobenzophenone, benzyl, benzoin, benzoin ethyl ether, and benzoin butyl ether. Benzoin isobutyl ether, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-dimethoxy-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2 -Hydroxy-2-methylpropan-1-one, azobisisobutylnitrile, 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 3,3-dimethyl-4- Methoxybenzopheno 2,4-dimethylthioxanthone, methylbenzoyl formate, 3,3,4,4-tetra (t-butylperoxycarbonyl) benzophenone, etc. Specific examples of the sensitizer include n-butylamine. , Triethylamine, N-methyldiethanolamine, triethyl-n-butylphosphine, diethylaminoethyl methacrylate, ethyl p-dimethylaminobenzoate, isobutyl p-dimethylaminobenzoate, 2-dimethylaminoethylbenzoate and the like.

硬化塗膜15の材料として溶剤希釈型透明樹脂組成物、熱硬化型透明樹脂組成物、及び光硬化型透明樹脂組成物のいずれを用いる場合でも、光透過性及び像鮮明度が高い電磁波遮蔽部材20を得るという観点からは、硬化塗膜15と接合剤層5との界面での反射を抑えるために、波長587.6nmの光を測定光としたときの屈折率差が0.2程度以下、更には0.1以下となるよう、その材料を選定することが好ましい。硬化塗膜15と接合剤層5との屈折率差が上記の値程度以下であれば、メッシュ状金属層10の材料として用いた金属箔の表面の凹凸が光透過部12内の接合剤層5の表面に転写されていたとしても、この表面と硬化塗膜15との界面での光の反射が抑制されるので、光透過性及び像鮮明度の高い電磁波遮蔽部材20を得易くなる。同様の理由から、電磁波遮蔽部材20が接合剤層5を有していない場合には、硬化塗膜15と透明基材1との屈折率差を上記の値程度以下とすることが好ましい。   Electromagnetic wave shielding member having high light transmission and high image clarity regardless of whether a solvent-diluted transparent resin composition, a thermosetting transparent resin composition, or a photocurable transparent resin composition is used as the material of the cured coating film 15 In order to suppress reflection at the interface between the cured coating film 15 and the bonding agent layer 5, the difference in refractive index when using light with a wavelength of 587.6 nm as measurement light is about 0.2 or less. Furthermore, it is preferable to select the material so that it becomes 0.1 or less. If the refractive index difference between the cured coating film 15 and the bonding agent layer 5 is about the above value or less, the unevenness on the surface of the metal foil used as the material of the mesh-like metal layer 10 is the bonding agent layer in the light transmitting portion 12. Even if it is transferred to the surface 5, reflection of light at the interface between the surface and the cured coating film 15 is suppressed, so that it is easy to obtain the electromagnetic wave shielding member 20 having high light transmittance and high image clarity. For the same reason, when the electromagnetic wave shielding member 20 does not have the bonding agent layer 5, the refractive index difference between the cured coating film 15 and the transparent substrate 1 is preferably set to about the above value or less.

硬化塗膜15による光の吸収を抑えつつ、硬化塗膜15の表面での光の乱反射、及び電磁波遮蔽部材20でのいわゆる虹ムラの発生を抑えるうえからは、メッシュ状金属層10の細線部10a上での硬化塗膜15の最大膜厚の平均値(以下、この平均値を「平均値I」と略記する。)を1〜20μm程度の範囲内にしつつ、前述した平均傾斜角度(以下、この平均傾斜角度「平均傾斜角度I」と略記する。)を10°以下にすることが好ましい。   In order to suppress light reflection on the surface of the cured coating 15 and generation of so-called rainbow unevenness on the electromagnetic wave shielding member 20 while suppressing absorption of light by the cured coating 15, the fine line portion of the mesh-like metal layer 10 While the average value of the maximum film thickness of the cured coating film 15 on 10a (hereinafter, this average value is abbreviated as “average value I”) within the range of about 1 to 20 μm, the above-mentioned average inclination angle (hereinafter referred to as “average inclination angle”) The average inclination angle “abbreviated as“ average inclination angle I ””) is preferably 10 ° or less.

上記の平均値Iが20μm程度より大きくなると、硬化塗膜15による吸収光量が多くなって、電磁波遮蔽部材20の光透過性が低下することがある。また、硬化塗膜15の材料として溶剤を含有した透明樹脂組成物を用いたときには、硬化塗膜15中の残留溶剤量が多くなって当該硬化塗膜15に浮きやクラックが発生し易くなり、結果として、電磁波遮蔽部材20の光透過性や像鮮明度が低下し易くなる。硬化塗膜15の材料として溶剤希釈型透明樹脂組成物、熱硬化型透明樹脂組成物、及び光硬化型透明樹脂組成物のいずれを用いる場合でも、上記の平均値Iは、1〜15μm程度の範囲内とすることが更に好ましい。   If the average value I is greater than about 20 μm, the amount of light absorbed by the cured coating film 15 increases, and the light transmittance of the electromagnetic wave shielding member 20 may decrease. Further, when a transparent resin composition containing a solvent is used as the material of the cured coating film 15, the amount of residual solvent in the cured coating film 15 is increased, and the cured coating film 15 is liable to be floated or cracked, As a result, the light transmittance and image definition of the electromagnetic wave shielding member 20 are likely to be lowered. Even when any of a solvent-diluted transparent resin composition, a thermosetting transparent resin composition, and a photocurable transparent resin composition is used as the material of the cured coating film 15, the average value I is about 1 to 15 μm. More preferably, it is within the range.

溶剤希釈型透明樹脂組成物を用いて平均値I及び平均傾斜角度Iがそれぞれ上記の範囲にある硬化塗膜15を1回の塗工で効率よく形成しようとする場合には、その23℃での粘度を0.01〜10Pa・s程度の範囲内とし、その塗工量(ただし、硬化(固化)後の塗工量を意味する。)を10〜35g/m 程度の範囲内で適宜選定することが好ましい。上記の粘度は0.03〜1Pa・s程度の範囲内とすることが更に好ましく、上記の塗工量は15〜25g/m 程度の範囲内で適宜選定することが更に好ましい。 In the case where a cured coating film 15 having an average value I and an average inclination angle I within the above ranges is to be efficiently formed by one coating using a solvent-diluted transparent resin composition, The viscosity of is within the range of about 0.01 to 10 Pa · s, and the coating amount (which means the coating amount after curing (solidification)) is appropriately within the range of about 10 to 35 g / m 2 . It is preferable to select. The viscosity is more preferably in the range of about 0.03 to 1 Pa · s, and the coating amount is more preferably selected as appropriate in the range of about 15 to 25 g / m 2 .

上記の粘度条件を満たす溶剤希釈型透明樹脂組成物は、例えば、数平均分子量が1千〜30万程度の透明樹脂を固形分量が15〜35wt%程度の範囲内となるように溶剤で希釈することによって、得ることができる。このとき、透明樹脂の数平均分子量は5千〜15万程度の範囲内であることが好ましく、固形分量は15〜30wt%程度の範囲内とすることが好ましい。   The solvent-diluted transparent resin composition satisfying the above viscosity condition is obtained by, for example, diluting a transparent resin having a number average molecular weight of about 1,000 to 300,000 with a solvent so that the solid content is in a range of about 15 to 35 wt%. Can be obtained. At this time, the number average molecular weight of the transparent resin is preferably in the range of about 5,000 to 150,000, and the solid content is preferably in the range of about 15 to 30 wt%.

また、熱硬化型透明樹脂組成物を用いて平均値I及び平均傾斜角度Iがそれぞれ上記の範囲にある硬化塗膜15を1回の塗工で効率よく形成しようとする場合には、その23℃での粘度を0.01〜2Pa・s程度の範囲内とすることが好ましく、その塗工量(ただし、硬化後の塗工量を意味する。)を10〜50g/m 程度の範囲内で適宜選定することが好ましい。上記の粘度は0.05〜0.2Pa・s程度の範囲内とすることが更に好ましく、上記の塗工量は10〜25g/m 程度の範囲内で適宜選定することが更に好ましい。 Moreover, when it is going to form efficiently the cured coating film 15 in which the average value I and the average inclination | tilt angle I are each in said range using a thermosetting type transparent resin composition by one coating, it is 23. The viscosity at ° C. is preferably in the range of about 0.01 to 2 Pa · s, and the coating amount (however, the coating amount after curing) is in the range of about 10 to 50 g / m 2 . It is preferable to select appropriately. The viscosity is more preferably in the range of about 0.05 to 0.2 Pa · s, and the coating amount is more preferably selected in the range of about 10 to 25 g / m 2 .

そして、光硬化型透明樹脂組成物を用いて平均値I及び平均傾斜角度Iがそれぞれ上記の範囲にある硬化塗膜15を1回の塗工で効率よく形成しようとする場合には、その23℃での粘度を0.03〜5Pa・s程度の範囲内とすることが好ましく、その塗工量(ただし、硬化後の塗工量を意味する。)を10〜35g/m 程度の範囲内で適宜選定することが好ましい。上記の粘度は0.05〜1Pa・s程度の範囲内とすることが更に好ましく、上記の塗工量は15〜25g/m 程度の範囲内で適宜選定することが更に好ましい。 And when it is going to form efficiently the cured coating film 15 in which the average value I and the average inclination angle I are each in said range using a photocurable transparent resin composition by one coating, it is the 23 The viscosity at ° C. is preferably in the range of about 0.03 to 5 Pa · s, and the coating amount (however, the coating amount after curing) is in the range of about 10 to 35 g / m 2 . It is preferable to select appropriately. The viscosity is more preferably in the range of about 0.05 to 1 Pa · s, and the coating amount is more preferably selected in the range of about 15 to 25 g / m 2 .

上記の粘度条件を満たす熱硬化型透明樹脂組成物及び光硬化型透明樹脂組成物は、それぞれ、例えばモノマー含量又は溶剤含量を適宜調整することによって得ることができる。   The thermosetting transparent resin composition and the photocurable transparent resin composition that satisfy the above-described viscosity conditions can be obtained by appropriately adjusting, for example, the monomer content or the solvent content, respectively.

硬化塗膜15の材料として溶剤希釈型透明樹脂組成物、熱硬化型透明樹脂組成物、及び光硬化型透明樹脂組成物のいずれを用いる場合でも、当該透明樹脂組成物の粘度を上述の範囲内とすることにより、硬化塗膜15の形成時に、メッシュ状金属層10における透明基材1側の基部と接合剤層5(接合剤層5が省略されている場合には透明基材1)とが形成する角部に気泡が残ることも容易に抑制することができる。   Even when any of a solvent-diluted transparent resin composition, a thermosetting transparent resin composition, and a photocurable transparent resin composition is used as the material of the cured coating film 15, the viscosity of the transparent resin composition is within the above range. When the cured coating film 15 is formed, the base on the transparent base material 1 side in the mesh-like metal layer 10 and the bonding agent layer 5 (the transparent base material 1 when the bonding agent layer 5 is omitted) and It can also be easily suppressed that bubbles remain in the corners formed by the.

光透過性及び像鮮明度が高い電磁波遮蔽部材20を得るという観点からは、硬化塗膜15の表面の十点平均粗さ(Rz)を0.05〜7μm程度とすることも好ましい。この十点平均粗さ(Rz)が上記の範囲から外れると硬化塗膜15の表面での反射光量が増大して、あるいは、硬化塗膜15の表面での乱反射が大きくなって、電磁波遮蔽部材20の像鮮明度が低くなることがある。硬化塗膜15の表面の十点平均粗さ(Rz)は、0.1〜5μm程度の範囲内とすることが更に好ましい。この十点平均粗さ(Rz)が上述の範囲内であれば、硬化塗膜15上に他の部材を貼付する場合でも、両者の界面に気泡が残りにくくなる。   From the viewpoint of obtaining the electromagnetic wave shielding member 20 having high light transmittance and high image definition, it is also preferable to set the ten-point average roughness (Rz) of the surface of the cured coating film 15 to about 0.05 to 7 μm. If this ten-point average roughness (Rz) is out of the above range, the amount of reflected light on the surface of the cured coating film 15 increases, or the irregular reflection on the surface of the cured coating film 15 increases, resulting in an electromagnetic wave shielding member. The image clarity of 20 may be lowered. The ten-point average roughness (Rz) of the surface of the cured coating film 15 is more preferably in the range of about 0.1 to 5 μm. If this ten-point average roughness (Rz) is within the above-mentioned range, even when another member is stuck on the cured coating film 15, bubbles hardly remain at the interface between the two.

硬化塗膜15の材料として溶剤希釈型透明樹脂組成物を用いる場合、十点平均粗さ(Rz)が上述の範囲内にある硬化塗膜15は、例えば、塗膜を温度50〜130℃、風速2〜20m/秒の熱風により1〜3分かけて乾燥することにより得ることができる。このとき、残留溶剤量をできるだけ少なくすることにより、良好な硬化塗膜15を得易くなる。硬化塗膜15での残留溶剤量を少なくするためには、熱風の温度及び風速を段階的に上げて、塗膜表面があまりにも早期に乾燥してしまうのを防止することが好ましい。例えば、初期には温度50〜70℃、風速2〜5m/秒の熱風により乾燥し、塗膜表面が乾燥した段階で温度100〜130℃、風速10〜20m/秒の熱風により更に乾燥すると、残留溶剤が無いか、又は少ない良好な硬化塗膜15を得ることができる。   When the solvent-diluted transparent resin composition is used as the material of the cured coating film 15, the cured coating film 15 having a ten-point average roughness (Rz) within the above range is, for example, a coating film having a temperature of 50 to 130 ° C. It can obtain by drying over 1 to 3 minutes with a hot air with a wind speed of 2 to 20 m / sec. At this time, it becomes easy to obtain a good cured coating film 15 by reducing the residual solvent amount as much as possible. In order to reduce the amount of residual solvent in the cured coating film 15, it is preferable to increase the temperature and speed of the hot air stepwise to prevent the coating surface from drying out too early. For example, in the initial stage, it is dried with hot air at a temperature of 50 to 70 ° C. and a wind speed of 2 to 5 m / sec, and further dried with hot air at a temperature of 100 to 130 ° C. and a wind speed of 10 to 20 m / sec at the stage where the coating film surface is dried, A good cured coating film 15 with little or no residual solvent can be obtained.

また、硬化塗膜15の材料として熱硬化型透明樹脂組成物又は光硬化型透明樹脂組成物を用いる場合でも、これらの透明樹脂組成物に溶剤が含有されている場合には、上記の乾燥条件と同様の条件の下に溶剤を揮散させてから、加熱により、又は電磁波の照射により重合反応もしくは架橋反応を進行させることが好ましい。熱硬化型透明樹脂組成物を硬化させるにあたっては、温度40℃〜60℃の環境下で1〜7日間養生することが好ましい。また、光硬化型透明樹脂組成物を硬化させるにあたっては、当該光硬化型透明樹脂組成物を硬化させることができる電磁波の照射強度を50〜1000mJ/cm 程度の範囲内とすることが好ましい。なお、光硬化型透明樹脂組成物が紫外線硬化型透明樹脂組成物である場合には、紫外線の光源として、例えば高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、パルスキセノンランプ等を用いることができる。 Further, even when a thermosetting transparent resin composition or a photocurable transparent resin composition is used as the material of the cured coating film 15, when these transparent resin compositions contain a solvent, the above drying conditions are used. It is preferable to evaporate the solvent under the same conditions as described above, and then advance the polymerization reaction or crosslinking reaction by heating or irradiation with electromagnetic waves. In curing the thermosetting transparent resin composition, it is preferably cured for 1 to 7 days in an environment at a temperature of 40 ° C to 60 ° C. Moreover, when hardening a photocurable transparent resin composition, it is preferable to make the irradiation intensity | strength of the electromagnetic waves which can harden the said photocurable transparent resin composition into the range of about 50-1000 mJ / cm < 2 >. When the photocurable transparent resin composition is an ultraviolet curable transparent resin composition, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a pulse xenon lamp, or the like can be used as an ultraviolet light source. .

硬化塗膜15の形状保持能を実用上充分なものとするためには、そのガラス転移点を30℃以上とし、数平均分子量を数千以上とすることが好ましい。硬化塗膜15の材料として溶剤希釈型透明樹脂組成物を用いた場合には、この透明樹脂組成物に含有されている透明樹脂のガラス転移点及び数平均分子量が、略そのまま、硬化塗膜15のガラス転移点及び数平均分子量となる。一方、硬化塗膜15の材料として熱硬化型透明樹脂組成物又は光硬化型透明樹脂組成物を用いた場合には、この透明樹脂組成物の硬化条件を適宜選定することにより、硬化塗膜15のガラス転移点及び数平均分子量を制御することができる。硬化塗膜15の数平均分子量の上限値は特に限定されないが、材料として溶剤希釈型透明樹脂組成物を用いる場合には30万程度以下、特に15万程度以下となるように当該透明樹脂組成物を選定することが好ましい。また、材料として熱硬化型透明樹脂組成物又は光硬化型透明樹脂組成物を用いる場合には、500万程度以下、特に300万程度以下とすることが好ましい。硬化塗膜15のガラス転移点が上記の範囲内であれば、例えばロール・ツゥ・ロールで電磁波遮蔽部材20を生産するにあたって巻き取り時にブロッキングが発生するのを抑制することも容易になる。   In order to make the shape retention ability of the cured coating film 15 sufficiently practical, it is preferable that the glass transition point is 30 ° C. or higher and the number average molecular weight is several thousand or higher. When the solvent-diluted transparent resin composition is used as the material of the cured coating film 15, the glass transition point and the number average molecular weight of the transparent resin contained in the transparent resin composition are substantially unchanged, and the cured coating film 15 Glass transition point and number average molecular weight. On the other hand, when a thermosetting transparent resin composition or a photocurable transparent resin composition is used as the material of the cured coating film 15, the cured coating film 15 can be selected by appropriately selecting the curing conditions of the transparent resin composition. The glass transition point and the number average molecular weight of can be controlled. The upper limit of the number average molecular weight of the cured coating film 15 is not particularly limited, but when a solvent-diluted transparent resin composition is used as a material, the transparent resin composition is about 300,000 or less, particularly about 150,000 or less. Is preferably selected. Moreover, when using a thermosetting transparent resin composition or a photocurable transparent resin composition as a material, it is preferable to set it as about 5 million or less, especially about 3 million or less. If the glass transition point of the cured coating film 15 is within the above range, for example, when the electromagnetic wave shielding member 20 is produced by roll-to-roll, it is easy to suppress occurrence of blocking during winding.

以上説明した構造を有する電磁波遮蔽部材20では、上述した硬化塗膜15が形成されていることから、透明基材1を基準としたときのメッシュ状金属層10の上面及び側面での光の乱反射、硬化塗膜15の表面での光の乱反射、及び、当該電磁波遮蔽部材20でのいわゆる虹ムラの発生が抑えられ、結果として、高い光透過性及び高い像鮮明度を得ることが容易になる。また、硬化塗膜15は、その材料を1回コーティングして塗膜を形成し、この塗膜を硬化させることによって形成することが可能であるので、製造コストを抑え易い。したがって、本発明の電磁波遮蔽部材20では、光透過性及び像鮮明度がそれぞれ高いものを製造コストを抑えつつ得ることが容易である。さらに、硬化塗膜15の表面が比較的平坦であることから、この硬化塗膜15上に他の部材を貼付する場合でも、硬化塗膜15と他の部材との間に気泡が残ることが抑制され、その結果として、脱泡処理等の工程を省略することも可能になる。   In the electromagnetic wave shielding member 20 having the above-described structure, since the above-described cured coating film 15 is formed, irregular reflection of light on the upper surface and side surfaces of the mesh metal layer 10 when the transparent substrate 1 is used as a reference. Further, irregular reflection of light on the surface of the cured coating film 15 and generation of so-called rainbow unevenness in the electromagnetic wave shielding member 20 are suppressed, and as a result, it becomes easy to obtain high light transmittance and high image definition. . Moreover, since the cured coating film 15 can be formed by coating the material once to form a coating film and curing the coating film, the manufacturing cost can be easily suppressed. Therefore, in the electromagnetic wave shielding member 20 of the present invention, it is easy to obtain a material having high light transmittance and high image definition while suppressing the manufacturing cost. Furthermore, since the surface of the cured coating film 15 is relatively flat, bubbles may remain between the cured coating film 15 and other members even when another member is stuck on the cured coating film 15. As a result, steps such as defoaming can be omitted.

電磁波遮蔽部材20は、プラズマディスプレイパネルのような表示装置の表示面から放射される電磁波を、視認される映像の画質の低下を抑制しつつ遮蔽するうえで好適である。   The electromagnetic wave shielding member 20 is suitable for shielding electromagnetic waves radiated from the display surface of a display device such as a plasma display panel while suppressing deterioration in the image quality of a visually recognized image.

(5)変形例;
本発明の電磁波遮蔽部材は上述した形態のものに限定されるものではなく、種々の変形、改良、組み合わせ等が可能である。以下、幾つかの変形例について、図1(a)又は図1(b)で用いた参照符号を適宜引用しつつ、説明する。
(5) Modifications;
The electromagnetic wave shielding member of the present invention is not limited to the above-described form, and various modifications, improvements, combinations, and the like are possible. Hereinafter, some modified examples will be described by appropriately quoting the reference numerals used in FIG. 1A or FIG.

例えばプラズマディスプレイパネルの表示面からは赤外線も放射され、この赤外線は、リモートコントローラ等の周辺機器を誤作動させる原因となることがある。したがって、本発明の電磁波遮蔽部材には、必要に応じて800〜1200nmの波長域の近赤外線を吸収する赤外線吸収能を付与することが好ましい。この赤外線吸収能は、例えば、接合剤層5及び硬化塗膜15の少なくとも一方に赤外線吸収剤を含有させることにより、あるいは、透明基材1の外表面上、又は硬化塗膜15の外表面上に赤外線吸収層を形成することにより、付与することができる。透明基材1の外表面上、又は硬化塗膜15の外表面上に赤外線吸収フィルムを貼付することによっても、付与することができる。   For example, infrared rays are also emitted from the display surface of the plasma display panel, and this infrared rays may cause malfunction of peripheral devices such as a remote controller. Therefore, it is preferable that the electromagnetic wave shielding member of the present invention has an infrared absorbing ability to absorb near infrared rays in a wavelength range of 800 to 1200 nm as necessary. This infrared absorbing ability is obtained, for example, by containing an infrared absorber in at least one of the bonding agent layer 5 and the cured coating film 15, or on the outer surface of the transparent substrate 1 or on the outer surface of the cured coating film 15. It can be imparted by forming an infrared absorbing layer. It can also be applied by applying an infrared absorbing film on the outer surface of the transparent substrate 1 or on the outer surface of the cured coating film 15.

接合剤層5又は硬化塗膜15に赤外線吸収剤を含有させる場合、この赤外線吸収剤としては、酸化スズ、酸化インジウム、酸化マグネシウム、酸化チタン、酸化クロム、酸化ジルコニウム、酸化ニッケル、酸化アルミニウム、酸化亜鉛、酸化鉄、酸化アンチモン、酸化鉛、酸化ビスマス等の無機赤外線吸収剤や、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ナフトキノン系化合物、アントラキノン系化合物、アルミニウム系化合物、ピリリウム系化合物、セリリウム系化合物、スクワリリウム系化合物、ジイモニウム類、銅錯体類、ニッケル錯体類、ジチオール系錯体類等の有機赤外線吸収剤を用いることができる。赤外線吸収剤は、1種のみを含有させてもよいし、2種以上を含有させてもよい。   When the bonding agent layer 5 or the cured coating film 15 contains an infrared absorber, the infrared absorber includes tin oxide, indium oxide, magnesium oxide, titanium oxide, chromium oxide, zirconium oxide, nickel oxide, aluminum oxide, and oxidation. Inorganic infrared absorbers such as zinc, iron oxide, antimony oxide, lead oxide, bismuth oxide, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, naphthoquinone compounds, anthraquinone compounds, aluminum compounds, pyrylium compounds, Organic infrared absorbers such as cerium-based compounds, squarylium-based compounds, diimoniums, copper complexes, nickel complexes, and dithiol-based complexes can be used. An infrared absorber may contain only 1 type and may contain 2 or more types.

接合剤層5又は硬化塗膜15での赤外線吸収剤の含有量は、800〜1200nmの波長域の近赤外線の透過率(ただし、電磁波遮蔽部材全体としての透過率を意味する。)が20%程度以下、特に10%程度以下となるように、使用する赤外線吸収剤の種類に応じて適宜選定することが好ましい。なお、ここでいう「近赤外線の透過率」とは、(株)島津製作所製のUV−310OPC(商品名)を用いて測定した近赤外線の透過率を意味する。   The content of the infrared absorber in the bonding agent layer 5 or the cured coating film 15 is 20% in the near-infrared transmittance in the wavelength range of 800 to 1200 nm (however, the transmittance of the whole electromagnetic wave shielding member is meant). It is preferable to select appropriately according to the type of infrared absorber to be used so that it is about 10% or less, particularly about 10% or less. The “near-infrared transmittance” as used herein means the near-infrared transmittance measured using UV-310OPC (trade name) manufactured by Shimadzu Corporation.

接合剤層5又は硬化塗膜15に赤外線吸収剤を含有させた場合には、透明基材1の外表面上、又は硬化塗膜15の外表面上に赤外線吸収フィルムもしくは赤外線吸収層を設けた場合に比べて光学的な界面の数の増加がないので、赤外線吸収能を付与したことに伴う電磁波遮蔽部材の光透過性及び像鮮明度それぞれの低下が抑制される。   When the bonding agent layer 5 or the cured coating film 15 contains an infrared absorber, an infrared absorption film or an infrared absorption layer was provided on the outer surface of the transparent substrate 1 or the outer surface of the cured coating film 15. Since there is no increase in the number of optical interfaces as compared with the case, the decrease in the light transmittance and the image sharpness of the electromagnetic wave shielding member due to the provision of the infrared absorbing ability is suppressed.

なお、接合剤層5又は硬化塗膜15に赤外線吸収剤を含有させる場合には、赤外線吸収剤の劣化や分解等を抑制するという観点から、接合剤層5及び硬化塗膜15のうちで赤外線吸収剤を含有させようとする層又は膜での水酸基価を10以下、更には5以下、特に0とすることが好ましい。同様の観点から、接合剤層5及び硬化塗膜15のうちで赤外線吸収剤を含有させようとする層又は膜での酸価を10以下、更には5以下、特に0とすることが好ましい。ここで、本明細書でいう「水酸基価」とは、試料1mgから得られるアセチル化物に結合している酢酸を中和するのに必要な水酸化カリウムのミリグラム数を意味する。また、本明細書でいう「酸価」とは、試料1g中の遊離脂肪酸を中和するのに必要な水酸化カリウムのミリグラム数を意味する。接合剤層5及び硬化塗膜15それぞれでの水酸基価や酸価は、これらの層又は膜の材料を適宜選定することにより、制御することができる。   In addition, when making the bonding agent layer 5 or the cured coating film 15 contain an infrared absorbent, infrared rays are used in the bonding agent layer 5 and the cured coating film 15 from the viewpoint of suppressing deterioration and decomposition of the infrared absorbent. It is preferable that the hydroxyl value in the layer or film to contain the absorbent is 10 or less, further 5 or less, particularly 0. From the same viewpoint, it is preferable that the acid value in the layer or film in which the infrared absorber is to be contained in the bonding agent layer 5 and the cured coating film 15 is 10 or less, further 5 or less, particularly 0. As used herein, “hydroxyl value” means the number of milligrams of potassium hydroxide required to neutralize acetic acid bound to an acetylated product obtained from 1 mg of a sample. Further, the “acid value” in the present specification means the number of milligrams of potassium hydroxide necessary to neutralize free fatty acids in 1 g of a sample. The hydroxyl value and acid value in each of the bonding agent layer 5 and the cured coating film 15 can be controlled by appropriately selecting materials of these layers or films.

また、プラズマディスプレイパネルからは、放電ガスとして用いられる希ガスから発光が起こる。例えば、希ガスとしてネオン(Ne)ガスを用いた場合には、オレンジ色の発光が生じる。このような希ガスからの発光は、表示映像の画質を低下させる要因となる。したがって、本発明の電磁波遮蔽部材には、必要に応じて、放電ガスとして用いられる希ガスからの発光を吸収する光吸収能を付与することが好ましい。この光吸収能は、例えば、接合剤層5及び硬化塗膜15の少なくとも一方に適当な光吸収色素を含有させることにより、あるいは透明基材1の外表面上、又は硬化塗膜15の外表面上に適当な光吸収層を形成することにより、付与することができる。   Further, the plasma display panel emits light from a rare gas used as a discharge gas. For example, when neon (Ne) gas is used as the rare gas, orange light emission occurs. Such light emission from the rare gas becomes a factor of deteriorating the image quality of the display image. Therefore, it is preferable that the electromagnetic wave shielding member of the present invention is provided with a light absorbing ability to absorb light emitted from a rare gas used as a discharge gas, if necessary. This light absorbing ability is obtained by, for example, containing an appropriate light absorbing dye in at least one of the bonding agent layer 5 and the cured coating film 15, or on the outer surface of the transparent substrate 1 or the outer surface of the cured coating film 15. It can be provided by forming a suitable light absorption layer on the top.

例えば、ネオンガスからの発光を吸収するための光吸収色素としては、シアニン系色素、ポリメチン系色素、サブフタロシアンニン系色素、ポリフィリン系色素等を用いることができる。光吸収色素は、前述した赤外線吸収剤と混在させることも可能であるし、光吸収色素を含有させる層又は膜と、赤外線吸収剤を含有させる層又は膜とを互いに別個のものとすることも可能である。   For example, cyanine dyes, polymethine dyes, subphthalocyanine dyes, porphyrin dyes, and the like can be used as light absorbing dyes for absorbing light emitted from neon gas. The light-absorbing dye can be mixed with the above-described infrared absorber, or the layer or film containing the light-absorbing dye and the layer or film containing the infrared absorber can be made separate from each other. Is possible.

上記の光吸収層は、例えば、上述した光吸収色素と、アクリレート系粘着剤、例えば2−エチルヘキシルアクリレートを主成分とするものやブチルアクリレートを主成分とする粘着剤とを、トルエン、メチルエチルケトン、酢酸エチル、酢酸ブチル、メチルイソブチルケトン、イソプロピルアルコール等の溶媒に溶解させてコーティング溶液を調製し、このコーティング溶液を透明基材1の外表面上、又は硬化塗膜15の外表面上に塗工して塗膜を形成した後に、この塗膜を乾燥させることによって形成することができる。   The above light absorbing layer is composed of, for example, the above-described light absorbing dye and an acrylate-based pressure-sensitive adhesive such as one having 2-ethylhexyl acrylate as a main component or a pressure-sensitive adhesive having butyl acrylate as a main component, toluene, methyl ethyl ketone, acetic acid. A coating solution is prepared by dissolving in a solvent such as ethyl, butyl acetate, methyl isobutyl ketone, isopropyl alcohol, and the coating solution is applied on the outer surface of the transparent substrate 1 or the outer surface of the cured coating film 15. After the coating film is formed, the coating film can be formed by drying.

その他、本発明の電磁波遮蔽部材では、透明基材1上又は硬化塗膜15上に反射防止膜や衝撃吸収層等を積層することもできる。   In addition, in the electromagnetic wave shielding member of the present invention, an antireflection film, a shock absorbing layer, or the like can be laminated on the transparent substrate 1 or the cured coating film 15.

<実施例1>
まず、透明基材として厚さ100μmのポリエチレンテレフタレートフィルム(東洋紡績社製のA4300(商品名))を用意し、このフィルムの片面にウレタン系接着剤を用いて厚さ9μmの銅箔(古川サーキットフォイール社製のEXP−WS(商品名))をドライラミネーションした。上記の銅箔は、片面がクロメート処理により黒化されたものであり、ドライラミネーションにあたっては黒化処理面(クロメート処理面)が外表面となるように配置した。
<Example 1>
First, a 100 μm thick polyethylene terephthalate film (A4300 (trade name) manufactured by Toyobo Co., Ltd.) was prepared as a transparent substrate, and a 9 μm thick copper foil (Furukawa Circuit) using a urethane-based adhesive on one side of the film. Foyle EXP-WS (trade name)) was dry-laminated. The copper foil was blackened on one side by chromate treatment, and was arranged so that the blackened surface (chromate treated surface) was the outer surface during dry lamination.

上記のポリエチレンテレフタレートフィルムでの波長587.6nmの光の屈折率は1.57である。また、ドライラミネーションに用いたウレタン系接着剤は、ガラス転移点が20℃、数平均分子量が3万、酸価が1、水酸基価が9、波長587.6nmの光の屈折率が1.49のものであり、その膜厚は10μmである。   The refractive index of light having a wavelength of 587.6 nm in the polyethylene terephthalate film is 1.57. The urethane adhesive used for dry lamination has a glass transition point of 20 ° C., a number average molecular weight of 30,000, an acid value of 1, a hydroxyl value of 9, and a refractive index of light with a wavelength of 587.6 nm of 1.49. The film thickness is 10 μm.

次に、銅箔上に所定形状のレジストパターンを形成し、このレジストパターンをエッチングマスクとして用いて銅箔をウェットエッチングした。このとき、エッチャントとしては塩化第二鉄溶液を用い、液温は50℃とした。ウェットエッチング後にレジストパターンを剥離し、純水でリンスした。これにより、個々の目の平面視上の大きさ及び形状が300μm□である格子状を呈し、細線部の平面視上の線幅が10μmであるメッシュ状金属層が得られた。このメッシュ状金属層は、前述したポリエチレンテレフタレートフィルムに、平面視上の大きさ及び形状が300μm□の光透過部を多数画定している。   Next, a resist pattern having a predetermined shape was formed on the copper foil, and the copper foil was wet etched using this resist pattern as an etching mask. At this time, a ferric chloride solution was used as an etchant, and the liquid temperature was 50 ° C. After wet etching, the resist pattern was peeled off and rinsed with pure water. As a result, a mesh-like metal layer having a lattice shape with a size and shape in plan view of each eye of 300 μm □ and a line width in plan view of the thin line portion of 10 μm was obtained. This mesh-like metal layer defines a large number of light transmitting portions having a size and shape of 300 μm □ in plan view in the above-described polyethylene terephthalate film.

これとは別に、市販の溶剤希釈型透明樹脂組成物(三菱レーヨン社製のBR−98(商品名))を用意した。この溶剤希釈型透明樹脂組成物は、ガラス転移点が65℃、数平均分子量が6万、酸価が1、水酸基価が0であるメチルメタクリレート系透明樹脂をトルエンとメチルエチルケトンとの1:1(重量比)混合液で希釈したものであり、メチルメタクリレート系透明樹脂は鎖状構造を有している。   Separately from this, a commercially available solvent-diluted transparent resin composition (BR-98 (trade name) manufactured by Mitsubishi Rayon Co., Ltd.) was prepared. This solvent-diluted transparent resin composition comprises a methyl methacrylate transparent resin having a glass transition point of 65 ° C., a number average molecular weight of 60,000, an acid value of 1 and a hydroxyl value of 0: 1: 1 of toluene and methyl ethyl ketone. (Weight ratio) It is diluted with a mixed solution, and the methyl methacrylate transparent resin has a chain structure.

次に、上記の溶剤希釈型透明樹脂組成物をベース組成物として用い、このベース組成物をトルエンとメチルエチルケトンとの1:1(重量比)混合液で5倍(重量比)に希釈して塗工液を調製し、この塗工液を前述したメッシュ状金属層上、及び多数の光透過部それぞれの上にアプリケーター用いて塗工した。塗工量は、硬化後の塗工量(乾燥重量)が20g/m になる量とした。 Next, the above solvent-diluted transparent resin composition is used as a base composition, and this base composition is diluted 5 times (weight ratio) with a 1: 1 (weight ratio) mixture of toluene and methyl ethyl ketone. A working solution was prepared, and this coating solution was applied onto the mesh-like metal layer and each of a large number of light transmitting portions using an applicator. The coating amount was such that the coating amount after drying (dry weight) was 20 g / m 2 .

この後、得られた塗膜を風速5m/秒、温度60℃の熱風で30秒間乾燥し、引き続き、風速20m/秒、温度100℃の熱風で60秒間を乾燥した。これにより、メッシュ状金属層及び多数の光透過部をそれぞれ被覆する硬化塗膜が透明樹脂により形成され、電磁波遮蔽部材が得られた。以下、同じ条件の下に複数の電磁波遮蔽部材を作製した。   Thereafter, the obtained coating film was dried with hot air having a wind speed of 5 m / sec and a temperature of 60 ° C. for 30 seconds, and subsequently dried with hot air having a wind speed of 20 m / sec and a temperature of 100 ° C. for 60 seconds. Thereby, the cured coating film which each coat | covers a mesh-shaped metal layer and many light transmission parts was formed with transparent resin, and the electromagnetic wave shielding member was obtained. Hereinafter, a plurality of electromagnetic wave shielding members were produced under the same conditions.

本実施例1並びに後述する実施例2〜12及び比較例1〜4で電磁波遮蔽部材の作製に使用した塗工液(透明樹脂組成物)について、ベース組成物の商品名、種類、希釈倍率、重合開始剤の含有の有無、及び赤外線吸収剤(IR吸収剤)の含有の有無、並びに塗工液の塗工条件を一覧にして、後掲の表1に示す。   About the coating liquid (transparent resin composition) used for preparation of the electromagnetic wave shielding member in the present Example 1 and Examples 2 to 12 and Comparative Examples 1 to 4 described later, the trade name, type, dilution factor of the base composition, The presence / absence of the polymerization initiator, the presence / absence of the infrared absorber (IR absorber), and the coating conditions of the coating liquid are listed in Table 1 below.

また、形成された硬化塗膜でのガラス転移点、数平均分子量、酸価、及び水酸基価、並びに複数の電磁波遮蔽部材の中から無作為に抽出した電磁波遮蔽部材における硬化塗膜の表面の十点平均粗さ(Rz)、光透過部での平均膜厚(光透過部の平面視上の中央部での膜厚の平均値)、隆起部での距離L2(図2参照)の平均値、図2に示した距離L3と距離L4との平均値、及びメッシュ状金属層の細線部上での硬化塗膜の平均傾斜角度を一覧にして、後掲の表2に示す。   Further, the glass transition point, the number average molecular weight, the acid value, and the hydroxyl value of the formed cured coating film, and the surface of the cured coating film in the electromagnetic shielding member randomly extracted from the plurality of electromagnetic shielding members. Point average roughness (Rz), average film thickness at the light transmission part (average value of film thickness at the central part of the light transmission part in plan view), and average value of distance L2 (see FIG. 2) at the raised part The average value of the distance L3 and the distance L4 shown in FIG. 2 and the average inclination angle of the cured coating film on the fine line portion of the mesh-like metal layer are listed and shown in Table 2 below.

なお、硬化塗膜の表面粗さ(十点平均粗さ(Rz))は、いずれの実施例及び比較例においても、東京精密社製の表面粗さ計(HANDYSURF E−35A(商品名))を用いてJIS B0601−2001 に従って測定した。 The surface roughness (ten-point average roughness (Rz)) of the cured coating film is a surface roughness meter (HANDYSURF E-35A (trade name) manufactured by Tokyo Seimitsu Co., Ltd.) in any of the examples and comparative examples. Was measured according to JIS B0601-2001.

<実施例2〜6>
塗工液として実施例毎に後掲の表1に示す溶剤希釈型透明樹脂組成物を用い、かつ、この塗工液の塗工量(ただし、硬化後の重量を意味する。)を表1に示す量とし、他は実施例1と同様の条件の下に複数の電磁波遮蔽部材を実施例毎に作製した。なお、各溶剤希釈型透明樹脂組成物における透明樹脂は、いずれも、鎖状構造を有している。
<Examples 2 to 6>
For each example, the solvent-diluted transparent resin composition shown in Table 1 below is used as the coating solution, and the coating amount of the coating solution (however, the weight after curing) is shown in Table 1. A plurality of electromagnetic wave shielding members were produced for each example under the same conditions as in Example 1 except for the amounts shown in FIG. In addition, all the transparent resin in each solvent dilution type transparent resin composition has a chain structure.

<実施例7>
塗工液として後掲の表1に示す熱硬化型透明樹脂組成物を用い、かつ、塗膜の乾燥後にこの塗膜を60℃で4日間加熱した以外は実施離1と同様の条件の下に、複数の電磁波遮蔽部材を作製した。乾燥後の塗膜を更に加熱したことにより、各電磁波遮蔽部材には、架橋した透明樹脂からなる硬化塗膜が形成された。なお、塗膜の乾燥は、実施例1での塗膜の乾燥と同じ条件の下に行った。
<Example 7>
Under the same conditions as in Example 1 except that the thermosetting transparent resin composition shown in Table 1 below was used as the coating liquid, and this coating film was heated at 60 ° C. for 4 days after drying. In addition, a plurality of electromagnetic wave shielding members were produced. By further heating the coating film after drying, a cured coating film made of a crosslinked transparent resin was formed on each electromagnetic wave shielding member. The coating film was dried under the same conditions as the drying of the coating film in Example 1.

<実施例8〜9>
塗工液として後掲の表1に示す光硬化型(紫外線硬化型)透明樹脂組成物を用い、その塗工量(ただし、硬化後の重量を意味する。)を17g/m 又は20g/m にして塗膜を形成すると共に、塗膜の乾燥後に紫外線ランプを用いて照射強度400mJ/cm の条件の下に紫外線を照射した以外は実施離1と同様の条件の下に、複数の電磁波遮蔽部材を実施例毎に作製した。塗膜に紫外線を照射したことにより、各電磁波遮蔽部材には、架橋した透明樹脂からなる硬化塗膜が形成された。なお、塗膜の乾燥は、実施例1での塗膜の乾燥と同じ条件の下に行った。
<Examples 8 to 9>
As the coating liquid, a photocurable (ultraviolet curable) transparent resin composition shown in Table 1 below is used, and the coating amount (however, the weight after curing) is 17 g / m 2 or 20 g / m. A coating film is formed at m 2 , and a plurality of coatings are formed under the same conditions as those in Example 1 except that after drying the coating film, ultraviolet rays are irradiated using an ultraviolet lamp under conditions of an irradiation intensity of 400 mJ / cm 2. The electromagnetic shielding member was prepared for each example. By irradiating the coating film with ultraviolet rays, a cured coating film made of a crosslinked transparent resin was formed on each electromagnetic wave shielding member. The coating film was dried under the same conditions as the drying of the coating film in Example 1.

<実施例10〜12>
後掲の表1に示すように、塗工液(透明樹脂組成物)に赤外線吸収剤を含有させ、かつ、この塗工液の塗工量(ただし、硬化後の重量を意味する。)を表1に示す量とし、他は実施例2、実施例3、又は実施例7と同様の条件の下に複数の電磁波遮蔽部材を実施例毎に作製した。
<Examples 10 to 12>
As shown in Table 1 below, the coating liquid (transparent resin composition) contains an infrared absorber, and the coating amount of the coating liquid (however, it means the weight after curing). A plurality of electromagnetic wave shielding members were produced for each example under the same conditions as in Example 2, Example 3, or Example 7 except for the amounts shown in Table 1.

<比較例1>
硬化塗膜を形成しなかった以外は実施例1と同じ条件の下に、複数の電磁波遮蔽部材を作製した。
<Comparative Example 1>
A plurality of electromagnetic wave shielding members were produced under the same conditions as in Example 1 except that a cured coating film was not formed.

<比較例2〜3>
表1又は表2に示すように、塗工液(溶剤希釈型透明樹脂組成物)を調製する際の希釈倍率又は塗工液の塗工量を変更した以外は実施例4と同じ条件の下に、複数の電磁波遮蔽部材を比較例毎に作製した。
<Comparative Examples 2-3>
As shown in Table 1 or Table 2, under the same conditions as in Example 4 except that the dilution rate or the coating amount of the coating solution was changed when preparing the coating solution (solvent-diluted transparent resin composition). In addition, a plurality of electromagnetic wave shielding members were produced for each comparative example.

<比較例4>
表1又は表2に示すように、塗工液(光硬化型透明樹脂組成物)を調製する際の希釈倍率又は塗工液の塗工量を変更した以外は実施例8と同じ条件の下に、複数の電磁波遮蔽部材を作製した。
<Comparative example 4>
As shown in Table 1 or 2, under the same conditions as in Example 8, except that the dilution rate or the coating amount of the coating solution was changed when preparing the coating solution (photocurable transparent resin composition). In addition, a plurality of electromagnetic wave shielding members were produced.

Figure 2006210572
Figure 2006210572

Figure 2006210572
Figure 2006210572

[評価]
実施例1〜12及び比較例1〜4でそれぞれ作製した電磁波遮蔽部材について、ヘイズ、視感透過率、及び像鮮明度を下記の方法で測定した。また、硬化塗膜に赤外線吸収剤を含有させた実施例10〜12の各電磁波遮蔽部材について、赤外線透過率を下記の方法で測定した。これらの結果を表3に示す。
[Evaluation]
About the electromagnetic wave shielding member produced in each of Examples 1 to 12 and Comparative Examples 1 to 4, haze, luminous transmittance, and image definition were measured by the following methods. Moreover, about each electromagnetic wave shielding member of Examples 10-12 which made the cured coating film contain the infrared absorber, the infrared transmittance was measured by the following method. These results are shown in Table 3.

(A)ヘイズ;
スガ試験機社製のカラーコンピューター SM−C(商品名)を用い、JIS K 7105−1981 「プラスチックの光学的特性試験方法」に従って、作製直後(初期)の値と、気温60℃、湿度95%の空気雰囲気中に1000時間放置して耐久性試験を行った後(試験後)での値とを測定した。
(A) haze;
Using a color computer SM-C (trade name) manufactured by Suga Test Instruments Co., Ltd., according to JIS K 7105-1981 “Testing methods for optical properties of plastics”, values immediately after production (initial), temperature 60 ° C., humidity 95% The value was measured after the durability test was performed in the air atmosphere for 1000 hours (after the test).

(B)視感透過率;
スガ試験機社製の写像性測定器 ICM−1(商品面)を用い、JIS K7105−1981 「プラスチックの光学的特性試験方法」に従って、作製直後(初期)の値と、気温60℃、湿度90%の空気雰囲気中に1000時間放置して耐久性試験を行った後(試験後)での値とを透過法により測定した。
(B) Luminous transmittance;
Using the image clarity measuring device ICM-1 (product surface) manufactured by Suga Test Instruments Co., Ltd., according to JIS K7105-1981 “Plastic Optical Properties Test Method”, the value immediately after production (initial), temperature 60 ° C., humidity 90 % After being left in an air atmosphere for 1000 hours to conduct a durability test (after the test), and measured by the transmission method.

(C)像鮮明度;
上記の写像性測定器を用い、JIS K 7105−1981 「プラスチックの光学的特性試験方法」に従って、作製直後(初期)の透過鮮明度と、気温60℃、湿度95%の空気雰囲気中に1000時間放置して耐久性試験を行った後(試験後)での透過鮮明度とを測定した。なお、光学くしとしては、暗部及び明部それぞれの幅が共に0.125mm、0.25mm、0.5mm、1mm、又は2mmである計5種類を使用した。
(C) Image definition;
Using the above-described image clarity measuring device, in accordance with JIS K 7105-1981 “Testing method for optical properties of plastics”, 1000 hours in an air atmosphere immediately after production (initial) and in an air atmosphere at a temperature of 60 ° C. and a humidity of 95% The transmission sharpness after the durability test was performed after standing (after the test) was measured. As the optical combs, a total of five types were used in which the width of each of the dark part and the bright part was 0.125 mm, 0.25 mm, 0.5 mm, 1 mm, or 2 mm.

(D)赤外線透過率;
800〜1200nmの波長域の近赤外線の最大透過率について、作製直後(初期)の値と、気温60℃、湿度90%の空気雰囲気中に1000時間放置して耐久性試験を行った後(試験後)での値とを、(株)島津製作所製の分光光度計(UV−3100PC(品番))を用いて測定した。
(D) infrared transmittance;
About the maximum transmittance of near-infrared rays in the wavelength range of 800 to 1200 nm, the value immediately after the production (initial) and the durability test after being left in an air atmosphere at a temperature of 60 ° C. and a humidity of 90% for 1000 hours (test The value in “after” was measured using a spectrophotometer (UV-3100PC (product number)) manufactured by Shimadzu Corporation.

Figure 2006210572
Figure 2006210572

実施例1〜12で作製した各電磁波遮蔽部材でのヘイズ、視感透過率及び像鮮明度と、比較例1で作製した電磁波遮蔽部材でのヘイズ、視感透過率及び像鮮明度との対比から明らかなように、メッシュ状金属層及び多数の光透過部をそれぞれ被覆する硬化塗膜を透明樹脂によって形成することにより、ヘイズが小さく、視感透過率及び像鮮明度がそれぞれ高い電磁波遮蔽部材を得ることができる。   Comparison of haze, luminous transmittance and image sharpness in each electromagnetic wave shielding member produced in Examples 1 to 12 with haze, luminous transmittance and image sharpness in the electromagnetic wave shielding member produced in Comparative Example 1. As is clear from the above, an electromagnetic wave shielding member having a small haze, a high luminous transmittance and a high image definition is obtained by forming a cured coating film covering each of the mesh-like metal layer and a large number of light transmitting portions with a transparent resin. Can be obtained.

また、実施例1〜6及び実施例10〜12で作製した電磁波遮蔽部材でのヘイズ、視感透過率、及び像鮮明度それぞれの初期の値と試験後の値との対比から明らかなように、溶剤希釈型透明樹脂組成物を単に固化させることによって硬化塗膜を形成した場合でも、熱硬化型透明樹脂組成物又は光硬化型(紫外線硬化型)透明樹脂組成物により硬化塗膜が形成された実施例8、実施例9の電磁波遮蔽部材と同様に、光透過性及び像鮮明度それぞれの耐久性が高い電磁波遮蔽部材を得ることが可能である。   In addition, as apparent from the comparison between the initial values of the haze, luminous transmittance, and image clarity of the electromagnetic wave shielding members prepared in Examples 1 to 6 and Examples 10 to 12, and the values after the test. Even when a cured coating film is formed by simply solidifying the solvent-diluted transparent resin composition, the cured coating film is formed by the thermosetting transparent resin composition or the photo-curing type (ultraviolet curing type) transparent resin composition. Similarly to the electromagnetic wave shielding members of Examples 8 and 9, it is possible to obtain an electromagnetic wave shielding member having high durability in terms of light transmittance and image sharpness.

実施例2、実施例4、又は実施例7で作製した電磁波遮蔽部材と実施例10〜12で作製した電磁波遮蔽部材との対比から明らかなように、赤外線吸収剤を硬化塗膜に含有させた場合でも、ヘイズ、視感透過率、及び像鮮明度それぞれの値が赤外線吸収剤を含有させない場合と同程度の電磁波遮蔽部材を容易に得ることができる。   As is clear from the comparison between the electromagnetic wave shielding member produced in Example 2, Example 4 or Example 7 and the electromagnetic wave shielding member produced in Examples 10 to 12, an infrared absorber was contained in the cured coating film. Even in this case, it is possible to easily obtain an electromagnetic wave shielding member having the same values as the case where the haze, the luminous transmittance, and the image definition are not included in the infrared absorber.

そして、実施例4で作製した電磁波遮蔽部材と比較例2〜3で作製した電磁波遮蔽部材との対比や、実施例8で作製した電磁波遮蔽部材と比較例4で作製した電磁波遮蔽部材との対比から明らかなように、電磁波遮蔽部材の視感透過率及び像鮮明度は、メッシュ状金属層の細線部上での硬化塗膜(隆起部)の平均傾斜角度の影響を比較的強く受け、この平均傾斜角度を小さくすることによって、視感透過率及び像鮮明度を向上させることができる。換言すれば、上記の平均傾斜角度を制御することによって、光透過性及び像鮮明度が高い電磁波遮蔽部材を得ることができる。   And the comparison between the electromagnetic wave shielding member produced in Example 4 and the electromagnetic wave shielding member produced in Comparative Examples 2 to 3, and the electromagnetic wave shielding member produced in Example 8 and the electromagnetic wave shielding member produced in Comparative Example 4 As is clear from the above, the luminous transmittance and the image definition of the electromagnetic wave shielding member are relatively strongly affected by the average inclination angle of the cured coating film (the protruding portion) on the fine line portion of the mesh-like metal layer. By reducing the average inclination angle, the luminous transmittance and the image definition can be improved. In other words, by controlling the average inclination angle, an electromagnetic wave shielding member having high light transmission and high image definition can be obtained.

なお、実施例1〜12で作製したいずれの電磁波遮蔽部材内にも、気泡は認められなかった。   Note that no bubbles were observed in any of the electromagnetic wave shielding members produced in Examples 1 to 12.

図1(a)は、本発明の電磁波遮蔽部材の一例を概略的に示す部分切欠き平面図であり、図1(b)は、図1(a)に示したI−I線断面の概略図である。FIG. 1 (a) is a partially cutaway plan view schematically showing an example of the electromagnetic wave shielding member of the present invention, and FIG. 1 (b) is an outline of a cross section taken along the line I-I shown in FIG. 1 (a). FIG. 本発明でいう「細線部上での硬化塗膜の平均傾斜角度」の求め方を説明するための模式図である。It is a schematic diagram for demonstrating how to obtain | require the "average inclination angle of the cured coating film on a thin wire | line part" as used in the field of this invention.

符号の説明Explanation of symbols

1 透明基材
5 接着剤層
10 メッシュ状金属層
10a 細線部
12 光透過部
15 硬化塗膜
15a 隆起部
20 電磁波遮蔽部材
DESCRIPTION OF SYMBOLS 1 Transparent base material 5 Adhesive bond layer 10 Mesh-like metal layer 10a Fine wire part 12 Light transmission part 15 Cured coating film 15a Raised part 20 Electromagnetic wave shielding member

Claims (7)

透明基材と、該透明基材上に形成されて多数の光透過部を平面視上画定するメッシュ状金属層と、透明樹脂により形成されて前記メッシュ状金属層及び前記多数の光透過部を被覆する硬化塗膜とを有し、
前記硬化塗膜のうちで前記メッシュ状金属層上に位置する領域は、前記光透過部の平面視上の中央部に位置する領域よりも盛り上がって隆起部を形成しており、前記メッシュ状金属層の細線部での前記隆起部の平均傾斜角度が10°以下であることを特徴とする電磁波遮蔽部材。
A transparent base material, a mesh-like metal layer that is formed on the transparent base material and defines a plurality of light-transmitting portions in plan view, and a mesh-shaped metal layer and the plurality of light-transmitting portions that are formed of a transparent resin. Having a cured coating to coat,
Of the cured coating film, a region located on the mesh-like metal layer is raised above a region located at a central portion in plan view of the light transmission portion to form a raised portion, and the mesh-like metal The electromagnetic wave shielding member, wherein an average inclination angle of the raised portion in the thin line portion of the layer is 10 ° or less.
前記メッシュ状金属層が、前記透明基材上に接合剤により接合されていることを特徴とする請求項1に記載の電磁波遮蔽部材。 The electromagnetic shielding member according to claim 1, wherein the mesh metal layer is bonded onto the transparent base material with a bonding agent. 前記透明樹脂が鎖状構造を有していることを特徴とする請求項1又は2に記載の電磁波遮蔽部材。   The electromagnetic shielding member according to claim 1, wherein the transparent resin has a chain structure. 前記透明樹脂が架橋構造を有していることを特徴とする請求項1又は2に記載の電磁波遮蔽部材。   The electromagnetic wave shielding member according to claim 1, wherein the transparent resin has a crosslinked structure. 前記透明樹脂のガラス転移点が30〜150℃の範囲内であることを特徴とする請求項1〜4のいずれか1項に記載の電磁波遮蔽部材。   The electromagnetic wave shielding member according to any one of claims 1 to 4, wherein the glass transition point of the transparent resin is within a range of 30 to 150 ° C. 前記メッシュ状金属層の細線部上での前記硬化塗膜の最大膜厚の平均値が、1〜20μmの範囲内にあることを特徴とする請求項1〜5のいずれか1項に記載の電磁波遮蔽部材。   6. The average value of the maximum film thickness of the cured coating film on the fine line portion of the mesh-shaped metal layer is in the range of 1 to 20 μm, according to claim 1. Electromagnetic wave shielding member. 前記硬化塗膜に赤外線吸収剤が含有されていることを特徴とする請求項1〜6のいずれか1項に記載の電磁波遮蔽部材。
The electromagnetic wave shielding member according to claim 1, wherein an infrared absorber is contained in the cured coating film.
JP2005019461A 2005-01-27 2005-01-27 Electromagnetic wave shielding member Expired - Fee Related JP4867172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019461A JP4867172B2 (en) 2005-01-27 2005-01-27 Electromagnetic wave shielding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019461A JP4867172B2 (en) 2005-01-27 2005-01-27 Electromagnetic wave shielding member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011007188A Division JP5071562B2 (en) 2011-01-17 2011-01-17 Electromagnetic wave shielding member

Publications (2)

Publication Number Publication Date
JP2006210572A true JP2006210572A (en) 2006-08-10
JP4867172B2 JP4867172B2 (en) 2012-02-01

Family

ID=36967086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019461A Expired - Fee Related JP4867172B2 (en) 2005-01-27 2005-01-27 Electromagnetic wave shielding member

Country Status (1)

Country Link
JP (1) JP4867172B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216734A (en) * 2007-03-06 2008-09-18 Bridgestone Corp Filter for display and manufacturing method thereof
JP2008216770A (en) * 2007-03-06 2008-09-18 Bridgestone Corp Optical filter and manufacturing method thereof, optical filter for display and display provided with same, and plasma display panel
WO2009004957A1 (en) * 2007-06-29 2009-01-08 Toray Industries, Inc. Filter for display
WO2010007900A1 (en) 2008-07-17 2010-01-21 東レフィルム加工株式会社 Filter for display
JP2016024396A (en) * 2014-07-23 2016-02-08 旭化成イーマテリアルズ株式会社 Method for producing resist pattern

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162092A (en) * 1985-01-10 1986-07-22 セイコーインスツルメンツ株式会社 Musical sound generator
JPH11266096A (en) * 1998-03-17 1999-09-28 Nissha Printing Co Ltd Emi shielding material and manufacture thereof
JPH11337702A (en) * 1998-05-21 1999-12-10 Kyodo Printing Co Ltd Optical filter with electromagnetic wave shield
JP2002299876A (en) * 2001-03-30 2002-10-11 Dainippon Printing Co Ltd Radio wave absorptive package for portable telephones
JP2003008281A (en) * 2001-06-20 2003-01-10 Seiko Shokai:Kk Method of manufacturing translucent electromagnetic wave shield
JP2003069281A (en) * 2001-08-30 2003-03-07 Tomoegawa Paper Co Ltd Electromagnetic wave shield sheet and manufacturing method therefor
WO2004016061A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding sheet
JP2004333745A (en) * 2003-05-06 2004-11-25 Dainippon Printing Co Ltd Optical filter
JP2004333742A (en) * 2003-05-06 2004-11-25 Dainippon Printing Co Ltd Optical filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162092A (en) * 1985-01-10 1986-07-22 セイコーインスツルメンツ株式会社 Musical sound generator
JPH11266096A (en) * 1998-03-17 1999-09-28 Nissha Printing Co Ltd Emi shielding material and manufacture thereof
JPH11337702A (en) * 1998-05-21 1999-12-10 Kyodo Printing Co Ltd Optical filter with electromagnetic wave shield
JP2002299876A (en) * 2001-03-30 2002-10-11 Dainippon Printing Co Ltd Radio wave absorptive package for portable telephones
JP2003008281A (en) * 2001-06-20 2003-01-10 Seiko Shokai:Kk Method of manufacturing translucent electromagnetic wave shield
JP2003069281A (en) * 2001-08-30 2003-03-07 Tomoegawa Paper Co Ltd Electromagnetic wave shield sheet and manufacturing method therefor
WO2004016061A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding sheet
JP2004333745A (en) * 2003-05-06 2004-11-25 Dainippon Printing Co Ltd Optical filter
JP2004333742A (en) * 2003-05-06 2004-11-25 Dainippon Printing Co Ltd Optical filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216734A (en) * 2007-03-06 2008-09-18 Bridgestone Corp Filter for display and manufacturing method thereof
JP2008216770A (en) * 2007-03-06 2008-09-18 Bridgestone Corp Optical filter and manufacturing method thereof, optical filter for display and display provided with same, and plasma display panel
WO2009004957A1 (en) * 2007-06-29 2009-01-08 Toray Industries, Inc. Filter for display
WO2010007900A1 (en) 2008-07-17 2010-01-21 東レフィルム加工株式会社 Filter for display
JP2016024396A (en) * 2014-07-23 2016-02-08 旭化成イーマテリアルズ株式会社 Method for producing resist pattern

Also Published As

Publication number Publication date
JP4867172B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US20110019278A1 (en) Optical filter for display, process for the preparation of the same, and display and plasma display panel provided with the optical filter
JP2007272161A (en) Front filter for pdp
JP2006210573A (en) Member for shielding electromagnetic waves
JP2007094191A (en) Impact absorbing material for flat display, optical filter for plasma display, plasma display panel, and method of manufacturing impact absorbing material for flat display
WO2007123138A1 (en) Filter used for display
JP4867172B2 (en) Electromagnetic wave shielding member
JP2006189843A (en) Filter for display and its manufacturing method
JP2009069477A (en) Optical filter for display, display equipped therewith, and plasma display panel
JP2009222996A (en) Front filter for image display
JP2010205961A (en) Method of manufacturing filter for display
JP2010025959A (en) Optical filter for display, display with the same, and plasma display panel
JP2007101912A (en) Antiglare film, polarizing film, optical film and image display device
JP2007264579A (en) Optical filter for display and plasma display
JP2012089782A (en) Electroconductive external light-shielding material, electroconductive external light-shielding sheet body, front filter for image display device, and image display device
JP6931740B2 (en) Black structure and self-luminous image display device equipped with it
JP2004069931A (en) Complex optical film for plasma display
JP2010044128A (en) Filter for display
JP5071562B2 (en) Electromagnetic wave shielding member
JP5157218B2 (en) Composite filter for display
JP2007080930A (en) Filter for plasma display panel
JP2006201253A (en) Optical filter and its manufacturing method
JP2016206400A (en) Optical film and vehicle-mounted information display device produced using the same
JP2010015070A (en) Functional-composite ray control member and display panel using the same
JP2006054291A (en) Rolled electromagnetic-wave shield sheet, electromagnetic-wave shield member, and filter for display
JP2008176088A (en) Filter for display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees