JP2006209973A - Field emission electrode and manufacturing method thereof - Google Patents

Field emission electrode and manufacturing method thereof Download PDF

Info

Publication number
JP2006209973A
JP2006209973A JP2005016272A JP2005016272A JP2006209973A JP 2006209973 A JP2006209973 A JP 2006209973A JP 2005016272 A JP2005016272 A JP 2005016272A JP 2005016272 A JP2005016272 A JP 2005016272A JP 2006209973 A JP2006209973 A JP 2006209973A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
field emission
conductive polymer
emission electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005016272A
Other languages
Japanese (ja)
Other versions
JP4061411B2 (en
Inventor
Eiji Ito
栄次 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2005016272A priority Critical patent/JP4061411B2/en
Publication of JP2006209973A publication Critical patent/JP2006209973A/en
Application granted granted Critical
Publication of JP4061411B2 publication Critical patent/JP4061411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a field emission electrode capable of supplying a phosphor with a number of uniform electrons, and to provide a manufacturing method thereof. <P>SOLUTION: Carbon fiber 3 has a structure in which a plurality of carbon network layers are stacked in a direction perpendicular to or non-parallel to the axial direction of the fiber and the edges of the carbon network layers are exposed from the fiber surface. The field emission electrode 5 has a structure in which the carbon fiber 3 is embedded in a conductive polymer layer 4 having a thickness equal to or less than the diameter of the carbon fiber 3, and part of or all of the edges are exposed from the conductive polymer layer 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低電圧にて電子を放出する電界放出電極およびその製造方法に関する。   The present invention relates to a field emission electrode that emits electrons at a low voltage and a method for manufacturing the same.

最近、日本のみならず、韓国をはじめとする諸外国においても、電界放出型ディスプレイ(Field Emission Display:FED)の開発が活発に行われている(例えば、特許文献1参照。)。ここで、電界放出とは、固体表面に強い電場をかけた際に、固体表面に閉じ込められていた電子が真空中に飛び出す現象をいう。電子を放出させるためには固体に強い電界をかける必要があるが、細く尖った固体を使用すれば、小さな電界をかけるだけで済む。これまでは、細く尖らせたシリコン、モリブデン等の材料を電界放出型電子源として採用されてきたが、最近では、ナノスケールの細さと、良好な電気伝導性と、高強度と、化学的安定性とを兼ね備えた炭素繊維(特に、カーボンナノチューブ)が、新たな電界放出型電子源として期待されている(例えば、特許文献2参照。)。   Recently, field emission displays (FEDs) have been actively developed not only in Japan but also in other countries including Korea (see, for example, Patent Document 1). Here, field emission refers to a phenomenon in which, when a strong electric field is applied to the solid surface, the electrons confined in the solid surface jump out into the vacuum. In order to emit electrons, it is necessary to apply a strong electric field to the solid. However, if a thin and sharp solid is used, only a small electric field needs to be applied. Until now, materials such as finely sharpened silicon and molybdenum have been used as field emission electron sources, but recently, nanoscale thinness, good electrical conductivity, high strength, and chemical stability. Carbon fibers (particularly carbon nanotubes) that have both properties are expected as new field emission electron sources (for example, see Patent Document 2).

FEDは、ピクセル単位で配置される蛍光体に電子を当てて発光させることにより映像を形成するディスプレイである。炭素繊維を電界放出電子源として利用するには、FEDのガラス板の裏面に配置された蛍光体に向けて電子を放出できるように、蛍光体に対して、実質的に垂直に多数の炭素繊維を配置する必要がある。通常、多数の炭素繊維は、導電性高分子層中に立設されるが、この工程において、炭素繊維を導電性高分子層の層表面に対してどのくらい垂直に立設できるかが、FEDの性能を決める重要なファクタの一つとなる。   The FED is a display that forms an image by emitting light by applying electrons to a phosphor arranged in units of pixels. In order to use carbon fibers as a field emission electron source, a large number of carbon fibers are substantially perpendicular to the phosphor so that electrons can be emitted toward the phosphor disposed on the back surface of the glass plate of the FED. Need to be placed. Normally, a large number of carbon fibers are erected in the conductive polymer layer. In this process, how much carbon fiber can be erected with respect to the layer surface of the conductive polymer layer depends on the FED. This is one of the important factors that determine performance.

炭素繊維を導電性高分子中に埋設する方法としては、例えば、スピンコート法が知られている(例えば、特許文献3参照。)。スピンコート法は、導電性高分子と炭素繊維の電極材の混合物をディスク上に塗布して当該ディスクを回転させて、その遠心力を利用して薄く広げ、固化させる方法である。   As a method for embedding carbon fibers in a conductive polymer, for example, a spin coating method is known (see, for example, Patent Document 3). The spin coating method is a method in which a mixture of a conductive polymer and a carbon fiber electrode material is applied onto a disk, the disk is rotated, and thinly spread and solidified using the centrifugal force.

特開平8−248914号公報(要約書等)JP-A-8-248914 (abstract, etc.) 特開平10−149760号公報(特許請求の範囲、要約書等)JP-A-10-149760 (Claims, Abstracts, etc.) 特開2000−277004号公報(特許請求の範囲、要約書等)JP 2000-277004 A (Claims, Abstract, etc.)

導電性高分子層を形成する基板表面に対して略垂直に炭素繊維を立設する理由は、従来の炭素繊維の場合、繊維の長さ方向の端部しか電子放出部分となっていないためである。しかし、炭素繊維を基板表面に対して略垂直に揃えることは技術的な困難を伴う。例えば、スピンコート法を用いた場合、偶然、基板表面に対して略垂直になる炭素繊維が存在しても、その割合は少ない。多くの炭素繊維は、当該基板表面に水平若しくはある水平に近い角度で傾斜した状態で導電性高分子層中に埋設される。この結果、蛍光体に電子を供給するのに有効に寄与する炭素繊維の数は少なくなる。   The reason why the carbon fibers are erected substantially perpendicularly to the substrate surface on which the conductive polymer layer is formed is that, in the case of conventional carbon fibers, only the ends in the length direction of the fibers are electron emission portions. is there. However, it is technically difficult to align the carbon fibers substantially perpendicular to the substrate surface. For example, when the spin coating method is used, even if there is a carbon fiber that is substantially perpendicular to the substrate surface, the ratio is small. Many carbon fibers are embedded in the conductive polymer layer in a state where the carbon fiber is horizontal or inclined at an angle close to the horizontal. As a result, the number of carbon fibers that effectively contribute to supplying electrons to the phosphor is reduced.

スピンコート法以外に、電気泳動法を利用して、負極に導電性高分子と炭素繊維との混合物を堆積させる方法も考えられる。本発明者は、先に、電気泳動法により、導電性高分子層中における炭素繊維を、基板表面に対して垂直に立設させる確率を高めることに成功した。この結果、従来よりもより低電圧で多くの電子を放出させることができることを確認した。しかし、さらに、より低電圧で多くの電子を蛍光体に供給できることが強く望まれている。   In addition to the spin coating method, a method of depositing a mixture of a conductive polymer and carbon fiber on the negative electrode using an electrophoresis method is also conceivable. The present inventor first succeeded in increasing the probability that the carbon fibers in the conductive polymer layer are erected perpendicularly to the substrate surface by electrophoresis. As a result, it was confirmed that more electrons can be emitted at a lower voltage than before. However, it is strongly desired that more electrons can be supplied to the phosphor at a lower voltage.

本発明は、このような問題に鑑みてなされたものであり、より低電圧にて多くの電子を蛍光体に供給できる電界放出電極およびその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a field emission electrode that can supply more electrons to a phosphor at a lower voltage and a method for manufacturing the same.

上記目的を達成するため、本発明は、複数の炭素網層が繊維の軸方向と垂直若しくは当該軸方向と非平行方向に積層し、かつ炭素網層のエッジを繊維表面から露出させた構造の炭素繊維が、その炭素繊維の直径以下の厚みを持つ導電性高分子層に埋設され、エッジの一部若しくは全部が導電性高分子層から露出する構造を有する電界放出電極としている。このため、電界を印加した際に、炭素繊維の略円筒側面に露出した炭素網層のエッジ部分から電子が放出される。エッジは、炭素繊維の略円筒側面上に数多く存在するので、炭素繊維が導電性高分子層中に垂直に立設していなくても、低電圧にて蛍光体に向けて多くの電子を供給できる。   In order to achieve the above object, the present invention has a structure in which a plurality of carbon network layers are laminated in a direction perpendicular to the axial direction of the fiber or non-parallel to the axial direction, and the edges of the carbon network layer are exposed from the fiber surface. A carbon fiber is embedded in a conductive polymer layer having a thickness equal to or smaller than the diameter of the carbon fiber, and a field emission electrode having a structure in which a part or all of the edge is exposed from the conductive polymer layer. For this reason, when an electric field is applied, electrons are emitted from the edge portion of the carbon network layer exposed on the substantially cylindrical side surface of the carbon fiber. Since there are many edges on the substantially cylindrical side of carbon fiber, many electrons are supplied to the phosphor at a low voltage even if the carbon fiber is not erected vertically in the conductive polymer layer. it can.

また、別の本発明は、先の発明において、炭素繊維をカーボンナノチューブとした電界放出電極としている。このため、より低電圧にて電子を放出させることができる。   Another invention of the present invention is a field emission electrode in which carbon fibers are carbon nanotubes in the previous invention. For this reason, electrons can be emitted at a lower voltage.

また、別の本発明は、電界放出により電子を放出させる電界放出電極の製造方法であって、複数の炭素網層が繊維の軸方向と垂直若しくは当該軸方向と非平行方向に積層し、かつ上記炭素網層のエッジを繊維表面から露出させた構造の炭素繊維を、その直径以下の厚さを持つ導電性高分子層の中に埋設させる電界放出電極の製造方法としている。このため、炭素繊維の繊維側面の一部が導電性高分子層から露出した状態となる。具体的には、導電性高分子層を形成する基板表面に対して略垂直に炭素繊維を埋設した場合、炭素繊維側面の一部が導電性高分子層から露出した状態となる。また、炭素繊維が基板面に所定の角度で傾斜して導電性高分子層中に埋設された場合、埋設された部分以外の繊維側面は、その側面の全周にわたって導電性高分子層から露出した状態となる。このため、炭素繊維の側面に露出した炭素網層のエッジ部分から蛍光体に向けて、低電圧にて多くの電子を供給できる。   Another aspect of the present invention is a method of manufacturing a field emission electrode that emits electrons by field emission, wherein a plurality of carbon network layers are stacked perpendicular to the axial direction of the fiber or non-parallel to the axial direction, and In this method, a carbon fiber having a structure in which the edge of the carbon net layer is exposed from the fiber surface is embedded in a conductive polymer layer having a thickness equal to or less than the diameter of the carbon fiber. For this reason, a part of fiber side surface of carbon fiber will be in the state exposed from the conductive polymer layer. Specifically, when carbon fibers are embedded substantially perpendicularly to the substrate surface on which the conductive polymer layer is formed, a part of the side surface of the carbon fiber is exposed from the conductive polymer layer. In addition, when carbon fibers are embedded in the conductive polymer layer inclined at a predetermined angle to the substrate surface, the fiber side surfaces other than the embedded portion are exposed from the conductive polymer layer over the entire circumference of the side surfaces. It will be in the state. For this reason, many electrons can be supplied at a low voltage from the edge portion of the carbon network layer exposed on the side surface of the carbon fiber toward the phosphor.

また、別の本発明は、先の発明において、炭素繊維と導電性高分子とを含む溶媒を基板上に滴下し、その滴下した基板の回転数を調整して回転させて、導電性高分子層の厚さを、炭素繊維の直径以下とする電界放出電極の製造方法としている。このため、簡単に、低電圧にて多くの電子を蛍光体に供給できる電界放出電極を製造できる。導電性高分子層の厚さは、基板の回転数を調整するだけで炭素繊維の直径以下に制御できる。   In another aspect of the present invention, in the previous invention, a solvent containing carbon fiber and a conductive polymer is dropped on a substrate, and the rotational speed of the dropped substrate is adjusted and rotated, thereby the conductive polymer. In this method, the thickness of the layer is set to be equal to or less than the diameter of the carbon fiber. Therefore, it is possible to easily manufacture a field emission electrode that can supply many electrons to the phosphor at a low voltage. The thickness of the conductive polymer layer can be controlled to be equal to or less than the diameter of the carbon fiber simply by adjusting the number of rotations of the substrate.

また、別の本発明は、先の発明において、炭素繊維をカーボンナノチューブとした電界放出電極の製造方法としている。このため、より低電圧にて電子を放出させることができる。   Another aspect of the present invention is the method of manufacturing a field emission electrode in which the carbon fiber is a carbon nanotube in the previous invention. For this reason, electrons can be emitted at a lower voltage.

本発明で用いられる炭素繊維は、カーボンナノチューブのような筒状の炭素繊維のみならず、中実の炭素繊維も含む広義の意味に解釈される。また、ここで用いられる炭素繊維には、繊維の軸方向にのみ電子放出部分が存在するSWCNT(Sigle Walled-Carbon Nano Tube)あるいはMWCNT(Sigle Walled-Carbon Nano Tube)は含まれず、繊維の軸と垂直あるいは垂直ではないがある角度で当該軸から傾斜して炭素網層の端部が存在するものが含まれる。すなわち、本発明で用いられる炭素繊維は、その炭素繊維の長さ方向の端部から電子を放出できるか否かは問わず、炭素繊維の繊維側面から電子を放出できる炭素繊維である。また、本発明で用いられるカーボンナノチューブは、直径が1ナノメール以下の極細のカーボンナノチューブの他、数ナノメートルから数百ナノメートルの中細のカーボンナノチューブ、さらにはもっと径の太い筒状カーボン繊維も含むものとして広義に解釈されるものとする。すなわち、径の大きさを問わず、長さ方向にわたって筒状であれば、本発明のカーボンナノチューブに含まれるものとする。また、本発明で用いられる炭素繊維の製造方法としては、アーク放電法、レーザーアブレーション法、プラズマ合成法、化学気相析出(Chemical Vapor Deposition: CVD)法等のいずれの製法により製造されたものでも採用可能である。ただし、量産に有利なCVD法により製造されたCNTの方が好ましい。   The carbon fiber used in the present invention is interpreted in a broad sense including not only a cylindrical carbon fiber such as a carbon nanotube but also a solid carbon fiber. In addition, the carbon fiber used here does not include SWCNT (Sigle Walled-Carbon Nano Tube) or MWCNT (Sigle Walled-Carbon Nano Tube) in which an electron emission portion exists only in the axial direction of the fiber. Including those where the edge of the carbon network layer is present at an angle that is perpendicular or not perpendicular to the axis. In other words, the carbon fiber used in the present invention is a carbon fiber that can emit electrons from the fiber side surface of the carbon fiber regardless of whether electrons can be emitted from the end of the carbon fiber in the longitudinal direction. The carbon nanotubes used in the present invention include ultra-thin carbon nanotubes having a diameter of 1 nanometer or less, medium-thin carbon nanotubes of several nanometers to several hundred nanometers, and cylindrical carbon fibers having a larger diameter. It shall be interpreted in a broad sense as including. That is, regardless of the size of the diameter, any carbon nanotube in the length direction is included in the carbon nanotube of the present invention. The carbon fiber used in the present invention may be produced by any method such as arc discharge, laser ablation, plasma synthesis, chemical vapor deposition (CVD), etc. It can be adopted. However, CNTs produced by a CVD method advantageous for mass production are preferred.

また、導電性高分子は、ドーパントにより金属並みに電気を流す高分子をいう。ここで使用可能な導電性高分子としては、有機溶媒に可溶の導電性高分子であれば適用可能である。また、導入される置換基としては、炭化水素基(アルキル基など)が好ましい。このアルキル基は、直鎖及び分岐鎖のいずれであっても良いが、好ましくは、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が良い。アルキル基の長さは、可溶性と耐熱性とを考慮すると、炭素数4以上20以下の範囲のものが好ましい。特に、アルキル基が炭素8個から成るポリ(3−オクチルチオフェン)あるいは炭素6個から成るポリ(3−ヘキチルチオフェン)を採用するのが好ましい。好適な導電性高分子としては、例えば、ポリ[3,4−(エチレンジオキシ)チオフェン−ポリ(スチレンスルホン酸)(poly[3,4-(ethylenedioxy)thiophene]-poly(styrenesulfonic acid):PEDOT-PSS)、ポリビニルカルバゾール、可溶性ポリパラフェニレンビニレン(MEH-PPV(Poly[2-methoxy-5-(2'ethylhexyloxy)-1,4-phenylenevinylene] )、可溶性ポリアニリン、ポリ(アルキル)フルオレンあるいはポリ(アルキル)チオフェン等が挙げられる。特に、導電性に優れるPEDOT−PSSが望ましい。なお、上記導電性高分子を複数混ぜて使用しても良い。   The conductive polymer refers to a polymer that conducts electricity like a metal by a dopant. As the conductive polymer usable here, any conductive polymer soluble in an organic solvent can be used. The introduced substituent is preferably a hydrocarbon group (such as an alkyl group). The alkyl group may be either a straight chain or a branched chain, but is preferably a hexyl group, a heptyl group, an octyl group, a nonyl group, or a decyl group. In consideration of solubility and heat resistance, the length of the alkyl group is preferably in the range of 4 to 20 carbon atoms. In particular, it is preferable to employ poly (3-octylthiophene) having 8 carbon atoms or poly (3-hexylthiophene) having 6 carbon atoms. As a suitable conductive polymer, for example, poly [3,4- (ethylenedioxy) thiophene-poly (styrenesulfonic acid) (poly [3,4- (ethylenedioxy) thiophene] -poly (styrenesulfonic acid): PEDOT -PSS), polyvinylcarbazole, soluble polyparaphenylene vinylene (MEH-PPV (Poly [2-methoxy-5- (2'ethylhexyloxy) -1,4-phenylenevinylene]), soluble polyaniline, poly (alkyl) fluorene or poly ( Alkyl) thiophene, etc. In particular, PEDOT-PSS, which is excellent in conductivity, is desirable, and a plurality of the above conductive polymers may be mixed and used.

また、本発明の電界放出電極を製造する方法としては、低コストで製造できるスピンコート法を採用するのが好適ではあるが、電気泳動法、ドクターブレード法、スキージ法、あるいはスクリーン印刷法等の他の形成方法を採用することもできる。   Further, as a method for producing the field emission electrode of the present invention, it is preferable to employ a spin coating method that can be produced at a low cost, but an electrophoresis method, a doctor blade method, a squeegee method, a screen printing method, etc. Other forming methods can also be employed.

本発明によれば、より低電圧にて多くの電子を蛍光体に供給できる電界放出電極およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the field emission electrode which can supply many electrons to fluorescent substance with a lower voltage, and its manufacturing method can be provided.

以下、本発明に係る電界放出電極およびその製造方法の実施の形態について説明する。   Hereinafter, embodiments of a field emission electrode and a method for manufacturing the same according to the present invention will be described.

図1は、本発明の実施の形態にかかる電界放出電極に用いられる炭素繊維の模式図であり、(1A)は、当該炭素繊維の製造過程を、(1B)は当該炭素繊維の斜視図を示す。また、図2は、本発明の実施の形態にかかる電界放出電極に用いられる別の炭素繊維の模式図であり、(2A)は、当該別の炭素繊維の製造過程を、(2B)は当該別の炭素繊維の斜視図を示す。   FIG. 1 is a schematic view of a carbon fiber used in a field emission electrode according to an embodiment of the present invention. (1A) is a manufacturing process of the carbon fiber, and (1B) is a perspective view of the carbon fiber. Show. FIG. 2 is a schematic view of another carbon fiber used for the field emission electrode according to the embodiment of the present invention. (2A) shows the manufacturing process of the other carbon fiber, and (2B) shows the carbon fiber. The perspective view of another carbon fiber is shown.

800〜1200℃で加熱された領域に、金属触媒1の存在下で炭化水素ガス(例えば、ベンゼンガス)と水素を流すと、該金属触媒1から、板状の炭素プレートレット2aが繊維の成長方向(長さ方向)に多数積層した構造の炭素繊維3が形成される。また、金属触媒1の種類等の製造条件を調整することにより、図2に示すような環状の炭素プレートレット2bが繊維の成長方向(長さ方向)に多数積層した構造の炭素繊維3が形成される。なお、以後、板状の炭素プレートレット2a、環状の炭素プレートレット2b等を、総称して炭素プレートレット(炭素網層)2という。炭素プレートレット2が長さ方向に積層した構造の炭素繊維3は、電界を印加した際に、その長さ方向の端部以外に、炭素プレートレット2のエッジの部分から電子を放出するという特殊な性質を有する。   When a hydrocarbon gas (for example, benzene gas) and hydrogen are allowed to flow in a region heated at 800 to 1200 ° C. in the presence of the metal catalyst 1, the plate-like carbon platelet 2 a grows from the metal catalyst 1. Carbon fibers 3 having a structure in which a large number of layers are laminated in the direction (length direction) are formed. Further, by adjusting the production conditions such as the type of the metal catalyst 1, carbon fibers 3 having a structure in which a large number of annular carbon platelets 2b as shown in FIG. 2 are laminated in the fiber growth direction (length direction) are formed. Is done. Hereinafter, the plate-like carbon platelet 2a, the annular carbon platelet 2b, and the like are collectively referred to as a carbon platelet (carbon network layer) 2. The carbon fiber 3 having a structure in which the carbon platelets 2 are laminated in the length direction has a special feature that, when an electric field is applied, electrons are emitted from the edge portion of the carbon platelet 2 in addition to the end portions in the length direction. It has special properties.

図3は、FEDの電極近傍を示す図であって、電極上に形成された導電性高分子層4と炭素繊維3とから構成される電界放出電極5の断面図である。図中、導電性高分子層4中に埋まっている炭素繊維3の部分は、点線で図示されている。   FIG. 3 is a view showing the vicinity of the electrode of the FED, and is a cross-sectional view of the field emission electrode 5 composed of the conductive polymer layer 4 and the carbon fiber 3 formed on the electrode. In the figure, the portion of the carbon fiber 3 embedded in the conductive polymer layer 4 is shown by a dotted line.

ここで、導電性高分子層4の厚さは、炭素繊維3の直径以下とする必要がある。「直径」は、用いる炭素繊維3中の最も太い炭素繊維3の直径をいう。ただし、導電性高分子層4の厚さは、炭素繊維3の平均的な太さの炭素繊維3の直径(すなわち、平均直径)以下とするのが、より望ましい。好適な例としては、炭素繊維3の平均直径を80nmとすると、導電性高分子層4の厚さを40nmとするのが良い。導電性高分子層4の厚さを炭素繊維3の直径以下とすると、炭素繊維3が透明導電性基板の面に平行に埋設されても、一部若しくは全部の炭素繊維3の各炭素プレートレット2が導電性高分子層4から外に露出されることになり、電界印加時に、各炭素プレートレット2のエッジ部分から電子を放出させやすくなる。すなわち、炭素繊維3を導電性高分子層4上に必ずしも垂直に立設させなくても、低電圧で十分な数の電子を放出させることができる。   Here, the thickness of the conductive polymer layer 4 needs to be equal to or less than the diameter of the carbon fiber 3. “Diameter” refers to the diameter of the thickest carbon fiber 3 in the carbon fiber 3 to be used. However, it is more desirable that the thickness of the conductive polymer layer 4 is equal to or less than the diameter (that is, the average diameter) of the carbon fibers 3 having an average thickness of the carbon fibers 3. As a preferred example, when the average diameter of the carbon fibers 3 is 80 nm, the thickness of the conductive polymer layer 4 is preferably 40 nm. If the thickness of the conductive polymer layer 4 is equal to or less than the diameter of the carbon fiber 3, even if the carbon fiber 3 is embedded in parallel to the surface of the transparent conductive substrate, each carbon platelet of some or all of the carbon fibers 3 is used. 2 is exposed to the outside from the conductive polymer layer 4, and electrons are easily emitted from the edge portion of each carbon platelet 2 when an electric field is applied. In other words, a sufficient number of electrons can be emitted at a low voltage without the carbon fiber 3 standing vertically on the conductive polymer layer 4.

図4は、本発明の実施の形態にかかる電子放出電極5を有する表示装置の模式図である。   FIG. 4 is a schematic view of a display device having the electron emission electrode 5 according to the embodiment of the present invention.

図4に示す表示装置(ここでは、「FED」として説明する。)は、カソードガラスシート6とアノードガラスシート7とが真空中にて互いに対向して配置される構成を有している。アノードガラスシート7における真空領域側の面には、蛍光体8を配置した電極9が設けられている。一方、カソードガラスシート6には、ゲート電極10と、電界放出電極5を取り付けた導電性基板11が配置されている。   The display device shown in FIG. 4 (herein described as “FED”) has a configuration in which a cathode glass sheet 6 and an anode glass sheet 7 are arranged to face each other in a vacuum. On the surface of the anode glass sheet 7 on the vacuum region side, an electrode 9 in which a phosphor 8 is arranged is provided. On the other hand, the cathode glass sheet 6 is provided with a conductive substrate 11 to which a gate electrode 10 and a field emission electrode 5 are attached.

かかる構成のFEDにおいて、導電性基板11上の基準配線とゲート電極10との間に電圧をかけると、電界放出電極5の表面に露出している炭素繊維3から真空中に電子が放出される。具体的には、炭素繊維3を構成する炭素プレートレット2のエッジおよび炭素繊維3の長さ方向端部から真空中に電子が放出される。真空中に放出された電子は、電極9と導電性基板11との間にかけられる電圧により、アノードガラスシート7の方向に進み、蛍光体8に衝突して、これを発光させる。   In the FED having such a configuration, when a voltage is applied between the reference wiring on the conductive substrate 11 and the gate electrode 10, electrons are emitted into the vacuum from the carbon fibers 3 exposed on the surface of the field emission electrode 5. . Specifically, electrons are emitted into the vacuum from the edges of the carbon platelets 2 constituting the carbon fibers 3 and the lengthwise ends of the carbon fibers 3. The electrons emitted into the vacuum travel in the direction of the anode glass sheet 7 by the voltage applied between the electrode 9 and the conductive substrate 11, collide with the phosphor 8, and emit light.

図5は、本発明の実施の形態にかかる電界放出電極5を製造する工程の一部を示すフローチャートである。   FIG. 5 is a flowchart showing a part of the process of manufacturing the field emission electrode 5 according to the embodiment of the present invention.

まず、炭素繊維3と導電性高分子とを溶媒中にて混合する(ステップS1)。次に、その混合物から成る薄膜をITO等の導電性基板上に形成する(ステップS2)。その形成方法としては、スピンコート法、ディップコート法等の方法を採用できる。次に、熱処理を施して(ステップS3)、混合物薄膜を固化して電界放出電極5を作製する。   First, the carbon fiber 3 and the conductive polymer are mixed in a solvent (step S1). Next, a thin film made of the mixture is formed on a conductive substrate such as ITO (step S2). As the formation method, a spin coating method, a dip coating method or the like can be employed. Next, heat treatment is performed (step S3), and the mixture thin film is solidified to produce the field emission electrode 5.

また、上記ステップS3に続いて、炭素繊維3を露出させる工程を追加する製法を採用しても良い。炭素繊維3はスピンコートで形成した際、しばしば導電性高分子層4中に埋没してしまう。導電性高分子層4の表面層を除去することにより埋没した炭素繊維3を露出させると、電子放出特性をいっそう向上させることができる。具体的には、次のような方法で炭素繊維3を露出させることができる。   Moreover, you may employ | adopt the manufacturing method which adds the process of exposing the carbon fiber 3 following said step S3. When the carbon fiber 3 is formed by spin coating, it is often buried in the conductive polymer layer 4. When the buried carbon fiber 3 is exposed by removing the surface layer of the conductive polymer layer 4, the electron emission characteristics can be further improved. Specifically, the carbon fiber 3 can be exposed by the following method.

一つは、導電性高分子をエッチングする方法である。多くの高分子材料は 酸素プラズマ処理することでエッチングできる。本発明の導電性高分子も例外ではない。この手法は 反応性イオンエッチング(Reactive Ion Etching :RIE) あるいはプラズマアッシング法として知られている。具体的には、減圧した真空容器に、酸素ガス若しくは酸素とアルゴンの混合ガスを導入し(条件により異なるが1〜20mTorr程度、好ましくは10mTorr程度)、高周波電力を供給することでプラズマを発生させる。この際に発生する活性な酸素イオンは、選択的に高分子材料を削り取る。カーボンナノチューブ等の炭素繊維3も炭素材料であるので、プラズマによるダメージはある。   One is a method of etching a conductive polymer. Many polymer materials can be etched by oxygen plasma treatment. The conductive polymer of the present invention is no exception. This method is known as reactive ion etching (RIE) or plasma ashing. Specifically, oxygen gas or a mixed gas of oxygen and argon is introduced into a decompressed vacuum vessel (depending on conditions, about 1 to 20 mTorr, preferably about 10 mTorr), and plasma is generated by supplying high-frequency power. . Active oxygen ions generated at this time selectively scrape the polymer material. Since carbon fibers 3 such as carbon nanotubes are also carbon materials, they are damaged by plasma.

しかし、炭素繊維3は高分子材料よりも耐酸素プラズマ特性が強いため、適度なパワー(0.1〜10W/cm程度)では高分子材料の方が主として削り取られる。その結果、炭素繊維3が露出し、電子放出の活性化を図ることができる。なお、このプラズマ処理により炭素繊維3が若干削られてエッジが増えることにより一層の電子放出も期待できる。 However, since the carbon fiber 3 has stronger oxygen-resistant plasma characteristics than the polymer material, the polymer material is mainly scraped off at an appropriate power (about 0.1 to 10 W / cm 2 ). As a result, the carbon fiber 3 is exposed and the electron emission can be activated. It should be noted that further electron emission can be expected by slightly cutting the carbon fiber 3 and increasing the edges by this plasma treatment.

もう一つは、導電性高分子を溶解する方法である。一旦、スピンコート法等で成膜された電界放出電極5の表面は、導電性高分子に覆われる場合がある。このため、導電性高分子層4の表面を溶かして炭素繊維3を露出させることが有効である。導電性高分子は可溶性であるため、溶媒に浸すと導電性高分子がなくなってしまう。しかし、導電性高分子に対して溶解度が低い溶媒、例えば、PEDOT−PSSではアルコール系材料、ポリチオフェン系材料では芳香族系溶媒もしくはアルコールなどを 成膜後に基板表面に落とした後、すばやくスピンコートと同様に高速回転して溶媒を飛ばすことで導電性高分子層4の表面が溶けだす。この結果、炭素繊維3が効果的に露出する。   The other is a method of dissolving a conductive polymer. The surface of the field emission electrode 5 once formed by spin coating or the like may be covered with a conductive polymer. For this reason, it is effective to expose the carbon fiber 3 by melting the surface of the conductive polymer layer 4. Since the conductive polymer is soluble, the conductive polymer disappears when immersed in a solvent. However, a solvent having low solubility with respect to the conductive polymer, for example, an alcohol-based material in PEDOT-PSS, an aromatic solvent or alcohol in a polythiophene-based material is dropped on the substrate surface after film formation, Similarly, the surface of the conductive polymer layer 4 is melted by rotating at high speed to remove the solvent. As a result, the carbon fiber 3 is effectively exposed.

なお、溶媒に直接浸すと膜の均一性が失われやすい。そこで、上記溶媒や溶解度が高い溶媒、例えばPEDOT−PSSでは水若しくはアルコール、ポチアルキルチオフェンではクロロホルム等の塩素系溶媒若しくはトルエン、キシレン、ベンゼン等の芳香族系溶媒の蒸気中にサンプルを配置する。この際、密閉空間中で溶液を置き、その近くに成膜されたサンプルを配置する。溶媒の種類と温度によって状況は異なるが、およそ数分から数時間放置することで、導電性高分子層4の表面が溶けて、炭素繊維3が露出する。   In addition, when immersed directly in a solvent, the uniformity of the film tends to be lost. Therefore, the sample is placed in the above solvent or a solvent having high solubility, for example, water or alcohol in PEDOT-PSS, or chlorine solvent such as chloroform or aromatic solvent such as toluene, xylene, or benzene in potyalkylthiophene. At this time, the solution is placed in a sealed space, and a film-formed sample is placed near the solution. Although the situation varies depending on the type and temperature of the solvent, the surface of the conductive polymer layer 4 is melted and the carbon fiber 3 is exposed by leaving it for about several minutes to several hours.

以上説明した各方法を採用することにより、効果的に炭素繊維3を露出させることができ、電子放出特性を改善できる。   By adopting each method described above, the carbon fiber 3 can be effectively exposed and the electron emission characteristics can be improved.

図6は、電界放出電極5の電子放出能を測定する方法を説明するための図である。   FIG. 6 is a diagram for explaining a method of measuring the electron emission ability of the field emission electrode 5.

電子放出能の測定は、真空容器12中にて行われる。基板13上にはITO等の導電性基板14があり、その上に、導電性高分子層4とその中に埋設される炭素繊維3とから構成される電界放出電極5が形成されている。この基板13上の周囲には、電界放出電極5よりも厚いスペーサ15が配置される。そのスペーサ15上には、基板16が配置されている。基板16のスペーサ15との接触面にはITO等の導電性電極17が形成されている。導電性基板14と導電性電極17との間は、電圧を可変できる電源18と電流計19を経由して配線で接続されている。真空容器12中を十分に真空に引いた後、電源18の電圧を上げていき、電流計19の値の変化を調べることによって、電界放出電極5の電子放出能を評価することができる。   The electron emission ability is measured in the vacuum vessel 12. A conductive substrate 14 such as ITO is provided on the substrate 13, and a field emission electrode 5 composed of the conductive polymer layer 4 and the carbon fiber 3 embedded therein is formed thereon. A spacer 15 thicker than the field emission electrode 5 is disposed around the substrate 13. A substrate 16 is disposed on the spacer 15. A conductive electrode 17 such as ITO is formed on the contact surface of the substrate 16 with the spacer 15. The conductive substrate 14 and the conductive electrode 17 are connected by a wiring via a power source 18 and an ammeter 19 that can change the voltage. After the vacuum vessel 12 is sufficiently evacuated, the voltage of the power source 18 is increased, and the change in the value of the ammeter 19 is examined to evaluate the electron emission ability of the field emission electrode 5.

PEDOT−PSS1.3重量%水溶液を、同重量のプロパノールで希釈する。その希釈溶液中に、図2に示す構造の炭素繊維(環状炭素プレートレット積層型の炭素繊維)3をPEDOT−PSSの重量に対して10重量%となるように混合した(混合液2)。また、比較として、炭素繊維3の代わりに、アルドリッチ社製の直径12〜15オングストロームのSWCNTをPEDOT−PSSに対して10重量%混合したものも用意した(混合液1)。   A 1.3% by weight aqueous solution of PEDOT-PSS is diluted with the same weight of propanol. In the diluted solution, carbon fiber (cyclic carbon platelet laminate type carbon fiber) 3 having the structure shown in FIG. 2 was mixed so as to be 10% by weight with respect to the weight of PEDOT-PSS (mixed solution 2). For comparison, a mixture of SWCNTs having a diameter of 12 to 15 angstroms manufactured by Aldrich instead of carbon fiber 3 and 10% by weight with respect to PEDOT-PSS was also prepared (mixed solution 1).

次に、混合液1および混合液2をそれぞれ回転板上に滴下し、当該回転板を4000rpmで30秒間回転させて、混合液1および混合液2を薄く延ばした。次に、約1時間乾燥してから、90〜100℃で30分間の熱処理を行い、電界放出電極5を作製した。混合液1および混合液2から作製した各電界放出電極5は、真空下で電子放出能の評価に供された。   Next, the liquid mixture 1 and the liquid mixture 2 were dropped on the rotating plate, respectively, and the rotating plate was rotated at 4000 rpm for 30 seconds, so that the liquid mixture 1 and the liquid mixture 2 were thinly extended. Next, after drying for about 1 hour, a heat treatment was performed at 90 to 100 ° C. for 30 minutes to produce a field emission electrode 5. Each field emission electrode 5 produced from the liquid mixture 1 and the liquid mixture 2 was subjected to evaluation of electron emission ability under vacuum.

図7は、炭素繊維3およびSWCNTを用いた各電界放出電極5の電子放出能を比較して示すグラフである。横軸は電圧、縦軸は電流密度である。また、SWCNTを用いた電界放出電極5の電子放出能を示す曲線を、白抜き三角でプロットした(グラフ中では、「CNT1」の曲線で示した。)。また、炭素繊維3を用いた電界放出電極5の電子放出能を示す曲線を、黒丸でプロットした(グラフ中では、「CNT2」の曲線で示した。)。   FIG. 7 is a graph showing a comparison of the electron emission ability of each field emission electrode 5 using carbon fiber 3 and SWCNT. The horizontal axis is voltage, and the vertical axis is current density. In addition, a curve indicating the electron emission ability of the field emission electrode 5 using SWCNT was plotted with white triangles (indicated by the curve of “CNT1” in the graph). Further, a curve indicating the electron emission ability of the field emission electrode 5 using the carbon fiber 3 was plotted with a black circle (indicated by a curve of “CNT2” in the graph).

SWCNTを用いた電界放出電極5では、約6V/μmから急に電流が流れ出した。これに対して、炭素繊維3を用いた電界放出電極5では、3〜4V/μmから急に電流が流れ出した。この結果から、繊維側面に多くのエッジを持つ炭素繊維3を用いた電界放出電極5の方が、SWCNTを用いたものよりも低電圧で電子放出が可能であることがわかった。   In the field emission electrode 5 using SWCNT, a current suddenly started to flow from about 6 V / μm. In contrast, in the field emission electrode 5 using the carbon fiber 3, a current suddenly started to flow from 3 to 4 V / μm. From this result, it was found that the field emission electrode 5 using the carbon fiber 3 having many edges on the fiber side face can emit electrons at a lower voltage than that using the SWCNT.

以上、本発明の実施の形態および実施例について説明したが、本発明は、上記実施の形態あるいは実施例に限定されず、種々変形を施した形態にて実施可能である。   While the embodiments and examples of the present invention have been described above, the present invention is not limited to the above-described embodiments or examples, and can be implemented in variously modified forms.

例えば、炭素プレートレット2は、炭素繊維3の長さ方向に対して垂直ではなく、当該長さ方向に対して非平行方向(垂直を除く)に傾斜していても良い。また、導電性高分子層4の厚さは、炭素繊維3の直径と同じ大きさでも良い。すなわち、全ての炭素繊維3が完全に導電性高分子層4中に埋没していなければ良い。   For example, the carbon platelet 2 may be inclined not in a direction perpendicular to the length direction of the carbon fibers 3 but in a non-parallel direction (except for the vertical direction) with respect to the length direction. Further, the thickness of the conductive polymer layer 4 may be the same as the diameter of the carbon fiber 3. That is, it is sufficient that all the carbon fibers 3 are not completely buried in the conductive polymer layer 4.

本発明は、FED用の電界放出電極を製造および使用する産業に利用できる。   The present invention can be used in industries that manufacture and use field emission electrodes for FEDs.

本発明の実施の形態にかかる電界放出電極に用いられる炭素繊維の模式図であり、(1A)は、当該炭素繊維の製造過程を、(1B)は当該炭素繊維の斜視図を示す。It is a schematic diagram of the carbon fiber used for the field emission electrode concerning embodiment of this invention, (1A) shows the manufacturing process of the said carbon fiber, (1B) shows the perspective view of the said carbon fiber. 本発明の実施の形態にかかる電界放出電極に用いられ、図1に示す炭素繊維とは別の形態を有する炭素繊維の模式図であり、(2A)は、当該別の炭素繊維の製造過程を、(2B)は当該別の炭素繊維の斜視図を示す。It is a schematic diagram of the carbon fiber which is used for the field emission electrode concerning embodiment of this invention, and has a form different from the carbon fiber shown in FIG. 1, (2A) is the manufacturing process of the said another carbon fiber. , (2B) shows a perspective view of the other carbon fiber. 本発明の実施の形態にかかる電界放出電極を用いたFEDの電極近傍を示す図であって、透明導電性基板に形成された導電性高分子層と炭素繊維とから構成される電界放出電極の断面図である。It is a figure which shows the electrode vicinity of FED using the field emission electrode concerning embodiment of this invention, Comprising: The field emission electrode comprised from the conductive polymer layer and carbon fiber which were formed in the transparent conductive substrate It is sectional drawing. 本発明の実施の形態にかかる電子放出電極を有する表示装置の模式図である。It is a schematic diagram of the display apparatus which has the electron emission electrode concerning embodiment of this invention. 本発明の実施の形態にかかる電界放出電極を製造する工程の一部を示すフローチャートである。It is a flowchart which shows a part of process of manufacturing the field emission electrode concerning embodiment of this invention. 本発明の実施の形態にかかる電子放出電極の電子放出能を測定する方法を説明するための図である。It is a figure for demonstrating the method to measure the electron emission ability of the electron emission electrode concerning embodiment of this invention. 本発明の実施例において、炭素繊維およびSWCNTを用いた各電界放出電極の電子放出能を比較して示すグラフである。In the Example of this invention, it is a graph which compares and shows the electron emission ability of each field emission electrode using carbon fiber and SWCNT.

符号の説明Explanation of symbols

2 炭素プレートレット(炭素網層)
3 炭素繊維(カーボンナノチューブをも含む)
4 導電性高分子層
5 電界放出電極
2 Carbon platelet (carbon mesh layer)
3 Carbon fiber (including carbon nanotubes)
4 Conductive polymer layer 5 Field emission electrode

Claims (5)

複数の炭素網層が繊維の軸方向と垂直若しくは当該軸方向と非平行方向に積層し、かつ上記炭素網層のエッジを繊維表面から露出させた構造の炭素繊維が、その炭素繊維の直径以下の厚みを持つ導電性高分子層に埋設され、上記エッジの一部若しくは全部が上記導電性高分子層から露出する構造を有することを特徴とする電界放出電極。   A carbon fiber having a structure in which a plurality of carbon network layers are laminated in a direction perpendicular to the axial direction of the fiber or non-parallel to the axial direction, and the edge of the carbon network layer is exposed from the fiber surface is equal to or less than the diameter of the carbon fiber A field emission electrode characterized by being embedded in a conductive polymer layer having a thickness of 5 mm and having a structure in which part or all of the edge is exposed from the conductive polymer layer. 前記炭素繊維は、カーボンナノチューブであることを特徴とする請求項1に記載の電界放出電極。   The field emission electrode according to claim 1, wherein the carbon fiber is a carbon nanotube. 電界放出により電子を放出させる電界放出電極の製造方法であって、
複数の炭素網層が繊維の軸方向と垂直若しくは当該軸方向と非平行方向に積層し、かつ上記炭素網層のエッジを繊維表面から露出させた構造の炭素繊維を、その直径以下の厚さを持つ導電性高分子層の中に埋設させることを特徴とする電界放出電極の製造方法。
A method of manufacturing a field emission electrode that emits electrons by field emission,
A carbon fiber having a structure in which a plurality of carbon network layers are laminated in a direction perpendicular to or in a direction parallel to the axial direction of the fiber and the edge of the carbon network layer is exposed from the fiber surface has a thickness equal to or less than its diameter. A method for producing a field emission electrode, wherein the method is embedded in a conductive polymer layer.
前記炭素繊維と導電性高分子とを含む溶媒を基板上に滴下し、その滴下した基板の回転数を調整して回転させて、前記導電性高分子層の厚さを、前記炭素繊維の直径以下とすることを特徴とする請求項3に記載の電界放出電極の製造方法。   The solvent containing the carbon fiber and the conductive polymer is dropped on the substrate, the rotation number of the dropped substrate is adjusted and rotated, and the thickness of the conductive polymer layer is set to the diameter of the carbon fiber. The method of manufacturing a field emission electrode according to claim 3, wherein: 前記炭素繊維は、カーボンナノチューブであることを特徴とする請求項3または4に記載の電界放出電極の製造方法。   The method of manufacturing a field emission electrode according to claim 3, wherein the carbon fiber is a carbon nanotube.
JP2005016272A 2005-01-25 2005-01-25 Field emission electrode and manufacturing method thereof Active JP4061411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016272A JP4061411B2 (en) 2005-01-25 2005-01-25 Field emission electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016272A JP4061411B2 (en) 2005-01-25 2005-01-25 Field emission electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006209973A true JP2006209973A (en) 2006-08-10
JP4061411B2 JP4061411B2 (en) 2008-03-19

Family

ID=36966594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016272A Active JP4061411B2 (en) 2005-01-25 2005-01-25 Field emission electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4061411B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261108A (en) * 2005-02-17 2006-09-28 Sonac Kk Cold-cathode electron source, its manufacturing method and display device
JP2007324064A (en) * 2006-06-02 2007-12-13 Sonac Kk Cold-cathode electron source
JP2008198580A (en) * 2007-02-16 2008-08-28 Shinshu Univ Carbon fiber-conductive polymer composite electrode and its manufacturing method
JP2009202379A (en) * 2008-02-27 2009-09-10 Kiyoshi Chiba Laminated body
TWI561679B (en) * 2014-04-04 2016-12-11 Nippon Steel & Sumitomo Metal Corp Transparent electrode and organic electronic device
WO2022070103A1 (en) * 2020-09-30 2022-04-07 Ncx Corporation Method of forming field emission cathodes by co-electrodeposition
WO2022091002A1 (en) * 2020-10-30 2022-05-05 Ncx Corporation Methods of forming a field emission cathode

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090813A (en) * 1998-06-18 2000-03-31 Matsushita Electric Ind Co Ltd Electron emission element, electron emission source, their manufacture, image display device using them, and its manufacture
JP2000100318A (en) * 1998-09-24 2000-04-07 Samsung Display Devices Co Ltd Electron emitter composition for field emission display, and manufacture of electron emitter using the same
JP2000156148A (en) * 1998-09-16 2000-06-06 Agency Of Ind Science & Technol Emitter and manufacture thereof
JP2000294119A (en) * 1999-04-06 2000-10-20 Futaba Corp Manufacture of electron emission source, electron emission source and fluorescent light display
JP2001195972A (en) * 2000-01-13 2001-07-19 Sharp Corp Cold cathode and manufacturing method of the same
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2002008517A (en) * 2000-06-19 2002-01-11 Kokusai Kiban Zairyo Kenkyusho:Kk Electron emitter and its manufacturing method
WO2002063693A1 (en) * 2001-02-08 2002-08-15 Hitachi, Ltd. Carbon nanotube electronic device and electron source
JP2003147645A (en) * 2001-03-21 2003-05-21 Morinobu Endo Carbon fiber for electric field electron emitter and method for producing the electric field electron emitter
JP2004241300A (en) * 2003-02-07 2004-08-26 Mitsubishi Pencil Co Ltd Field electron emission body and its manufacturing method
JP2004244309A (en) * 2003-01-23 2004-09-02 Canon Inc Method of manufacturing nanocarbon material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090813A (en) * 1998-06-18 2000-03-31 Matsushita Electric Ind Co Ltd Electron emission element, electron emission source, their manufacture, image display device using them, and its manufacture
JP2000156148A (en) * 1998-09-16 2000-06-06 Agency Of Ind Science & Technol Emitter and manufacture thereof
JP2000100318A (en) * 1998-09-24 2000-04-07 Samsung Display Devices Co Ltd Electron emitter composition for field emission display, and manufacture of electron emitter using the same
JP2000294119A (en) * 1999-04-06 2000-10-20 Futaba Corp Manufacture of electron emission source, electron emission source and fluorescent light display
JP2001195972A (en) * 2000-01-13 2001-07-19 Sharp Corp Cold cathode and manufacturing method of the same
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2002008517A (en) * 2000-06-19 2002-01-11 Kokusai Kiban Zairyo Kenkyusho:Kk Electron emitter and its manufacturing method
WO2002063693A1 (en) * 2001-02-08 2002-08-15 Hitachi, Ltd. Carbon nanotube electronic device and electron source
JP2003147645A (en) * 2001-03-21 2003-05-21 Morinobu Endo Carbon fiber for electric field electron emitter and method for producing the electric field electron emitter
JP2004244309A (en) * 2003-01-23 2004-09-02 Canon Inc Method of manufacturing nanocarbon material
JP2004241300A (en) * 2003-02-07 2004-08-26 Mitsubishi Pencil Co Ltd Field electron emission body and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261108A (en) * 2005-02-17 2006-09-28 Sonac Kk Cold-cathode electron source, its manufacturing method and display device
JP2007324064A (en) * 2006-06-02 2007-12-13 Sonac Kk Cold-cathode electron source
JP2008198580A (en) * 2007-02-16 2008-08-28 Shinshu Univ Carbon fiber-conductive polymer composite electrode and its manufacturing method
JP2009202379A (en) * 2008-02-27 2009-09-10 Kiyoshi Chiba Laminated body
TWI561679B (en) * 2014-04-04 2016-12-11 Nippon Steel & Sumitomo Metal Corp Transparent electrode and organic electronic device
WO2022070103A1 (en) * 2020-09-30 2022-04-07 Ncx Corporation Method of forming field emission cathodes by co-electrodeposition
WO2022091002A1 (en) * 2020-10-30 2022-05-05 Ncx Corporation Methods of forming a field emission cathode

Also Published As

Publication number Publication date
JP4061411B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4061411B2 (en) Field emission electrode and manufacturing method thereof
US8058787B2 (en) Carbon-fiber web structure type field emitter electrode and fabrication method of the same
JP5616227B2 (en) Deposits and electronic devices containing deposits
US7098151B2 (en) Method of manufacturing carbon nanotube semiconductor device
KR20030059291A (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
US8456073B2 (en) Field emission devices including nanotubes or other nanoscale articles
JP5679565B2 (en) Transparent conductive film, substrate with transparent conductive film, and organic electroluminescence device using the same
US20040043219A1 (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
JP2005089738A (en) Carbon nanotube dispersion solution and carbon nanotube dispersion material
US8513804B2 (en) Nanotube-based electrodes
JP2010506824A (en) Transparent conductive single-walled carbon nanotube film
Maiti et al. Hierarchical graphene nanocones over 3D platform of carbon fabrics: A route towards fully foldable graphene based electron source
US7718230B2 (en) Method and apparatus for transferring an array of oriented carbon nanotubes
JP2003217516A (en) Field emission element having carbon nano-tube covered by protection film
US20040036401A1 (en) Field electron emission apparatus and method for manufacturing the same
US9843006B2 (en) Method of making N-type thin film transistor
JP3972107B2 (en) Manufacturing method of electron emission source using carbon nanotube and polymer
Lee et al. High‐Efficiency Soft‐Contact‐Laminated Polymer Light‐Emitting Devices with Patterned Electrodes
JP5055655B2 (en) Emitter manufacturing method, field emission cold cathode using the emitter, and flat image display device
JP2001048509A (en) Cnt and cnt assembly, field emission type cold cathode electron emission element, its production and display device using the same electron emission element
JP2006261074A (en) Coating method of field emission material and field emission element
Lee et al. Study of multi-walled carbon nanotube structures fabricated by PMMA suspended dispersion
JP2010162531A (en) Method of depositing material onto surface of object
Kubo et al. Embedding of a gold nanofin array in a polymer film to create transparent, flexible and anisotropic electrodes
Ryu et al. Transparent, conductive and flexible carbon nanotube films and their application in organic light emitting diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150