JP2006208257A - Method and device for measuring heat transfer characteristic - Google Patents

Method and device for measuring heat transfer characteristic Download PDF

Info

Publication number
JP2006208257A
JP2006208257A JP2005022452A JP2005022452A JP2006208257A JP 2006208257 A JP2006208257 A JP 2006208257A JP 2005022452 A JP2005022452 A JP 2005022452A JP 2005022452 A JP2005022452 A JP 2005022452A JP 2006208257 A JP2006208257 A JP 2006208257A
Authority
JP
Japan
Prior art keywords
temperature
fluid
heat transfer
gas
transfer characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005022452A
Other languages
Japanese (ja)
Other versions
JP4500904B2 (en
Inventor
Ippei Torigoe
一平 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005022452A priority Critical patent/JP4500904B2/en
Publication of JP2006208257A publication Critical patent/JP2006208257A/en
Application granted granted Critical
Publication of JP4500904B2 publication Critical patent/JP4500904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating and cooling method having spatial uniformity and time controllability easily and inexpensively, and also to provide a heat transfer characteristic measuring method using this method. <P>SOLUTION: In the heat transfer characteristic measuring method, pressure fluctuation is applied to fluid to vary the fluid temperature, and an object is heated or cooled using the temperature variation. Temperature variation occurring in the fluid or an object in contact with the fluid is detected by a temperature sensor 1, and the heat transfer characteristic of the fluid or the object is measured based on the detected temperature variation. The pressure fluctuation in the fluid propagates at an acoustic velocity, so that uniform heating and cooling in a large region is allowed. It is also easy to acquire a signal of temperature variation in the fluid, and the time control in heating and cooling is made with an extremely high precision. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体、液体、気体の熱伝達特性を測定する方法と装置に関わる。また、熱伝導特性の測定によって含有成分を検出するクロマトグラフィーの熱伝導度検出部や、熱負荷を与えたときの対象の温度変化を測定する非破壊検査などに応用される。   The present invention relates to a method and apparatus for measuring heat transfer characteristics of solids, liquids and gases. Further, it is applied to a thermal conductivity detector for chromatography that detects a contained component by measuring thermal conductivity characteristics, a non-destructive inspection that measures a temperature change of an object when a thermal load is applied, and the like.

対象を加熱乃至は冷却したときの温度変化から熱拡散率や熱伝導率などの熱物性を測定する場合、あるいは熱負荷を与えたときの温度応答から対象の状態を非破壊に検査する場合などに、対象を加熱乃至は冷却する方法として、従来は、ヒーターに電流を流してジュール熱を発生する方法(交流カロリメーター法などを含む)、ペルチェ効果を利用する方法、レーザーを照射する方法(レーザーフラッシュ法)、ハロゲンランプなどで照射する方法、マイクロ波や誘導を利用する方法、温度の異なる熱源に接触させる方法(温冷風式を含む)、液体の蒸発潜熱を利用する方法などが用いられている。   When measuring thermal properties such as thermal diffusivity and thermal conductivity from temperature changes when the target is heated or cooled, or when non-destructively inspecting the target state from the temperature response when a thermal load is applied, etc. In addition, as a method of heating or cooling an object, conventionally, a method of generating Joule heat by supplying an electric current to a heater (including an AC calorimeter method), a method of using the Peltier effect, and a method of irradiating a laser ( Laser flash method), irradiation with a halogen lamp, method using microwaves or induction, method of contacting with a heat source of different temperature (including hot and cold air), method of using latent heat of vaporization of liquid, etc. ing.

上記の測定や非破壊検査を精度よく実施するためには、加熱乃至は冷却の、空間的な分布と時間制御の精度が求められる。しかし、二つの要求を同時に満足できる加熱・冷却法は少なく、二つの要求を同時に追求しようとすれば極めて高コストの装置が必要となってくる。本発明は、簡便で安価な、空間的一様性と時間制御性を兼ね備えた加熱・冷却法を提供し、さらにこの方法を利用した熱伝達特性測定法を提供することを目的とする。 In order to carry out the above measurement and nondestructive inspection with high accuracy, the spatial distribution of heating or cooling and the accuracy of time control are required. However, there are few heating / cooling methods that can satisfy the two requirements at the same time, and if two requirements are to be pursued at the same time, an extremely high cost apparatus is required. An object of the present invention is to provide a simple and inexpensive heating / cooling method having both spatial uniformity and time controllability, and further to provide a heat transfer characteristic measurement method using this method.

本発明では、上記の目的を達成するために、流体に圧力変動を加えて流体温度を変動させ、この温度変動を利用して対象を加熱乃至は冷却する。そして、流体乃至は流体に接する物体に生じる温度変化を検出し、検出された温度変化に基づいて、流体乃至は物体の熱伝達特性を測定する(請求項1および2)。   In the present invention, in order to achieve the above object, pressure fluctuation is applied to the fluid to change the fluid temperature, and the temperature is used to heat or cool the object. Then, a temperature change occurring in the fluid or an object in contact with the fluid is detected, and a heat transfer characteristic of the fluid or the object is measured based on the detected temperature change (claims 1 and 2).

請求項3に記載の熱伝達特性測定装置では、物体近傍の温度境界層内の温度変化を検出する。請求項4に記載の熱伝達特性測定装置は、加熱冷却だけでなく、温度の検出にも流体中の圧力変化を利用する。請求項5に記載の熱伝達特性測定装置では、被測定物質と基準物質の熱伝達特性の差を検出する差働式の構成をとる。   In the heat transfer characteristic measuring apparatus according to the third aspect, the temperature change in the temperature boundary layer near the object is detected. The heat transfer characteristic measuring apparatus according to the fourth aspect utilizes the pressure change in the fluid not only for heating and cooling but also for detecting the temperature. In the heat transfer characteristic measuring apparatus according to the fifth aspect, a differential structure is used to detect a difference in heat transfer characteristics between the substance to be measured and the reference substance.

流体の圧力、体積、温度の間には状態方程式が成り立ち、例えば圧縮して流体の圧力が上昇すれば、これに伴って流体温度が上昇する。このことを利用すれば、流体に接触する対象あるいは流体自身を、加熱冷却することができる。流体中の圧力変動は音速で伝播するから、広い領域にわたる一様な加熱冷却が可能である。特に、流体の熱伝達特性を測定する目的に対しては、流体自身を直接加熱冷却することができる。さらに、圧縮手段からの同期信号、流体中の圧力検出手段、乃至は流体中の温度検出手段を利用して、流体中の温度変動の信号を得ることも容易であり、加熱冷却の時間制御を極めて高精度に行うことが可能である。   An equation of state is established between the pressure, volume, and temperature of the fluid. For example, if the pressure of the fluid rises due to compression, the fluid temperature rises accordingly. If this is utilized, the object in contact with the fluid or the fluid itself can be heated and cooled. Since the pressure fluctuation in the fluid propagates at the speed of sound, uniform heating and cooling over a wide area is possible. In particular, the fluid itself can be directly heated and cooled for the purpose of measuring the heat transfer characteristics of the fluid. Furthermore, it is also easy to obtain a temperature fluctuation signal in the fluid by using a synchronization signal from the compression means, a pressure detection means in the fluid, or a temperature detection means in the fluid, and the heating and cooling time control can be performed. It can be performed with extremely high accuracy.

本発明では、圧力変動を利用して対象の加熱冷却を行い、このときに生じる温度変化が対象の熱伝達特性に依存することに基づいて、温度変化を検出して熱伝達特性を測定する。圧力変動を利用することで、上記の通り、非常に広い空間的範囲について均一な熱負荷を加えることが可能になるだけでなく、熱負荷の位相なども精密に制御することが可能となる。このため、簡便安価でかつ高精度の熱伝達特性測定が可能となる。   In the present invention, the object is heated and cooled using pressure fluctuation, and the temperature change is detected and the heat transfer characteristic is measured based on the fact that the temperature change generated at this time depends on the heat transfer characteristic of the object. By using the pressure fluctuation, as described above, it is possible not only to apply a uniform thermal load over a very wide spatial range, but also to precisely control the phase of the thermal load. For this reason, it is possible to measure heat transfer characteristics with high accuracy and at low cost.

請求項3に記載の、物体近傍の流体中に温度センサーを設置する装置においては、流体を直接加熱し、かつ温度変化を直接測定する方式であるため、流体、特に、測定の難しい気体の熱伝達特性を、簡便安価かつ高精度に測定することが可能となる。また、請求項4記載の装置においては、音響機器のみを用いて熱伝達特性測定装置を構成することができ、更に安価簡便な装置を実現することが可能となる。   The apparatus for installing a temperature sensor in a fluid in the vicinity of an object according to claim 3 is a system in which the fluid is directly heated and the temperature change is directly measured. It becomes possible to measure the transfer characteristic simply, inexpensively and with high accuracy. In the apparatus according to the fourth aspect, the heat transfer characteristic measuring apparatus can be configured by using only the acoustic device, and it is possible to realize an inexpensive and simple apparatus.

請求項5に記載の装置においては、装置を差働構造にして、基準物質との比較によって測定を行うため、熱伝達特性の変化を極めて敏感に検出することができる。この装置は、安価でかつ高感度のガスクロマトクラフィー熱伝達特性検出部などとして応用することが可能である。   In the apparatus according to the fifth aspect, since the apparatus has a differential structure and measurement is performed by comparison with a reference material, a change in heat transfer characteristics can be detected extremely sensitively. This apparatus can be applied as an inexpensive and highly sensitive gas chromatographic heat transfer characteristic detector.

本発明を非破壊検査に応用した場合には、熱負荷の空間的一様性の効果が大きい。レーザー照射、赤外線照射、ハロゲンランプによる加熱、温風による加熱あるいは冷風による冷却など従来の加熱手段には、広い範囲にわたって均一な熱負荷を加えることが難しいという問題点があるが、本発明によって、均一な熱負荷が実現できるため、高精度・高信頼性の非破壊検査が可能となる。   When the present invention is applied to non-destructive inspection, the effect of spatial uniformity of heat load is great. Conventional heating means such as laser irradiation, infrared irradiation, heating by a halogen lamp, heating by hot air or cooling by cold air have a problem that it is difficult to apply a uniform heat load over a wide range. Since a uniform heat load can be realized, highly accurate and reliable nondestructive inspection is possible.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第一実施例)
図1は、気体の熱拡散率を測定するように構成した本発明の第一の実施例である。図において、1は温度センサーであり、その構造については後述する。2はスピーカーであり、測定セル3内に圧力変動を加える働きをしている。4は測定対象である気体10を導く管である。5は電磁バルブであり、気体10の測定セル3への流入流出を制御している。11は発振器で、演算部14からの制御信号に基づき、角周波数ωの余弦波信号をスピーカー2および位相比較器13に出力している。12は電気抵抗検出回路であり、温度センサー1の細線の電気抵抗を電圧出力に変換する。位相比較器13は、測定セル3内の圧力変動と、温度センサー1の電気抵抗の変動との位相差φを検出している。演算部14は、前記の通り発振器に角周波数の制御信号を出力するとともに、位相比較器13からの位相差信号φと角周波数ωとに基づいて気体の熱拡散率を演算し、表示部15に出力している。16は、バルブコントローラーであり、電磁バルブを制御して、気体10を測定セル3内に適切なタイミングでサンプリングする役割を果たしている。
(First Example)
FIG. 1 is a first embodiment of the present invention configured to measure the thermal diffusivity of a gas. In the figure, reference numeral 1 denotes a temperature sensor, the structure of which will be described later. Reference numeral 2 denotes a speaker, which functions to apply a pressure fluctuation in the measurement cell 3. 4 is a pipe | tube which guide | induces the gas 10 which is a measuring object. An electromagnetic valve 5 controls the inflow / outflow of the gas 10 into the measurement cell 3. An oscillator 11 outputs a cosine wave signal having an angular frequency ω to the speaker 2 and the phase comparator 13 based on a control signal from the calculation unit 14. An electric resistance detection circuit 12 converts the electric resistance of the thin line of the temperature sensor 1 into a voltage output. The phase comparator 13 detects a phase difference φ between the pressure fluctuation in the measurement cell 3 and the electric resistance fluctuation of the temperature sensor 1. The calculation unit 14 outputs the control signal of the angular frequency to the oscillator as described above, calculates the thermal diffusivity of the gas based on the phase difference signal φ and the angular frequency ω from the phase comparator 13, and displays the display unit 15. Is output. Reference numeral 16 denotes a valve controller which controls the electromagnetic valve and samples the gas 10 in the measurement cell 3 at an appropriate timing.

図2は、温度センサー1の構造を示す図である。図中の101は、直径dの金属細線であり、センサー基台102から距離hだけ隔てて、基台に平行に懸架されている。103および103’は、細線101の両端のコネクター部分であり、このコネクター部分から出たリード線が電気抵抗検出回路12に接続されている。この実施例では、温度センサー1は、直径約5μmの円断面金属細線101を基台102に取り付けたものである。測定装置をより小型化したい場合は、マイクロマシン技術を利用し、梁状構造をパターニングした後に、その下層をエッチングで除去することで、図2と同様の構造を製作して温度センサーとして用いることもある。   FIG. 2 is a diagram illustrating the structure of the temperature sensor 1. 101 in the figure is a fine metal wire having a diameter d, and is suspended in parallel to the base at a distance h from the sensor base 102. Reference numerals 103 and 103 ′ denote connector portions at both ends of the thin wire 101, and lead wires extending from the connector portions are connected to the electric resistance detection circuit 12. In this embodiment, the temperature sensor 1 has a circular metal cross-section 101 having a diameter of about 5 μm attached to a base 102. If you want to make the measuring device smaller, you can use micromachine technology, pattern the beam-like structure, and then remove the lower layer by etching to produce a structure similar to that shown in Fig. 2 and use it as a temperature sensor. is there.

いま、角周波数ωにおける波長λ=2πc/ωは、測定セル3の寸法に比べて十分に大きくなるように選ばれている(cは音速)。このとき、スピーカーの振動によって測定セル内に生じる圧力変動は、測定セル内で一様としてよい。その圧力変動をPcos(ωt)とする。一方、測定セル3の寸法は、角周波数ωにおける温度境界層厚さδ=(2κ/ρcω)1/2=(2α/ω)1/2に比べれば十分に大きくなるように設計されている(κは気体の熱伝導率、ρは気体の密度、cは気体の等圧比熱、αは気体の熱拡散率)。この場合、温度変動の振幅は、測定セル内の大部分で断熱圧縮の場合の値P/ρcに等しい。しかし、壁面やセンサー基台の温度はほぼ一定であるため、その近傍には温度境界層が生じる。平らな壁面から距離yだけ垂直に隔たった場所での温度変動の大きさは、
θ(y)=(P/ρc)(1−exp(−(1+i)y/δ)) ・・・・(1)
となる。ただし、iは虚数単位を表し、θは、温度変動を複素表示した時の振幅である(鳥越・石井:音を利用した表面積の測定、計測自動制御学会論文集、34巻、3号、182ページ、1998年)。θ(y)の振幅(P/ρcで規格化)と位相をy/δに対してプロットしたグラフを図3に示す。
Now, the wavelength λ = 2πc / ω at the angular frequency ω is selected to be sufficiently larger than the dimension of the measurement cell 3 (c is the speed of sound). At this time, the pressure fluctuation generated in the measurement cell due to the vibration of the speaker may be uniform in the measurement cell. The pressure fluctuation is defined as P cos (ωt). On the other hand, the dimensions of the measurement cell 3 are designed to be sufficiently larger than the temperature boundary layer thickness δ = (2κ / ρc p ω) 1/2 = (2α / ω) 1/2 at the angular frequency ω. and that (kappa is the thermal conductivity of the gas, [rho is the density of the gas, c p is equal ratio heat of gas, alpha is the thermal diffusivity of the gas). In this case, the amplitude of the temperature fluctuations is equal to the value P / rho] c p in the case of adiabatic compression in most in the measuring cell. However, since the temperature of the wall surface and the sensor base is almost constant, a temperature boundary layer is generated in the vicinity thereof. The magnitude of the temperature fluctuation in a place vertically separated from the flat wall by the distance y is
θ (y) = (P / ρc p) (1-exp (- (1 + i) y / δ)) ···· (1)
It becomes. However, i represents an imaginary unit, and θ is the amplitude when temperature variation is complexly displayed (Toroshikoshi and Ishii: Measurement of surface area using sound, Proceedings of Society of Instrument and Control Engineers, Vol. 34, No. 3, 182) Page, 1998). θ and amplitude (normalized by P / ρc p) a plot of phase with respect to y / [delta] of the (y) shown in FIG.

この実施例では、スピーカーの振動周波数は数十Hz程度に設定されている。このとき、直径5μm程度の金属細線の内部の温度分布はほとんど一様となり、その温度は周囲の気体の温度とほとんど同じである。例えば、直径5μmのタングステン線、空気中、周波数40Hzの条件では、タングステン線の内部平均温度と遠方の空気温度の差は、振幅で1%程度、位相差で0.04rad程度である。細線の直径が細いほど、周波数が低いほど、この差は小さくなる。金属細線の内部温度が周囲の気体の温度とほとんど等しくなることを利用すれば、細線を気体温度のセンサーとして用いることができる。本実施例では、電気抵抗検出回路12によって、金属細線の温度変化に伴う電気抵抗変化を測定して、細線近傍の気体の温度変化を検出している。   In this embodiment, the vibration frequency of the speaker is set to about several tens of Hz. At this time, the temperature distribution inside the fine metal wire having a diameter of about 5 μm is almost uniform, and the temperature is almost the same as the temperature of the surrounding gas. For example, under the condition of a tungsten wire with a diameter of 5 μm, in air, and a frequency of 40 Hz, the difference between the internal average temperature of the tungsten wire and the far air temperature is about 1% in amplitude and about 0.04 rad in phase difference. This difference becomes smaller as the diameter of the thin wire is thinner and the frequency is lower. By utilizing the fact that the internal temperature of the fine metal wire is almost equal to the temperature of the surrounding gas, the fine wire can be used as a gas temperature sensor. In this embodiment, the electrical resistance detection circuit 12 measures the electrical resistance change accompanying the temperature change of the fine metal wire, and detects the temperature change of the gas near the fine wire.

式(1)から、センサーの基台から距離hの細線101の場所での温度変動振幅は
θ(h)=(P/ρc)(1−exp(−(1+i)h/δ)) ・・・・(2)
である。この温度変動の位相は、h/δだけで決まり、hが固定された一定値であるから、温度境界層厚さδ=(2α/ω)1/2だけの関数となる。さらに、角周波数ωは既知であるから、距離hにおける温度変動の位相を測定すれば、気体の熱拡散率αを知ることができる。本実施例では、遠方における温度変動の位相すなわち圧力変動の位相と、細線の電気抵抗変動の位相との差φを検出し、この位相差から熱拡散率αを計算している。なお、図3から分かるように、金属細線の高さhが3δより大きい場合には、位相差はほとんどゼロとなるだけでなく、位相差と熱拡散率αの関係は一意ではなくなる。したがって、高さhは3δ以下に設定しておくことが必要であり、さらに、熱拡散率αの変化による位相の変化の割合が大きい領域、すなわちδと同程度以下の値とするのが有利である。例えば気体が空気の場合には、40Hzにおいてδ=0.4mmである。
From equation (1), the temperature fluctuation amplitude at the location of the thin wire 101 at a distance h from the sensor base is θ (h) = (P / ρc p ) (1-exp (− (1 + i) h / δ)). ... (2)
It is. The phase of this temperature fluctuation is determined only by h / δ, and is a constant value with h being fixed, and therefore becomes a function of temperature boundary layer thickness δ = (2α / ω) 1/2 . Furthermore, since the angular frequency ω is known, the thermal diffusivity α of the gas can be known by measuring the phase of temperature fluctuation at the distance h. In this embodiment, a difference φ between the phase of temperature fluctuation at a distance, that is, the phase of pressure fluctuation, and the phase of electric resistance fluctuation of the thin wire is detected, and the thermal diffusivity α is calculated from this phase difference. As can be seen from FIG. 3, when the height h of the thin metal wire is larger than 3δ, not only the phase difference becomes almost zero, but also the relationship between the phase difference and the thermal diffusivity α is not unique. Therefore, it is necessary to set the height h to 3δ or less, and it is advantageous that the height h is a region where the rate of change in phase due to the change in the thermal diffusivity α is large, that is, a value less than or equal to δ. It is. For example, when the gas is air, δ = 0.4 mm at 40 Hz.

以上が、気体の熱拡散率を測定するための代表的な構成である第一実施例の動作の説明である。しかし、本発明による熱拡散率測定の構成は、第一実施例の構成に限定されるものではなく、多くのバリエーションが考えられる。例えば、式(1)の基となる熱伝導方程式が線形であるから、重ね合わせの理が成り立つ。したがって、正弦的な圧力変動ではなく、任意波形の圧力変動を加えた場合にも、各フーリエ成分について(1)式が成り立つ。このことを利用すれば、同時に複数の周波数について温度変動の複素振幅を測定することもできる。この場合には、或るフーリエ成分について上述の方法を適用する方式だけでなく、周波数による位相差の変化の情報や、周波数による振幅の変化の情報を利用して熱拡散率を計算することも可能である。ところで、測定セル3の上流側と下流側の圧力差が大きい場合には、上流側と下流側の電磁バルブを交互に開閉することで、気体10のサンプリングを行うと同時に、セル内に矩形波状の圧力変動を発生させることができる。重ね合わせの理を利用すれば、この圧力変動からも熱拡散率を測定することが可能であり、この場合には、スピーカー2を省略することができる。   The above is description of operation | movement of the 1st Example which is a typical structure for measuring the thermal diffusivity of gas. However, the configuration of the thermal diffusivity measurement according to the present invention is not limited to the configuration of the first embodiment, and many variations are conceivable. For example, since the heat conduction equation on which the formula (1) is based is linear, the superposition theory holds. Therefore, even when pressure fluctuation having an arbitrary waveform is applied instead of sinusoidal pressure fluctuation, the equation (1) is established for each Fourier component. If this is utilized, the complex amplitude of the temperature fluctuation | variation can also be measured about several frequency simultaneously. In this case, the thermal diffusivity can be calculated not only by applying the above method to a certain Fourier component, but also by using information on changes in phase difference due to frequency and information on changes in amplitude due to frequency. Is possible. By the way, when the pressure difference between the upstream side and the downstream side of the measurement cell 3 is large, the upstream and downstream solenoid valves are alternately opened and closed to sample the gas 10 and at the same time, form a rectangular wave in the cell. Pressure fluctuations can be generated. If the superposition theory is used, it is possible to measure the thermal diffusivity from this pressure fluctuation, and in this case, the speaker 2 can be omitted.

上記実施例では、金属細線101の抵抗変化すなわち気体の温度変化の位相情報を用いて、気体の熱伝達率αを測定している。しかし、スピーカー2によって加えられる圧力変動の振幅Pは一定であるから、その時の温度変動振幅は、(1)式あるいは(2)式から分かるように、気体のρcによって変化する。すなわち、気体の温度変化の位相情報だけでなく、振幅の情報も利用すれば、熱伝達率αだけでなくρcをも知ることができる。κ/ρc=αの関係を用いれば、気体の熱伝導率κを同時に測定できることが分かる。また、密度ρが別途知られていれば、比熱cも求められる。 In the above embodiment, the gas heat transfer coefficient α is measured using the phase change information of the resistance change of the thin metal wire 101, that is, the temperature change of the gas. However, since the amplitude P of the pressure variation applied by the loudspeaker 2 is constant, the temperature fluctuation amplitude at that time, as can be seen from equation (1) or (2), changes depending rho] c p of the gas. That is, not only the phase information of the temperature change of the gas, if we also use information of amplitude can also be known rho] c p well heat transfer coefficient alpha. It can be seen that if the relationship of κ / ρc p = α is used, the thermal conductivity κ of the gas can be measured simultaneously. Also, if otherwise known density [rho, the specific heat c p is also determined.

圧力変動と同期した信号を用いて、温度変動との位相差を計算する第一実施例の方法ではなく、遠方での気体の温度変動(P/ρc)を直接測定して、壁面近傍の温度変動との位相差を求めるようにすることもできる。図4は、この方式に適した温度センサーの構成を示したものである。センサー基台102からhの距離に張られた104が、遠方での気体の温度変動を検出するための金属細線である。図3から分かるように、hが十分に大きければ、その場所での温度変動振幅の位相は一定であり、遠方温度検出用細線104で検出した温度変動を、位相の参照信号として利用することができる。なお、この信号を、熱伝導率κや比熱cを測定するための信号としても利用できることは言うまでもない。 Using a signal synchronized with the pressure fluctuation, rather than the first embodiment of a method of calculating the phase difference between the temperature variation, by measuring the temperature variation of the gas at the far the (P / ρc p) directly, the near-wall It is also possible to obtain the phase difference from the temperature fluctuation. FIG. 4 shows a configuration of a temperature sensor suitable for this method. 104, which is stretched at a distance of h 2 from the sensor base 102, is a thin metal wire for detecting the temperature fluctuation of the gas at a distance. As can be seen from FIG. 3, if h 2 is sufficiently large, the phase of the temperature fluctuation amplitude at that location is constant, and the temperature fluctuation detected by the remote temperature detection thin wire 104 is used as a phase reference signal. Can do. Needless to say, this signal can also be used as a signal for measuring the thermal conductivity κ and the specific heat c p.

本実施例では、温度一定の壁面と温度が変動する気体との間で熱移動が生じ、これに伴って形成される温度境界層内の温度変動を検出して、熱拡散率を測定している。この基礎原理からすれば、センサーの構造が、平面基台上に懸架した細線に限定されないことは明らかである。図5に示したのは、温度センサーの他の構成例である。図5の例では、二枚の平行平板の中央に細線を懸架した構造を取っている。この場合には、細線位置の温度変動の複素振幅は、(1)式とは異なる関数形となる。しかし、平行平板の間隔と変動周波数が一定なら、複素振幅の位相が熱拡散率のみの関数である点は同じである。この他にも、円筒の内部に懸架した細線などを用いることもできるし、原理的には、壁面と温度検出部との相対位置関係が一定でさえあれば、任意の形状と組み合わせをセンサーとして利用することができる。   In this embodiment, heat transfer occurs between a wall having a constant temperature and a gas whose temperature fluctuates, and the temperature fluctuation in the temperature boundary layer formed along with this is detected to measure the thermal diffusivity. Yes. From this basic principle, it is clear that the structure of the sensor is not limited to a thin line suspended on a flat base. FIG. 5 shows another configuration example of the temperature sensor. In the example of FIG. 5, a structure is adopted in which a thin wire is suspended at the center of two parallel flat plates. In this case, the complex amplitude of the temperature variation at the position of the thin line has a function form different from the expression (1). However, if the interval between the parallel plates and the fluctuation frequency are constant, the phase of the complex amplitude is the same as the function of only the thermal diffusivity. In addition to this, a thin wire suspended inside the cylinder can be used, and in principle, any shape and combination can be used as a sensor as long as the relative positional relationship between the wall surface and the temperature detection unit is constant. Can be used.

さらに、本実施例のように、角周波数を一定として位相差を検出する方法の他に、位相差が一定になるようにフェーズロックトループを構成して、この時の角周波数に基づいて熱拡散率を算出してもよい。このことは、温度センサー部として、上記のどの構造を用いた場合でも同様である。また、交流的な圧力変動ではなく、ステップ状入力の様に直流成分を含む圧力変動に対する温度変化を測定する方式も可能である。   In addition to the method of detecting the phase difference with a constant angular frequency as in this embodiment, a phase-locked loop is configured so that the phase difference is constant, and thermal diffusion is performed based on the angular frequency at this time. The rate may be calculated. This is the same when any of the above structures is used as the temperature sensor unit. In addition, a method of measuring a temperature change with respect to a pressure fluctuation including a DC component, such as a stepped input, instead of an AC pressure fluctuation is also possible.

(第二実施例)
図6は、差働構成を取った本発明の第二実施例である。図において、下側の測定セルの構成は第一実施例と同じである。上側の3’は、基準ガス20の熱拡散率を検知するための基準セルであり、1’は基準ガス用の温度センサーであり、下側の測定セル3内の温度センサー1と同じ形状を持っている。4’は基準ガスを導く管、5’は基準ガスを適切なタイミングでサンプリングするための電磁バルブである。測定セル3と基準セル3’には、スピーカー2によって、振幅が同じで逆位相の差働的な圧力変動が加わる。温度センサー1および1’の電気抵抗変化は、もし被測定気体10と基準ガス20とが同一成分であれば、180度の位相差を持つ。これに対して、被測定気体中に基準ガスと異なる組成の成分が含まれていると、熱拡散率が変化するため、位相差は180度からずれた値をとる。本実施例では、電気抵抗検出回路と位相差計を用いて(図示せず)、この位相のずれを測定して、被測定ガス中の成分検出を行っている。
(Second embodiment)
FIG. 6 shows a second embodiment of the present invention having a differential configuration. In the figure, the configuration of the lower measurement cell is the same as in the first embodiment. 3 ′ on the upper side is a reference cell for detecting the thermal diffusivity of the reference gas 20, 1 ′ is a temperature sensor for the reference gas, and has the same shape as the temperature sensor 1 in the measurement cell 3 on the lower side. have. 4 ′ is a pipe for introducing a reference gas, and 5 ′ is an electromagnetic valve for sampling the reference gas at an appropriate timing. The measurement cell 3 and the reference cell 3 ′ are subjected to differential pressure fluctuations with the same amplitude and opposite phase by the speaker 2. The electrical resistance change of the temperature sensors 1 and 1 ′ has a phase difference of 180 degrees if the gas to be measured 10 and the reference gas 20 are the same component. On the other hand, if the gas to be measured contains a component having a composition different from that of the reference gas, the thermal diffusivity changes, so that the phase difference takes a value deviated from 180 degrees. In this embodiment, an electrical resistance detection circuit and a phase difference meter (not shown) are used to measure this phase shift and detect a component in the gas to be measured.

なお、温度センサー1および1’を用いる代わりに、測定セル3および3’内の圧力変動を検出して、その位相差を測定することで、熱拡散率の変化を検出することができる。第二実施例では、圧力変動によって気体の温度変動を発生し、気体からセンサー基台への熱移動のために起こる温度変化を検出している。これによって対象気体の熱物性が測定できるのは、上記の熱移動の大きさと位相が、対象の熱物性に依存しているからである。このことは、気体から各セル壁面への熱移動もまた気体の熱物性に依存し、各セル内気体の平均温度が気体の熱物性に依存することを意味する。もし、測定セル3および3’の形状が、内表面積が大きく伝熱距離が小さくなるように設計されていれば、セル内平均温度は、セル内気体の熱物性に大きく依存するようになる。例え同じ容積変動を加えても、容器内平均温度変動が異なれば、発生する圧力変動は異なる。したがって、測定セル3および3’内の気体の熱物性値に差が在る場合には、セル内圧力変動の位相差は180度からのずれを生じる。このことを利用すれば、測定セル3および3’内の圧力変動を検出する、マイクロホンなどの圧力検出器を、温度センサーの代わりに用いることができる。   Instead of using the temperature sensors 1 and 1 ', a change in the thermal diffusivity can be detected by detecting pressure fluctuations in the measurement cells 3 and 3' and measuring the phase difference. In the second embodiment, the temperature change of the gas is generated by the pressure change, and the temperature change caused by the heat transfer from the gas to the sensor base is detected. The thermophysical property of the target gas can be measured by this because the magnitude and phase of the heat transfer depend on the target thermophysical property. This means that the heat transfer from the gas to each cell wall surface also depends on the thermophysical properties of the gas, and the average temperature of the gas in each cell depends on the thermophysical properties of the gas. If the shapes of the measurement cells 3 and 3 'are designed so that the inner surface area is large and the heat transfer distance is small, the average temperature in the cell greatly depends on the thermophysical properties of the gas in the cell. Even if the same volume fluctuation is applied, if the average temperature fluctuation in the container is different, the generated pressure fluctuation is different. Therefore, when there is a difference in the thermophysical value of the gas in the measurement cells 3 and 3 ′, the phase difference of the pressure fluctuation in the cell deviates from 180 degrees. If this is utilized, a pressure detector such as a microphone that detects pressure fluctuations in the measurement cells 3 and 3 'can be used instead of the temperature sensor.

第二実施例の温度センサー構成だけでなく、第一実施例に関連して説明した種々の温度検出法は、いずれも、第二実施例のような差動構成に適用することが可能である。また、二つのセルの温度センサー信号の位相から熱物性の変化を検出するのではなく、温度変動の振幅の変化を利用して熱物性の変化を検出することもできる。   In addition to the temperature sensor configuration of the second embodiment, any of the various temperature detection methods described in relation to the first embodiment can be applied to the differential configuration as in the second embodiment. . Further, instead of detecting the change in thermophysical properties from the phase of the temperature sensor signals of the two cells, it is also possible to detect the change in thermophysical properties using the change in the amplitude of the temperature fluctuation.

(第三実施例)
図7は、導電性薄板の熱伝達特性を測定するように構成した本発明の第三実施例である。図7において、2、11、12は第一実施例と同じで、それぞれ、スピーカー、発振器、電気抵抗測定回路である。32は、測定対象の薄板であり、その厚さ2hは、周囲の気体の温度が変動したときに、薄板内平均温度の変動が無視できない程度の値である。301は、薄板32上に蒸着ないしはスパッタリングによって形成した金属性の電極である。33は測定用セルであり、蓋を開閉して被測定物体32を出し入れできるようになっている。測定用セル33内は、密度と熱物性が既知の測定用気体30に満たされている。34は、同期検波回路であって、薄板32の電気抵抗変化の信号を、圧力変動と同相の成分と直交する成分とに分離して、その大きさを出力している。35は演算回路であり、発振器11の発振角周波数を制御するとともに、同期検波回路34からの信号に基づいて、被測定薄板32の熱伝達特性を算出し、表示部36に出力している。37はバルブであり、測定用セル33の蓋を開閉した後、セル内を気体30で満たす工程のあいだ開かれるが、測定工程中は閉められる。
(Third embodiment)
FIG. 7 shows a third embodiment of the present invention configured to measure heat transfer characteristics of a conductive thin plate. In FIG. 7, 2, 11, and 12 are the same as those in the first embodiment, and are a speaker, an oscillator, and an electric resistance measurement circuit, respectively. Reference numeral 32 denotes a thin plate to be measured, and the thickness 2h is a value at which the fluctuation of the average temperature in the thin plate cannot be ignored when the temperature of the surrounding gas fluctuates. Reference numeral 301 denotes a metal electrode formed on the thin plate 32 by vapor deposition or sputtering. Reference numeral 33 denotes a measurement cell, which can open and close the lid and allow the measurement object 32 to be taken in and out. The measurement cell 33 is filled with a measurement gas 30 whose density and thermophysical properties are known. Reference numeral 34 denotes a synchronous detection circuit, which separates the signal of the electrical resistance change of the thin plate 32 into a component orthogonal to the component in phase with the pressure fluctuation and outputs the magnitude thereof. An arithmetic circuit 35 controls the oscillation angular frequency of the oscillator 11, calculates heat transfer characteristics of the thin plate 32 to be measured based on the signal from the synchronous detection circuit 34, and outputs it to the display unit 36. Reference numeral 37 denotes a valve, which is opened during the process of filling the inside of the cell with the gas 30 after opening and closing the lid of the measurement cell 33, but is closed during the measurement process.

スピーカー2を振動させ、測定セル内に正弦的な圧力変動を発生させると、気体30の温度が正弦的に変動する。薄板32は気体と接しているため、熱移動が生じ薄板内には温度分布が生じる。電極301間の電気抵抗は、薄板32内の平均温度で決まり、気体の温度変動に伴って変動する。薄板32の平均温度変動の複素振幅は
β・(P/ρc)・(δ/(1+i)h)・sinh((1+i)h/δ)/(β・cosh((1+i)h/δ)+sinh((1+i)h/δ)) ・・・・(3)
で与えられる。ここで、薄板の密度をρ、比熱をc、熱伝導率をκ、熱拡散率をα、薄板内の熱境界層厚さをδ=(2α/ω)1/2で表しており、β=((ρcκ)/(ρκ))1/2である。測定用気体30の密度ρ、熱伝導率κ、等圧比熱cは既知であるから、複素振幅の振幅と位相乃至は実部と虚部が分かれば、薄板の熱拡散率および熱伝導率を計算することができる。
When the speaker 2 is vibrated and a sinusoidal pressure fluctuation is generated in the measurement cell, the temperature of the gas 30 fluctuates sinusoidally. Since the thin plate 32 is in contact with the gas, heat transfer occurs and a temperature distribution is generated in the thin plate. The electrical resistance between the electrodes 301 is determined by the average temperature in the thin plate 32 and varies with the temperature variation of the gas. The complex amplitude of the average temperature fluctuation of the thin plate 32 is β · (P / ρc p ) · (δ w / (1 + i) h) · sinh ((1 + i) h / δ w ) / (β · cosh ((1 + i) h / δ w ) + sinh ((1 + i) h / δ w )) (3)
Given in. Here, the density of the thin plate is ρ w , the specific heat is c w , the thermal conductivity is κ w , the thermal diffusivity is α w , and the thermal boundary layer thickness in the thin plate is δ w = (2α w / ω) 1/2. And β = ((ρc p κ) / (ρ w c w κ w )) 1/2 . Density measurement gas 30 [rho, the thermal conductivity kappa, since the equal ratio heat c p is known, if the amplitude and phase or real part of the complex amplitude and the imaginary part is known, thermal diffusivity and thermal conductivity of the sheet Can be calculated.

本実施例では、測定対象の薄板32が導電性であるので、電極を形成して薄板32内の電気抵抗を測定することで平均温度を検出し、薄板の熱伝達特性を測定している。薄板が導電性で無い場合には、薄板表面にスパッタリング乃至は蒸着によって金属薄膜を形成し、その電気抵抗を測定して薄板表面の温度を検出することで、薄板の熱伝達特性を知ることができる。なおこの場合、表面温度を検出する手段は金属薄膜の電気抵抗測定に限らず、表面に接触させた熱電対、サーミスターなどを用いることもできるし、放射温度計やサーモリフレクタンス法など、非接触式の温度検出法を利用した構成をとることも可能である。また、薄板を、金属薄膜側を下にして、熱物性が既知の物質で出来た基台に接触させて設置し、金属薄膜の無い上面を気体の温度変動にさらす構成として、金属薄膜に生じる温度変動を検出するようにしてもよい。この構成は、従来の交流カロリメーター法の一構成と同じであり、交流カロリメーター法における加熱の手段として、本発明を適用したものとなっている。   In this embodiment, since the thin plate 32 to be measured is conductive, an electrode is formed and the electrical resistance in the thin plate 32 is measured to detect the average temperature and measure the heat transfer characteristics of the thin plate. If the thin plate is not conductive, a metal thin film is formed on the surface of the thin plate by sputtering or vapor deposition, and the electrical resistance is measured to detect the temperature of the thin plate surface, thereby knowing the heat transfer characteristics of the thin plate. it can. In this case, the means for detecting the surface temperature is not limited to the measurement of the electrical resistance of the metal thin film, but a thermocouple, thermistor, or the like brought into contact with the surface can be used, or a radiation thermometer, a thermoreflectance method, or the like can be used. It is also possible to adopt a configuration using a contact-type temperature detection method. In addition, a thin plate is placed in contact with a base made of a material with known thermophysical properties with the metal thin film side down, and the upper surface without the metal thin film is exposed to temperature fluctuations of the gas. You may make it detect a temperature fluctuation. This configuration is the same as that of the conventional AC calorimeter method, and the present invention is applied as a heating means in the AC calorimeter method.

第三実施例は、既知の気体の雰囲気中で、被測定物体を加熱して熱伝達特性を測定するものであったが、上記の説明から明らかなように、逆に物体の熱物性が既知であるなら、気体の熱伝達特性を測定することができる。すなわち、既知の物体乃至は既知の薄板を設置して、その表面温度乃至は平均温度を検出するようにすれば、気体の熱伝達特性の測定装置を構成することができる。この場合に、ガスクロマトグラフィーにおけるように、気体の熱伝達特性の絶対値ではなく、被測定気体の熱伝達特性が基準気体と異なることを検出する目的には、温度変化の複素振幅ではなく、位相だけ乃至は振幅だけを検出するようにすれば十分である。   In the third embodiment, the object to be measured is heated to measure the heat transfer characteristics in a known gas atmosphere. However, as is apparent from the above description, the thermal properties of the object are known. If so, the heat transfer characteristics of the gas can be measured. That is, if a known object or a known thin plate is installed and its surface temperature or average temperature is detected, it is possible to configure a gas heat transfer characteristic measuring device. In this case, as in gas chromatography, not the absolute value of the heat transfer characteristic of the gas, but the purpose of detecting that the heat transfer characteristic of the gas to be measured is different from the reference gas, not the complex amplitude of the temperature change, It is sufficient to detect only the phase or only the amplitude.

(第四実施例)
図8は、本発明を非破壊検査に応用した第四実施例の構成である。43は検査対象の基盤であり、その上部に薄膜41が接着されている。42は、接着不良のために生じた基盤43と薄膜41の間の空隙である。44は、検査対象を内部に入れる検査槽である。45は、検査槽44内を加圧するためのポンプである。46は、赤外線サーモカメラであり、薄膜41の表面の温度分布を測定している。なお、この実施例では、検査槽44に観測窓が開けてあり、気密状態を保ちつつ、赤外線サーモカメラによる測定が可能となるようになっているが、赤外線センサーを検査槽の内部に設置して、観測窓を介さずに測定することもできる。また、検査槽を設けずに、開放空間内で、対象に向けて音波を放射して検査を行う場合もある。
(Fourth embodiment)
FIG. 8 shows the configuration of a fourth embodiment in which the present invention is applied to nondestructive inspection. Reference numeral 43 denotes a base to be inspected, and a thin film 41 is bonded to the top thereof. Reference numeral 42 denotes a gap between the substrate 43 and the thin film 41 generated due to poor adhesion. 44 is an inspection tank which puts a test object inside. 45 is a pump for pressurizing the inside of the inspection tank 44. 46 is an infrared thermo camera, which measures the temperature distribution on the surface of the thin film 41. In this embodiment, an observation window is opened in the inspection tank 44, and measurement with an infrared thermocamera is possible while maintaining an airtight state. However, an infrared sensor is installed inside the inspection tank. Thus, the measurement can be performed without using the observation window. In some cases, the inspection tank is not provided and the sound wave is emitted toward the object in the open space.

ポンプ45から気体を流入させることによって検査槽44内の圧力を上昇させると、検査槽内の気体の温度は、室温よりも上昇する。このとき、薄膜41の表面から薄膜内部へ、さらに基盤43への熱流束が生じる。ところが、空隙42の上部は、適切に接着された部分と比較して熱抵抗が大きく異なるので、薄膜表面の温度分布は一様ではなく、空隙の形状に対応した分布を持つことになる。この温度分布の不均一を赤外線サーモカメラ46で測定することで、接着の不良箇所を検出することができる。なお、以上の原理で非破壊検査を行うには、加圧に限らず、検査槽内を減圧して温度を下げてやってもよい。また、薄膜表面の温度分布の変化が僅かで、雑音の影響を受ける場合には、交流的に加減圧を繰り返し、その加減圧信号と赤外線サーモカメラの信号との相関をとって、SN比を改善することがある。この他、対象の熱抵抗分布が、正常な対象であっても初めから一様ではない場合には、観測された温度分布と正常な温度分布との差を利用して検査を行うようにすればよい。   When the pressure in the inspection tank 44 is increased by flowing gas from the pump 45, the temperature of the gas in the inspection tank rises above the room temperature. At this time, a heat flux from the surface of the thin film 41 to the inside of the thin film and further to the base 43 is generated. However, since the thermal resistance of the upper part of the gap 42 is significantly different from that of the appropriately bonded part, the temperature distribution on the surface of the thin film is not uniform and has a distribution corresponding to the shape of the gap. By measuring the non-uniformity of the temperature distribution with the infrared thermo camera 46, it is possible to detect a defective portion of adhesion. In addition, in order to perform nondestructive inspection based on the above principle, not only pressurization but also the pressure in the inspection tank may be reduced to lower the temperature. In addition, when the temperature distribution on the surface of the thin film changes slightly and is affected by noise, the AC pressure is repeatedly increased and reduced, and the signal-to-noise ratio is calculated by correlating the pressure increase / decrease signal with the infrared thermocamera signal. May improve. In addition, if the thermal resistance distribution of the target is not uniform from the beginning even if it is a normal target, the inspection should be performed using the difference between the observed temperature distribution and the normal temperature distribution. That's fine.

本発明は、物質の基本的な特性量である熱伝達特性を測定する方法と装置に関わるから、科学研究の分野、物質を扱う広い産業分野で利用される。また、熱伝達特性そのものを測定する目的ではなく、間接的な利用分野として、熱伝達特性を利用して成分検出を行うクロマトグラフィーの熱伝導度検出部などにも使用される。この他、熱負荷を与えたときの対象の温度変化を測定する非破壊検査などにも適用可能であることから、設備の診断や保守、多くの産業分野の診断・検査技術としても利用される。   Since the present invention relates to a method and an apparatus for measuring heat transfer characteristics, which are basic characteristic quantities of substances, it is used in the field of scientific research and a wide range of industrial fields dealing with substances. Moreover, it is not used for the purpose of measuring the heat transfer characteristic itself, but as an indirect application field, it is also used for a thermal conductivity detection part of a chromatograph for detecting components using the heat transfer characteristic. In addition, it can be applied to non-destructive inspection that measures the temperature change of the target when a thermal load is applied, so it is also used as equipment diagnosis and maintenance, and diagnostic and inspection technologies in many industrial fields. .

本発明の第一実施例の構成を示す図である。It is a figure which shows the structure of the 1st Example of this invention. 温度センサー1の構造を示す図である。1 is a diagram illustrating a structure of a temperature sensor 1. FIG. 壁面からの距離と温度変動の複素振幅の関係を示すグラフである。It is a graph which shows the relationship between the distance from a wall surface, and the complex amplitude of a temperature fluctuation. 遠方の温度変動を同時に検出するセンサーの構造図である。FIG. 6 is a structural diagram of a sensor that simultaneously detects a temperature change in a distant place. 平行平板を用いた温度センサーの構造図である。It is a structural diagram of a temperature sensor using a parallel plate. 差働構成をとった本発明の第二実施例を示す図である。It is a figure which shows the 2nd Example of this invention which took the differential structure. 本発明の第三実施例を示す図である。It is a figure which shows the 3rd Example of this invention. 本発明を非破壊検査に応用した第四実施例を示す図である。It is a figure which shows the 4th Example which applied this invention to the nondestructive inspection.

符号の説明Explanation of symbols

1 温度センサー
1’ 温度センサー
101 金属細線
102 センサー基台
103 コネクター部
103’ コネクター部
104 遠方場温度検出用金属細線
2 スピーカー
3 測定セル
3’ 基準セル
4 管
4’ 管
5 電磁バルブ
5’ 電磁バルブ
10 被測定気体
11 発振器
12 電気抵抗検出回路
13 位相比較器
14 演算部
15 表示部
16 バルブコントローラー
20 基準ガス
30 測定用ガス
301 金属薄膜
302 電極
32 被測定物体
33 測定セル
34 同期検波回路
35 演算部
36 表示部
37 バルブ
41 薄膜
42 空隙
43 基盤
44 検査槽
45 ポンプ
46 赤外線サーモカメラ

DESCRIPTION OF SYMBOLS 1 Temperature sensor 1 'Temperature sensor 101 Metal thin wire 102 Sensor base 103 Connector part 103' Connector part 104 Metal thin wire for far-field temperature detection 2 Speaker 3 Measurement cell 3 'Reference cell 4 Tube 4' Tube 5 Electromagnetic valve 5 'Electromagnetic valve DESCRIPTION OF SYMBOLS 10 Gas to be measured 11 Oscillator 12 Electric resistance detection circuit 13 Phase comparator 14 Operation part 15 Display part 16 Valve controller 20 Reference gas 30 Gas for measurement 301 Metal thin film 302 Electrode 32 Object to be measured 33 Measurement cell 34 Synchronous detection circuit 35 Operation part 36 Display unit 37 Valve 41 Thin film 42 Air gap 43 Base 44 Inspection tank 45 Pump 46 Infrared thermo camera

Claims (5)

流体に圧力変動を加えて流体温度を変動させ、
上記流体乃至は上記流体と接する物体の温度変化を検出し、
検出された上記温度変化に基づいて、上記流体乃至は上記物体の熱伝達特性を測定することを特徴とする熱伝達特性測定方法。
Apply pressure fluctuation to the fluid to change the fluid temperature,
Detecting a temperature change of the fluid or an object in contact with the fluid;
A heat transfer characteristic measuring method, comprising: measuring a heat transfer characteristic of the fluid or the object based on the detected temperature change.
流体に圧力変動を加えて流体温度を変動させる手段と、
上記流体乃至は上記流体と接する物体の温度変化を検出する手段と、
上記検出手段によって検出された温度変化に基づいて、上記流体乃至は上記物体の熱伝達特性を算出する手段とを備えることを特徴とする熱伝達特性測定装置。
Means for applying a pressure fluctuation to the fluid to vary the fluid temperature;
Means for detecting a temperature change of the fluid or an object in contact with the fluid;
A heat transfer characteristic measuring apparatus comprising: means for calculating a heat transfer characteristic of the fluid or the object based on a temperature change detected by the detection means.
物体近傍の流体中に温度センサーを設置し、上記物体近傍に生じる温度境界層内の温度変化を検出することを特徴とする請求項2に記載の熱伝達特性測定装置。   The heat transfer characteristic measuring apparatus according to claim 2, wherein a temperature sensor is installed in a fluid in the vicinity of the object to detect a temperature change in the temperature boundary layer generated in the vicinity of the object. 温度変化を流体の圧力変化の形で検出することを特徴とする請求項2に記載の熱伝達特性測定装置。   3. The heat transfer characteristic measuring apparatus according to claim 2, wherein the temperature change is detected in the form of a pressure change of the fluid. 測定対象の熱伝達特性を、基準物質の熱伝達特性と比較して測定する構成としたことを特徴とする請求項2乃至4に記載の熱伝達特性測定装置。
The heat transfer characteristic measuring apparatus according to claim 2, wherein the heat transfer characteristic of the measurement object is measured by comparing with the heat transfer characteristic of the reference material.
JP2005022452A 2005-01-31 2005-01-31 Heat transfer characteristic measuring method and apparatus Expired - Fee Related JP4500904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022452A JP4500904B2 (en) 2005-01-31 2005-01-31 Heat transfer characteristic measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022452A JP4500904B2 (en) 2005-01-31 2005-01-31 Heat transfer characteristic measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2006208257A true JP2006208257A (en) 2006-08-10
JP4500904B2 JP4500904B2 (en) 2010-07-14

Family

ID=36965278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022452A Expired - Fee Related JP4500904B2 (en) 2005-01-31 2005-01-31 Heat transfer characteristic measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4500904B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090317A (en) * 2015-11-12 2017-05-25 株式会社デンソー Gas component detection device and control system
WO2018043421A1 (en) * 2016-08-30 2018-03-08 コニカミノルタ株式会社 Piping evaluation device, piping evaluation method, and piping evaluation program
KR101861549B1 (en) * 2017-01-10 2018-05-29 에코박 주식회사 Heat flow sensor for inspection of vacuum insulation material Heat flow detection device
JP2018115905A (en) * 2017-01-17 2018-07-26 住友電気工業株式会社 Evaluation method
CN112055811A (en) * 2018-01-05 2020-12-08 汉席克卡德应用研究协会 Evaluation device, method and computer program for a thermal gas sensor
JP2021056059A (en) * 2019-09-30 2021-04-08 株式会社岩崎電機製作所 Mounting circuit board inspection device and mounting circuit board inspection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090317A (en) * 2015-11-12 2017-05-25 株式会社デンソー Gas component detection device and control system
WO2018043421A1 (en) * 2016-08-30 2018-03-08 コニカミノルタ株式会社 Piping evaluation device, piping evaluation method, and piping evaluation program
KR101861549B1 (en) * 2017-01-10 2018-05-29 에코박 주식회사 Heat flow sensor for inspection of vacuum insulation material Heat flow detection device
JP2018115905A (en) * 2017-01-17 2018-07-26 住友電気工業株式会社 Evaluation method
JP6999271B2 (en) 2017-01-17 2022-01-18 住友電気工業株式会社 Evaluation methods
CN112055811A (en) * 2018-01-05 2020-12-08 汉席克卡德应用研究协会 Evaluation device, method and computer program for a thermal gas sensor
US11686695B2 (en) 2018-01-05 2023-06-27 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Evaluation arrangement for a thermal gas sensor, methods and computer programs
CN112055811B (en) * 2018-01-05 2023-12-26 汉席克卡德应用研究协会 Evaluation device, method and computer-readable medium for thermal gas sensor
US11874242B2 (en) 2018-01-05 2024-01-16 Habn-Schickard-Gesellschaft für angewandte Forschung e.V. Evaluation arrangement for a thermal gas sensor, methods and computer programs
JP2021056059A (en) * 2019-09-30 2021-04-08 株式会社岩崎電機製作所 Mounting circuit board inspection device and mounting circuit board inspection method

Also Published As

Publication number Publication date
JP4500904B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Simon et al. Micromachined metal oxide gas sensors: opportunities to improve sensor performance
CN105765352B (en) Measuring device and method for determining a corrected mass flow and use of the measuring device
JP4500904B2 (en) Heat transfer characteristic measuring method and apparatus
Berndt et al. MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications
Tang et al. Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology
Gauthier et al. Gas thermal conductivity measurement using the three-omega method
Romero et al. Simultaneous flow and thermal conductivity measurement of gases utilizing a calorimetric flow sensor
CN108802098B (en) Measuring device and measuring method for thermal conductivity of continuous silicon carbide film
Kim et al. Measurement of void fraction and bubble speed of slug flow with three-ring conductance probes
Yan et al. EPMA and XRD study on nickel metal thin film for temperature sensor
Nguyen et al. Thermal Exchange of Glass Micro-Fibers Measured by the 3 ω Technique
Jimenez et al. A microfluidic strategy for accessing the thermal conductivity of liquids at different temperatures
Phinney et al. Raman thermometry measurements and thermal simulations for MEMS bridges at pressures from 0.05 Torr to 625 Torr
Yan et al. Nickel membrane temperature sensor in micro-flow measurement
Bose et al. Accelerated life testing for micro-machined chemical sensors
Kanagaraj et al. Simultaneous measurements of thermal expansion and thermal conductivity of FRPs by employing a hybrid measuring head on a GM refrigerator
Murray et al. Apparatus for combined nanoscale gravimetric, stress, and thermal measurements
US20230236052A1 (en) Thermal flow sensor and method for operating same
Oh Thermal conductivity measurement of liquids by using a suspended microheater
Vittoriosi et al. A sensor-equipped microchannel system for the thermal characterization of rarefied gas flows
Ryu et al. Probe-based microscale measurement setup for the thermal diffusivity of soft materials
JP6059720B2 (en) Differential calorimetric sensor and manufacturing method thereof
Choi et al. Measurement of thermal properties of microfluidic samples using laser point heating thermometry
Iervolino et al. Resonance frequency of locally heated cantilever beams
JP4852740B2 (en) Differential scanning calorimeter capable of measuring high pressure and differential scanning heat flow meter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees