JP2006208102A - Spectral colorimetry device - Google Patents

Spectral colorimetry device Download PDF

Info

Publication number
JP2006208102A
JP2006208102A JP2005018681A JP2005018681A JP2006208102A JP 2006208102 A JP2006208102 A JP 2006208102A JP 2005018681 A JP2005018681 A JP 2005018681A JP 2005018681 A JP2005018681 A JP 2005018681A JP 2006208102 A JP2006208102 A JP 2006208102A
Authority
JP
Japan
Prior art keywords
measurement light
image
light
wavelength
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005018681A
Other languages
Japanese (ja)
Inventor
Kuninori Nakamura
国法 中村
Yuji Sakuma
▲祐▼治 佐久間
長生 ▲濱▼田
Osao Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005018681A priority Critical patent/JP2006208102A/en
Publication of JP2006208102A publication Critical patent/JP2006208102A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise spectral colorimetry device used for measuring a color. <P>SOLUTION: The spectral colorimetry device comprises a slit body 1 in which an entrance slit 11 for transmitting measurement light from an object to be measured passes; a collimator lens 2 for converting measurement light through the entrance slit 11 to parallel light; a reflection type diffraction grating 3 for diffracting measurement light emitted from the collimator lens 2 for reflecting at a different angle for each wavelength; an image-forming lens 4 for condensing measurement light diffracted by the reflection type diffraction grating 3; and an image pickup device 5 for imaging an image formed by measurement light condensed by the image-forming lens 4. The entrance slit 11 is formed in an arc so that an image 50 formed in the image pickup device 5 becomes straight for each wavelength. As compared with a case where the entrance slit 11 is made straight, the contribution of the incident position of measurement light to the position of the image 50 in a direction corresponding to the wavelength is suppressed, thus improving precision. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、色彩測定に用いられる分光測色装置に関するものである。   The present invention relates to a spectrocolorimetric apparatus used for color measurement.

従来から、被測定物で反射された測定光や被測定物が放射する測定光を、回折格子で分光してスペクトル分布を測定する分光測色装置において、分光された測定光を受光する受光素子に到達する波長を回折格子を回転させることにより変更して測定光の波長毎の強度を測定するモノクロメータと呼ばれる分光測色装置のほか、分光された測定光が結ぶ像を例えばCCDからなる撮像素子を用いて撮像することにより、ある程度幅のある波長域にわたって強度分布を同時に測定することができる、ポリクロメータと呼ばれる分光測色装置が提供されている。   Conventionally, in a spectrocolorimeter that measures the spectral distribution of a measurement light reflected by the object to be measured or radiated by the object to be measured by a diffraction grating, a light receiving element that receives the dispersed measurement light In addition to a spectral colorimetry device called a monochromator that measures the intensity of each wavelength of the measurement light by changing the wavelength that reaches the diffraction grating by rotating the diffraction grating, an image formed by, for example, a CCD is used to capture an image formed by the dispersed measurement light There has been provided a spectrocolorimeter called a polychromator capable of simultaneously measuring an intensity distribution over a certain wavelength range by imaging using an element.

さらに、ポリクロメータと呼ばれる上記分光測色装置において、測定光を導入する穴を、回折格子の格子に沿った方向に長い直線形状のスリットとすることにより、被測定物の1点だけではなく直線形状の領域を同時に測定可能としたものも提供されている(例えば、特許文献1参照)。この種の分光測色装置は、測定光を導入する穴を小さな円形状としたものに比べ、被測定物上の走査をより高速で行うことができる。   Furthermore, in the above spectrocolorimetric apparatus called a polychromator, the hole for introducing the measurement light is a straight slit that is long in the direction along the grating of the diffraction grating. There is also provided a configuration in which a shape region can be measured simultaneously (for example, see Patent Document 1). This type of spectrocolorimetric apparatus can perform scanning on the object to be measured at a higher speed than that in which the hole for introducing the measurement light has a small circular shape.

この種の分光測色装置の概略構成の一例を図4に示す。この分光測色装置は、被測定物T(図6参照)からの測定光を通過させる直線形状の入射スリット11が設けられたスリット体1と、入射スリット11を通過した測定光を平行光に変換するコリメート手段としてのコリメートレンズ2と、例えばブレーズド回折格子からなりコリメートレンズ2から出射した測定光を回折し波長毎に異なる角度で反射する反射型回折格子3と、反射型回折格子3で回折された測定光を集光する結像レンズ4と、例えばCCDからなり結像レンズ4によって集光された測定光が結ぶ像を撮像する撮像素子5とを備える。また、被測定物Tからの測定光を入射スリット11に集光する撮像レンズ(図示せず)を備える。さらに、入射スリット11を通過していない光が撮像素子5に入射しないように、コリメートレンズ2と反射型回折格子3と結像レンズ4と撮像素子5とはそれぞれ、スリット体1を保持したハウジング(図示せず)に収納される。   An example of a schematic configuration of this type of spectrocolorimetric apparatus is shown in FIG. The spectrocolorimetric apparatus is a slit body 1 provided with a linear incident slit 11 that allows measurement light from a measured object T (see FIG. 6) to pass through, and the measurement light that has passed through the incident slit 11 is converted into parallel light. A collimating lens 2 as a collimating means for conversion, a reflective diffraction grating 3 that is composed of, for example, a blazed diffraction grating, diffracts measurement light emitted from the collimating lens 2 and reflects it at different angles for each wavelength, and is diffracted by the reflective diffraction grating 3 An imaging lens 4 that collects the measured light and an imaging device 5 that is made of, for example, a CCD and captures an image formed by the measurement light collected by the imaging lens 4 are provided. In addition, an imaging lens (not shown) that condenses measurement light from the object T to be measured on the entrance slit 11 is provided. Further, the collimator lens 2, the reflective diffraction grating 3, the imaging lens 4, and the image sensor 5 are each a housing that holds the slit body 1 so that light that has not passed through the entrance slit 11 does not enter the image sensor 5. (Not shown).

コリメートレンズ2と結像レンズ4とは、それぞれ例えば図5に示すようにメニスカスレンズ21,41と、凸レンズ22,42と、メニスカスレンズと凸レンズとの接合レンズ23,43とからなる、3群4枚構成のレンズである。図5の例では、コリメートレンズ2と結像レンズ4とは共通の構成を有し光軸に沿って互いに逆向きに配置されている。   As shown in FIG. 5, for example, the collimating lens 2 and the imaging lens 4 are each composed of meniscus lenses 21 and 41, convex lenses 22 and 42, and cemented lenses 23 and 43 of meniscus lenses and convex lenses. This is a single lens. In the example of FIG. 5, the collimating lens 2 and the imaging lens 4 have a common configuration and are arranged in opposite directions along the optical axis.

また、コリメートレンズ2と結像レンズ4と撮像レンズとは、図6及び図7に示すように、それぞれ円筒形状のホルダ2a,4a,7aに保持されている。スリット体1と、コリメートレンズ2のホルダ2aと、反射型回折格子3と、結像レンズ4のホルダ4aと、撮像素子5を収納したケース5aとは、それぞれ共通のベースBAに固定され、撮像レンズのホルダ7aはスリット体1に固定されている。   Further, as shown in FIGS. 6 and 7, the collimating lens 2, the imaging lens 4, and the imaging lens are respectively held by cylindrical holders 2a, 4a, and 7a. The slit body 1, the collimator lens 2 holder 2 a, the reflective diffraction grating 3, the imaging lens 4 holder 4 a, and the case 5 a containing the image sensor 5 are fixed to a common base BA, respectively. The lens holder 7 a is fixed to the slit body 1.

次に、上記構成要素間の位置関係について説明する。反射型回折格子3の格子が並ぶ方向は、入射スリット11の長手方向に直交させてある。また、入射スリット11の中央はコリメートレンズ2の物体側焦点に配置され、入射スリット11の開口面とコリメートレンズ2の光軸とは互いに直交している。つまり、入射スリット11の開口面はコリメートレンズ2の物体面上に位置している。これにより、入射スリット11から入射してコリメートレンズ2を出射する測定光は平行光となる。また、撮像素子5は結像レンズ4の像側焦点に配置されている。さらに、コリメートレンズ2の像側焦点と結像レンズ4の物体側焦点とがそれぞれ反射型回折格子3上の1点Oに位置するように、コリメートレンズ2と結像レンズ4と反射型回折格子3とは配置されている。以上により、コリメートレンズ2と反射型回折格子3と結像レンズ4とは全体としてテレセントリック光学系を構成している。また、測定光として想定する波長域の中央の波長を有する光線が入射スリットの中央から入射した場合に、この光線の1次の回折光が結像レンズ4の光軸上へ出射されるように、反射型回折格子3の向きは調整してある。例えば測定光として可視光(波長400nm〜700nm)を想定する場合、上記中央の波長は550nmとなる。さらに、コリメートレンズ2と結像レンズ4とは、互いの光軸を反射型回折格子3上の点Oで直交させる位置関係で配置されている。   Next, the positional relationship between the above components will be described. The direction in which the gratings of the reflective diffraction grating 3 are arranged is orthogonal to the longitudinal direction of the entrance slit 11. The center of the entrance slit 11 is disposed at the object side focal point of the collimator lens 2, and the opening surface of the entrance slit 11 and the optical axis of the collimator lens 2 are orthogonal to each other. That is, the opening surface of the entrance slit 11 is located on the object plane of the collimating lens 2. As a result, the measurement light incident from the entrance slit 11 and exiting the collimator lens 2 becomes parallel light. The image sensor 5 is disposed at the image side focal point of the imaging lens 4. Further, the collimating lens 2, the imaging lens 4, and the reflective diffraction grating are arranged so that the image-side focal point of the collimating lens 2 and the object-side focal point of the imaging lens 4 are positioned at one point O on the reflective diffraction grating 3. 3 is arranged. As described above, the collimating lens 2, the reflective diffraction grating 3, and the imaging lens 4 constitute a telecentric optical system as a whole. Further, when a light beam having a central wavelength in the wavelength range assumed as measurement light is incident from the center of the entrance slit, the first-order diffracted light of this light beam is emitted onto the optical axis of the imaging lens 4. The direction of the reflective diffraction grating 3 is adjusted. For example, when visible light (wavelength 400 nm to 700 nm) is assumed as measurement light, the central wavelength is 550 nm. Further, the collimating lens 2 and the imaging lens 4 are arranged in a positional relationship in which their optical axes are orthogonal to each other at a point O on the reflective diffraction grating 3.

そして、入射スリット11を通過した測定光がコリメートレンズ2で平行光に変換され反射型回折格子3で回折されて結像レンズ4で集光されることにより、撮像素子5には、入射スリット11の形状に対応した筋状の像50が結ばれる。この像50は、図4では簡単のために1本のみ描いているが、実際には測定光に含まれる波長毎の複数本が形成される。この像50は、波長が長いほど、また回折次数が大きいほどスリット体1から離れた位置に形成される。つまり、反射型回折格子3の格子が並ぶ方向(図4での左右方向)での像50の位置が、測定光に含まれる光の波長に対応している。したがって、撮像素子5に撮像された像50は、被測定物Tにおいて入射スリット11に臨む長細い領域について、入射スリット11の長手方向に対応した方向での位置に対する、測定光のスペクトル分布を示している。そして、被測定物Tをスリット体1に対し、図6に矢印A2で示す入射スリット11の短手方向(図4での左右方向)に相対的に動かすことにより、被測定物Tのスキャンが可能となっている。
特開平11−101692号公報
Then, the measurement light that has passed through the incident slit 11 is converted into parallel light by the collimator lens 2, diffracted by the reflective diffraction grating 3, and condensed by the imaging lens 4. A streak-like image 50 corresponding to the shape is formed. In FIG. 4, only one image 50 is drawn for the sake of simplicity, but actually, a plurality of images 50 for each wavelength included in the measurement light are formed. The image 50 is formed at a position farther from the slit body 1 as the wavelength is longer and the diffraction order is larger. That is, the position of the image 50 in the direction in which the gratings of the reflective diffraction grating 3 are arranged (left and right direction in FIG. 4) corresponds to the wavelength of the light included in the measurement light. Therefore, the image 50 picked up by the image pickup device 5 shows the spectral distribution of the measurement light with respect to the position in the direction corresponding to the longitudinal direction of the incident slit 11 in the long thin region facing the incident slit 11 in the object T to be measured. ing. Then, the object T is scanned by moving the object T relative to the slit body 1 in the short direction (left-right direction in FIG. 4) of the entrance slit 11 indicated by the arrow A2 in FIG. It is possible.
Japanese Patent Laid-Open No. 11-101692

ここで、入射スリット11の長手方向の端部から入射してB→O→B’→B”やC→O→C’→C”のような経路で撮像素子5に入射する測定光(以下、「端部測定光」と呼ぶ。)と、入射スリット11の長手方向の中央部から入射してA→O→A’→A”の経路で撮像素子5に入射する測定光(以下、「中央部測定光」と呼ぶ。)とは、反射型回折格子3に入射する際に反射型回折格子3の格子に対してなす角が互いに異なる。したがって、反射型回折格子3の格子に沿った方向(図4の上下方向)から見た反射角が同じでも、隣り合う格子間での光路差は、端部測定光と中央部測定光とで異なる。このため、同じ波長かつ同じ回折次数であっても、中央部測定光と端部測定光とのように入射スリット11に入射する位置が異なれば、反射型回折格子3の格子に沿った方向から見た回折角が異なる。この結果、入射スリット11の長手方向の両端部の像の位置は、長手方向の中央部の像の位置に対し、それぞれ反射型回折格子3の格子が並ぶ方向にずれる。このずれは、測定光の入射位置が入射スリット11の長手方向の端に近いほど大きくなり、撮像素子5に結ばれる像50は波長毎にそれぞれ全体として弧形状となる。   Here, the measurement light (hereinafter referred to as “incident”) is incident from the longitudinal end of the incident slit 11 and enters the image sensor 5 through a path such as B → O → B ′ → B ″ or C → O → C ′ → C ″. , Referred to as “end measurement light”) and measurement light (hereinafter referred to as “end measurement light”) that is incident from the center in the longitudinal direction of the entrance slit 11 and enters the image pickup device 5 along the path of A → O → A ′ → A ″. The angle formed with respect to the grating of the reflective diffraction grating 3 when entering the reflective diffraction grating 3 is different from that of the central measurement light. Therefore, even if the reflection angle as viewed from the direction along the grating of the reflective diffraction grating 3 (vertical direction in FIG. 4) is the same, the optical path difference between adjacent gratings is the difference between the edge measurement light and the center measurement light. Different. For this reason, even if they have the same wavelength and the same diffraction order, if the positions incident on the entrance slit 11 are different as in the central measurement light and the end measurement light, the direction from the direction along the grating of the reflective diffraction grating 3 is different. Different diffraction angles. As a result, the positions of the images at both ends in the longitudinal direction of the entrance slit 11 are shifted in the direction in which the gratings of the reflective diffraction gratings 3 are arranged with respect to the position of the image at the center in the longitudinal direction. This shift increases as the incident position of the measurement light is closer to the longitudinal end of the incident slit 11, and the image 50 connected to the image sensor 5 has an arc shape as a whole for each wavelength.

例えば、中央部測定光が、反射型回折格子3の格子に対して垂直な方向から反射型回折格子3に入射する場合を考える。この場合、端部測定光は、反射型回折格子3の格子に対して垂直でない方向から反射型回折格子3に入射する。すなわち、反射型回折格子3の格子に沿った方向から見た反射角が同じでも、隣り合う格子間での光路差は、端部測定光では中央部測定光よりも長くなる。したがって、端部測定光は、反射型回折格子3における回折次数と波長とが共通である中央部測定光よりも、反射型回折格子3の格子に沿った方向から見た回折角がより小さくなる。つまり、端部測定光は、反射型回折格子3の格子に沿った方向から見て、反射型回折格子3に対し実際より短波長であるかのように振舞う。この結果、入射スリット11の長手方向の両端部の像はそれぞれ短波長側(図4の左側)にずれ、撮像素子5に結ばれる像50は波長毎にそれぞれ全体として弧形状となる。この弧形状の曲率ρは、波長λと、回折次数mと、反射型回折格子3における中央部測定光の回折角βと、反射型回折格子3の格子定数dと、結像レンズ4の物体焦点距離(前側焦点距離)fとを用いて次式で表される。   For example, consider a case where the central measurement light is incident on the reflection type diffraction grating 3 from a direction perpendicular to the reflection type diffraction grating 3. In this case, the edge measurement light enters the reflective diffraction grating 3 from a direction that is not perpendicular to the reflective diffraction grating 3. That is, even if the reflection angles viewed from the direction along the grating of the reflective diffraction grating 3 are the same, the optical path difference between adjacent gratings is longer for the end measurement light than for the center measurement light. Therefore, the edge measurement light has a smaller diffraction angle as viewed from the direction along the grating of the reflective diffraction grating 3 than the central measurement light having the same diffraction order and wavelength in the reflective diffraction grating 3. . That is, the end measurement light behaves as if it has a shorter wavelength than the actual wavelength with respect to the reflective diffraction grating 3 when viewed from the direction along the grating of the reflective diffraction grating 3. As a result, the images at both ends in the longitudinal direction of the entrance slit 11 are shifted to the short wavelength side (left side in FIG. 4), and the image 50 connected to the image sensor 5 has an arc shape as a whole for each wavelength. The arc-shaped curvature ρ includes the wavelength λ, the diffraction order m, the diffraction angle β of the central measurement light in the reflective diffraction grating 3, the lattice constant d of the reflective diffraction grating 3, and the object of the imaging lens 4. It is expressed by the following equation using the focal length (front focal length) f.

ρ=(f・d/(m・λ))cosβ…(式1)
このように像50が弧形状に歪むと、中央部測定光を基準として像50の位置と波長とを対応付けた場合、入射スリット11の長手方向の端に近い位置ほど、波長の誤差が大きくなってしまう。
ρ = (f · d / (m · λ)) cos β (Formula 1)
When the image 50 is distorted in an arc shape as described above, when the position of the image 50 and the wavelength are associated with each other with the measurement light at the center as a reference, the wavelength error increases as the position is closer to the end in the longitudinal direction of the entrance slit 11. turn into.

本発明は上記事由に鑑みて為されたものであり、その目的は、精度を向上した分光測色装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a spectrocolorimetric apparatus with improved accuracy.

請求項1の発明は、被測定物からの測定光を通過させる入射スリットが設けられたスリット体と、入射スリットを通過した測定光を平行光に変換するコリメート手段と、コリメート手段によって平行光に変換された測定光を回折する回折格子と、回折格子で回折された測定光が結ぶ像を撮像する撮像素子とを備え、入射スリットを、測定光が撮像素子に結ぶ像が波長毎に直線形状となるような弧形状に形成したことを特徴とする。   According to the first aspect of the present invention, there is provided a slit body provided with an entrance slit for allowing measurement light from the object to be measured to pass through, collimating means for converting the measurement light that has passed through the entrance slit into parallel light, and collimation means for making parallel light. Equipped with a diffraction grating that diffracts the converted measurement light and an image sensor that captures an image formed by the measurement light diffracted by the diffraction grating. An image formed by connecting the measurement light to the image sensor is linear for each wavelength. It is characterized by being formed in an arc shape that becomes

この発明によれば、入射スリットを直線形状とする場合に比べ、波長に対応する方向での像の位置に対する測定光の入射位置の寄与が抑制されるから、精度が向上する。   According to the present invention, compared with the case where the incident slit is formed in a linear shape, the contribution of the incident position of the measurement light to the position of the image in the direction corresponding to the wavelength is suppressed, so that the accuracy is improved.

請求項2の発明は、被測定物からの測定光が入射する入射端が直線形状に配列された複数本の光ファイバからなるライトガイドと、ライトガイドから出射した測定光を平行光に変換するコリメート手段と、コリメート手段によって平行光に変換された測定光を回折する回折格子と、回折格子で回折された測定光が結ぶ像を撮像する撮像素子とを備え、ライトガイドを通過した測定光が撮像素子に結ぶ像が波長毎に直線形状となるように、ライトガイドを構成する光ファイバにおいて測定光が出射する出射端を弧形状に配列したことを特徴とする。   According to a second aspect of the present invention, a light guide composed of a plurality of optical fibers in which incident ends on which measurement light from the object to be measured is incident are linearly arranged, and measurement light emitted from the light guide is converted into parallel light. A collimating unit; a diffraction grating that diffracts the measurement light converted into parallel light by the collimating unit; and an image sensor that captures an image formed by the measurement light diffracted by the diffraction grating. In the optical fiber constituting the light guide, the emission ends from which the measurement light is emitted are arranged in an arc shape so that an image to be connected to the imaging element has a linear shape for each wavelength.

この発明によれば、ライトガイドを構成する光ファイバの出射端を直線形状に配列する場合に比べ、波長に対応する方向での像の位置に対する測定光の入射位置の寄与が抑制されるから、精度が向上する。また、光ファイバの入射端を直線形状に配列したことにより、被測定物において同時に測定される領域が直線形状となるから、光ファイバの入射端を曲線形状に配列する場合に比べ、被測定物における位置と像における位置との対応関係が簡明となるため使いやすい。   According to this invention, since the contribution of the incident position of the measurement light to the position of the image in the direction corresponding to the wavelength is suppressed as compared with the case where the emission ends of the optical fibers constituting the light guide are arranged in a linear shape, Accuracy is improved. Also, since the incident end of the optical fiber is arranged in a linear shape, the region to be measured at the same time in the object to be measured becomes a linear shape. Therefore, compared to the case where the incident end of the optical fiber is arranged in a curved shape, The correspondence between the position in the image and the position in the image is simple and easy to use.

本発明は、測定光が撮像素子に結ぶ像が波長毎に直線形状となるように、入射スリットが弧形状に形成され、または出射端が弧形状に配列された複数本の光ファイバからなるライトガイドを備えるので、波長に対応する方向での像の位置に対する測定光の入射位置の寄与が抑制されるから、精度が向上する。   The present invention provides a light composed of a plurality of optical fibers in which an entrance slit is formed in an arc shape or an output end is arranged in an arc shape so that an image formed by measuring light on an image sensor has a linear shape for each wavelength. Since the guide is provided, the contribution of the incident position of the measurement light to the position of the image in the direction corresponding to the wavelength is suppressed, so that the accuracy is improved.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。なお、以下の各実施形態の基本構成はそれぞれ従来例と共通であるので、共通する部分については同じ符号を付して説明を省略する。   The best mode for carrying out the present invention will be described below with reference to the drawings. In addition, since the basic composition of each following embodiment is respectively common with a prior art example, about the common part, the same code | symbol is attached | subjected and description is abbreviate | omitted.

(実施形態1)
本実施形態は、図1に示すように、従来例において撮像素子5に結ばれる像50の両端部の位置ずれを打ち消す方向に入射スリット11の各部の位置をずらしたものである。
(Embodiment 1)
In the present embodiment, as shown in FIG. 1, the position of each part of the entrance slit 11 is shifted in a direction to cancel the position shift of both ends of the image 50 connected to the image sensor 5 in the conventional example.

例えば、入射スリット11の中央に入射した測定光が反射型回折格子3に対して格子に直交する方向から入射する場合には、入射スリット11の形状は、従来例で撮像素子5に結ばれた像50の弧形状とは逆の方向、すなわち長手方向の端に近付くほど撮像素子5に近付く方向(図1の右方向)に曲がった弧形状とする。入射スリット11の幅寸法は、例えば20μmである。   For example, when the measurement light incident on the center of the entrance slit 11 enters the reflective diffraction grating 3 from a direction perpendicular to the grating, the shape of the entrance slit 11 is connected to the image sensor 5 in the conventional example. The arc shape of the image 50 is bent in a direction opposite to the arc shape, that is, in a direction approaching the imaging element 5 (rightward in FIG. 1) as it approaches the end in the longitudinal direction. The width dimension of the entrance slit 11 is 20 μm, for example.

ここで、入射スリット11の弧形状の曲率は、撮像素子5に結ばれる像50が波長毎に直線形状となるようにしてある。具体的には例えば、従来例で示した式1を用い、λには想定する測定光の波長域の中央の波長を、mには1を、βには反射型回折格子3の格子に沿った方向(図1の上下方向)から見た測定光の反射型回折格子3に対する入射角を、fにはコリメートレンズ2の像焦点距離(後側焦点距離)を、それぞれ代入して得られたρを入射スリット11の弧形状の曲率とする。コリメートレンズ2及び結像レンズ4の焦点間距離L(図5参照)がそれぞれ50.6mmである場合には、入射スリット11の弧形状の曲率半径は例えば52.4mmである。   Here, the curvature of the arc shape of the entrance slit 11 is such that the image 50 connected to the image sensor 5 has a linear shape for each wavelength. Specifically, for example, using the formula 1 shown in the conventional example, λ is the center wavelength of the assumed wavelength range of the measurement light, m is 1, and β is along the grating of the reflective diffraction grating 3 Obtained by substituting the incident angle of the measurement light with respect to the reflective diffraction grating 3 as viewed from the vertical direction (vertical direction in FIG. 1) and the image focal length (rear focal length) of the collimating lens 2 into f, respectively. Let ρ be the curvature of the arc shape of the entrance slit 11. When the interfocal distance L (see FIG. 5) of the collimating lens 2 and the imaging lens 4 is 50.6 mm, the arc-shaped curvature radius of the entrance slit 11 is, for example, 52.4 mm.

上記構成によれば、測定光によって撮像素子5に結ばれる像50が波長毎に直線形状となり、かつ該直線形状は、反射型回折格子3の格子が並ぶ方向すなわち波長に対応する方向(図1の左右方向)に直交するので、波長に対応する方向での像50の位置と測定光の波長との対応関係が、入射スリット11への測定光の入射位置によらず略一定となるから、入射スリット11を直線形状とする場合に比べて精度が向上する。   According to the above configuration, the image 50 connected to the imaging device 5 by the measurement light has a linear shape for each wavelength, and the linear shape is a direction in which the gratings of the reflective diffraction grating 3 are arranged, that is, a direction corresponding to the wavelength (FIG. 1). Since the correspondence relationship between the position of the image 50 in the direction corresponding to the wavelength and the wavelength of the measurement light is substantially constant regardless of the incident position of the measurement light on the incident slit 11, The accuracy is improved as compared with the case where the entrance slit 11 has a linear shape.

因みに、本発明者が行った比較実験では、入射スリット11が直線形状である場合には図2(a)に示すように弧形状に曲がった像50が、入射スリット11を弧形状とした場合には同じ測定光に対して図2(b)に示すように直線形状に補正された。   Incidentally, in a comparative experiment conducted by the present inventor, when the entrance slit 11 has a linear shape, an image 50 bent into an arc shape as shown in FIG. The same measurement light was corrected to a linear shape as shown in FIG.

(実施形態2)
本実施形態は、図3に示すように、スリット体1に代えて、矢印A1で示すように被測定物Tからの測定光が入射する入射端が直線形状に配列された複数本の光ファイバ61からなるライトガイド6を備える。ライトガイド6は、例えばコリメートレンズ2と反射型回折格子3と結像レンズ4と撮像素子5とを収納したハウジング(図示せず)に保持され、ライトガイド6を通過していない光が撮像素子5に入射しないようにしてある。光ファイバ61において測定光が出射する出射端は、反射型回折格子3の格子に沿った方向(図3の上下方向)に並べられ、中央の光ファイバ61から出射した測定光がコリメートレンズ2の光軸上を通るようにしてある。また、光ファイバ61同士は互いに交叉せず、光ファイバ61が並ぶ順番は入射端側と出射端側とで一致している。
(Embodiment 2)
In this embodiment, as shown in FIG. 3, instead of the slit body 1, as shown by an arrow A1, a plurality of optical fibers in which incident ends on which measurement light from the object T is incident are arranged in a linear shape A light guide 6 comprising 61 is provided. The light guide 6 is held in a housing (not shown) in which, for example, the collimating lens 2, the reflective diffraction grating 3, the imaging lens 4, and the image sensor 5 are housed, and light that has not passed through the light guide 6 is captured by the image sensor. 5 so as not to be incident. In the optical fiber 61, the emission ends from which the measurement light is emitted are arranged in a direction along the grating of the reflective diffraction grating 3 (up and down direction in FIG. 3), and the measurement light emitted from the central optical fiber 61 is transmitted through the collimating lens 2. It passes on the optical axis. Further, the optical fibers 61 do not cross each other, and the order in which the optical fibers 61 are arranged is the same on the incident end side and the outgoing end side.

また、測定光によって撮像素子5に結ばれる像50が波長毎に直線形状となり、かつ該直線形状が、反射型回折格子3の格子が並ぶ方向すなわち波長に対応する方向(図3の左右方向)に直交するように、光ファイバ61の出射端は弧形状に配列されている。例えば、中央の光ファイバ61から出射した測定光が反射型回折格子3に対して格子に直交する方向から入射する場合には、光ファイバ61の出射端を、従来例で撮像素子5に結ばれた像の弧形状とは逆の方向、すなわち長手方向の端に近付くほど撮像素子5に近付く方向(図3の右方向)に曲がった弧形状に配列する。この弧形状の曲率は、実施形態1における入射スリット11の弧形状の曲率と同様にして決定することができる。   Further, the image 50 connected to the image pickup device 5 by the measurement light has a linear shape for each wavelength, and the linear shape is a direction in which the gratings of the reflective diffraction grating 3 are arranged, that is, a direction corresponding to the wavelength (left-right direction in FIG. 3). The emission ends of the optical fibers 61 are arranged in an arc shape so as to be orthogonal to the optical axis. For example, when the measurement light emitted from the central optical fiber 61 is incident on the reflective diffraction grating 3 from a direction perpendicular to the grating, the emission end of the optical fiber 61 is connected to the image sensor 5 in the conventional example. They are arranged in an arc shape that is bent in a direction opposite to the arc shape of the image, that is, in a direction approaching the image sensor 5 (rightward in FIG. 3) as it approaches the end in the longitudinal direction. The curvature of the arc shape can be determined in the same manner as the curvature of the arc shape of the entrance slit 11 in the first embodiment.

上記構成によれば、波長に対応する方向での像50の位置と測定光の波長との対応関係が、ライトガイド6への測定光の入射位置によらず略一定となるから、光ファイバ61の出射端を直線形状に配列する場合に比べて精度が向上する。   According to the above configuration, the correspondence between the position of the image 50 in the direction corresponding to the wavelength and the wavelength of the measurement light is substantially constant regardless of the position of the measurement light incident on the light guide 6. The accuracy is improved as compared with the case where the emission ends are arranged in a linear shape.

さらに、実施形態1とは異なり、被測定物Tにおいて同時に測定される領域が直線形状であるので、実施形態1に比べ、被測定物Tにおける位置と像50における位置との対応関係が簡明となるから使いやすい。   Further, unlike the first embodiment, the region simultaneously measured on the object T to be measured has a linear shape, so that the correspondence between the position on the object T to be measured and the position on the image 50 is simpler than in the first embodiment. So easy to use.

なお、像50は、実施形態1や本実施形態のように、波長に対応する方向に直交する直線形状とすることが望ましいが、波長に対応する方向に直交しない直線形状であっても、波長に対応する方向での像の位置に対する測定光の入射位置の寄与が直線状となり計算での補正が容易となるから、精度の向上は可能である。   Note that the image 50 is desirably a linear shape orthogonal to the direction corresponding to the wavelength as in the first embodiment or the present embodiment, but the wavelength 50 may be a linear shape that is not orthogonal to the direction corresponding to the wavelength. Since the contribution of the incident position of the measurement light to the image position in the direction corresponding to is linear and correction by calculation is easy, the accuracy can be improved.

本発明の実施形態1を示す概略構成図である。It is a schematic block diagram which shows Embodiment 1 of this invention. 同上の効果を示す写真であり、(a)は本発明の適用前に撮像素子が撮像した画像を示し、(b)は本発明の適用後に同じ測定光に対して撮像素子が撮像した画像を示す。It is a photograph which shows an effect same as the above, (a) shows the picture imaged by the image sensor before application of the present invention, and (b) shows the image imaged by the image sensor for the same measurement light after application of the present invention. Show. 本発明の実施形態2を示す概略構成図である。It is a schematic block diagram which shows Embodiment 2 of this invention. 従来例を示す概略構成図である。It is a schematic block diagram which shows a prior art example. 同上の光学系を示す説明図である。It is explanatory drawing which shows an optical system same as the above. 同上を示す斜視図である。It is a perspective view which shows the same as the above. 同上の要部を示す一部破断した斜視図である。It is the partially broken perspective view which shows the principal part same as the above.

符号の説明Explanation of symbols

1 スリット体
2 コリメートレンズ
3 反射型回折格子
5 撮像素子
6 ライトガイド
11 入射スリット
50 像
61 光ファイバ
T 被測定物
DESCRIPTION OF SYMBOLS 1 Slit body 2 Collimating lens 3 Reflection type diffraction grating 5 Image pick-up element 6 Light guide 11 Incident slit 50 Image 61 Optical fiber T Measured object

Claims (2)

被測定物からの測定光を通過させる入射スリットが設けられたスリット体と、入射スリットを通過した測定光を平行光に変換するコリメート手段と、コリメート手段によって平行光に変換された測定光を回折する回折格子と、回折格子で回折された測定光が結ぶ像を撮像する撮像素子とを備え、
入射スリットを、測定光が撮像素子に結ぶ像が波長毎に直線形状となるような弧形状に形成したことを特徴とする分光測色装置。
A slit body provided with an entrance slit for passing measurement light from the object to be measured, a collimating means for converting the measurement light that has passed through the entrance slit into parallel light, and diffracting the measurement light converted into parallel light by the collimating means And an imaging element that captures an image formed by measurement light diffracted by the diffraction grating,
A spectrocolorimetric apparatus, wherein the entrance slit is formed in an arc shape so that an image formed by measuring light on the image sensor is linear for each wavelength.
被測定物からの測定光が入射する入射端が直線形状に配列された複数本の光ファイバからなるライトガイドと、ライトガイドから出射した測定光を平行光に変換するコリメート手段と、コリメート手段によって平行光に変換された測定光を回折する回折格子と、回折格子で回折された測定光が結ぶ像を撮像する撮像素子とを備え、
ライトガイドを通過した測定光が撮像素子に結ぶ像が波長毎に直線形状となるように、ライトガイドを構成する光ファイバにおいて測定光が出射する出射端を弧形状に配列したことを特徴とする分光測色装置。
A light guide composed of a plurality of optical fibers in which measurement light beams from an object to be measured are incident and arranged in a straight line; a collimating means for converting the measurement light emitted from the light guide into parallel light; and a collimating means. A diffraction grating that diffracts the measurement light converted into parallel light, and an imaging element that captures an image formed by the measurement light diffracted by the diffraction grating;
The output end from which the measurement light is emitted is arranged in an arc shape in the optical fiber that constitutes the light guide so that the image that the measurement light that has passed through the light guide is connected to the image sensor has a linear shape for each wavelength. Spectral color measuring device.
JP2005018681A 2005-01-26 2005-01-26 Spectral colorimetry device Pending JP2006208102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018681A JP2006208102A (en) 2005-01-26 2005-01-26 Spectral colorimetry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018681A JP2006208102A (en) 2005-01-26 2005-01-26 Spectral colorimetry device

Publications (1)

Publication Number Publication Date
JP2006208102A true JP2006208102A (en) 2006-08-10

Family

ID=36965140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018681A Pending JP2006208102A (en) 2005-01-26 2005-01-26 Spectral colorimetry device

Country Status (1)

Country Link
JP (1) JP2006208102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9207124B2 (en) 2013-08-06 2015-12-08 Seiko Epson Corporation Colorimetry apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275325A (en) * 1989-04-17 1990-11-09 Kuraray Co Ltd Spectrometer
JPH09105673A (en) * 1995-10-11 1997-04-22 Yokogawa Electric Corp Spectral apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275325A (en) * 1989-04-17 1990-11-09 Kuraray Co Ltd Spectrometer
JPH09105673A (en) * 1995-10-11 1997-04-22 Yokogawa Electric Corp Spectral apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9207124B2 (en) 2013-08-06 2015-12-08 Seiko Epson Corporation Colorimetry apparatus

Similar Documents

Publication Publication Date Title
TWI427265B (en) Measuring apparatus
US7239384B2 (en) Laser-scanning fluoroscopy apparatus
JP5072337B2 (en) Optical displacement sensor and adjustment method thereof
US9677938B2 (en) Spectral characteristic acquisition device, image evaluation device, and image formation apparatus
JP5424957B2 (en) Spectral colorimetry apparatus and image forming apparatus using the same
US20060114459A1 (en) Optical fiber type spectroscope and spectroscope system equipped therewith
US20070146724A1 (en) Vibration-resistant interferometer apparatus
JP5538194B2 (en) Optical apparatus and electronic apparatus
JPH0989665A (en) Instrument for measuring light spectrum
JP4355338B2 (en) Optical inclinometer
JP2008064933A (en) Optical unit
JP4601266B2 (en) Laser microscope
JP2010145468A (en) Height detection device and toner height detection apparatus using the same
CN109506570B (en) Displacement sensor
JP4694290B2 (en) Method and apparatus for measuring transmittance of finite optical element
JP2006208102A (en) Spectral colorimetry device
JP3633713B2 (en) Distance measuring method and distance sensor
JP2021081664A (en) Optical device, imaging apparatus and imaging system equipped with the same
JP3575586B2 (en) Scratch inspection device
JP3696228B2 (en) Distance measuring method and distance sensor
JP2009020022A (en) Light receiving optical system and spectral luminance meter using it
JP2841554B2 (en) Spectrometer
JP4133574B2 (en) Eccentricity measuring instrument
JP2001264169A (en) Spectroscope
JP5705294B2 (en) Spectral colorimetry apparatus and image forming apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070910

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907