JP2006207413A - Secondary air supply device for internal combustion engine - Google Patents

Secondary air supply device for internal combustion engine Download PDF

Info

Publication number
JP2006207413A
JP2006207413A JP2005017869A JP2005017869A JP2006207413A JP 2006207413 A JP2006207413 A JP 2006207413A JP 2005017869 A JP2005017869 A JP 2005017869A JP 2005017869 A JP2005017869 A JP 2005017869A JP 2006207413 A JP2006207413 A JP 2006207413A
Authority
JP
Japan
Prior art keywords
secondary air
air supply
exhaust
temperature
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005017869A
Other languages
Japanese (ja)
Inventor
Munehiro Tabata
宗広 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005017869A priority Critical patent/JP2006207413A/en
Publication of JP2006207413A publication Critical patent/JP2006207413A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quickly activate an exhaust purifying catalyst 12 immediately after the start, by efficiently supplying secondary air to an exhaust passage 11 in supplying the secondary air to the exhaust passage 11 and to thereby increase an exhaust temperature of an inlet of a catalyst 12. <P>SOLUTION: A discharge side (an outlet side of a shutoff valve 14) of an air pump 13 is branched into two secondary air supply passages 16, 17 through a distributing valve 15. A secondary air supply port 16a of one secondary air supply passage 16 is opened to a relatively upstream (exhaust port 18) of the exhaust passage 11. A secondary air supply port 17a of the other secondary air supply passage 17 is opened to relatively downstream of the exhaust passage 11. The secondary air supply parts 16a, 17a to the exhaust passage 11 are disposed to a plurality of portions in an exhaust flow direction, and the secondary air is supplied from the plurality of portions at the same time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、始動直後の排気浄化触媒の早期活性化などのため、排気温度を上昇させるべく、排気通路に二次空気を供給する内燃機関の二次空気供給装置に関する。   The present invention relates to a secondary air supply device for an internal combustion engine that supplies secondary air to an exhaust passage in order to increase the exhaust temperature in order to quickly activate an exhaust purification catalyst immediately after startup.

特許文献1には、排気系での酸化反応を促進させるため、触媒上流の排気通路に二次空気を供給するに際し、排気通路への二次空気供給口を排気流れ方向に2つ設け、いずれか一方から選択的に二次空気を供給している。これは、酸素センサによる空燃比フィードバック制御が行われるときは、酸素センサより下流側の二次空気供給口より二次空気を供給して、空燃比の誤認識を防止するためであり、空燃比フィードバック制御が行われないときは、酸素センサより上流側の二次空気供給口より二次空気を供給して、排気温度のより高い位置にて酸化反応を促進させるためである。
実開平5−007920号公報
In Patent Document 1, in order to promote the oxidation reaction in the exhaust system, when supplying secondary air to the exhaust passage upstream of the catalyst, two secondary air supply ports to the exhaust passage are provided in the exhaust flow direction. Secondary air is selectively supplied from either of them. This is because when air-fuel ratio feedback control is performed by the oxygen sensor, secondary air is supplied from the secondary air supply port downstream of the oxygen sensor to prevent erroneous recognition of the air-fuel ratio. This is because when the feedback control is not performed, the secondary air is supplied from the secondary air supply port upstream of the oxygen sensor to promote the oxidation reaction at a higher exhaust temperature position.
Japanese Utility Model Publication No. 5-007920

しかしながら、特許文献1に記載の技術では、排気通路への二次空気供給口を排気流れ方向に2つ設けているものの、いずれか一方の二次空気供給口から選択的に二次空気を供給しているため、これまでのものと同様、1箇所の二次空気供給口から二次空気の全量を供給することになるため、次のような問題があった。
1箇所の二次空気供給口から二次空気の全量を供給すると、供給位置よりやや下流側で一気に燃焼して、排気温度がピークとなることから、周囲温度(例えば排気通路内壁の温度)との温度差が大となり、放熱量は温度差に比例することから、その後の排気温度の低下が大きくなり、触媒入口での排気温度が低下してしまう。
However, in the technique described in Patent Document 1, although secondary air supply ports to the exhaust passage are provided in the exhaust flow direction, secondary air is selectively supplied from any one of the secondary air supply ports. Therefore, like the conventional ones, since the entire amount of secondary air is supplied from one secondary air supply port, there are the following problems.
When the entire amount of secondary air is supplied from one secondary air supply port, it burns at a short downstream from the supply position, and the exhaust temperature reaches a peak. Therefore, the ambient temperature (for example, the temperature of the inner wall of the exhaust passage) Since the temperature difference is large and the amount of heat released is proportional to the temperature difference, the exhaust temperature subsequently decreases greatly, and the exhaust temperature at the catalyst inlet decreases.

本発明は、このような実状に鑑み、二次空気を効率的に供給して、触媒入口の排気温度を高めることができるようにすることを目的とする。   In view of such a situation, an object of the present invention is to efficiently supply secondary air to increase the exhaust temperature of the catalyst inlet.

このため、本発明では、排気通路への二次空気供給口を排気流れ方向の複数箇所に設け、複数箇所の二次空気供給口から同時に二次空気を供給する構成とする。   Therefore, in the present invention, the secondary air supply ports to the exhaust passage are provided at a plurality of locations in the exhaust flow direction, and the secondary air is supplied simultaneously from the plurality of secondary air supply ports.

本発明によれば、排気流れ方向の複数箇所から、各二次空気供給口により二次空気を分割して供給することで、持続的に燃焼させ、放熱量の増大を抑えて、排気温度の低下を防止でき、触媒入口での排気温度を高めることができる。   According to the present invention, the secondary air is divided and supplied from each of the plurality of locations in the exhaust flow direction by the secondary air supply ports, so that the combustion is continuously performed and the increase in the heat radiation amount is suppressed, and the exhaust temperature is reduced. The decrease can be prevented, and the exhaust temperature at the catalyst inlet can be increased.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すエンジンのシステム図である。
エンジン1の吸気通路2には、吸気マニホールド3の入口側に位置させて、吸入空気量を制御する電制スロットル弁4が設置されている。電制スロットル弁4は、エンジンコントロールユニット(以下ECUという)20からの信号により作動するステップモータ等により開度制御される。但し、アクセルペダルにワイヤ等で連結された機械式のスロットル弁を用いてもよい。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an engine system diagram showing an embodiment of the present invention.
In the intake passage 2 of the engine 1, an electrically controlled throttle valve 4 that is positioned on the inlet side of the intake manifold 3 and controls the amount of intake air is installed. The opening degree of the electric throttle valve 4 is controlled by a step motor or the like that is operated by a signal from an engine control unit (hereinafter referred to as ECU) 20. However, a mechanical throttle valve connected to the accelerator pedal by a wire or the like may be used.

吸気マニホールド3の出口側のブランチ部には、各気筒の吸気ポート5に燃料を噴射する燃料噴射弁6が取付けられている。燃料噴射弁6は、ECU20からエンジン回転に同期して出力される噴射パルス信号により、そのパルス幅によって定められる時間、ソレノイドに通電されて開弁し、所定圧力に調圧された燃料を噴射する。
電制スロットル弁4の制御を受けた空気と、燃料噴射弁6から噴射された燃料は、吸気弁7が開いたときに、エンジン1の燃焼室8に吸入される。
A fuel injection valve 6 for injecting fuel into the intake port 5 of each cylinder is attached to the branch portion on the outlet side of the intake manifold 3. The fuel injection valve 6 is opened by energizing the solenoid for a time determined by the pulse width based on the injection pulse signal output from the ECU 20 in synchronization with the engine rotation, and injects the fuel adjusted to a predetermined pressure. .
The air controlled by the electric throttle valve 4 and the fuel injected from the fuel injection valve 6 are sucked into the combustion chamber 8 of the engine 1 when the intake valve 7 is opened.

燃焼室8内に吸入された空気と燃料は、混合気を形成し、ECU20により制御される点火時期にて、点火プラグ9により点火されて燃焼する。燃焼後の排気は、排気弁10を介して、排気通路11へ排出される。排気通路11の集合部には排気浄化触媒12が設けられている。
ここで、排気浄化触媒12上流の排気通路11へ二次空気を供給すべく、電動式エアポンプ13が設けられ、その吐出側には遮断弁14が設けられている。遮断弁14の出口側は、流量比を調整可能な分配弁15を介して、2つの二次空気供給通路16、17に分岐している。
The air and fuel sucked into the combustion chamber 8 form an air-fuel mixture, and are ignited and burned by the spark plug 9 at the ignition timing controlled by the ECU 20. Exhaust gas after combustion is discharged to the exhaust passage 11 via the exhaust valve 10. An exhaust purification catalyst 12 is provided at a collecting portion of the exhaust passage 11.
Here, in order to supply secondary air to the exhaust passage 11 upstream of the exhaust purification catalyst 12, an electric air pump 13 is provided, and a shutoff valve 14 is provided on the discharge side thereof. The outlet side of the shut-off valve 14 is branched into two secondary air supply passages 16 and 17 via a distribution valve 15 capable of adjusting the flow rate ratio.

一方の二次空気供給通路16は、排気通路11の比較的上流側に二次空気を供給するもので、上流側のギャラリ部から分岐して、シリンダヘッド内に気筒毎に形成されており、各気筒の二次空気供給通路16の出口側の二次空気供給口(噴口)16aは、シリンダヘッド内の各気筒の排気ポート18の内壁に開口し、排気弁10の傘部を指向している。
他方の二次空気供給通路17は、排気通路11の比較的下流側に二次空気を供給するもので、各気筒の排気通路が集合した後の位置(排気マニホールドの集合部)にて、排気通路11内にパイプ状に突出し、その出口側の二次空気供給口(噴口)17aは、排気通路11の中心部に開口している。
One secondary air supply passage 16 supplies secondary air to the relatively upstream side of the exhaust passage 11, branches from the gallery portion on the upstream side, and is formed for each cylinder in the cylinder head. A secondary air supply port (injection port) 16 a on the outlet side of the secondary air supply passage 16 of each cylinder opens to the inner wall of the exhaust port 18 of each cylinder in the cylinder head and faces the umbrella portion of the exhaust valve 10. Yes.
The other secondary air supply passage 17 supplies secondary air to the relatively downstream side of the exhaust passage 11, and the exhaust gas is exhausted at a position after the exhaust passages of the cylinders are gathered (collection portion of the exhaust manifold). A secondary air supply port (jet port) 17 a on the outlet side projects into a pipe shape in the passage 11 and opens at the center of the exhaust passage 11.

ECU20には、アクセルペダルセンサ21により検出されるアクセル開度APO、クランク角センサ22により検出されるエンジン回転数Ne、エアフローメータ23により検出される吸入空気量Qa、水温センサ24により検出されるエンジン冷却水温度Tw、排気温度センサ25により検出される排気温度Te、触媒温度センサ26により検出される触媒温度Tcなどが必要に応じて入力されている。この他、図示しないが、イグニッションスイッチ及びスタートスイッチを有するエンジンキースイッチからも信号が入力されている。   The ECU 20 includes an accelerator opening APO detected by an accelerator pedal sensor 21, an engine speed Ne detected by a crank angle sensor 22, an intake air amount Qa detected by an air flow meter 23, and an engine detected by a water temperature sensor 24. The coolant temperature Tw, the exhaust temperature Te detected by the exhaust temperature sensor 25, the catalyst temperature Tc detected by the catalyst temperature sensor 26, and the like are input as necessary. In addition, although not shown, a signal is also input from an engine key switch having an ignition switch and a start switch.

ECU20は、これらの入力信号より検出されるエンジン運転条件に基づいて、電制スロットル弁4の開度、燃料噴射弁6の燃料噴射時期及び燃料噴射量、点火プラグ9の点火時期などを制御する。また、エアポンプ13、遮断弁14、分配弁15の作動を制御する。尚、遮断弁14はエアポンプ13のON時に開、OFF時に閉とするもので、エアポンプ13自体がOFF時の遮断機能を有しているときは省略できる。図1中のBはエアポンプ13の電源となるバッテリを示している。   The ECU 20 controls the opening degree of the electric throttle valve 4, the fuel injection timing and fuel injection amount of the fuel injection valve 6, the ignition timing of the spark plug 9, and the like based on the engine operating conditions detected from these input signals. . Further, the operation of the air pump 13, the shutoff valve 14, and the distribution valve 15 is controlled. The shut-off valve 14 is opened when the air pump 13 is turned on and closed when the air pump 13 is turned off, and can be omitted when the air pump 13 itself has a shut-off function when turned off. B in FIG. 1 indicates a battery serving as a power source for the air pump 13.

次に、始動直後の排気浄化触媒12の早期活性化(暖機)のための制御について、図2のフローチャートにより説明する。
S1では、始動直後などで触媒昇温要求があるか否かを判定する。具体的には、触媒温度センサ26により触媒温度Tcを検出し、所定の活性温度より低いか否かを判定する。運転条件から触媒温度を予測して、活性・非活性を判定してもよい。始動直後などで触媒昇温要求がある場合、すなわち触媒12が非活性の場合は、S2〜S8の処理へ進む。
Next, control for early activation (warming-up) of the exhaust purification catalyst 12 immediately after startup will be described with reference to the flowchart of FIG.
In S1, it is determined whether there is a catalyst temperature increase request immediately after startup or the like. Specifically, the catalyst temperature sensor 26 detects the catalyst temperature Tc and determines whether it is lower than a predetermined activation temperature. The activity / inactivity may be determined by predicting the catalyst temperature from the operating conditions. When there is a catalyst temperature increase request immediately after startup, that is, when the catalyst 12 is inactive, the process proceeds to S2 to S8.

S2では、エンジン側の空燃比をリッチに設定する。排気通路に多量の未燃燃料を排出させて、二次空気の供給により再燃焼させることにより、排気温度を上昇させるためであり、リッチ失火しない範囲で空燃比をリッチ化する。
S3では、エアポンプ13の駆動電力Ppを算出する。これによって、排気通路への二次空気の総量(上流側空気量+下流側空気量)を調整するためであり、排気浄化触媒12に流入する排気の空燃比がストイキあるいはわずかにリーンとなるように、エアポンプ13の駆動電力Ppを設定する。
In S2, the engine side air-fuel ratio is set to be rich. This is because the exhaust temperature is increased by discharging a large amount of unburned fuel into the exhaust passage and reburning it by supplying secondary air, and the air-fuel ratio is enriched in a range that does not cause rich misfire.
In S3, the driving power Pp of the air pump 13 is calculated. This is to adjust the total amount of secondary air (upstream air amount + downstream air amount) to the exhaust passage so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 12 becomes stoichiometric or slightly lean. In addition, the driving power Pp of the air pump 13 is set.

S4では、排気温度センサ25により検出される排気温度Teを読込む。排気温度センサ25により排気温度Teを検出する場合、触媒12の直上流で検出する他、上流側の二次空気供給口16aと下流側の二次空気供給口17aとの間、あるいは排気ポート18にて検出してもよい。排気温度センサを装備していない場合は、水温センサ24により検出されるエンジン冷却水温度Twを読込む。   In S4, the exhaust temperature Te detected by the exhaust temperature sensor 25 is read. When the exhaust gas temperature Te is detected by the exhaust gas temperature sensor 25, the exhaust gas temperature Te is detected immediately upstream of the catalyst 12, and between the upstream secondary air supply port 16 a and the downstream secondary air supply port 17 a, or the exhaust port 18. You may detect by. When the exhaust temperature sensor is not provided, the engine coolant temperature Tw detected by the water temperature sensor 24 is read.

S5では、図3に示すようなテーブルを参照し、排気温度Te(又は冷却水温度Tw)に基づいて、供給空気量割合Kを算出する。例えば、K=上流側空気量/(上流側空気量+下流側空気量)とする。この場合、上流側の二次空気供給口16aの供給空気量割合がKとなり、下流側の二次空気供給口17aの供給空気量割合は1−Kとなる。尚、下流側の二次空気供給口17a位置より上流側で上流側の二次空気供給口16aからの二次空気の酸素が完全に消費されたとしても排気中に未燃燃料が残存する範囲内で供給空気量割合を決定する。   In S5, with reference to a table as shown in FIG. 3, the supply air amount ratio K is calculated based on the exhaust temperature Te (or the cooling water temperature Tw). For example, K = upstream air amount / (upstream air amount + downstream air amount). In this case, the supply air amount ratio of the upstream secondary air supply port 16a is K, and the supply air amount ratio of the downstream secondary air supply port 17a is 1-K. The range in which unburned fuel remains in the exhaust gas even when the secondary air oxygen from the upstream secondary air supply port 16a is completely consumed upstream of the downstream secondary air supply port 17a position. The supply air amount ratio is determined in the inside.

ここで、排気温度Teが低い時は、上流側空気量の割合を増大させ、下流側空気量の割合を減少させる。逆に、排気温度Teが高い時は、上流側空気量の割合を減少させ、下流側空気量の割合を増大させる。
冷却水温度Twの場合も同様で、冷却水温度Twが低い時は、上流側空気量の割合を増大させ、下流側空気量の割合を減少させる。逆に、冷却水温度Twが高い時は、上流側空気量の割合を減少させ、下流側空気量の割合を増大させる。
Here, when the exhaust temperature Te is low, the ratio of the upstream air amount is increased, and the ratio of the downstream air amount is decreased. On the contrary, when the exhaust temperature Te is high, the ratio of the upstream air amount is decreased and the ratio of the downstream air amount is increased.
The same applies to the cooling water temperature Tw. When the cooling water temperature Tw is low, the ratio of the upstream air amount is increased and the ratio of the downstream air amount is decreased. On the contrary, when the cooling water temperature Tw is high, the ratio of the upstream air amount is decreased and the ratio of the downstream air amount is increased.

S6では、遮断弁14を開く。
S7では、S5にて算出された供給空気量割合Kに基づいて、分配弁15を制御する。
S8では、S3にて算出された駆動電力Ppに基づいて、エアポンプ13の駆動制御を行う。
S1での判定で、触媒昇温要求がなくなった場合、すなわち触媒12の暖機が終了した場合は、S9〜S12の処理へ進む。
In S6, the shutoff valve 14 is opened.
In S7, the distribution valve 15 is controlled based on the supply air amount ratio K calculated in S5.
In S8, drive control of the air pump 13 is performed based on the drive power Pp calculated in S3.
If it is determined in S1 that there is no catalyst temperature increase request, that is, if the catalyst 12 has been warmed up, the process proceeds to S9 to S12.

S9では、エンジン側の空燃比を通常設定に戻す。
S10では、遮断弁14を閉じる。S11では、分配弁15を初期位置に固定する。初期位置とは、K=0%又はK=100%となる位置とする。K=0%は上流側閉止位置、K=100%は下流側閉止位置であり、いずれかとすることで、二次空気供給通路16と17とが連通したままとなって排気の流れを生じたり、分配弁15が高温の排気ガスに曝されたりするのを防止できる。そして、S12では、エアポンプ13を停止する。
In S9, the air-fuel ratio on the engine side is returned to the normal setting.
In S10, the shutoff valve 14 is closed. In S11, the distribution valve 15 is fixed at the initial position. The initial position is a position where K = 0% or K = 100%. K = 0% is the upstream side closed position, and K = 100% is the downstream side closed position. By setting either, the secondary air supply passages 16 and 17 remain in communication with each other, and an exhaust flow is generated. The distribution valve 15 can be prevented from being exposed to high-temperature exhaust gas. In S12, the air pump 13 is stopped.

本実施形態によれば、排気通路への二次空気供給口を排気流れ方向に離れた複数箇所に設け、複数箇所の二次空気供給口16a、17aから同時に二次空気を供給する構成としたため、放熱量の増大を抑えて、排気温度の低下を防止でき、触媒入口での排気温度を高めることができる。その理由を以下に説明する。
図4(A)、(B)は、共に、横軸をエンジンから触媒までの排気流れ方向の位置(排気弁からの距離)、縦軸を排気温度として、排気通路での排気温度の変化を示したものである。
According to the present embodiment, the secondary air supply ports to the exhaust passage are provided at a plurality of locations separated in the exhaust flow direction, and the secondary air is supplied from the plurality of secondary air supply ports 16a and 17a at the same time. The increase in the amount of heat release can be suppressed, the exhaust temperature can be prevented from decreasing, and the exhaust temperature at the catalyst inlet can be increased. The reason will be described below.
4 (A) and 4 (B) both show the change in the exhaust temperature in the exhaust passage, where the horizontal axis is the position in the exhaust flow direction from the engine to the catalyst (distance from the exhaust valve) and the vertical axis is the exhaust temperature. It is shown.

図4(A)には、二次空気無しの場合の特性を点線で示し、排気通路の比較的上流の1箇所(a位置)から二次空気を供給した場合の特性を実線で示しており、排気通路の比較的上流の1箇所(a位置)から二次空気の全量を供給した場合は、二次空気無しの場合と比べれば、排温上昇効果が得られるものの、供給位置よりやや下流側で排気温度がピークとなった後、急激に温度低下して、触媒にて未燃燃料が燃焼可能な温度T1より低下してしまうことを示している。   In FIG. 4A, the characteristic when there is no secondary air is indicated by a dotted line, and the characteristic when secondary air is supplied from one location (position a) relatively upstream of the exhaust passage is indicated by a solid line. When the total amount of secondary air is supplied from one location (a position) relatively upstream of the exhaust passage, the exhaust temperature rise effect can be obtained as compared with the case without secondary air, but slightly downstream from the supply position. After the exhaust gas temperature reaches a peak on the side, the temperature suddenly decreases, indicating that the unburnt fuel is combusted by the catalyst at a temperature T1 that can be combusted.

図4(B)には、本発明のように、排気通路の比較的上流(a位置)と比較的下流(b位置)とに二次空気を分割供給した場合の特性を示しており、触媒入口での排気温度の低下を抑制できることを示している。未燃燃料の量が同じで、二次空気の総量が同じであるとすれば、発熱量は理論的に同じであるので、図4(A)に対し、図4(B)の特性となるのは、放熱量が少なくなることによる。   FIG. 4B shows the characteristics when secondary air is divided and supplied relatively upstream (a position) and relatively downstream (b position) of the exhaust passage as in the present invention. It shows that a decrease in exhaust temperature at the inlet can be suppressed. If the amount of unburned fuel is the same and the total amount of secondary air is the same, the calorific value is theoretically the same, so the characteristic of FIG. This is because the amount of heat radiation is reduced.

すなわち、図4(A)のように、1箇所の二次空気供給口から二次空気の全量を供給すると、供給位置より下流側で一気に燃焼して、排気温度がピークとなることから、周囲温度(例えば排気通路内壁の温度)との温度差が大となり、放熱量は温度差に比例することから、その後の排気温度の低下が大きくなり、触媒入口での排気温度が低下してしまう。
これに対し、図4(B)のように、2箇所の二次空気供給口から二次空気を分割して供給する場合は、先ず上流側のa位置にて二次空気の供給を受けて燃焼し、これにより排気温度が上昇するが、周囲温度との温度差が小さいため、放熱量を抑えることができ、その後の排気温度の低下を抑制できる。次いで、下流側のb位置にて二次空気の供給を受けて燃焼し、これにより排気温度が再び上昇し、この場合も放熱量を抑えて、その後の排気温度の低下を抑制でき、触媒入口での排気温度を未燃燃料が燃焼可能な温度T1以上とすることができる。言い換えれば、ピークを抑えたフラットな排気温度を実現し、触媒へ高い温度の排気ガスを供給できるようになる。
That is, as shown in FIG. 4 (A), when the entire amount of secondary air is supplied from one secondary air supply port, it burns all at once downstream from the supply position, and the exhaust temperature reaches a peak. Since the temperature difference from the temperature (for example, the temperature of the inner wall of the exhaust passage) becomes large and the heat radiation amount is proportional to the temperature difference, the exhaust temperature subsequently decreases greatly, and the exhaust temperature at the catalyst inlet decreases.
On the other hand, as shown in FIG. 4B, when the secondary air is divided and supplied from the two secondary air supply ports, the secondary air is first supplied at the position a on the upstream side. Although it burns and this raises the exhaust temperature, since the temperature difference from the ambient temperature is small, the amount of heat release can be suppressed, and the subsequent decrease in the exhaust temperature can be suppressed. Next, the secondary air is supplied at the position b on the downstream side and combusted, so that the exhaust temperature rises again. In this case, the amount of heat released can also be suppressed, and the subsequent decrease in exhaust temperature can be suppressed. The exhaust temperature at can be set to a temperature T1 or higher at which the unburned fuel can be combusted. In other words, a flat exhaust temperature with a suppressed peak can be realized, and high temperature exhaust gas can be supplied to the catalyst.

また、排気流れ方向の複数箇所から同時に二次空気を供給する構成の場合は、排気ガスと二次空気との混合が良好となり、燃焼効率が改善されて、発熱量自体を増大できる可能性もある。1箇所から二次空気を供給する構成の場合は、排気ガスと二次空気との混合がうまくいかないことがあり、燃焼効率が低下する可能性があるからである。
また、排気流れ方向の複数箇所から同時に二次空気を供給する構成の場合は、1箇所における空気供給量を減少させ得ることから、二次空気供給口16a、17aの口径を小さくすることが可能となり、出力性能への影響を低減できる。上流側の二次空気供給口、特に排気ポート18に開口する二次空気供給口16aは、口径が大きい場合、各気筒の排気通路(排気ポート18)を連通させて、排気脈動を減衰してしまい、出力性能を低下させる要因となるが、これを回避できる。従って、図1に示されているように、上流側の二次空気供給口16aの口径は、下流側の二次空気供給口17aの口径より小さくするのが望ましい。
In addition, in the case of a configuration in which secondary air is supplied simultaneously from a plurality of locations in the exhaust flow direction, there is a possibility that the mixing of exhaust gas and secondary air will be good, combustion efficiency will be improved, and the heat generation amount itself can be increased. is there. This is because in the case of the configuration in which the secondary air is supplied from one place, the mixing of the exhaust gas and the secondary air may not be successful, and the combustion efficiency may be reduced.
Further, in the case of a configuration in which secondary air is supplied simultaneously from a plurality of locations in the exhaust flow direction, the air supply amount at one location can be reduced, so that the diameters of the secondary air supply ports 16a and 17a can be reduced. Thus, the influence on the output performance can be reduced. The secondary air supply port on the upstream side, particularly the secondary air supply port 16a that opens to the exhaust port 18, is connected to the exhaust passage (exhaust port 18) of each cylinder to attenuate exhaust pulsation when the diameter is large. However, this may be a factor that degrades the output performance, but this can be avoided. Therefore, as shown in FIG. 1, it is desirable that the upstream secondary air supply port 16a has a smaller diameter than the downstream secondary air supply port 17a.

また、排気流れ方向の複数箇所から同時に二次空気を供給する構成の場合は、出力性能を低下させることなく、大量の空気供給が可能となり、エンジン側の空燃比設定をリッチ失火しない範囲で強リッチに設定可能となり、排気通路への未燃燃料の排出量を増大させて、排気温度をより上昇させることが可能となる。
また、本実施形態によれば、複数箇所の二次空気供給口16a、17aによる供給空気量割合を調整する分配弁15を設けたことにより、温度条件などに合わせて、供給空気量割合を最適に調整することが可能となる。
In addition, in the case of a configuration in which secondary air is supplied simultaneously from a plurality of locations in the exhaust flow direction, a large amount of air can be supplied without degrading the output performance, and the air-fuel ratio setting on the engine side is strong within a range that does not cause rich misfire It becomes possible to set to rich, and it becomes possible to increase the exhaust temperature by increasing the amount of unburned fuel discharged to the exhaust passage.
In addition, according to the present embodiment, by providing the distribution valve 15 that adjusts the supply air amount ratio by the secondary air supply ports 16a and 17a at a plurality of locations, the supply air amount ratio is optimized in accordance with the temperature conditions and the like. It becomes possible to adjust to.

また、本実施形態によれば、排気温度を検出し、これに応じて、供給空気量割合を調整することにより、排気温度が低い場合や高すぎる場合に、供給空気量割合を調整して、最適温度にすることが可能となる。
また、本実施形態によれば、冷却水温度を検出し、これに応じて、供給空気量割合を調整することにより、エンジンの暖機状態を考慮して、排気温度の傾向を捉え、最適な排気温度を得るように調整することが可能となる。
Further, according to the present embodiment, the exhaust air temperature is detected, and the supply air amount ratio is adjusted accordingly, thereby adjusting the supply air amount ratio when the exhaust temperature is low or too high, An optimum temperature can be achieved.
Further, according to the present embodiment, the temperature of the cooling water is detected, and the proportion of the supply air amount is adjusted accordingly. It is possible to adjust to obtain the exhaust temperature.

また、本実施形態によれば、低温時に、上流側の二次空気供給口16aの供給空気量割合を多くし、高温時に、下流側の二次空気供給口17aの供給空気量割合を多くすることにより、排気温度や冷却水温度が変化してもフラットな排気温度を実現可能となる。
また、本実施形態によれば、上流側の二次空気供給口16aは、排気通路の内壁に開口させ、下流側の二次空気供給口17aは、排気通路の中心部に開口させることにより、上流側では、パイプ状部材の突き出しを無くして、排気抵抗となるのを防止し、出力性能の悪化を防止でき、下流側では、出力性能への影響が少なくなるので、パイプ状部材の突き出しにより、二次空気を排気通路の中心部へ供給して、排気ガスと二次空気との混合を良くし、未燃HC低減と排温上昇効果とをより一層を向上させることができる。
Further, according to the present embodiment, the supply air amount ratio of the upstream secondary air supply port 16a is increased at a low temperature, and the supply air amount ratio of the downstream secondary air supply port 17a is increased at a high temperature. This makes it possible to achieve a flat exhaust temperature even if the exhaust temperature or the cooling water temperature changes.
Further, according to this embodiment, the secondary air supply port 16a on the upstream side is opened in the inner wall of the exhaust passage, and the secondary air supply port 17a on the downstream side is opened in the center of the exhaust passage. On the upstream side, the protrusion of the pipe-like member is eliminated to prevent exhaust resistance and the deterioration of the output performance can be prevented.On the downstream side, the influence on the output performance is reduced. The secondary air can be supplied to the central portion of the exhaust passage to improve the mixing of the exhaust gas and the secondary air, and the unburned HC reduction and the exhaust temperature increase effect can be further improved.

次に本発明の他の実施形態について図5及び図6により説明する。
前述の実施形態では、上流側の二次空気供給通路16及び二次空気供給口16aと、下流側の二次空気供給通路17及び二次空気供給口17aとを設けているが、図5の例に示すように、追加の二次空気供給通路31、32及び二次空気供給口31a、32aを設けて、排気流れ方向のより多数箇所から同時に二次空気を供給するようにしてもよい。
Next, another embodiment of the present invention will be described with reference to FIGS.
In the above-described embodiment, the secondary air supply passage 16 and the secondary air supply port 16a on the upstream side and the secondary air supply passage 17 and the secondary air supply port 17a on the downstream side are provided. As shown in the example, additional secondary air supply passages 31 and 32 and secondary air supply ports 31a and 32a may be provided so as to supply secondary air simultaneously from a larger number of locations in the exhaust flow direction.

また、前述の実施形態では、上流側の二次空気供給口16aは、各気筒の排気通路が集合する前に各気筒毎に設け、下流側の二次空気供給口17a、31a、32aは、各気筒の排気通路が集合した後に全気筒共通に設けているが、これに限るものではない。図6の例では、中間の二次空気供給通路33及び二次空気供給口33aを設け、この中間の二次空気供給口33aは、各気筒の排気通路が集合する前(排気マニホールドのブランチ部)に各気筒毎に設けている。   Further, in the above-described embodiment, the upstream secondary air supply port 16a is provided for each cylinder before the exhaust passages of the respective cylinders gather, and the downstream secondary air supply ports 17a, 31a, and 32a are Although it is provided in common for all cylinders after the exhaust passages of each cylinder are gathered, this is not restrictive. In the example of FIG. 6, an intermediate secondary air supply passage 33 and a secondary air supply port 33a are provided, and this intermediate secondary air supply port 33a is provided before the exhaust passages of the cylinders are gathered (the branch portion of the exhaust manifold). ) For each cylinder.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing one embodiment of the present invention 始動直後の触媒の早期活性化のための制御のフローチャートFlow chart of control for early activation of catalyst immediately after start-up 排気温度(又は冷却水温度)と供給空気量割合との関係を示す図The figure which shows the relationship between exhaust temperature (or cooling water temperature) and supply air quantity ratio 本発明の効果を説明する図The figure explaining the effect of this invention 他の実施形態を示す排気系のレイアウト図Exhaust system layout showing another embodiment 他の実施形態を示す排気系のレイアウト図Exhaust system layout showing another embodiment

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
3 吸気マニホールド
4 電制スロットル弁
5 吸気ポート
6 燃料噴射弁
7 吸気弁
8 燃焼室
9 点火プラグ
10 排気弁
11 排気通路
12 排気浄化触媒
13 電動式エアポンプ
14 遮断弁
15 分配弁
16 二次空気供給通路
16a 二次空気供給口
17 二次空気供給通路
17a 二次空気供給口
18 排気ポート
20 ECU
21 アクセルペダルセンサ
22 クランク角センサ
23 エアフローメータ
24 水温センサ
25 排気温度センサ
26 触媒温度センサ
31、32、33 追加の二次空気供給通路
31a、32a、33a 追加の二次空気供給口
1 engine
2 Intake passage
3 Intake manifold
4 Electric throttle valve
5 Intake port
6 Fuel injection valve
7 Intake valve
8 Combustion chamber
9 Spark plug
10 Exhaust valve
11 Exhaust passage
12 Exhaust gas purification catalyst
13 Electric air pump
14 Shut-off valve
15 Distributing valve
16 Secondary air supply passage
16a Secondary air supply port
17 Secondary air supply passage
17a Secondary air supply port
18 Exhaust port
20 ECU
21 Accelerator pedal sensor
22 Crank angle sensor
23 Air Flow Meter
24 Water temperature sensor
25 Exhaust temperature sensor
26 Catalyst temperature sensor
31, 32, 33 Additional secondary air supply passage
31a, 32a, 33a Additional secondary air supply port

Claims (7)

排気通路に二次空気を供給する内燃機関の二次空気供給装置において、
排気通路への二次空気供給口を排気流れ方向の複数箇所に設け、
前記複数箇所の二次空気供給口から同時に二次空気を供給する構成としたことを特徴とする内燃機関の二次空気供給装置。
In a secondary air supply device for an internal combustion engine that supplies secondary air to an exhaust passage,
Provide secondary air supply ports to the exhaust passage at multiple locations in the exhaust flow direction,
A secondary air supply device for an internal combustion engine, wherein secondary air is supplied simultaneously from the plurality of secondary air supply ports.
前記複数箇所の二次空気供給口による供給空気量割合を調整する分配弁を設けたことを特徴とする請求項1記載の内燃機関の二次空気供給装置。   2. The secondary air supply device for an internal combustion engine according to claim 1, further comprising a distribution valve that adjusts a supply air amount ratio by the secondary air supply ports at the plurality of locations. 排気温度を検出し、これに応じて、前記供給空気量割合を調整することを特徴とする請求項2記載の内燃機関の二次空気供給装置。   The secondary air supply device for an internal combustion engine according to claim 2, wherein an exhaust gas temperature is detected and the supply air amount ratio is adjusted in accordance with the detected exhaust gas temperature. 冷却水温度を検出し、これに応じて、前記供給空気量割合を調整することを特徴とする請求項2記載の内燃機関の二次空気供給装置。   3. The secondary air supply device for an internal combustion engine according to claim 2, wherein a coolant temperature is detected and the supply air amount ratio is adjusted according to the detected coolant temperature. 低温時に、上流側の二次空気供給口の供給空気量割合を多くし、高温時に、下流側の二次空気供給口の供給空気量割合を多くすることを特徴とする請求項3又は請求項4記載の内燃機関の二次空気供給装置。   The ratio of the supply air quantity of the secondary air supply port on the upstream side is increased at a low temperature, and the ratio of the supply air quantity of the secondary air supply port on the downstream side is increased at a high temperature. The secondary air supply device for an internal combustion engine according to claim 4. 上流側の二次空気供給口は、排気通路の内壁に開口させ、下流側の二次空気供給口は、排気通路の中心部に開口させることを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の二次空気供給装置。   The upstream secondary air supply port is opened at the inner wall of the exhaust passage, and the downstream secondary air supply port is opened at the center of the exhaust passage. The secondary air supply device for an internal combustion engine according to claim 1. 上流側の二次空気供給口は、各気筒の排気通路が集合する前に各気筒毎に設け、下流側の二次空気供給口は、各気筒の排気通路が集合した後に全気筒共通に設けることを特徴とする請求項1〜請求項6のいずれか1つに記載の内燃機関の二次空気供給装置。   The upstream secondary air supply port is provided for each cylinder before the exhaust passages of the respective cylinders are gathered, and the downstream secondary air supply port is provided for all the cylinders after the exhaust passages of the respective cylinders are gathered. The secondary air supply device for an internal combustion engine according to any one of claims 1 to 6.
JP2005017869A 2005-01-26 2005-01-26 Secondary air supply device for internal combustion engine Pending JP2006207413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017869A JP2006207413A (en) 2005-01-26 2005-01-26 Secondary air supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017869A JP2006207413A (en) 2005-01-26 2005-01-26 Secondary air supply device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006207413A true JP2006207413A (en) 2006-08-10

Family

ID=36964554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017869A Pending JP2006207413A (en) 2005-01-26 2005-01-26 Secondary air supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006207413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097913A (en) * 2018-12-19 2020-06-25 マツダ株式会社 Exhaust device of engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763049A (en) * 1993-08-25 1995-03-07 Mitsubishi Electric Corp Exhaust pipe air inlet device of internal combustion engine
JP2003301718A (en) * 2002-04-11 2003-10-24 Mazda Motor Corp Engine control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763049A (en) * 1993-08-25 1995-03-07 Mitsubishi Electric Corp Exhaust pipe air inlet device of internal combustion engine
JP2003301718A (en) * 2002-04-11 2003-10-24 Mazda Motor Corp Engine control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097913A (en) * 2018-12-19 2020-06-25 マツダ株式会社 Exhaust device of engine
JP7151455B2 (en) 2018-12-19 2022-10-12 マツダ株式会社 engine exhaust system

Similar Documents

Publication Publication Date Title
KR980009784A (en) Exhaust Emission Apparatus for In-cylinder Injection-Type Internal Combustion Engine
JP2006274949A (en) Fuel injection control device for an engine
JPH09126028A (en) High compression ratio in-cylinder injection internal combustion engine
JP4085900B2 (en) Fuel injection control device for in-cylinder direct injection spark ignition engine
CN110219730B (en) Internal combustion engine
JP2010127257A (en) Cetane number determination device
EP1072775B1 (en) Exhaust purification device of an engine
JP2002161770A (en) Variable valve timing control device for internal combustion engine
JP2009191649A (en) Control device of internal combustion engine
JP2006177189A (en) Exhaust temperature controlling device for internal combustion engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP4412201B2 (en) Control device for internal combustion engine using hydrogen
JP2006207413A (en) Secondary air supply device for internal combustion engine
JP2006233921A (en) Control device for compression self ignition internal combustion engine
JP2007211608A (en) Control device for hydrogen engine
JP6398543B2 (en) Natural gas engine and method of operating natural gas engine
JPH1136959A (en) Direct injection spark ignition type internal combustion engine
JP3785870B2 (en) Exhaust gas purification device for internal combustion engine
JP2019183791A (en) Control device for internal combustion engine
JP4442212B2 (en) Ignition device for internal combustion engine
JP4134861B2 (en) Control device for premixed compression ignition type internal combustion engine
JP3960720B2 (en) Exhaust gas purification device for internal combustion engine
JP4635736B2 (en) Exhaust temperature control device for internal combustion engine
JP4292632B2 (en) Exhaust gas purification device for internal combustion engine
JP2007154693A (en) Device for controlling exhaust gas temperature of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207