JP2006206618A - Method for producing luminous body and luminous body - Google Patents

Method for producing luminous body and luminous body Download PDF

Info

Publication number
JP2006206618A
JP2006206618A JP2005016248A JP2005016248A JP2006206618A JP 2006206618 A JP2006206618 A JP 2006206618A JP 2005016248 A JP2005016248 A JP 2005016248A JP 2005016248 A JP2005016248 A JP 2005016248A JP 2006206618 A JP2006206618 A JP 2006206618A
Authority
JP
Japan
Prior art keywords
phosphor
luminous body
group
producing
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005016248A
Other languages
Japanese (ja)
Other versions
JP4581086B2 (en
Inventor
Shigeo Shiho
樹男 四竈
Kentaro Fuji
健太郎 藤
Shinji Nagata
晋二 永田
Fumi Tsuchiya
文 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005016248A priority Critical patent/JP4581086B2/en
Publication of JP2006206618A publication Critical patent/JP2006206618A/en
Application granted granted Critical
Publication of JP4581086B2 publication Critical patent/JP4581086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a luminous body in which persistence characteristic is improved, e.g., afterglow life is prolonged and to provide a luminous body produced by the production method. <P>SOLUTION: In the method for producing the luminous body by using a compound represented by the formula MAl<SB>2</SB>O<SB>4</SB>(M is at least one metal element selected from a group consisting of Ca, Sr and Ba) and further containing at least one rare earth metal element selected from a group consisting of Eu, Dy, Ce, Pr, Sm, Tb, Ho, Er, Tm and Yb, the compound is irradiated with neutron. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、いわゆる蓄光体の製造方法及びその製造方法によって製造される蓄光体に関するものである。   The present invention relates to a method for manufacturing a so-called phosphorescent body and a phosphorescent body manufactured by the manufacturing method.

蓄光体とは、時計の文字盤、暗所及び夜間の標識、案内板のような夜光塗料として用いられている。また、エネルギー関連分野では、エネルギー貯蔵材料の用途が期待されている。この蓄光体は、光、放射線等の刺激により発光し、刺激を停止した後も発光し続ける蛍光体で、刺激停止後の発光の時間の長いことが要求されている。
この蓄光体として、CaS:Bi(紫青色発光),CaSrS:Bi(青色発光),ZnS:Cu(緑色発光),ZnCdS:Cu(黄色〜橙色発光)等の硫化物蛍光体が知られている。この他に、希土類金属を用いた蓄光体が知られている。
例えば、特許文献1では、SrSiO、SrAlSi、SrAl18Si37の各で表される結晶構造を有する化合物の混合物を含み、さらにEuを含有し、さらに、Dy、Ce、Pr、Sm、Tb、Ho、Er、Tm、Ybのうちの一種類又はそれ以上の種類を含有する等の蓄光性蛍光体が開示されている。
また、特許文献2では、母体結晶がR'(但し、R'はCa、Sr及びBaからなる群から選択される1種または2種以上の元素である)、Mg、Si、O、Nからなるオケルマン石型結晶構造を有し、かつ、賦活材Eu、及び共賦活材Ln(Sc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及びBiからなる群から選択される1種または2種以上の元素)を含有する蓄光性蛍光体が開示されている。特許文献3では、Al2 3 20〜45%、CaO45〜70%、Tb2 3 0.01〜5%、MgO0〜20%、BaO0〜20%、SiO2 0〜10%、Ln2 3 0〜8%、(但しLnは、Yb,Y,La,Gd,Lu,Sm,Dy,Tm,Prより選ばれる一種以上の原子)である長残光及び輝尽発光を呈する酸化物ガラスが開示されている。
The phosphorescent material is used as a luminous paint such as a clock face, a dark place and a night sign, and a guide plate. In the energy-related field, applications of energy storage materials are expected. This phosphor is a phosphor that emits light by stimuli such as light and radiation, and continues to emit light even after the stimulus is stopped, and is required to have a long light emission time after the stimulus is stopped.
As this phosphor, sulfide phosphors such as CaS: Bi (purple blue light emission), CaSrS: Bi (blue light emission), ZnS: Cu (green light emission), ZnCdS: Cu (yellow to orange light emission) are known. . In addition, phosphors using rare earth metals are known.
For example, Patent Document 1 includes a mixture of compounds having a crystal structure represented by each of Sr 2 SiO 4 , SrAl 2 Si 2 O 8 , Sr 6 Al 18 Si 2 O 37 , further containing Eu, and , Dy, Ce, Pr, Sm, Tb, Ho, Er, Tm, Yb, and other phosphorescent phosphors containing one or more of them are disclosed.
In Patent Document 2, the base crystal is R ′ (where R ′ is one or more elements selected from the group consisting of Ca, Sr, and Ba), Mg, Si, O, and N. And an activator Eu and a coactivator Ln (Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, A phosphorescent phosphor containing one or more elements selected from the group consisting of Lu and Bi) is disclosed. In Patent Document 3, Al 2 O 3 20 to 45%, CaO 45 to 70%, Tb 2 O 3 0.01 to 5%, MgO 0 to 20%, BaO 0 to 20%, SiO 2 0 to 10%, Ln 2 O 30 to 8%, where Ln is an oxide glass exhibiting long afterglow and stimulated emission that is one or more atoms selected from Yb, Y, La, Gd, Lu, Sm, Dy, Tm, and Pr Is disclosed.

これらのように、残光特性は、蓄光体材料の化学組成、微量添加物によって変化するために、これまではEu等の希土類金属を用いた組成の検討が主であった。
しかし、最近は、プラズマを照射することで、さらに、発光時間を長くする検討がされている。例えば、特許文献4では、Al、Sr、Eu及びDyを構成成分とし、蓄光性蛍光粉の前駆物質にプラズマを照射する工程を含む微粒子状蓄光性蛍光粉の製造方法が開示されている。
しかしながら、未だに、発光強度、発光時間が十分ではないという問題がある。
As described above, the afterglow characteristics change depending on the chemical composition of the phosphor material and the small amount of additives, so far, studies have mainly been made on compositions using rare earth metals such as Eu.
However, recently, it has been studied to further increase the light emission time by irradiating with plasma. For example, Patent Document 4 discloses a method for producing a particulate luminous fluorescent powder that includes Al, Sr, Eu, and Dy as constituent components and includes a step of irradiating plasma to a precursor of the luminous fluorescent powder.
However, there is still a problem that the light emission intensity and the light emission time are not sufficient.

特開2004−359701号公報JP 2004-359701 A 特開2000−212556号公報JP 2000-212556 A 特開2000−063145号公報JP 2000-063145 A 特開2003−313548号公報JP 2003-31548 A

そこで、本発明は上記問題点に鑑みてなされたものであり、その課題は、残光寿命を長くする等の残光特性を改良する蓄光体の製造方法を提供することである。さらに、この製法法により製造された蓄光体を提供することである。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a phosphorescent body that improves afterglow characteristics such as extending the afterglow lifetime. Furthermore, it is providing the luminous body manufactured by this manufacturing method.

上記課題を解決する手段である本発明の特徴を以下に挙げる。
本発明の蓄光体の製造方法は、MAl24(Mは、Ca、Sr、Baからなる群から選ばれる少なくとも1つ以上の金属元素)で表わされ、さらに、Eu、Dy、Ce、Pr、Sm、Tb、Ho、Er、Tm、Ybからなる群から選択される少なくとも1以上の希土類金属元素を含有する化合物を用いる蓄光体の製造方法において、化合物に中性子を照射することを特徴とする。
また、本発明の蓄光体は、MAl24(Mは、Ca、Sr、Baからなる群から選ばれる少なくとも1つ以上の金属元素)で表わされ、さらに、Eu、Dy、Ce、Pr、Sm、Tb、Ho、Er、Tm、Ybからなる群から選択される少なくとも1以上の希土類金属元素を含有する化合物であって、中性子が照射されていることを特徴とする。
The features of the present invention, which is a means for solving the above problems, are listed below.
The method for producing a phosphor of the present invention is represented by MAl 2 O 4 (M is at least one metal element selected from the group consisting of Ca, Sr, and Ba), and Eu, Dy, Ce, In a method for producing a phosphor using a compound containing at least one rare earth metal element selected from the group consisting of Pr, Sm, Tb, Ho, Er, Tm, and Yb, the compound is irradiated with neutrons To do.
The phosphor of the present invention is represented by MAl 2 O 4 (M is at least one metal element selected from the group consisting of Ca, Sr and Ba), and Eu, Dy, Ce and Pr. , Sm, Tb, Ho, Er, Tm, Yb, a compound containing at least one rare earth metal element selected from the group consisting of neutrons.

上記解決するための手段によって、本発明によって、残光の発光時間を長くすることができる蓄光体の製造方法を得ることができた。さらに、本発明によって、残光の発光時間の長い蓄光体を得ることができた。   By the means for solving the above-described problems, the present invention has made it possible to obtain a method for producing a phosphorescent material capable of extending the afterglow emission time. Furthermore, according to the present invention, a phosphor with a long afterglow emission time can be obtained.

以下に、本発明を実施するための最良の形態を図面に基づいて説明する。なお、いわゆる当業者は特許請求の範囲内における本発明を変更・修正をして他の実施形態をなすことは容易であり、これらの変更・修正はこの特許請求の範囲に含まれるものであり、以下の説明はこの発明における最良の形態の例であって、この特許請求の範囲を限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. Note that it is easy for a person skilled in the art to make other embodiments by changing or correcting the present invention within the scope of the claims, and these changes and modifications are included in the scope of the claims. The following description is an example of the best mode of the present invention, and does not limit the scope of the claims.

材料の改質手法として、放射線照射による改善が利用されてきた。例えば、高分子材料に対する照射によって架橋反応を導入することができるし、医療機器・食品に対する照射によって殺菌作用を利用することができる。しかしながら、蓄光体の材料改質手段として用いられておらず、単なる発光のための励起源としてのみ考えられてきた。しかし、本発明者は、蓄光体に放射線、とくに、中性子を照射することで蓄光体の残光特性を改良することができることを見いだした。
これは、蓄光体である化合物に、放射線を照射することで、放射線のはじき出し効果によって、発光の原因となる構造欠陥を生成し、この構造欠陥が新たな発光中心になるからである。
ここで、蓄光体として、MAl24(Mは、Ca、Sr、Baからなる群から選ばれる少なくとも1つ以上の金属元素)で表わされ、さらに、Eu、Dy、Ce、Pr、Sm、Tb、Ho、Er、Tm、Ybからなる群から選択される少なくとも1以上の希土類金属元素を含有する化合物を用いる。
蓄光体としては、とくに限定されない。蓄光体は、従来から公知である硫化亜鉛(ZnS)系蓄光体、銅(Cu)系蓄光体等の他、一般式MAl24(Mは、2価の金属イオン)で表される化合物を含有する蓄光体は、安全性が高く、しかも長時間発光する蓄光体として好ましい。このなかで、Mとして、特に、Ca、Sr、Baが好ましく、これらを混合して用いても良い。
さらに、この化合物にEu、Dy、Ce、Pr、Sm、Tb、Ho、Er、Tm、Ybからなる群から選択される少なくとも1以上の希土類金属元素を含有させる。これによって、残光特性を改良することができる。特に、Eu、Dyが好ましく、Dyは正孔を捕獲し、Euは発光中心として作用する。
Improvement by radiation irradiation has been used as a material modification technique. For example, a crosslinking reaction can be introduced by irradiation of a polymer material, and a bactericidal action can be utilized by irradiation of a medical device / food. However, it has not been used as a material modification means for phosphorescent materials, and has been considered only as an excitation source for light emission. However, the present inventor has found that the afterglow characteristics of the phosphor can be improved by irradiating the phosphor with radiation, particularly neutrons.
This is because, by irradiating a compound that is a phosphorescent material with radiation, a structural defect that causes light emission is generated due to the bursting effect of the radiation, and this structural defect becomes a new light emission center.
Here, as a phosphorescent material, it is represented by MAl 2 O 4 (M is at least one metal element selected from the group consisting of Ca, Sr and Ba), and further Eu, Dy, Ce, Pr, Sm. A compound containing at least one rare earth metal element selected from the group consisting of Tb, Ho, Er, Tm, and Yb is used.
The phosphor is not particularly limited. The phosphor is a compound represented by the general formula MAl 2 O 4 (where M is a divalent metal ion) in addition to the conventionally known zinc sulfide (ZnS) phosphor, copper (Cu) phosphor and the like. A phosphorescent material containing is preferable because it is highly safe and emits light for a long time. Among these, Ca, Sr, and Ba are particularly preferable as M, and these may be used in combination.
Furthermore, this compound contains at least one or more rare earth metal elements selected from the group consisting of Eu, Dy, Ce, Pr, Sm, Tb, Ho, Er, Tm, and Yb. Thereby, afterglow characteristics can be improved. In particular, Eu and Dy are preferable, Dy captures holes, and Eu functions as an emission center.

さらに、この化合物に中性子を照射する。放射線であれば構造欠陥を生成することができるが、とくに、中性子が好ましい。これは、中性子は、重い粒子であり、電荷を持たないことから,物質中に均一に微小の構造欠陥を多数生成することができる。特に、高速中性子が好ましく、多くの構造欠陥を生成することができる。
蓄光体の残光は、蓄光体の正孔捕獲準位に起因している、例えば、SrAl:Eu,Dyでは、光、放射線等のエネルギー付与により生成した正孔は、正孔捕獲準位として働くDyに蓄積される。その後、室温の熱エネルギーによって時間の経過とともに捕獲された正孔が開放され、発光中心であるEuと結合することにより光が生ずる。さらに、高速中性子の散乱効果によって蓄光体内に新たな構造欠陥が生成されると、その欠陥が一次又は二次の正孔捕獲中心として働くことで、残光寿命が延びる。
Furthermore, this compound is irradiated with neutrons. Radiation can generate structural defects, but neutrons are particularly preferred. This is because neutrons are heavy particles and do not have a charge, so that a large number of uniform microscopic structural defects can be generated in the material. In particular, fast neutrons are preferred and many structural defects can be generated.
The afterglow of the phosphor is caused by the hole trap level of the phosphor. For example, in SrAl 2 O 4 : Eu, Dy, holes generated by applying energy such as light and radiation are not trapped. Accumulated in Dy that acts as a level. Thereafter, the trapped holes are released over time by thermal energy at room temperature, and light is generated by combining with Eu, which is the emission center. Furthermore, when a new structural defect is generated in the phosphor by the scattering effect of fast neutrons, the afterglow lifetime is extended by the defect acting as a primary or secondary hole trapping center.

以下に、具体的に本発明を説明する。
(実施例1)
蓄光体に、以下の条件で、高速中性子を照射し、照射・未照射の蓄光体の残光寿命を測定した。その結果を図1に示す。
試料:蓄光体(SrAl:Eu,Dy、NP−2820:日亜化学社製)
照射条件:中性子エネルギー 14MeV
中性子束 約10n/cm
照射温度 室温
発光測定:300〜800nmのスペクトル
(測定装置:PMA−11:浜松ホトニクス社製)
The present invention will be specifically described below.
Example 1
The phosphor was irradiated with fast neutrons under the following conditions, and the afterglow lifetime of irradiated and unirradiated phosphors was measured. The result is shown in FIG.
Sample: phosphor (SrAl 2 O 4 : Eu, Dy, NP-2820: manufactured by Nichia Corporation)
Irradiation conditions: Neutron energy 14 MeV
Neutron flux about 10 9 n / cm 2 s
Irradiation temperature Room temperature Luminescence measurement: Spectrum of 300-800 nm
(Measurement device: PMA-11: manufactured by Hamamatsu Photonics)

図1は、照射・未照射の蓄光体SrAl:Eu,Dyの残光強度と時間の関係を示す図である。
図1から明らかなように、照射・未照射蓄光体の発光強度が初期の値から0.4倍で低下するまでの時間に関して、照射蓄光体が未照射蓄光体に比べて10倍以上のびていることがわかる。
FIG. 1 is a diagram showing the relationship between the afterglow intensity and time of irradiated / unirradiated phosphor SrAl 2 O 4 : Eu, Dy.
As is clear from FIG. 1, the irradiation phosphor is 10 times or more longer than the non-irradiation phosphor with respect to the time until the emission intensity of the irradiation / non-irradiation phosphor decreases by 0.4 times from the initial value. I understand that.

照射・未照射の蓄光体SrAl:Eu,Dyの残光強度と時間の関係を示す図である。Phosphorescent article of the irradiation-unirradiated SrAl 2 O 4: Eu, is a diagram showing a residual of the light intensity and time relationship Dy.

Claims (4)

MAl24(Mは、Ca、Sr、Baからなる群から選ばれる少なくとも1つ以上の金属元素)で表わされ、さらに、Eu、Dy、Ce、Pr、Sm、Tb、Ho、Er、Tm、Ybからなる群から選択される少なくとも1以上の希土類金属元素を含有する化合物を用いる蓄光体の製造方法において、
前記蓄光体の製造方法は、化合物に中性子を照射する
ことを特徴とする蓄光体の製造方法。
MAl 2 O 4 (M is at least one metal element selected from the group consisting of Ca, Sr, and Ba), and further Eu, Dy, Ce, Pr, Sm, Tb, Ho, Er, In a method for producing a phosphor, using a compound containing at least one rare earth metal element selected from the group consisting of Tm and Yb,
The method for producing a phosphorescent body comprises irradiating a compound with neutrons.
請求項1に記載の蓄光体の製造方法において、
前記化合物は、Eu、Dyを含有する
ことを特徴とする蓄光体の製造方法。
In the manufacturing method of the luminous body of Claim 1,
The said compound contains Eu and Dy. The manufacturing method of the luminous body characterized by the above-mentioned.
残光を発光する蓄光体において、
前記蓄光体は、MAl24(Mは、Ca、Sr、Baからなる群から選ばれる少なくとも1つ以上の金属元素)で表わされ、さらに、Eu、Dy、Ce、Pr、Sm、Tb、Ho、Er、Tm、Ybからなる群から選択される少なくとも1以上の希土類金属元素を含有する化合物であって、中性子が照射されている
ことを特徴とする蓄光体の製造方法。
In a phosphor that emits afterglow,
The phosphor is represented by MAl 2 O 4 (M is at least one metal element selected from the group consisting of Ca, Sr, and Ba), and Eu, Dy, Ce, Pr, Sm, and Tb. A compound containing at least one rare earth metal element selected from the group consisting of, Ho, Er, Tm, and Yb and irradiated with neutrons.
請求項3に記載の蓄光体において、
前記蓄光体は、Eu、Dyを含有する
ことを特徴とする蓄光体。
The phosphor of claim 3,
The phosphorescent substance contains Eu and Dy.
JP2005016248A 2005-01-25 2005-01-25 Method for manufacturing phosphorescent material Active JP4581086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016248A JP4581086B2 (en) 2005-01-25 2005-01-25 Method for manufacturing phosphorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016248A JP4581086B2 (en) 2005-01-25 2005-01-25 Method for manufacturing phosphorescent material

Publications (2)

Publication Number Publication Date
JP2006206618A true JP2006206618A (en) 2006-08-10
JP4581086B2 JP4581086B2 (en) 2010-11-17

Family

ID=36963822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016248A Active JP4581086B2 (en) 2005-01-25 2005-01-25 Method for manufacturing phosphorescent material

Country Status (1)

Country Link
JP (1) JP4581086B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235837A (en) * 2009-03-31 2010-10-21 High Energy Accelerator Research Organization Stress light emitter used for radiation measurement, and radiation measurement system equipped with the stress light emitter
CN103045240A (en) * 2011-10-17 2013-04-17 海洋王照明科技股份有限公司 Thulium doped strontium aluminate up-conversion luminescent material, preparation method and application thereof
WO2018105633A1 (en) 2016-12-06 2018-06-14 国立大学法人九州大学 Phosphorescent substance and phosphorescent element
WO2019031524A1 (en) 2017-08-09 2019-02-14 国立大学法人九州大学 Light-accumulating composition, light-accumulating element and wavelength control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193378A (en) * 1997-10-28 1999-07-21 Nec Kansai Ltd Production of phosphor
JPH11302638A (en) * 1998-04-21 1999-11-02 Japan Science & Technology Corp Method for selectively generating long afterglow inside glass
JP2002371275A (en) * 2001-06-14 2002-12-26 Chemitec Kk Long afterglow fluorescent material and its manufacturing method
JP2003051609A (en) * 2001-08-03 2003-02-21 Tokyo Gas Co Ltd Ultraviolet light-emitting element with diamond high luminance
JP2004323656A (en) * 2003-04-24 2004-11-18 Ekuran:Kk Manufacturing process of spherical phosphorescent material and spherical phosphorescent material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193378A (en) * 1997-10-28 1999-07-21 Nec Kansai Ltd Production of phosphor
JPH11302638A (en) * 1998-04-21 1999-11-02 Japan Science & Technology Corp Method for selectively generating long afterglow inside glass
JP2002371275A (en) * 2001-06-14 2002-12-26 Chemitec Kk Long afterglow fluorescent material and its manufacturing method
JP2003051609A (en) * 2001-08-03 2003-02-21 Tokyo Gas Co Ltd Ultraviolet light-emitting element with diamond high luminance
JP2004323656A (en) * 2003-04-24 2004-11-18 Ekuran:Kk Manufacturing process of spherical phosphorescent material and spherical phosphorescent material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235837A (en) * 2009-03-31 2010-10-21 High Energy Accelerator Research Organization Stress light emitter used for radiation measurement, and radiation measurement system equipped with the stress light emitter
CN103045240A (en) * 2011-10-17 2013-04-17 海洋王照明科技股份有限公司 Thulium doped strontium aluminate up-conversion luminescent material, preparation method and application thereof
CN103045240B (en) * 2011-10-17 2014-10-15 海洋王照明科技股份有限公司 Thulium doped strontium aluminate up-conversion luminescent material, preparation method and application thereof
WO2018105633A1 (en) 2016-12-06 2018-06-14 国立大学法人九州大学 Phosphorescent substance and phosphorescent element
KR20180096792A (en) 2016-12-06 2018-08-29 고쿠리쓰다이가쿠호진 규슈다이가쿠 Phosphorescent body and phosphorescent element
US10301540B2 (en) 2016-12-06 2019-05-28 Kyushu University, National University Corporation Long persistent luminescence emitter and long persistent luminescent element
KR20190111160A (en) 2016-12-06 2019-10-01 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 Phosphorescent substance and phosphorescent element
WO2019031524A1 (en) 2017-08-09 2019-02-14 国立大学法人九州大学 Light-accumulating composition, light-accumulating element and wavelength control method
US11505739B2 (en) 2017-08-09 2022-11-22 Okinawa Institute Of Science And Technology School Corporation Long-persistent luminescent composition, long-persistent luminescent device and wavelength control method

Also Published As

Publication number Publication date
JP4581086B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP2697688B2 (en) Long afterglow phosphor
Van der Heggen et al. Importance of evaluating the intensity dependency of the quantum efficiency: impact on LEDs and persistent phosphors
Chartier et al. Photoluminescence of Eu2+ in SrGa2S4
Chen et al. Developments in luminescence and display materials over the last 100 years as reflected in electrochemical society publications
JP3511083B2 (en) High intensity stress luminescent material, manufacturing method thereof, and luminescent method using the same
TWI491707B (en) Abos: m-based phosphors and light sources containing these phosphors
CN102333844A (en) Nitridosilicates co-doped with zirconium and hafnium
Zou et al. How to induce highly efficient long-lasting phosphorescence in a lamp with a commercial phosphor: a facile method and fundamental mechanisms
WO2011155428A1 (en) Light-storing phosphor and light-storing pigment
Sahu The role of europium and dysprosium in the bluish-green long lasting Sr 2 Al 2 SiO 7: Eu 2+, Dy 3+ phosphor by solid state reaction method
Sahu et al. Enhancement of the photoluminescence and long afterglow properties of Sr2MgSi2O7: Eu2+ phosphor by Dy3+ co‐doping
Singh et al. Synthesis, photoluminescence, thermoluminescence and electron spin resonance investigations of CaAl12O19: Eu phosphor
JP2010229388A (en) Red light fluorescent material, method for producing the same, and white light fluorescence device
JP4581086B2 (en) Method for manufacturing phosphorescent material
JP3918051B2 (en) Mechanoluminescence material and method for producing the same
Nayar et al. Synthesis and Luminescence Characterization of LaBO 3: Dy 3+ Phosphor for Stress Sensing Application
Liu et al. Luminescence properties of a Tb3+ activated long-afterglow phosphor
Huang et al. Luminescence improvement of Y2O2S: Tb3+, Sr2+, Zr4+ white-light long-lasting phosphor via Eu3+ addition
Sahu et al. Enhancement of the photoluminescence and long afterglow properties of Ca 2 MgSi 2 O 7: Eu 2+ phosphor by Dy 3+ co-doping
CN100375775C (en) Light storing phosphor and method for preparation thereof
Ju et al. Persistent luminescence in Ba5 (PO4) 3Cl: Eu2+, R3+ (R= Y, La, Ce, Gd, Tb and Lu)
JP2009509009A (en) Long afterglow luminescent material and method for producing the same
JP2000345152A (en) Yellow light emitting afterglow photoluminescent phosphor
Meng et al. A novel red persistent luminescence from Eu 3+-doped CdGeO 3 phosphor
Suresh et al. Blue excitable green emitting Ce3+ doped CaS phosphor for w‐LEDs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150