JP2006206607A - Intra-cancer-cell nuclease activator - Google Patents

Intra-cancer-cell nuclease activator Download PDF

Info

Publication number
JP2006206607A
JP2006206607A JP2006119672A JP2006119672A JP2006206607A JP 2006206607 A JP2006206607 A JP 2006206607A JP 2006119672 A JP2006119672 A JP 2006119672A JP 2006119672 A JP2006119672 A JP 2006119672A JP 2006206607 A JP2006206607 A JP 2006206607A
Authority
JP
Japan
Prior art keywords
poly
activator
cancer
cells
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006119672A
Other languages
Japanese (ja)
Inventor
Kazuko Hirabayashi
加壽子 平林
Junzo Seki
純造 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shinyaku Co Ltd
Original Assignee
Nippon Shinyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co Ltd filed Critical Nippon Shinyaku Co Ltd
Priority to JP2006119672A priority Critical patent/JP2006206607A/en
Publication of JP2006206607A publication Critical patent/JP2006206607A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new drug efficacious for cancer therapy and containing poly(I)-poly(C). <P>SOLUTION: The intra-cancer-cell nuclease activator contains a composite comprising a carrier prepared from 2-O-(2-diethylaminoethyl)-carbamoyl-1,3-O-dioleoylglycerol and a phospholipid as essential components and poly(I)-poly(C) or mismatched poly(I)-poly(C). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、癌細胞内ヌクレアーゼ活性化剤に関するものである。ここで「癌細胞内ヌクレアーゼ活性化剤」とは、癌細胞内のヌクレアーゼを活性化して癌細胞にアポトーシスを誘導し癌細胞を死滅させることができる薬剤をいう。また、「I」とはイノシン酸を、「C」とはシチジル酸を、「A」とはアデニル酸を、「U」とはウリジル酸を、それぞれ意味する。   The present invention relates to a cancer intracellular nuclease activator. Here, the “cancer cell nuclease activator” refers to a drug that can activate a nuclease in cancer cells to induce apoptosis in the cancer cells and kill the cancer cells. “I” means inosinic acid, “C” means cytidylic acid, “A” means adenylic acid, and “U” means uridylic acid.

ミスマッチドpoly(I)・poly(C)やミスマッチドpoly(A)・poly(U)とは、当業者に周知の事項であるが、二本鎖を構成する核酸塩基の中に一部相補的でない塩基を含むpoly(I)・poly(C)、poly(A)・poly(U)を意味する。   Mismatched poly (I) / poly (C) and mismatched poly (A) / poly (U) are well known to those skilled in the art, but are partially complementary to the nucleobases constituting the double strand. It means poly (I) · poly (C) and poly (A) · poly (U) containing unfavorable bases.

poly(I)・poly(C)は、ポリイノシン酸とポリシチジル酸とからなるポリリボヌクレオチドコポリマーの二本鎖RNAであり、強力なインターフェロン誘導能と免疫賦活作用を有する薬物として広く知られている。そして、かかるpoly(I)・poly(C)が免疫賦活作用を有することから、免疫反応により間接的に癌細胞の増殖を抑制しうると考えられ、これまで癌治療剤としての可能性が模索されてきた。しかし、poly(I)・poly(C)の免疫反応による間接的な作用では癌細胞の増殖を有効に抑えられず、poly(I)・poly(C)は癌治療剤として開発されるまでに至っていない。インターフェロン誘導能や免疫賦活作用に基づくその他の適応症についてもpoly(I)・poly(C)は開発されるに至っていない。   Poly (I) · poly (C) is a double-stranded RNA of a polyribonucleotide copolymer composed of polyinosinic acid and polycytidylic acid, and is widely known as a drug having a strong interferon-inducing ability and an immunostimulatory action. And since such poly (I) and poly (C) have an immunostimulatory action, it is considered that the proliferation of cancer cells can be indirectly suppressed by an immune reaction, and the possibility as a cancer therapeutic agent has been sought so far. It has been. However, the indirect action by the immune reaction of poly (I) / poly (C) cannot effectively suppress the growth of cancer cells, and poly (I) / poly (C) is developed as a cancer therapeutic agent. Not reached. Poly (I) and poly (C) have not yet been developed for other indications based on interferon-inducing ability and immunostimulatory action.

ポリアデニル酸とポリウリジル酸とからなるポリリボヌクレオチドコポリマーであるpoly(A)・poly(U)やミスマッチドpoly(I)・poly(C)、ミスマッチドpoly(A)・poly(U)についても、程度の差はあれpoly(I)・poly(C)と同様な作用を有していると考えられる。   For poly (A) / poly (U), mismatched poly (I) / poly (C), and mismatched poly (A) / poly (U), which are polyribonucleotide copolymers composed of polyadenylic acid and polyuridylic acid, It is thought that it has the effect | action similar to poly (I) * poly (C) to some extent.

一方、細胞内へ薬物を移入するのに有効な担体としては、例えば、カチオニック・リポソームと一般に呼ばれている、リポフェクチン(登録商標)や下記の構造式[I]に係る2−0−(2−ジエチルアミノエチル)カルバモイル−1,3−0−ジオレオイルグリセロール等のグリセロール誘導体及びリン脂質を必須構成成分として形成される担体が知られている(例えば、特許文献1および特許文献2参照)。   On the other hand, as an effective carrier for transferring a drug into a cell, for example, Lipofectin (registered trademark) generally called a cationic liposome, or 2-0- (2 related to the following structural formula [I] Carriers formed from glycerol derivatives such as -diethylaminoethyl) carbamoyl-1,3-0-dioleoylglycerol and phospholipids as essential constituents are known (for example, see Patent Document 1 and Patent Document 2).

Figure 2006206607
上記カチオニック・リポソームは、脂質二分子膜からなる、水溶液中で正電荷を持った小胞体であると考えられる。かかるカチオニック・リポソームは水溶液中で正電荷を帯び、poly(I)・poly(C)等の二本鎖RNAは水溶液中で負電荷を帯びることから、カチオニック・リポソームとpoly(I)・poly(C)等とは容易に複合体を形成することができる。
Figure 2006206607
The cationic liposome is considered to be a vesicle made of a lipid bilayer and having a positive charge in an aqueous solution. Such cationic liposomes are positively charged in an aqueous solution, and double-stranded RNAs such as poly (I) · poly (C) are negatively charged in an aqueous solution, so that cationic liposomes and poly (I) · poly ( A complex can be easily formed with C) and the like.

しかし、poly(I)・poly(C)等の二本鎖RNA自身やそれらとカチオニック・リポソームとの複合体が癌細胞内のヌクレアーゼを活性化して癌細胞にアポトーンスを誘導し癌細胞を死滅させるかどうかについては、全く知られていなかった。
国際公開第91/17424号パンフレット 国際公開第94/19314号パンフレット
However, double-stranded RNAs such as poly (I) / poly (C) themselves and complexes of them with cationic liposomes activate nucleases in cancer cells to induce apotones in cancer cells and kill them. Whether or not was known at all.
WO91 / 17424 pamphlet International Publication No. 94/19314 Pamphlet

本発明の目的は、癌治療に有効な薬剤を提供することにある。また、本発明の目的は、poly(I)・poly(C)等の二本鎖RNAを含有する新規な薬剤を提供することにある。   An object of the present invention is to provide a drug effective for cancer treatment. Moreover, the objective of this invention is providing the novel chemical | medical agent containing double stranded RNA, such as poly (I) * poly (C).

本発明者らは、鋭意研究を重ねた結果、癌細胞内ヌクレアーゼ活性化剤が癌治療に有効であることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have found that a cancer cell nuclease activator is effective for cancer treatment and completed the present invention.

従って、本発明は、癌細胞内ヌクレアーゼ活性化剤に関する。癌細胞内ヌクレアーゼ活性化剤であるかどうかは、例えば後述する試験例2のようなDNAやRNAのフラグメント化を観察する実験等を行うことによって容易に決定することができる。例えば、本発明として、細胞内へ薬物を移入するのに有効な担体とpoly(I)・poly(C)若しくはミスマッチドpoly(I)・poly(C)又はpoly(A)・poly(U)若しくはミスマッチドpoly(A)・poly(U)(以下、これら二本鎖RNAを総称して「poly(I)・poly(C)等」という)との複合体を含有する癌細胞内ヌクレアーゼ活性化剤やカチオニック・リポソームとpoly(I)・poly(C)等との複合体を含有する癌細胞内ヌクレアーゼ活性化剤を挙げることができる。   Accordingly, the present invention relates to a cancer cell nuclease activator. Whether or not it is a cancer cell nuclease activator can be easily determined by conducting an experiment or the like for observing fragmentation of DNA or RNA as in Test Example 2 described later. For example, in the present invention, a carrier effective for transferring a drug into cells and poly (I) · poly (C) or mismatched poly (I) · poly (C) or poly (A) · poly (U) Alternatively, a nuclease activity in a cancer cell containing a complex with mismatched poly (A) / poly (U) (hereinafter, these double-stranded RNAs are collectively referred to as “poly (I) / poly (C) etc.”). And a cancer cell nuclease activator containing a complex of an agent, cationic liposome and poly (I) / poly (C).

好ましい本発明の具体例としては、2−0−(2−ジエチルアミノエチル)カルバモイル−1,3−0−ジオレオイルグリセロール(以下「本グリセロール誘導体」という)及びリン脂質を必須構成成分として形成される担体(以下「本担体」という)とpoly(I)・poly(C)等との複合体(以下「本複合体」という)を含有する癌細胞内ヌクレアーゼ活性化剤(以下「本活性化剤」という)を挙げることができる。   Specific examples of the present invention preferably include 2-0- (2-diethylaminoethyl) carbamoyl-1,3-0-dioleoylglycerol (hereinafter referred to as “the present glycerol derivative”) and phospholipid as essential components. Cancer cell nuclease activator (hereinafter “this activation”) containing a complex (hereinafter referred to as “the present complex”) of a carrier (hereinafter referred to as “the present carrier”) and poly (I) / poly (C), etc. An agent)).

以下、好ましい本発明の具体例である本活性化剤について詳述する。
本担体は、カチオニック・リポソームの一種と一般に考えることができるが、細胞内へ薬物を移入する機能を有していれば必ずしもカチオニック・リポソームのような形態を有している必要はない。
Hereinafter, the activator which is a preferred embodiment of the present invention will be described in detail.
Although this carrier can generally be considered as a kind of cationic liposome, it does not necessarily have a form like a cationic liposome as long as it has a function of transferring a drug into cells.

本発明に係るpoly(I)・poly(C)等の鎖長は、特に制限されないが、例えばpoly(I)・poly(C)の場合には、50〜2,000bp(bp:ベースペアー、塩基対数)のものが適当であり、100〜500bpのものが好ましく、200〜400bpのものがより好ましい。50bp未満であると有効性に問題が生じるおそれがあり、2,000bpより長いと安全性に問題が生じるおそれがある。100〜500bpの範囲のpoly(I)・poly(C)は、本発明において有効性と安全性とのバランスがとれている鎖長領域であると考えられる。poly(I)・poly(C)等は、通常様々な鎖長からなる一定の分布をもって存在するので、左記のpoly(I)・poly(C)の鎖長は、平均分布鎖長を意味する。
本発明に係るリン脂質は、医薬上許容されるリン脂質であれば特に制限されない。具体例としては、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルイノシトール、ホスファチジルセリン、スフィンゴミエリン、レシチン等を挙げることができる。また、水素添加されたリン脂質も挙げることができる。好ましいリン脂質としては、卵黄ホスファチジルコリン、卵黄レシチン、大豆レシチン、卵黄ホスファチドを挙げることができる。2種以上のリン脂質を用いることもできる。なお、ホスファチジルコリン又はレシチンは、カチオニック・リポソームにおいて一般的に用いられるホスファチジルエタノールアミンと比べて、活性の低下なしに毒性を有意に低下させることができる。
The chain length of poly (I) · poly (C) and the like according to the present invention is not particularly limited. For example, in the case of poly (I) · poly (C), 50 to 2,000 bp (bp: base pair, Base pair number) is suitable, preferably 100 to 500 bp, more preferably 200 to 400 bp. If it is less than 50 bp, there may be a problem in effectiveness, and if it is longer than 2,000 bp, there may be a problem in safety. Poly (I) · poly (C) in the range of 100 to 500 bp is considered to be a chain length region in which effectiveness and safety are balanced in the present invention. Since poly (I) / poly (C) and the like usually exist with a certain distribution of various chain lengths, the chain lengths of poly (I) / poly (C) on the left mean the average distributed chain length. .
The phospholipid according to the present invention is not particularly limited as long as it is a pharmaceutically acceptable phospholipid. Specific examples include phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, sphingomyelin, lecithin and the like. Mention may also be made of hydrogenated phospholipids. Preferred phospholipids include egg yolk phosphatidylcholine, egg yolk lecithin, soybean lecithin, and egg yolk phosphatide. Two or more phospholipids can also be used. It should be noted that phosphatidylcholine or lecithin can significantly reduce toxicity without a decrease in activity as compared with phosphatidylethanolamine generally used in cationic liposomes.

本複合体中の、本担体とpoly(I)・poly(C)等との構成比率は、リン脂質の種類やpoly(I)・poly(C)等の種類、癌の種類等によって異なるが、本担体10重量部に対して、poly(I)・poly(C)等0.05〜10重量部が適当であり、0.1〜4重量部が好ましく、0.5〜2重量部がより好ましい。   The composition ratio of the present carrier to poly (I) / poly (C) in the complex varies depending on the type of phospholipid, the type of poly (I) / poly (C), the type of cancer, and the like. In addition, 0.05 to 10 parts by weight, such as poly (I) · poly (C), is suitably 0.1 to 4 parts by weight, and 0.5 to 2 parts by weight with respect to 10 parts by weight of the carrier. More preferred.

本担体中の、本グリセロール誘導体とリン脂質との構成比率は、poly(I)・poly(C)等の種類や使用量やリン脂質の種類等によって異なるが、本グリセロール誘導体1重量部に対して、リン脂質0.1〜10重量部が適当であり、0.5〜5重量部が好ましく、1〜2重量部がより好ましい。   The composition ratio of the present glycerol derivative and phospholipid in this carrier varies depending on the type and amount of poly (I) and poly (C) used, the type of phospholipid, etc., but relative to 1 part by weight of the present glycerol derivative. Thus, 0.1 to 10 parts by weight of phospholipid is suitable, 0.5 to 5 parts by weight is preferable, and 1 to 2 parts by weight is more preferable.

本活性化剤は、例えば、本複合体が水溶液中に分散している液剤(注射剤、点滴剤等)やその凍結乾燥製剤の形態をとることができる。液剤の場合、本複合体が、0.001〜25%(w/v)の濃度範囲内で存在しているものが適当であり、0.01〜5%(w/v)の濃度範囲内で存在しているものが好ましく、0.1〜1%(w/v)の濃度範囲内で存在しているものがより好ましい。   The activator can take the form of, for example, a liquid (injection, instillation, etc.) in which the complex is dispersed in an aqueous solution or a lyophilized preparation thereof. In the case of a liquid agent, it is appropriate that the present complex is present within a concentration range of 0.001 to 25% (w / v), and within a concentration range of 0.01 to 5% (w / v). Is preferably present, and more preferably within a concentration range of 0.1 to 1% (w / v).

本活性化剤は、任意の医薬上許容される添加剤、例えば、乳化補助剤、安定化剤、等張化剤、pH調整剤を適当量含有していてもよい。具体的には、炭素数6〜22の脂肪酸(例、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、アラキドン酸、ドコサヘキサエン酸)やその医薬上許容される塩(例、ナトリウム塩、カリウム塩、カルシウム塩)、アルブミン、デキストラン等の乳化補助剤、コレステロール、ホスファチジン酸等の安定化剤、塩化ナトリウム、グルコース、マルトース、ラクトース、スクロース、トレハロース等の等張化剤、塩酸、硫酸、リン酸、酢酸、水酸化ナトリウム、水酸化カリウム、トリエタノールアミン等のpH調整剤などを挙げることができる。   The activator may contain an appropriate amount of any pharmaceutically acceptable additive such as an emulsification aid, a stabilizer, an isotonic agent, and a pH adjuster. Specifically, fatty acids having 6 to 22 carbon atoms (eg, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidonic acid, docosahexaenoic acid) and pharmaceutically acceptable products thereof Salts (eg, sodium salts, potassium salts, calcium salts), emulsifying aids such as albumin and dextran, stabilizers such as cholesterol and phosphatidic acid, sodium chloride, glucose, maltose, lactose, sucrose, trehalose, etc. Examples include tonicity agents, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, sodium hydroxide, potassium hydroxide, pH adjusters such as triethanolamine, and the like.

本活性化剤は、例えば、リポソームの一般的な製法と同様にして製造することができる。例えば、まず所定量の本グリセロール誘導体及びリン脂質に、所定量の水(注射用水、注射用蒸留水、生理食塩水等)を加えこれらを攪拌混合し、この混合物を適当な分散機、例えば、ホモミキサー、ホモジナイザー、超音波分散器、超音波ホモジナイザー、高圧乳化分散機、マイクロフルイダイザー(商品名)、ナノマイザー(商品名)、アルティマイザー(商品名)、マントン−ガウリン型高圧ホモジナイザーを用いて分散処理する。そして、その上に所定量のpoly(I)・poly(C)等を加え、再度適当な分散機で分散処理して注射剤としての本活性化剤を製造することができる。他の任意の添加剤は、分散前でも分散後でも適当な工程で添加することができる。また、初めから本グリセロール誘導体、リン脂質、及びpoly(I)・poly(C)等の三者の混合物に水を加えて同時に分散処理して本活性化剤を製造することもでき、また、粗分散を経て製造することもできる。   This activator can be produced, for example, in the same manner as a general production method of liposomes. For example, first, a predetermined amount of water (water for injection, distilled water for injection, physiological saline, etc.) is added to a predetermined amount of the present glycerol derivative and phospholipid, and these are stirred and mixed, and this mixture is mixed with an appropriate disperser, for example, Dispersion using homomixer, homogenizer, ultrasonic disperser, ultrasonic homogenizer, high-pressure emulsifying disperser, microfluidizer (trade name), nanomizer (trade name), optimizer (trade name), Manton-Gaurin type high-pressure homogenizer To process. Then, a predetermined amount of poly (I) / poly (C) or the like is added thereto, and the mixture is again dispersed with an appropriate disperser to produce the present activator as an injection. Other optional additives can be added in an appropriate step before or after dispersion. In addition, the activator can be produced by adding water to a mixture of the glycerol derivative, phospholipid, and poly (I) / poly (C), etc. It can also be produced via coarse dispersion.

次いで、上記分散処理して得られた本活性化剤を凍結乾燥処理すれば、本活性化剤の凍結乾燥製剤を調製することができる。凍結乾燥処理は、常法により行なうことができる。例えば、上記分散処理して得られた本活性化剤を滅菌後、所定量をバイアル瓶に分注する。約−40〜−20℃の条件で予備凍結を約2時間程度行い、約0〜10℃で減圧下に一次乾燥を行い、次いで、約15〜25℃で減圧下に二次乾燥して凍結乾燥する。そして、一般的にはバイアル内部を窒素ガスで置換し、打栓して本活性化剤の凍結乾燥製剤を得ることができる。   Next, if the activator obtained by the above dispersion treatment is freeze-dried, a freeze-dried preparation of the activator can be prepared. The freeze-drying process can be performed by a conventional method. For example, after sterilizing the present activator obtained by the above dispersion treatment, a predetermined amount is dispensed into a vial. Pre-freeze for about 2 hours at about −40 to −20 ° C., perform primary drying under reduced pressure at about 0 to 10 ° C., and then secondary dry under reduced pressure at about 15 to 25 ° C. dry. In general, the inside of the vial can be replaced with nitrogen gas and stoppered to obtain a freeze-dried preparation of the present activator.

本活性化剤の凍結乾燥製剤は、一般には任意の適当な溶液(再溶解液)の添加によって再溶解し使用することができる。このような再溶解液としては、注射用水、生理食塩水、その他一般輸液を挙げることができる。この再溶解液の液量は、用途等によって異なり特に制限されないが、凍結乾燥前の液量の0.5〜2倍量、又は500mL以下が適当である。   In general, the lyophilized preparation of the activator can be re-dissolved and used by adding any appropriate solution (re-dissolved solution). Examples of such redissolved solution include water for injection, physiological saline, and other general infusion solutions. The amount of the redissolved solution varies depending on the use and the like and is not particularly limited. However, an amount of 0.5 to 2 times the amount of the solution before lyophilization or 500 mL or less is appropriate.

本活性化剤は、癌細胞内のヌクレアーゼを活性化して癌細胞にアポトーシスを誘導し癌細胞を死滅させることができ、毒性も低いので、ヒトを含む哺乳動物の癌治療、例えば肝臓癌治療に有用である。特に本担体とpoly(I)・poly(C)との複合体を含有する本活性化剤は、有効性が極めて高い反面、毒性が極めて低いので優れている。   This activator can activate nuclease in cancer cells to induce apoptosis in cancer cells and kill cancer cells, and has low toxicity, so it is useful for cancer treatment of mammals including humans, for example, liver cancer treatment. Useful. In particular, the present activator containing a complex of the present carrier and poly (I) / poly (C) is excellent because it is extremely effective but extremely low in toxicity.

本活性化剤は、癌治療のため静脈内投与、癌内局所投与、経粘膜投与等することができ、肝臓癌治療のため本活性化剤を用いる場合には、静脈内投与、肝動脈内投与、門脈内投与が適当である。   This activator can be administered intravenously for cancer treatment, local administration within cancer, transmucosal administration, etc. When this activator is used for liver cancer treatment, intravenous administration, intrahepatic artery Administration and intraportal administration are appropriate.

本活性化剤の癌治療のための投与量は、poly(I)・poly(C)等やリン脂質の種類、癌の種類、癌の進行状況、年齢、種差、投与経路、投与方法等によって異なるが、poly(I)・poly(C)等の投与量として、1回当たり通常50μg〜50mg/ヒトが適当であり、100μg〜2mg/ヒトが好ましい。poly(I)・poly(C)の投与量としても、1回当たり通常50μg〜50mg/ヒトが適当であり、100μg〜2mg/ヒトが好ましい。本活性化剤は、1日1〜3回を、連日、隔日、1週毎、2週毎等に1ショット投与や点滴投与等することができる。   The dose of this activator for cancer treatment depends on poly (I) / poly (C), etc., phospholipid type, cancer type, cancer progression, age, species difference, administration route, administration method, etc. Although different, the dose of poly (I), poly (C), etc. is usually 50 μg to 50 mg / human per time, preferably 100 μg to 2 mg / human. As a dose of poly (I) · poly (C), 50 μg to 50 mg / human is usually appropriate per dose, and 100 μg to 2 mg / human is preferable. This activator can be administered 1 shot or drip, etc., once to 3 times a day, every day, every other day, every week, every two weeks or the like.

以下、実施例及び試験例を掲げて、本発明を更に詳しく説明する。各実施例及び各試験例において、本活性化剤の濃度は、すべて本活性化剤中の当該poly(I)・poly(C)の濃度で表している。
実施例1
本グリセロール誘導体2gと精製卵黄レシチン2gに100mLの注射用水に溶解したマルトース40gを加え攪拌混合し、ホモジナイザーを用いて5分間分散処理して本担体の粗分散液を得た。かかる粗分散液を更に実験用小型乳化分散機を用いて1時間分散処理し、注射用水で250mLに定容して本担体分散液を回収した。本担体分散液250mLに500mgのpoly(I)・poly(C)〔平均鎖長は、ほぼ200bp〕を含む150mLの水溶液を攪拌しながら添加し、更に1時間実験用小型乳化分散機を用いて分散処理し本活性化剤を得た。その後、本活性化剤を1mLづつバイアルに分注し常法に従って凍結乾燥製剤とした。
実施例2
本グリセロール誘導体50gと卵黄ホスファチド30gに10Lの注射用水に溶解したスクロース4kgを加えマントン−ガウリン型高圧ホモジナイザーを用いて10分間分散処理し、注射用水で25Lに定容して本担体分散液を回収した。本担体分散液20Lに10gのpoly(I)・poly(C)〔平均鎖長は、ほぼ200bp〕を含む12Lの水溶液を攪拌しなから添加し、塩酸を用いてpHを5.5に調整し、さらに30分マントン−ガウリン型高圧ホモジナイザーを用いて分散処理して本活性化剤を得た。その後、本活性化剤を20mLづつバイアルに分注し常法に従って凍結乾燥製剤とした。当該凍結乾燥製剤に市販の5%ブドウ糖輪液(500mL)を加えて溶解した。
実施例3
本グリセロール誘導体2gと大豆レシチン2gに100mLの注射用水に溶解したブドウ糖20gを加え攪拌混合し、ホモジナイザーを用いて5分間分散処理して本担体の粗分散液を得た。かかる粗分散液を更に実験用小型高圧乳化分散磯を用いて1時間分散処理し、注射用水で250mLに定容して本担体分散液を回収した。本担体分散液250mLに50mgのpoly(I)・poly(C)〔平均鎖長は、ほぼ200bp〕を含む150mLの水溶液を攪拌しなから添加し、さらに1時間実験用小型高圧乳化分散機を用いて分散処理して本活性化剤を得た。
実施例4
本グリセロール誘導体1.2gと精製卵黄レシチン2.0gに100mLの注射用水に溶解したマルトース40gを加え攪拌混合し、実験用小型乳化分散機を用いて30分間分散処理し、注射用水で250mLに定容して本担体分散液を回収した。本担体分散液250mLに200mgのpoly(I)・poly(C)〔平均鎖長は、ほぼ200bp〕を含む150mLの水溶液を攪拌しながら添加し、さらに2時間実験用小型乳化分散機を用いて分散処理して本活性化剤を得た。
実施例5
本グリセロール誘導体1.2gと精製卵黄レシチン2.0gに100mLの注射用水に溶解したマルトース40gを加え攪拌混合し、実験用小型乳化分散機を用いて30分間分散処理し、注射用水で250mLに定容して本担体分散液を回収した。本担体分散液250mLに、平均鎖長が360ベースのpoly(I)100mgと318ベースのpoly(C)100mgを含む150mLの水溶液を攪拌しながら添加し、さらに2時間実験用小型乳化分散機を用いて分散処理して本活性化剤を得た。
実施例6
本グリセロール誘導体2gと精製卵黄レシチン2gに100mLの注射用水に溶解したマルトース40gを加え攪拌混合し、ホモジナイザーを用いて5分間分散処理して本担体の粗分散液を得た。かかる粗分散液を更に実験用小型乳化分散機を用いて1時間分散処理し、注射用水で250mLに定容して本担体分散液を回収した。本担体分散液250mLに、平均鎖長が1419ベースのpoly(I)250mgと1491ベースのpoly(C)250mgを含む150mLの水溶液を攪拌しなから添加し、更に1時間実験用小型乳化分散機を用いて分散処理し本活性化剤を得た。その後、本活性化剤を1mLづつバイアルに分注し常法に従って凍結乾燥製剤とした。
実施例7
本グリセロール誘導体1.2gと精製卵黄レシチン2.0gに100mLの注射用水に溶解したマルトース40gを加え攪拌混合し、実験用小型乳化分散機を用いて30分間分散処理し、注射用水で250mLに定容して本担体分散液を回収した。本担体分散液250mLに、平均鎖長が84ベースのpoly(I)100mgと76ベースのpoly(C)100mgを含む150mLの水溶液を攪拌しながら添加し、さらに2時間実験用小型乳化分散機を用いて分散処理して本活性化剤を得た。
実施例8
実施例4と同様にして、平均鎖長がほぼ350bpのpoly(I)・poly(C)を含む本活性化剤を得た。
実施例9
実施例4と同様にして、平均鎖長がほぼ1450bpのpoly(I)・poly(C)を含む本活性化剤を得た。
実施例10
実施例4と同様にして、平均鎖長がほぼ80bpのpoly(I)・poly(C)を含む本活性化剤を得た。
試験例1 各種細胞株に対する増殖抑制効果(in vitro)
各々の細胞を96穴のプレートに10細胞/穴の密度でまき、翌日実施例4に係る本活性化剤又はアドリアマイシンを添加して培養を続けた。3日後に生細胞数をMTT法で測定した。その結果を表1及び表2に示す。
Hereinafter, the present invention will be described in more detail with reference to examples and test examples. In each example and each test example, the concentration of the activator is expressed as the concentration of the poly (I) / poly (C) in the activator.
Example 1
40 g of maltose dissolved in 100 mL of water for injection was added to 2 g of this glycerol derivative and 2 g of purified egg yolk lecithin, mixed with stirring, and dispersed for 5 minutes using a homogenizer to obtain a crude dispersion of this carrier. The crude dispersion was further dispersed for 1 hour using a small experimental emulsifying disperser, and the volume was fixed to 250 mL with water for injection to recover the carrier dispersion. To this carrier dispersion 250 mL, 150 mL of an aqueous solution containing 500 mg of poly (I) · poly (C) [average chain length is approximately 200 bp] was added with stirring, and further for 1 hour using a small-sized emulsifying disperser for experiments. This activator was obtained by dispersion treatment. Thereafter, the activator was dispensed in 1 mL vials to prepare a freeze-dried preparation according to a conventional method.
Example 2
50 g of this glycerol derivative and 30 g of egg yolk phosphatide are added with 4 kg of sucrose dissolved in 10 L of water for injection, and dispersed for 10 minutes using a high pressure homogenizer of Manton-Gaurin type. did. To this carrier dispersion 20L, a 12 L aqueous solution containing 10 g of poly (I) · poly (C) [average chain length is approximately 200 bp] is added without stirring, and the pH is adjusted to 5.5 using hydrochloric acid. The mixture was further dispersed for 30 minutes using a Manton-Gaurin type high pressure homogenizer to obtain the activator. Then, 20 mL of this activator was dispensed into vials to prepare a freeze-dried preparation according to a conventional method. A commercially available 5% dextrose solution (500 mL) was added to the lyophilized preparation and dissolved.
Example 3
20 g of glucose dissolved in 100 mL of water for injection was added to 2 g of this glycerol derivative and 2 g of soy lecithin, mixed with stirring, and dispersed for 5 minutes using a homogenizer to obtain a crude dispersion of this carrier. The crude dispersion was further dispersed for 1 hour using a small experimental high-pressure emulsifying dispersion vessel, and the volume of the dispersion was made up to 250 mL with water for injection to recover the carrier dispersion. A 250 mL aqueous solution containing 50 mg of poly (I) · poly (C) [average chain length is approximately 200 bp] is added to 250 mL of this carrier dispersion without stirring, and a small high-pressure emulsifying disperser for experiment is further added for 1 hour. This activator was obtained by dispersion treatment.
Example 4
40 g of maltose dissolved in 100 mL of water for injection is added to 1.2 g of this glycerol derivative and 2.0 g of purified egg yolk lecithin, mixed with stirring, dispersed for 30 minutes using a small emulsifying disperser for experiments, and fixed to 250 mL with water for injection. The carrier dispersion was recovered. To this carrier dispersion 250 mL, 150 mL of an aqueous solution containing 200 mg of poly (I) · poly (C) [average chain length is approximately 200 bp] was added with stirring, and further for 2 hours using a small-sized emulsifying disperser for experiments. The activator was obtained by dispersion treatment.
Example 5
40 g of maltose dissolved in 100 mL of water for injection is added to 1.2 g of this glycerol derivative and 2.0 g of purified egg yolk lecithin, mixed with stirring, dispersed for 30 minutes using a small emulsifying disperser for experiments, and fixed to 250 mL with water for injection. The carrier dispersion was recovered. To 250 mL of this carrier dispersion, 150 mL of an aqueous solution containing 100 mg of poly (I) having an average chain length of 360 and 100 mg of 318 based poly (C) was added with stirring. This activator was obtained by dispersion treatment.
Example 6
40 g of maltose dissolved in 100 mL of water for injection was added to 2 g of this glycerol derivative and 2 g of purified egg yolk lecithin, mixed with stirring, and dispersed for 5 minutes using a homogenizer to obtain a crude dispersion of this carrier. The crude dispersion was further dispersed for 1 hour using a small experimental emulsifying disperser, and the volume was fixed to 250 mL with water for injection to recover the carrier dispersion. 150 mL of aqueous solution containing 250 mg of poly (I) having an average chain length of 1419 base and 250 mg of 1491 base is added to 250 mL of this carrier dispersion without stirring, and then a small emulsification disperser for 1 hour experiment. This activator was obtained by a dispersion treatment using Thereafter, the activator was dispensed in 1 mL vials to prepare a freeze-dried preparation according to a conventional method.
Example 7
40 g of maltose dissolved in 100 mL of water for injection is added to 1.2 g of this glycerol derivative and 2.0 g of purified egg yolk lecithin, mixed with stirring, dispersed for 30 minutes using a small emulsifying disperser for experiments, and fixed to 250 mL with water for injection. The carrier dispersion was recovered. To 250 mL of this carrier dispersion, 150 mL of an aqueous solution containing 100 mg of poly (I) having an average chain length of 84 base and 100 mg of 76 (base) poly (C) was added with stirring, and a small-sized emulsification disperser for experiment was further added for 2 hours. This activator was obtained by dispersion treatment.
Example 8
In the same manner as in Example 4, the activator containing poly (I) · poly (C) having an average chain length of about 350 bp was obtained.
Example 9
In the same manner as in Example 4, the activator containing poly (I) · poly (C) having an average chain length of about 1450 bp was obtained.
Example 10
In the same manner as in Example 4, the activator containing poly (I) · poly (C) having an average chain length of about 80 bp was obtained.
Test Example 1 Growth inhibitory effect on various cell lines (in vitro)
Each cell was seeded in a 96-well plate at a density of 10 4 cells / well, and the following day, the activator according to Example 4 or adriamycin was added to continue the culture. Three days later, the number of viable cells was measured by the MTT method. The results are shown in Tables 1 and 2.

Figure 2006206607
Figure 2006206607

Figure 2006206607
表1及び表2から明らかなように、数多くの上皮系及び繊維芽細胞由来の癌細胞株に対し、0.01〜500ng/mLの濃度で強い増殖抑制作用が見られた。核酸合成阻害により抗癌作用を示すアドリアマイシンと比較しても遜色のない強さであった。どの臓器の癌細胞に対しても効果があり、臓器特異性は見られなかった。一方、非癌細胞である肝臓由来株化細胞4株及び株化繊維芽細胞7株に対して本活性化剤は1000ng/mLの濃度でも増殖抑制作用を示さなかった。なお、このin vitro癌細胞増殖抑制効果は、poly(I)・poly(C)単独添加及び本担体単独では全く見られず、また単に細胞内へpoly(I)・poly(C)が移入されただけでは想像のつかなかった現象である。
試験例2 アポトーシス現象の観察
(1)DNA及びRNAフラグメンテーション
1)DNAフラグメンテーション
A431細胞及びKM12−HX細胞の各々にpoly(I)・poly(C)の濃度として1μg/mLの実施例4に係る本活性化剤を添加し、A431細胞については5時間後に、KM12−HX細胞については7.5時間後に細胞を回収した。5mM Tris−HCl(pH8.0)・10mM EDTA・0.5%(v/v)Triton X−100で細胞を溶解した後、13000×gで20分間遠心してフラグメント化したDNA(上清)とクロマチン画分(沈殿)を分離した。上清に100μg/ml RNase Aを加え37℃で1時間作用させた後、200μg/mL Proteinase K及び1%(w/v)SDS(Sodium dodecyl sulfate)を50℃で1.5時間反応させた。さらにフェノール/クロロホルムによりフラグメント化DNAを抽出し、1.8%アガロースゲルで電気泳動した。その結果、いずれの細胞においてもDNAフラグメンテーションが観察された。
Figure 2006206607
As is clear from Tables 1 and 2, a strong growth inhibitory action was observed at a concentration of 0.01 to 500 ng / mL against many epithelial and fibroblast-derived cancer cell lines. Compared with adriamycin, which exhibits anticancer activity due to inhibition of nucleic acid synthesis, the strength was comparable. It was effective against cancer cells in any organ, and no organ specificity was observed. On the other hand, this activator did not show growth-inhibiting action even at a concentration of 1000 ng / mL against 4 liver-derived cell lines and 7 cell line fibroblasts that are non-cancer cells. This in vitro cancer cell growth inhibitory effect was not observed when poly (I) / poly (C) alone was added or the carrier alone, and poly (I) / poly (C) was simply transferred into the cells. This is a phenomenon that could not have been imagined.
Test Example 2 Observation of apoptosis phenomenon (1) DNA and RNA fragmentation
1) DNA fragmentation The present activator according to Example 4 at a concentration of poly (I) · poly (C) of 1 μg / mL was added to each of A431 cells and KM12-HX cells, and after 5 hours for A431 cells, KM12-HX cells were collected after 7.5 hours. The cells were lysed with 5 mM Tris-HCl (pH 8.0), 10 mM EDTA, 0.5% (v / v) Triton X-100, and then centrifuged at 13000 × g for 20 minutes to fragment the DNA (supernatant). The chromatin fraction (precipitate) was separated. 100 μg / ml RNase A was added to the supernatant and allowed to act at 37 ° C. for 1 hour, and then 200 μg / mL Proteinase K and 1% (w / v) SDS (Sodium dodecyl sulfate) were reacted at 50 ° C. for 1.5 hours. . Further, the fragmented DNA was extracted with phenol / chloroform and electrophoresed on a 1.8% agarose gel. As a result, DNA fragmentation was observed in all cells.

また、A431細胞についてその時間経過を調べた。A431細胞を6穴プレートに2.8×10細胞/穴の密度でまき、翌日2μCi〔H〕Thymidineを加え細胞のDNAをラベルした。その後実施例4に係る本活性化剤(1μg/mL)を添加し、各時間で細胞を集めた。5mM Tris−HCl(pH8.0)・10mM EDTA・0.5%(v/v)Triton X−100で細胞を溶解した後、13000×gで20分間遠心してフラグメント化したDNA(上清)とクロマチン画分(沈殿)を分離した。上清及び沈殿の放射活性量からフラグメント化DNAの全DNAに対する割合を算出した。その結果を図1に示す。 In addition, the time course of A431 cells was examined. A431 cells were seeded in a 6-well plate at a density of 2.8 × 10 5 cells / well, and 2 μCi [ 3 H] Thymidine was added the next day to label the cell DNA. Thereafter, the activator according to Example 4 (1 μg / mL) was added, and cells were collected at each time. The cells were lysed with 5 mM Tris-HCl (pH 8.0), 10 mM EDTA, 0.5% (v / v) Triton X-100, and then centrifuged at 13000 × g for 20 minutes to fragment the DNA (supernatant). The chromatin fraction (precipitate) was separated. The ratio of fragmented DNA to total DNA was calculated from the amount of radioactivity in the supernatant and precipitate. The result is shown in FIG.

添加後3時間で全DNAの約30%、5時間で55%以上のフラグメント化が起こっており、この分解が本活性化剤が細胞に入ってから直ぐに起こる現象であることがわかった。
2)RNAフラグメンテーション
Fragmentation of about 30% of the total DNA occurred in 3 hours after addition and 55% or more in 5 hours, and it was found that this degradation occurred immediately after the activator entered the cells.
2) RNA fragmentation

A431細胞、MDA−MB−468細胞、KB細胞、HeLaS3細胞、及びMCF−7細胞の各々にpoly(I)・poly(C)の濃度として1μg/mLの実施例4に係る本活性化剤を添加し、4時間後に細胞を回収した。各細胞からリボソーム画分を分画し、AGPC(Acid−Guanidium−Phenol−Chloroform)法により総RNAを抽出した。RNAをホルムアルデヒド変性ゲル(1.8%アガロースゲル)で電気泳動後、エチジウムブロマイド染色した。その結果、いずれの細胞においても28S及び18SリボソームRNAのフラグメンテーションが観察された。
(2)ヌクレアーゼ阻害剤の影響
HeLaS3細胞を96穴プレートに10細胞/穴の密度でまき、翌日ヌクレアーゼ阻害剤ATA(aurintricarboxylic acid)10μMと実施例4に係る本活性化剤とを同時に添加した。さらに3日間培養を続け、生細胞数をMTT法で測定した。その結果を図2に示す。
The activator according to Example 4 having a concentration of poly (I) · poly (C) of 1 μg / mL in each of A431 cells, MDA-MB-468 cells, KB cells, HeLaS3 cells, and MCF-7 cells. The cells were harvested after 4 hours. The ribosome fraction was fractionated from each cell, and total RNA was extracted by the AGPC (Acid-Guanidinium-Phenol-Chloroform) method. RNA was electrophoresed on a formaldehyde-denaturing gel (1.8% agarose gel) and then stained with ethidium bromide. As a result, fragmentation of 28S and 18S ribosomal RNA was observed in all cells.
(2) Effect of nuclease inhibitor HeLaS3 cells were seeded in a 96-well plate at a density of 10 4 cells / well, and the following day, nuclease inhibitor ATA (aurintricboxylic acid) 10 μM and the activator according to Example 4 were added simultaneously. . The culture was further continued for 3 days, and the number of viable cells was measured by the MTT method. The result is shown in FIG.

図2から明らかなように、ATAを加え細胞内ヌクレアーゼの働きを止めておくと本活性化剤の癌細胞増殖抑制作用は見られなかった。そして、添加したATAを8時間後に培地から取り除き、その後本活性化剤を添加しても本活性化剤の作用はないことから、このATAの効果は、本活性化剤の細胞内への取り込みを抑えるものではなく、ヌクレアーゼ阻害剤として働いた結果のものと考えられる。
(3)以上の試験結果から、本活性化剤は細胞内のヌクレアーゼを活性化することがわかり、それにより癌細胞内にアポトーシスをもたらすことがわかった。
試験例3 マウス転移性肝臓癌モデルでの効果(in vivo)
ヌードマウスBalb/c,nu/nu(5週齢、雄)の脾臓にKM12−HX(ヒト大腸癌細胞であり、ヌードマウスの脾臓に移植すると効率的に肝臓に転移して肝臓癌病変を形成する株)を10細胞/マウスで注射し、10分後に脾臓を摘出した。3日後から実施例4に係る本活性化剤をほぼ等間隔で週2回、5週間静脈内投与した。最終投与2日後に肝臓を摘出し、肝臓に形成された癌結節数及び面積を測定した。その結果を表3に示す。

Figure 2006206607
30μg/kg投与群では、コントロール群(10%マルトース投与)に比較して72%、100μg/kg投与群では91%の肝臓癌細胞の増殖抑制効果が見られた。また、100μg/kg投与に関しては週1回投与でも77%の肝臓癌細胞の増殖抑制効果が見られた。 As is clear from FIG. 2, when ATA was added to stop the function of intracellular nuclease, this activator did not show the cancer cell growth inhibitory action. Then, the added ATA is removed from the medium after 8 hours, and the activator does not act even if the activator is added thereafter. Therefore, the effect of the ATA is that the activator is taken into the cells. It is thought to be a result of working as a nuclease inhibitor.
(3) From the above test results, it was found that this activator activates intracellular nuclease, thereby causing apoptosis in cancer cells.
Test Example 3 Effect in mouse metastatic liver cancer model (in vivo)
KM12-HX (human colon cancer cells in the spleen of nude mice Balb / c, nu / nu (5 weeks old, male); when transplanted into the spleen of nude mice, it efficiently metastasizes to the liver and forms liver cancer lesions Strain) was injected at 10 6 cells / mouse, and 10 minutes later, the spleen was removed. Three days later, the activator according to Example 4 was intravenously administered twice at a regular interval twice a week for 5 weeks. Two days after the final administration, the liver was removed, and the number and area of cancer nodules formed in the liver were measured. The results are shown in Table 3.
Figure 2006206607
In the 30 μg / kg administration group, 72%, and in the 100 μg / kg administration group, 91% of the liver cancer cell growth inhibitory effect was observed as compared to the control group (10% maltose administration). In addition, regarding the administration of 100 μg / kg, 77% of the liver cancer cell growth inhibitory effect was observed even once a week.

また、各々の肝臓組織の標本を作製し、病理学的解析を行ったところ、コントロール群の肝臓に形成された癌は上皮性低分化型腺癌であった。腫瘍血管は普通程度に発達していた。特に免疫担当細胞の浸潤は見られなかった。また、この癌組織では所々に石灰化を伴っていた。本活性化剤投与群では明らかな癌細胞は見当たらず、薬物投与による癌治癒後に残存した石灰化のみが見られた。   Moreover, when specimens of each liver tissue were prepared and pathological analysis was performed, the cancer formed in the liver of the control group was an epithelial poorly differentiated adenocarcinoma. Tumor blood vessels had developed to a normal extent. In particular, no infiltration of immunocompetent cells was observed. In this cancer tissue, calcification was accompanied in some places. No obvious cancer cells were found in this activator-administered group, and only calcification remaining after cancer treatment by drug administration was observed.

このように本活性化剤は、肝癌モデル動物において10μg/kg〜100μg/kg・週2回の連続静脈投与で有意な効果があった。
試験例4 毒性試験
(1)ラット単回投与による肝毒性の発現(急性毒性試験)
6週齢SD雄性ラット8匹について実施例4に係る本活性化剤の単回静脈内投与を行い、20時間後の血清アミノアシルトランスフェラーゼ活性を測定した。その結果、5mg/kgまで死亡例は見られず、5mg/kgで軽度の血清アミノアシルトランスフェラーゼの上昇が見られた程度であった。1mg/kgでは血清アミノアシルトランスフェラーゼの上昇はほとんどなかった。
(2)ラット2週間限定亜急性毒性試験
実施例4に係る本活性化剤について、SD雄性ラット6匹(6週齢)に14日間連日静脈内投与したところ、1mg/kg以下では特に問題となる毒性は見られなかった。
(3)抗原性試験
実施例4に係る本活性化剤について、雄性モルモット(hartley,5週齢)を用い抗原性試験を実施したところ、50μg/モルモットで抗原性は認められなかった。
(4)簡易変異原性試験
実施例4に係る本活性化剤について、簡易復帰突然変異試験および簡易染色体異常試験を実施したところ、10μg/mLで変異原性は認められなかった。
Thus, the present activator had a significant effect in continuous intravenous administration of 10 μg / kg to 100 μg / kg · twice a week in liver cancer model animals.
Test Example 4 Toxicity test (1) Expression of liver toxicity after single administration to rats (acute toxicity test)
A single intravenous administration of the activator according to Example 4 was performed on 8 6-week-old SD male rats, and the serum aminoacyltransferase activity 20 hours later was measured. As a result, no death was observed up to 5 mg / kg, and a slight increase in serum aminoacyltransferase was observed at 5 mg / kg. There was almost no increase in serum aminoacyltransferase at 1 mg / kg.
(2) Rat 2-week limited subacute toxicity test The activator according to Example 4 was intravenously administered to 6 SD male rats (6 weeks old) daily for 14 days, which was particularly problematic at 1 mg / kg or less. No toxic effects were seen.
(3) Antigenicity test The antigenicity test was conducted on the activator of Example 4 using male guinea pigs (hartley, 5 weeks old). No antigenicity was observed at 50 μg / guinea pig.
(4) Simple mutagenicity test The present activator according to Example 4 was subjected to a simple reverse mutation test and a simple chromosome aberration test, and no mutagenicity was observed at 10 µg / mL.

DNAフラグメンテーションの割合を示す。縦軸はDNAフラグメンテーションの割合(%)を、横軸は時間(時間)をそれぞれ表す。The percentage of DNA fragmentation is shown. The vertical axis represents the percentage (%) of DNA fragmentation, and the horizontal axis represents time (hour). ATA添加によるヌクレアーゼ阻害剤の影響を示す。縦軸は阻害率(%)を、横軸は実施例4に係る本活性化剤の濃度(ng/ml)を表す。−○−は、ATAを添加しない系での結果を、−●−は、ATAを添加した系での結果を、それぞれ表す。The influence of the nuclease inhibitor by ATA addition is shown. The vertical axis represents the inhibition rate (%), and the horizontal axis represents the concentration (ng / ml) of the activator according to Example 4. -○-represents the result in the system without addition of ATA, and-●-represents the result in the system to which ATA was added.

Claims (5)

2−O−(2−ジエチルアミノエチル)カルバモイル−1,3−O−ジオレオイルグリセロール及びリン脂質を必須構成成分として形成される担体とpoly(I)・poly(C)又はpoly(A)・poly(U)との複合体を含有する癌細胞内ヌクレアーゼ活性化剤。 Carrier formed with 2-O- (2-diethylaminoethyl) carbamoyl-1,3-O-dioleoylglycerol and phospholipid as essential components and poly (I) · poly (C) or poly (A) · A cancer cell nuclease activator comprising a complex with poly (U). リン脂質がレシチンである請求項1記載の癌細胞内ヌクレアーゼ活性化剤。 The cancer cell nuclease activator according to claim 1, wherein the phospholipid is lecithin. poly(I)・poly(C)又はpoly(A)・poly(U)の平均鎖長が100〜500bpの範囲内である請求項1又は2記載の癌細胞内ヌクレアーゼ活性化剤。 The cancer cell nuclease activator according to claim 1 or 2, wherein the average chain length of poly (I) · poly (C) or poly (A) · poly (U) is in the range of 100 to 500 bp. 癌が肝臓癌である請求項1〜3のいずれかに記載の癌細胞内ヌクレアーゼ活性化剤。 The cancer intracellular nuclease activator according to any one of claims 1 to 3, wherein the cancer is liver cancer. 請求項1〜4のいずれかに記載の癌細胞内ヌクレアーゼ活性化剤を含有することを特徴とする癌治療剤。 A cancer therapeutic agent comprising the cancer cell nuclease activator according to claim 1.
JP2006119672A 1997-10-16 2006-04-24 Intra-cancer-cell nuclease activator Pending JP2006206607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119672A JP2006206607A (en) 1997-10-16 2006-04-24 Intra-cancer-cell nuclease activator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28396897 1997-10-16
JP2006119672A JP2006206607A (en) 1997-10-16 2006-04-24 Intra-cancer-cell nuclease activator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000516680A Division JP3824207B2 (en) 1997-10-16 1998-10-15 Cancer intracellular nuclease activator

Publications (1)

Publication Number Publication Date
JP2006206607A true JP2006206607A (en) 2006-08-10

Family

ID=36963816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119672A Pending JP2006206607A (en) 1997-10-16 2006-04-24 Intra-cancer-cell nuclease activator

Country Status (1)

Country Link
JP (1) JP2006206607A (en)

Similar Documents

Publication Publication Date Title
JP6158966B2 (en) Modified oligonucleotides for telomerase inhibition
JP2022501367A (en) Preparation of lipid nanoparticles and method for administration thereof
CN103987847B (en) Amine cation lipid and application thereof
JP2001503751A (en) Cationic reagents for transfection
JP3824207B2 (en) Cancer intracellular nuclease activator
WO2022159472A1 (en) Nanomaterials comprising a biodegradable feature
JP3804452B2 (en) Hepatitis treatment agent
ES2809460T3 (en) New method of production of lipoplex for local administration and antitumor drug using lipoplex
JP2006206607A (en) Intra-cancer-cell nuclease activator
MXPA00003611A (en) Intra-cancer-cell nuclease activator
WO2022159421A1 (en) Ionizable lipids for nanomaterials
AU2022210317A1 (en) Nanomaterials comprising an ionizable lipid
CA3195631A1 (en) Multi-conjugates comprising a mono-substituted homo-bivalent linker

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A621 Written request for application examination

Effective date: 20060517

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A02