JP2006206576A - Method for producing acetals - Google Patents

Method for producing acetals Download PDF

Info

Publication number
JP2006206576A
JP2006206576A JP2005333758A JP2005333758A JP2006206576A JP 2006206576 A JP2006206576 A JP 2006206576A JP 2005333758 A JP2005333758 A JP 2005333758A JP 2005333758 A JP2005333758 A JP 2005333758A JP 2006206576 A JP2006206576 A JP 2006206576A
Authority
JP
Japan
Prior art keywords
group
metal
compound
silicate
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005333758A
Other languages
Japanese (ja)
Other versions
JP4961723B2 (en
Inventor
Koju Hagitani
弘寿 萩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005333758A priority Critical patent/JP4961723B2/en
Publication of JP2006206576A publication Critical patent/JP2006206576A/en
Application granted granted Critical
Publication of JP4961723B2 publication Critical patent/JP4961723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially advantageously producing an acetal. <P>SOLUTION: The production method comprises reacting a carbonyl compound represented by general formula (1) (R<SP>1</SP>and R<SP>2</SP>are the same or different and are each an alkyl group which may be substituted, an alkenyl group which may be substituted, an aryl group which may be substituted or a hydrogen atom; when R<SP>1</SP>and R<SP>2</SP>are an alkyl group which may be substituted or an alkenyl group which may be substituted, R<SP>1</SP>and R<SP>2</SP>are mutually bonded and may form a ring with the bonded carbon atom) with an alcohol in the presence of a silicate containing at least one element selected from the group consisting of an element of the group 5 of the periodic table and an element of the group 6 as a constituent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アセタール類の製造方法を提供するものである。   The present invention provides a method for producing acetals.

アセタール類は、例えば医農薬、香料等の生物活性物質およびその原料あるいは機能性高分子原料等として重要な化合物である(例えば、特許文献1、特許文献2参照。)。   Acetals are compounds that are important as bioactive substances such as medical pesticides and fragrances and their raw materials or functional polymer raw materials (see, for example, Patent Document 1 and Patent Document 2).

かかるアセタール類の製造方法としては、一般的には、酸の存在下、対応するアルデヒド化合物またはケトン化合物とアルコール類とを反応させる方法が用いられ、例えば、p−トルエンスルホン酸を触媒とする方法(例えば、非特許文献1参照。)が知られているが、収率や酸触媒の処理等の点において、工業的に満足できるものではなかった。   As a method for producing such acetals, generally, a method in which a corresponding aldehyde compound or ketone compound and an alcohol are reacted in the presence of an acid is used. For example, a method using p-toluenesulfonic acid as a catalyst. (See, for example, Non-Patent Document 1.) However, it was not industrially satisfactory in terms of yield, acid catalyst treatment, and the like.

そのため、固体触媒を用いる改良法が種々開発されている。例えば、セリウム交換モンモリロナイトを用いる方法(例えば、非特許文献2参照。)、脱水アルミナを用いる方法(例えば、非特許文献3参照。)、MCM−41タイプのシリケートを用いる方法(例えば、非特許文献4参照。)等が挙げられる。しかし、これらの方法では、適用できる基質が限定されたり、ハロゲン化炭化水素溶媒が必要であったり、固体触媒がそのままではリサイクル使用ができなかったりする等の問題点があり、工業的にはさらなる改善が望まれていた。   For this reason, various improved methods using a solid catalyst have been developed. For example, a method using cerium-exchanged montmorillonite (for example, see Non-Patent Document 2), a method using dehydrated alumina (for example, Non-Patent Document 3), a method using an MCM-41 type silicate (for example, Non-Patent Document). 4). However, in these methods, there are problems that the applicable substrate is limited, a halogenated hydrocarbon solvent is required, and that the solid catalyst cannot be recycled as it is. Improvement was desired.

特表2004−500307号公報Special Table 2004-500307 特許第2651621号公報Japanese Patent No. 2651621 Organic Synthesis Col.Vol.5,303(1973)Organic Synthesis Col.Vol.5,303 (1973) J.Org.Chem.,60,4039(1995)J. Org. Chem., 60, 4039 (1995) Tetrahedron Letters,26,4767(1985)Tetrahedron Letters, 26, 4767 (1985) Tetrahedron Letters,39,9457(1998)Tetrahedron Letters, 39,9457 (1998)

このような状況の下、本発明者は、アセタール類の製法を鋭意検討したところ、入手の容易な周期律表第5族元素および第6族元素からなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケートの存在下に、上記のようなカルボニル化合物とアルコール類との縮合反応を実施すれば、ハロゲン化炭化水素溶媒を用いることなく、比較的選択性よくアセタール類を与えることを見出し、本発明に至った。   Under such circumstances, the present inventors diligently studied the production method of acetals, and constituted at least one element selected from the group consisting of Group 5 elements and Group 6 elements in the periodic table that are easily available. It has been found that if a condensation reaction between a carbonyl compound and an alcohol as described above is carried out in the presence of a silicate contained as an element, acetals can be obtained with relatively high selectivity without using a halogenated hydrocarbon solvent. The present invention has been reached.

すなわち本発明は、周期律表第5族元素および第6族元素からなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケートの存在下に、式(1)

Figure 2006206576
(式中、RおよびRはそれぞれ同一または相異なって、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアリール基または水素原子を表す。RとRがともに置換されていてもよいアルキル基または置換されていてもよいアルケニル基である場合は、それらが互いに結合して、その結合炭素原子とともに環を形成していてもよい。)
で示されるカルボニル化合物とアルコール類とを反応させることを特徴とする対応するアセタール類の製造方法を提供するものである。 That is, the present invention provides a compound represented by formula (1) in the presence of a silicate containing at least one element selected from the group consisting of Group 5 elements and Group 6 elements as a constituent element.
Figure 2006206576
(Wherein, R 1 and R 2 are the same or different and each represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted aryl group or a hydrogen atom. When 1 and R 2 are both an optionally substituted alkyl group or an optionally substituted alkenyl group, they may be bonded to each other to form a ring together with the bonded carbon atoms.
A method for producing a corresponding acetal, which comprises reacting a carbonyl compound represented by formula (II) with an alcohol, is provided.

本発明によれば、入手の容易な金属または化合物から容易に調整できる金属含有シリケートを用いて、カルボニル化合物とアルコール類とから、アセタール類を工業的有利に製造することができる。驚くべきことに、本発明においては、一般にアセタール化が難しいとされるケトン類(例えば、2−ブタノン等の直鎖状のアルキルケトン類;アセトフェノン等のアリールケトン類;α−メチルシンナムアルデヒド等のアルケニルケトン類;など)や、一般にアセタール化が難しいとされるアルコール類(例えば、アリルアルコール等の不飽和アルコール類;ベンジルアルコール等のアラルキルアルコール類;など)を用いても、反応が進行する。さらに、本発明に用いる金属含有シリケートは回収が容易であり、中和処理や再焼成処理などの操作を行うことなく、そのままリサイクル使用ができ、大量の廃棄物が発生しない点においても有用である。   According to the present invention, acetals can be produced industrially advantageously from carbonyl compounds and alcohols using metal-containing silicates that can be easily prepared from readily available metals or compounds. Surprisingly, in the present invention, ketones generally regarded as difficult to be acetalized (for example, linear alkyl ketones such as 2-butanone; aryl ketones such as acetophenone; α-methylcinnamaldehyde, etc. The reaction proceeds even when an alkenyl ketone or the like, or an alcohol that is generally difficult to acetalize (for example, an unsaturated alcohol such as allyl alcohol; an aralkyl alcohol such as benzyl alcohol; etc.) is used. Furthermore, the metal-containing silicate used in the present invention is easy to recover, and can be used as it is without performing operations such as neutralization and refiring, and is also useful in that a large amount of waste is not generated. .

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、周期律表第5族元素および第6族元素からなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケート(以下、金属含有シリケートと略記する。)とは、周期律表第5族元素、第6族元素またはその両方を構成要素として含んだシリケートであれば、特に限定されない。ここで、周期律表第5族元素としては、例えばバナジウム、ニオブ、タンタル等が挙げられ、周期律表第6族元素としては、例えばタングステン、モリブデン、クロム等が挙げられ、バナジウム、モリブテンおよびタングステンが好ましい。   In the present invention, a silicate containing at least one element selected from the group consisting of Group 5 elements and Group 6 elements as a constituent element (hereinafter abbreviated as metal-containing silicate) is a periodic table. There is no particular limitation as long as it is a silicate containing a Group 5 element, a Group 6 element, or both as a constituent element. Here, examples of the Group 5 element of the periodic table include vanadium, niobium, and tantalum, and examples of the Group 6 element of the periodic table include tungsten, molybdenum, chromium, and the like, and vanadium, molybdenum, and tungsten. Is preferred.

かかる金属含有シリケートは、例えば、特開2003−300722号公報、Applied Catalysis A:General 179,11(1999)および J.Chem.Soc.Chem.Commun.,2231(1995)等に記載の方法を用いて製造することができる。好ましくは、周期律表第5族金属、第6族金属、第5族元素を含む化合物および第6族元素を含む化合物からなる群から選ばれる少なくとも一種(以下、金属または化合物と略記する。)と過酸化水素とを反応せしめてなる金属酸化物(以下、金属酸化物と略記する。)と、ケイ素化合物とを、有機テンプレートの存在下に反応せしめ、得られた固体を洗浄処理または焼成処理せしめる方法が用いられる。以下、該調製方法について説明する。   Such metal-containing silicates are disclosed in, for example, JP-A-2003-300722, Applied Catalysis A: General 179, 11 (1999) and J. Org. Chem. Soc. Chem. Commun. 2231 (1995) and the like. Preferably, at least one selected from the group consisting of Group 5 metals, Group 6 metals, compounds containing Group 5 elements and compounds containing Group 6 elements in the periodic table (hereinafter abbreviated as metals or compounds). A metal oxide (hereinafter abbreviated as “metal oxide”) obtained by reacting hydrogen peroxide with hydrogen and a silicon compound are reacted in the presence of an organic template, and the resulting solid is washed or fired. The method of caulking is used. Hereinafter, the preparation method will be described.

周期律表第5族金属としては、例えばバナジウム金属、ニオブ金属、タンタル金属が挙げられ、第6族金属としては、例えばタングステン金属、モリブデン金属、クロム金属が挙げられる。また、第5族元素を含む化合物としては、例えば、酸化バナジウム、バナジン酸アンモニウム、バナジウムカルボニル錯体、硫酸バナジウム、硫酸バナジウムエチレンジアミン錯体等のバナジウム化合物;酸化ニオブ、塩化ニオブ、ニオブカルボニル錯体等のニオブ化合物;酸化タンタル、塩化タンタル等のタンタル化合物;などが挙げられ、第6族元素を含む化合物としては、例えば、ホウ化タングステン、炭化タングステン、酸化タングステン、タングステン酸アンモニウム、タングステンカルボニル錯体等のタングステン化合物;ホウ化モリブデン、酸化モリブデン、塩化モリブデン、モリブデンカルボニル錯体等のモリブデン化合物;酸化クロム、塩化クロム等のクロム化合物;などが挙げられる。   Examples of the Group 5 metal of the periodic table include vanadium metal, niobium metal, and tantalum metal, and examples of the Group 6 metal include tungsten metal, molybdenum metal, and chromium metal. Examples of the compound containing a Group 5 element include vanadium compounds such as vanadium oxide, ammonium vanadate, vanadium carbonyl complex, vanadium sulfate, vanadium sulfate ethylenediamine complex; niobium compounds such as niobium oxide, niobium chloride, and niobium carbonyl complex. Tantalum compounds such as tantalum oxide and tantalum chloride; examples of the compound containing a Group 6 element include tungsten compounds such as tungsten boride, tungsten carbide, tungsten oxide, ammonium tungstate, and tungsten carbonyl complex; And molybdenum compounds such as molybdenum boride, molybdenum oxide, molybdenum chloride, and molybdenum carbonyl complex; chromium compounds such as chromium oxide and chromium chloride;

かかる金属または化合物の中でも、タングステン金属、モリブデン金属、バナジウム金属、タングステン化合物、モリブデン化合物およびバナジウム化合物からなる群から選ばれる少なくとも一種を用いることが好ましい。これらの金属または化合物は、それぞれ単独で用いてもよいし、二種以上を混合して用いてもよい。また、金属または化合物のなかには、水和物が存在するものがあるが、本発明には、水和物を用いてもよいし、無水物を用いてもよい。   Among such metals or compounds, it is preferable to use at least one selected from the group consisting of tungsten metal, molybdenum metal, vanadium metal, tungsten compound, molybdenum compound, and vanadium compound. These metals or compounds may be used alone or in combination of two or more. Some metals or compounds have hydrates. In the present invention, hydrates or anhydrides may be used.

かかる金属または化合物と過酸化水素とを反応させることにより、金属酸化物が得られるが、過酸化水素としては、通常、水溶液が用いられる。もちろん、過酸化水素の有機溶媒溶液を用いてもよいが、取扱いがより容易であるという点で、過酸化水素水を用いることが好ましい。過酸化水素水もしくは過酸化水素の有機溶媒溶液中の過酸化水素濃度は特に制限されないが、容積効率、安全面等を考慮すると、実用的には1〜60重量%程度の範囲である。過酸化水素水は、通常、市販のものをそのままもしくは必要に応じて、希釈、濃縮等により濃度調整を行なったものを用いればよい。また過酸化水素の有機溶媒溶液は、例えば過酸化水素水溶液を有機溶媒で抽出処理する、もしくは有機溶媒の存在下に蒸留処理する等の手段により、調製したものを用いればよい。   A metal oxide can be obtained by reacting such a metal or compound with hydrogen peroxide, and an aqueous solution is usually used as hydrogen peroxide. Of course, an organic solvent solution of hydrogen peroxide may be used, but it is preferable to use a hydrogen peroxide solution in terms of easier handling. The hydrogen peroxide concentration in the hydrogen peroxide solution or the organic solvent solution of hydrogen peroxide is not particularly limited, but is practically in the range of about 1 to 60% by weight in consideration of volume efficiency, safety and the like. As the hydrogen peroxide solution, a commercially available one may be used as it is or after adjusting the concentration by dilution, concentration or the like, if necessary. As the organic solvent solution of hydrogen peroxide, a solution prepared by a means such as extraction treatment of an aqueous hydrogen peroxide solution with an organic solvent or distillation treatment in the presence of an organic solvent may be used.

金属酸化物を調製する際の過酸化水素の使用量は、金属または化合物に対して、通常3モル倍以上、好ましくは5モル倍以上であり、その上限は特にない。   The amount of hydrogen peroxide used in preparing the metal oxide is usually 3 mol times or more, preferably 5 mol times or more, relative to the metal or compound, and there is no particular upper limit.

金属または化合物と過酸化水素との反応は、通常、水溶液中で実施されるが、例えば、ジエチルエーテル、メチルtert−ブチルエーテル、テトラヒドロフラン等のエーテル溶媒;酢酸エチル等のエステル溶媒;メタノール、エタノール、tert−ブタノール等のアルコール溶媒;アセトニトリル、プロピオニトリル等のニトリル溶媒等の有機溶媒中または該有機溶媒と水との混合溶媒中で実施してもよい。   The reaction between a metal or compound and hydrogen peroxide is usually carried out in an aqueous solution. For example, ether solvents such as diethyl ether, methyl tert-butyl ether and tetrahydrofuran; ester solvents such as ethyl acetate; methanol, ethanol, tert -An alcohol solvent such as butanol; an organic solvent such as nitrile solvent such as acetonitrile or propionitrile, or a mixed solvent of the organic solvent and water.

金属または化合物と過酸化水素との反応は、通常その両者を混合、接触させることにより行われ、金属または化合物と過酸化水素との接触効率を向上させるため、金属酸化物調製液中で金属または化合物が十分に分散するよう攪拌しながら反応を行うことが好ましい。金属酸化物の調製時の調製温度は、通常−10〜100℃の範囲である。   The reaction between the metal or compound and hydrogen peroxide is usually carried out by mixing and bringing them into contact with each other. In order to improve the contact efficiency between the metal or compound and hydrogen peroxide, It is preferable to carry out the reaction with stirring so that the compound is sufficiently dispersed. The preparation temperature at the time of preparation of the metal oxide is usually in the range of −10 to 100 ° C.

金属または化合物と過酸化水素とを水中、有機溶媒中もしくは水と有機溶媒の混合溶媒中で反応させることにより、金属または化合物の全部もしくは一部が溶解し、金属酸化物を含む均一溶液もしくは懸濁液を調製することができるが、該金属酸化物を、例えば濃縮処理等により調製液から取り出して、本発明の金属含有シリケートを調製する原料として用いてもよいし、該調製液をそのまま用いてもよい。   By reacting a metal or compound with hydrogen peroxide in water, an organic solvent, or a mixed solvent of water and an organic solvent, all or part of the metal or compound dissolves, and a homogeneous solution or suspension containing a metal oxide is dissolved. Although a turbid liquid can be prepared, the metal oxide may be taken out of the preparation liquid by, for example, concentration treatment and used as a raw material for preparing the metal-containing silicate of the present invention, or the preparation liquid may be used as it is. May be.

ケイ素化合物としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが通常は用いられる。その使用量は、通常、金属または化合物あるいはそれらと過酸化水素とを反応せしめてなる金属酸化物中の金属原子1モルに対して、ケイ素原子が4モル倍以上であり、その上限は特にない。   As the silicon compound, for example, tetraalkoxysilane such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane is usually used. The amount used is usually 4 moles or more of silicon atoms relative to 1 mole of metal atoms in the metal or compound or metal oxide obtained by reacting them with hydrogen peroxide, and there is no particular upper limit. .

有機テンプレートとしては、例えばアルキルアミン、第四級アンモニウム塩、ノニオン界面活性剤等が挙げられ、アルキルアミン、第四級アンモニウム塩が好ましい。アルキルアミンとしては、例えばオクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、エイコシルアミン等の炭素数8〜20のアルキル基で置換された一級アミン;前記一級アミンのアミノ基の窒素原子と結合する水素原子のうち一つが、例えばメチル基等のアルキル基で置換された、例えばメチルオクチルアミン等の二級アミン;前記二級アミンのアミノ基の窒素原子と結合する水素原子が、例えばメチル基等のアルキル基で置換された、例えばジメチルオクチルアミン等の三級アミン等が挙げられ、なかでも一級アミンがより好ましい。   Examples of the organic template include alkylamines, quaternary ammonium salts, nonionic surfactants, and the like, and alkylamines and quaternary ammonium salts are preferable. Examples of the alkylamine include primary amines substituted with an alkyl group having 8 to 20 carbon atoms such as octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, and eicosylamine; One of the hydrogen atoms bonded to the nitrogen atom of the amino group of the amine is substituted with an alkyl group such as a methyl group, for example, a secondary amine such as methyloctylamine; the nitrogen atom of the amino group of the secondary amine; For example, a tertiary amine such as dimethyloctylamine in which a hydrogen atom to be bonded is substituted with an alkyl group such as a methyl group is exemplified, and a primary amine is more preferable.

第四級アンモニウム塩としては、アンモニウムイオン(NH )の四つの水素原子が、同一もしくは相異なる四つの炭素数1〜18のアルキル基で置換された第四級アンモニウムイオンと、例えば水酸化物イオン、塩化物イオン、臭化物イオン等のアニオンとから構成されるものが挙げられる。具体的には、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化トリメチルオクチルアンモニウム等の水酸化第四級アンモニウム塩;塩化テトラエチルアンモニウム、塩化テトラプロピルアンモニウム、塩化テトラブチルアンモニウム、塩化トリメチルオクチルアンモニウム等の塩化第四級アンモニウム塩;臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、臭化トリメチルオクチルアンモニウム等の臭化第四級アンモニウム塩等が挙げられ、水酸化第四級アンモニウム塩が好ましい。 The quaternary ammonium salt includes a quaternary ammonium ion in which four hydrogen atoms of an ammonium ion (NH 4 + ) are substituted with the same or different four alkyl groups having 1 to 18 carbon atoms, for example, hydroxylation. And those composed of anions such as chloride ions, chloride ions and bromide ions. Specifically, quaternary ammonium hydroxide salts such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethyloctylammonium hydroxide; tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride Quaternary ammonium chlorides such as trimethyloctylammonium chloride; quaternary ammonium bromides such as tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, trimethyloctylammonium bromide, etc. A quaternary ammonium hydroxide salt is preferred.

ノニオン界面活性剤としては、例えばポリエチレングリコール類等が挙げられる。   Examples of nonionic surfactants include polyethylene glycols.

かかる有機テンプレートは、そのまま用いてもよいし、後述する水や親水性溶媒と混合して用いてもよい。有機テンプレートの使用量は、ケイ素化合物に対して、通常0.03〜1モル倍の範囲である。   Such an organic template may be used as it is, or may be used by mixing with water or a hydrophilic solvent described later. The usage-amount of an organic template is the range of 0.03-1 mol times normally with respect to a silicon compound.

有機テンプレートの存在下、前記金属酸化物と、ケイ素化合物との反応は、通常、溶媒の存在下に実施される。溶媒としては、例えば水、親水性有機溶媒の単独または混合溶媒が挙げられ、好ましくは水単独および水と親水性有機溶媒との混合溶媒が挙げられる。親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等の親水性アルコール溶媒;アセトニトリル等の親水性ニトリル溶媒;ジオキサン等の親水性エーテル溶媒;などが挙げられ、好ましくは親水性アルコール溶媒が挙げられ、なかでもメタノール、エタノールがより好ましい。かかる溶媒の使用量は、有機テンプレートに対して、通常1〜1000重量倍程度の範囲である。   In the presence of the organic template, the reaction between the metal oxide and the silicon compound is usually performed in the presence of a solvent. Examples of the solvent include water and a hydrophilic organic solvent alone or a mixed solvent, preferably water alone and a mixed solvent of water and a hydrophilic organic solvent. Examples of the hydrophilic organic solvent include hydrophilic alcohol solvents such as methanol, ethanol and isopropanol; hydrophilic nitrile solvents such as acetonitrile; hydrophilic ether solvents such as dioxane; preferably hydrophilic alcohol solvents. Of these, methanol and ethanol are more preferred. The amount of the solvent used is usually in the range of about 1 to 1000 times the weight of the organic template.

反応温度は、通常0〜200℃程度の範囲である。   The reaction temperature is usually in the range of about 0 to 200 ° C.

反応終了後、例えば、反応液から反応生成物を濾過等により分離すれば、金属含有シリケートを得ることができる。本発明には、反応液から分離した金属含有シリケートを、さらに洗浄処理または焼成処理に付してなる金属含有シリケートを用いることが好ましい。   After completion of the reaction, for example, if the reaction product is separated from the reaction solution by filtration or the like, a metal-containing silicate can be obtained. In the present invention, it is preferable to use a metal-containing silicate obtained by subjecting the metal-containing silicate separated from the reaction solution to a washing treatment or a firing treatment.

分離した反応生成物を洗浄処理する場合の洗浄溶媒としては、例えばメタノール、エタノール等のアルコール溶媒、水等が挙げられ、その使用量は、特に制限されない。   Examples of the washing solvent for washing the separated reaction product include alcohol solvents such as methanol and ethanol, water and the like, and the amount used is not particularly limited.

分離した反応生成物を焼成処理する場合の焼成温度としては、通常300〜700℃、好ましくは500〜600℃である。焼成時間は、通常0.5〜20時間である。なお、分離した反応生成物を洗浄処理した後、焼成処理してもよい。   The firing temperature when the separated reaction product is fired is usually 300 to 700 ° C, preferably 500 to 600 ° C. The firing time is usually 0.5 to 20 hours. The separated reaction product may be subjected to a washing treatment and then a baking treatment.

かくして得られる金属含有シリケートは、通常、平均細孔径(窒素吸着法により測定した結果をBHJ法により算出)が4〜100オングストロームの細孔を有しており、また、その比表面積(窒素吸着法により測定した結果をBET多点法(p/p=0.1)により算出)は、通常100m/g以上である。 The metal-containing silicate thus obtained usually has pores with an average pore size (calculated by the BHJ method of the results measured by the nitrogen adsorption method) of 4 to 100 angstroms, and the specific surface area (nitrogen adsorption method). The BET multipoint method (calculated by the BET multipoint method (p / p 0 = 0.1)) is usually 100 m 2 / g or more.

次に、金属含有シリケートを触媒として、式(1)で示されるカルボニル化合物(以下、カルボニル化合物(1)と略記する。)と、アルコール類とを反応させることによる、アセタール類の製造方法について説明する。   Next, a method for producing acetals by reacting a carbonyl compound represented by formula (1) (hereinafter abbreviated as carbonyl compound (1)) and an alcohol with a metal-containing silicate as a catalyst will be described. To do.

カルボニル化合物(1)の式中、RおよびRはそれぞれ同一または相異なって、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアリール基または水素原子を表す。RとRがともに置換されていてもよいアルキル基または置換されていてもよいアルケニル基である場合は、それらが互いに結合して、その結合炭素原子とともに環を形成していてもよい。 In the formula of the carbonyl compound (1), R 1 and R 2 are the same or different and are each an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted aryl group or hydrogen. Represents an atom. When R 1 and R 2 are both an optionally substituted alkyl group or an optionally substituted alkenyl group, they may be bonded to each other to form a ring together with the bonded carbon atoms.

アルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−デシル基、シクロプロピル基、2,2−ジメチルシクロプロピル基、シクロペンチル基、シクロヘキシル基、メンチル基等の直鎖状、分枝鎖状または環状の炭素数1〜20のアルキル基が挙げられる。かかるアルキル基上に有していてもよい置換基としては、例えば、メトキシ基、エトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;アセチル基、プロピオニル基、ベンゾイル基等のアシル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;フェニル基、ナフチル基、2−メチルフェニル基、4−クロロフェニル基、4−メチルフェニル基、4−メトキシフェニル基等の置換されていてもよいアリール基;ホルミル基;カルボキシ基;などが例示される。かかる置換基で置換されたアルキル基の具体例としては、クロロメチル基、フルオロメチル基、トリフルオロメチル基、メトキシメチル基、エトキシメチル基、3−オキソブチル基、メトキシエチル基、メトキシカルボニルメチル基、ベンジル基等が挙げられる。   Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-decyl group, and cyclopropyl. And linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group and menthyl group. Examples of the substituent which may be present on the alkyl group include alkoxy groups such as methoxy group and ethoxy group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; acetyl group, propionyl group and benzoyl group An acylcarbonyl group; an alkoxycarbonyl group such as a methoxycarbonyl group or an ethoxycarbonyl group; a phenyl group, a naphthyl group, a 2-methylphenyl group, a 4-chlorophenyl group, a 4-methylphenyl group, a 4-methoxyphenyl group, or the like; An aryl group that may be present; a formyl group; a carboxy group; Specific examples of the alkyl group substituted with such a substituent include chloromethyl group, fluoromethyl group, trifluoromethyl group, methoxymethyl group, ethoxymethyl group, 3-oxobutyl group, methoxyethyl group, methoxycarbonylmethyl group, A benzyl group etc. are mentioned.

アルケニル基としては、例えばエテニル基、1−プロペニル基、2−プロペニル基、1−メチルエテニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−メチル−1−プロペニル基、2−メチル−1−プロペニル基、1−メチル−2−プロペニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、1−ヘキセニル基、1−デセニル基、2−シクロペンテニル基、2−シクロヘキセニル基等の炭素数2〜12のアルケニル基が挙げられる。かかるアルケニル基上に有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、トリフルオロメトキシ基、メトキシメトキシ基、エトキシメトキシ基、メトキシエトキシ基、ベンジルオキシ基等の置換されていてもよいアルコキシ基;フェノキシ基、ナフチルオキシ基、2−メチルフェノキシ基、4−クロロフェノキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基等の置換されていてもよいアリールオキシ基;フェニル基、ナフチル基、2−メチルフェニル基、4−クロロフェニル基、4−メチルフェニル基、4−メトキシフェニル基等の置換されていてもよいアリール基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;アセチル基、プロピオニル基、ベンゾイル基等のアシル基;などが例示される。かかる置換基で置換されたアルケニル基の具体例としては、クロロビニル基、フルオロプロペニル基、トリフルオロブテニル基、メトキシプロペニル基、フェノキシブテニル基等が挙げられる。   Examples of the alkenyl group include ethenyl group, 1-propenyl group, 2-propenyl group, 1-methylethenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-methyl-1-propenyl group, 2- Methyl-1-propenyl group, 1-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 1-hexenyl group, 1-decenyl group, 2-cyclopentenyl group, 2-cyclo C2-C12 alkenyl groups, such as a hexenyl group, are mentioned. Examples of the substituent that may be present on the alkenyl group include a methoxy group, an ethoxy group, a trifluoromethoxy group, a methoxymethoxy group, an ethoxymethoxy group, a methoxyethoxy group, and a benzyloxy group. An alkoxy group which may be substituted; an aryloxy group which may be substituted such as a phenoxy group, a naphthyloxy group, a 2-methylphenoxy group, a 4-chlorophenoxy group, a 4-methylphenoxy group and a 4-methoxyphenoxy group; a phenyl group; Aryl group optionally substituted such as naphthyl group, 2-methylphenyl group, 4-chlorophenyl group, 4-methylphenyl group, 4-methoxyphenyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom; acetyl Groups, propionyl groups, acyl groups such as benzoyl groups; and the like. Specific examples of the alkenyl group substituted with such a substituent include a chlorovinyl group, a fluoropropenyl group, a trifluorobutenyl group, a methoxypropenyl group, and a phenoxybutenyl group.

アリール基としては、例えばフェニル基、ナフチル基等の炭素数6〜10のアリール基が挙げられる。かかるアリール基は、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−デシル基、シクロプロピル基、2,2−ジメチルシクロプロピル基、シクロペンチル基、シクロヘキシル基、メンチル基クロロメチル基、フルオロメチル基、トリフルオロメチル基、メトキシメチル基、エトキシメチル基、3−オキソブチル基、メトキシエチル基、メトキシカルボニルメチル基、ベンジル基等の置換されていてもよいアルキル基;エテニル基、1−プロペニル基、2−プロペニル基、1−メチルエテニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−メチル−1−プロペニル基、2−メチル−1−プロペニル基、1−メチル−2−プロペニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、1−ヘキセニル基、1−デセニル基、2−シクロペンテニル基、2−シクロヘキセニル基クロロビニル基、フルオロプロペニル基、トリフルオロブテニル基、メトキシプロペニル基、フェノキシブテニル基等の置換されていてもよいアルケニル基;フェニル基、ナフチル基、2−メチルフェニル基、4−クロロフェニル基、4−メチルフェニル基、4−メトキシフェニル基等の置換されていてもよいアリール基;メトキシ基、エトキシ基、トリフルオロメトキシ基、メトキシメトキシ基、エトキシメトキシ基、メトキシエトキシ基、ベンジルオキシ基等の置換されていてもよいアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;アセチル基、プロピオニル基、ベンゾイル基等のアシル基;などが例示される。かかる置換されたアリール基の具体例としては、2−メチルフェニル基、4−クロロフェニル基、4−メチルフェニル基、4−メトキシフェニル基、4−アセチルフェニル基等が挙げられる。   As an aryl group, C6-C10 aryl groups, such as a phenyl group and a naphthyl group, are mentioned, for example. Such aryl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-decyl, cyclo Propyl group, 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group, menthyl group chloromethyl group, fluoromethyl group, trifluoromethyl group, methoxymethyl group, ethoxymethyl group, 3-oxobutyl group, methoxyethyl group, Alkyl groups which may be substituted such as methoxycarbonylmethyl group and benzyl group; ethenyl group, 1-propenyl group, 2-propenyl group, 1-methylethenyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group 1-methyl-1-propenyl group, 2-methyl-1-propenyl group, 1-methyl 2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 1-hexenyl group, 1-decenyl group, 2-cyclopentenyl group, 2-cyclohexenyl group chlorovinyl group, fluoropropenyl group, trifluoro An alkenyl group which may be substituted, such as a lobutenyl group, a methoxypropenyl group, a phenoxybutenyl group; a phenyl group, a naphthyl group, a 2-methylphenyl group, a 4-chlorophenyl group, a 4-methylphenyl group, a 4-methoxyphenyl group; Aryl group which may be substituted such as a group; alkoxy group which may be substituted such as methoxy group, ethoxy group, trifluoromethoxy group, methoxymethoxy group, ethoxymethoxy group, methoxyethoxy group, benzyloxy group; fluorine Halogen atoms such as atoms, chlorine atoms, bromine atoms; acetyl groups; Propionyl group, an acyl group such as benzoyl group; and are exemplified. Specific examples of the substituted aryl group include 2-methylphenyl group, 4-chlorophenyl group, 4-methylphenyl group, 4-methoxyphenyl group, 4-acetylphenyl group and the like.

置換されていてもよいアルキル基または置換されていてもよいアルケニル基が互いに結合して、その結合炭素原子とともに形成していてもよい環としては、例えばシクロペンチリデン環、シクロヘキシリデン環、シクロヘプチリデン環、シクロオクチリデン環、2−シクロペンテニリデン環、3−シクロペンテニリデン環、2−シクロヘキセニリデン環、3−シクロヘキセニリデン環等が挙げられる。   Examples of the ring that may be formed together with an optionally substituted alkyl group or an optionally substituted alkenyl group together with the bonded carbon atom include a cyclopentylidene ring, a cyclohexylidene ring, a cyclo Examples include a heptylidene ring, a cyclooctylidene ring, a 2-cyclopentenylidene ring, a 3-cyclopentenylidene ring, a 2-cyclohexenylidene ring, and a 3-cyclohexenylidene ring.

かかるカルボニル化合物(1)としては、例えばホルムアルデヒド、アセトアルデヒド、プロパナール、1−ブタナール、1−ペンタナール、1−ヘキサナール、1−へプタナール、ウンデシレンアルデヒド、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、アクロレイン、3−メチル−2−ブテナール、シクロブタノン、3−メチルシクロブタノン、3−フェニルシクロブタノン、シクロペンタノン、2−メチルシクロペンタノン、2−フェニルシクロペンタノン、シクロヘキサノン、2−メチルシクロヘキサノン、2−フェニルシクロヘキサノン、4−メチルシクロヘキサノン、4−フェニルシクロヘキサノン、4−クロロシクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロデカノン、シクロドデカノン、1,4−シクロヘキサンジオン、アダマンタノン、ベンズアルデヒド、2−フルオロベンズアルデヒド、2−クロロベンズアルデヒド、2−ブロモベンズアルデヒド、3−フルオロベンズアルデヒド、3−クロロベンズアルデヒド、3−ブロモベンズアルデヒド、4−フルオロベンズアルデヒド、4−クロロベンズアルデヒド、4−ブロモベンズアルデヒド、2,4−ジフルオロベンズアルデヒド、2,4−ジクロロベンズアルデヒド、3,5−ジフルオロベンズアルデヒド、3−フェノキシベンズアルデヒド、4−メチルベンズアルデヒド、3−トリフルオロメチルベンズアルデヒド、2−メトキシベンズアルデヒド、1−ナフチルアルデヒド、バニリン、3,4−ジメトキシベンズアルデヒド、ピペロナール、フェニルアセトアルデヒド、アセトフェノン、プロピオフェノン、4−メチルアセトフェノン、2−フルオロアセトフェノン、4−クロロアセトフェノン、3−メトキシアセトフェノン、フェニルアセトン、ベンゾフェノン、シンナムアルデヒド、3,3−ジメチル−2−ホルミルシクロプロパンカルボン酸メチル、3,3−ジメチル−2−ホルミルシクロプロパンカルボン酸エチル、3,3−ジメチル−2−ホルミルシクロプロパンカルボン酸ベンジル、シトロネラール、ヒドロキシシトロネラール、シトラール等が挙げられる。これらカルボニル化合物(1)は、市販のものを用いてもよいし、対応するアルコールの酸化等、公知の方法により合成したものを用いてもよい。   Examples of the carbonyl compound (1) include formaldehyde, acetaldehyde, propanal, 1-butanal, 1-pentanal, 1-hexanal, 1-heptanal, undecylene aldehyde, acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl. Ketone, acrolein, 3-methyl-2-butenal, cyclobutanone, 3-methylcyclobutanone, 3-phenylcyclobutanone, cyclopentanone, 2-methylcyclopentanone, 2-phenylcyclopentanone, cyclohexanone, 2-methylcyclohexanone, 2 -Phenylcyclohexanone, 4-methylcyclohexanone, 4-phenylcyclohexanone, 4-chlorocyclohexanone, cycloheptanone, cyclooctanone, Clodecanone, cyclododecanone, 1,4-cyclohexanedione, adamantanone, benzaldehyde, 2-fluorobenzaldehyde, 2-chlorobenzaldehyde, 2-bromobenzaldehyde, 3-fluorobenzaldehyde, 3-chlorobenzaldehyde, 3-bromobenzaldehyde, 4- Fluorobenzaldehyde, 4-chlorobenzaldehyde, 4-bromobenzaldehyde, 2,4-difluorobenzaldehyde, 2,4-dichlorobenzaldehyde, 3,5-difluorobenzaldehyde, 3-phenoxybenzaldehyde, 4-methylbenzaldehyde, 3-trifluoromethylbenzaldehyde 2-methoxybenzaldehyde, 1-naphthylaldehyde, vanillin, 3,4-dimethoxybenzaldehyde, pipette Nal, phenylacetaldehyde, acetophenone, propiophenone, 4-methylacetophenone, 2-fluoroacetophenone, 4-chloroacetophenone, 3-methoxyacetophenone, phenylacetone, benzophenone, cinnamaldehyde, 3,3-dimethyl-2-formylcyclopropane Examples thereof include methyl carboxylate, ethyl 3,3-dimethyl-2-formylcyclopropanecarboxylate, benzyl 3,3-dimethyl-2-formylcyclopropanecarboxylate, citronellal, hydroxycitronellal, citral and the like. These carbonyl compounds (1) may be commercially available or may be synthesized by a known method such as oxidation of the corresponding alcohol.

本発明の反応において用いるアルコール類としては、例えば式(2)

Figure 2006206576
(式中、Rは置換されていてもよいアルキル基を表す。)
で示されるアルコール(以下、アルコール(2)と略記する。)または式(3)
Figure 2006206576
(式中、Xは置換されていてもよいアルキレン基を表す。)
で示されるジオール(以下、ジオール(3)と略記する。)が挙げられる。 Examples of alcohols used in the reaction of the present invention include those represented by the formula (2)
Figure 2006206576
(Wherein R 3 represents an optionally substituted alkyl group.)
(Hereinafter, abbreviated as alcohol (2)) or formula (3)
Figure 2006206576
(In the formula, X represents an alkylene group which may be substituted.)
(Hereinafter abbreviated as diol (3)).

で示されるアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−デシル基、シクロプロピル基、2,2−ジメチルシクロプロピル基、シクロペンチル基、シクロヘキシル基、メンチル基等の直鎖状、分枝鎖状または環状の炭素数1〜20のアルキル基が挙げられる。かかるアルキル基上に有していてもよい置換基としては、例えば、メトキシ基、エトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;エテニル基、1−プロペニル基などのアルケニル基;フェニル基、ナフチル基等のアリール基;カルボキシ基;などが例示される。かかる置換基で置換されたアルキル基の具体例としては、クロロメチル基、フルオロメチル基、トリフルオロメチル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、メトキシカルボニルメチル基、アリル基、ベンジル基等が挙げられる。 Examples of the alkyl group represented by R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n- Examples thereof include linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as decyl group, cyclopropyl group, 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group and menthyl group. Examples of the substituent that may be present on the alkyl group include an alkoxy group such as a methoxy group and an ethoxy group; a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; a methoxycarbonyl group and an ethoxycarbonyl group. Examples include alkoxycarbonyl groups; alkenyl groups such as ethenyl groups and 1-propenyl groups; aryl groups such as phenyl groups and naphthyl groups; carboxy groups; Specific examples of the alkyl group substituted with such a substituent include a chloromethyl group, a fluoromethyl group, a trifluoromethyl group, a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group, a methoxycarbonylmethyl group, an allyl group, and a benzyl group. Etc.

Xで示されるアルキレン基としては、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、シクロヘキサンジイル基等の直鎖状、または環状の炭素数1〜10のアルキレン基が挙げられる。かかるアルキレン基上に有していてもよい置換基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−デシル基、シクロプロピル基、2,2−ジメチルシクロプロピル基、シクロペンチル基、シクロヘキシル基、メンチル基、クロロメチル基、フルオロメチル基、トリフルオロメチル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、メトキシカルボニルメチル基、アリル基、ベンジル基等の置換されていてもよいアルキル基;フェニル基、ナフチル基、2−メチルフェニル基、4−クロロフェニル基、4−メチルフェニル基、4−メトキシフェニル基等の置換されていてもよいアリール基;メトキシ基、エトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;アセチル基、プロピオニル基、ベンゾイル基等のアシル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;ホルミル基;カルボキシ基;などが例示される。かかる置換基で置換されたアルキレン基の具体例としては、クロロメチレン基、フルオロメチレン基、ジフルオロメチレン基、メトキシメチレン基、エトキシメチレン基、メトキシエチレン基、メトキシカルボニルエチレン基、フェニルエチレン基等が挙げられる。   Examples of the alkylene group represented by X include linear or cyclic alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a cyclohexanediyl group. . Examples of the substituent that may be present on the alkylene group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, n-pentyl group, n-decyl group, cyclopropyl group, 2,2-dimethylcyclopropyl group, cyclopentyl group, cyclohexyl group, menthyl group, chloromethyl group, fluoromethyl group, trifluoromethyl group, methoxymethyl group, ethoxy Alkyl group which may be substituted such as methyl group, methoxyethyl group, methoxycarbonylmethyl group, allyl group, benzyl group; phenyl group, naphthyl group, 2-methylphenyl group, 4-chlorophenyl group, 4-methylphenyl group , An optionally substituted aryl group such as 4-methoxyphenyl group; Alkoxy groups such as xy groups; halogen atoms such as fluorine atoms, chlorine atoms and bromine atoms; acyl groups such as acetyl groups, propionyl groups and benzoyl groups; alkoxycarbonyl groups such as methoxycarbonyl groups and ethoxycarbonyl groups; formyl groups; Group; and the like. Specific examples of the alkylene group substituted with such a substituent include a chloromethylene group, a fluoromethylene group, a difluoromethylene group, a methoxymethylene group, an ethoxymethylene group, a methoxyethylene group, a methoxycarbonylethylene group, and a phenylethylene group. It is done.

かかるアルコール類のうち、アルコール(2)としては、例えばメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、n−ペンタノール、シクロペンタノールエタノール、1−プロパノール、1−ブタノール、1−ペンタノール、1−ヘキサノール、1−ヘプタノール、1−オクタノール、1−ノナノール、1−デカノール、2−メチル−1−ヘキサノール、3−メチル−1−ヘキサノール、4−メチル−1−ヘキサノール、5−メチル−1−ヘキサノール、2−エチル−1−ヘキサノール、3−エチル−1−ヘキサノール、4−エチル−1−ヘキサノール、2,2−ジメチル−1−プロパノール、ベンジルアルコール、2−フルオロベンジルアルコール、3−フルオロベンジルアルコール、4−フルオロベンジルアルコール、2−クロロベンジルアルコール、4−クロロベンジルアルコール、4−ブロモベンジルアルコール、4−メトキシベンジルアルコール、アリルアルコール等が挙げられる。   Among such alcohols, examples of the alcohol (2) include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, cyclopentanol ethanol, 1-propanol, 1-butanol, 1 -Pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 2-methyl-1-hexanol, 3-methyl-1-hexanol, 4-methyl-1-hexanol, 5- Methyl-1-hexanol, 2-ethyl-1-hexanol, 3-ethyl-1-hexanol, 4-ethyl-1-hexanol, 2,2-dimethyl-1-propanol, benzyl alcohol, 2-fluorobenzyl alcohol, 3 -Fluorobenzyl alcohol, - fluorobenzyl alcohol, 2-chlorobenzyl alcohol, 4-chlorobenzyl alcohol, 4-bromobenzyl alcohol, 4-methoxybenzyl alcohol, allyl alcohol and the like.

ジオール(3)としては、例えばエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,2−ヘキサンジオール、1,2−ジヒドロキシシクロヘキサン、1,2−ジヒドロキシ−1−フェニルエタン、3,4−カレンジオール、3,3−ジメチル−2−(1,2−ジヒドロキシ−2−メチルプロピル)シクロプロパンカルボン酸メチル、3,3−ジメチル−2−(1,2−ジヒドロキシ−2−メチルプロピル)シクロプロパンカルボン酸エチル等が挙げられる。   Examples of the diol (3) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,2-hexanediol, 1,2- Dihydroxycyclohexane, 1,2-dihydroxy-1-phenylethane, 3,4-calendiol, methyl 3,3-dimethyl-2- (1,2-dihydroxy-2-methylpropyl) cyclopropanecarboxylate, 3,3 -Ethyl 2-dimethyl-2- (1,2-dihydroxy-2-methylpropyl) cyclopropanecarboxylate and the like.

これらのアルコール類は、市販のものを用いてもよいし、対応するケトンやアルデヒドの還元等、公知の方法により合成したものを用いてもよい。   As these alcohols, commercially available ones may be used, or those synthesized by a known method such as reduction of the corresponding ketone or aldehyde may be used.

カルボニル化合物(1)に対して、金属含有シリケートを0.001重量倍以上用いれば、通常、本発明の目的を達成することができる。金属含有シリケートの使用量の上限は特にないが、経済的な面を考慮すると、実用的には、カルボニル化合物(1)に対して5重量倍以下である。   If the metal-containing silicate is used 0.001 times by weight or more with respect to the carbonyl compound (1), the object of the present invention can usually be achieved. There is no particular upper limit on the amount of metal-containing silicate used, but considering the economical aspect, it is practically less than 5 times the weight of the carbonyl compound (1).

アルコール類の使用量は、カルボニル化合物(1)のカルボニル基1モルに対して、ヒドロキシ基2モル以上が含まれる量であればよい。例えば、アルコール(2)の場合は、カルボニル化合物(1)に対して2モル倍以上用いればよく、また、ジオール(3)の場合は、カルボニル化合物(1)に対して1モル倍以上用いればよい。その上限は特になく、反応溶媒を兼ねて大過剰量、例えばカルボニル化合物(1)に対して、500モル倍を用いてもよい。   The amount of alcohol used may be an amount that contains 2 mol or more of hydroxy groups with respect to 1 mol of carbonyl groups of the carbonyl compound (1). For example, in the case of alcohol (2), it may be used at least 2 mol times relative to the carbonyl compound (1), and in the case of diol (3), it may be used at least 1 mol times relative to the carbonyl compound (1). Good. The upper limit is not particularly limited, and may be used as a reaction solvent in a large excess amount, for example, 500 mole times the carbonyl compound (1).

カルボニル化合物(1)とアルコール類との反応は、通常は無溶媒または溶媒を兼ねてアルコール類を過剰量用いて実施されるが、有機溶媒の存在下に実施してもよい。有機溶媒としては、例えば、ジエチルエーテル、メチルtert−ブチルエーテル、テトラヒドロフラン等のエーテル溶媒;酢酸エチル等のエステル溶媒;アセトニトリル、プロピオニトリル等のニトリル溶媒;ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;ベンゼン、トルエン等の芳香族炭化水素溶媒;などが挙げられる。有機溶媒の使用量は特に制限されないが、容積効率等を考慮すると、実用的には、カルボニル化合物(1)に対して、100重量倍以下である。   The reaction between the carbonyl compound (1) and the alcohol is usually carried out in the presence of an organic solvent, although it is carried out by using an excessive amount of the alcohol without solvent or also as a solvent. Examples of the organic solvent include ether solvents such as diethyl ether, methyl tert-butyl ether and tetrahydrofuran; ester solvents such as ethyl acetate; nitrile solvents such as acetonitrile and propionitrile; aliphatic hydrocarbon solvents such as hexane and heptane; benzene And aromatic hydrocarbon solvents such as toluene; The amount of the organic solvent used is not particularly limited, but in consideration of volumetric efficiency and the like, it is practically 100 weight times or less with respect to the carbonyl compound (1).

カルボニル化合物(1)とアルコール類との反応は、通常、カルボニル化合物(1)、アルコール類および金属含有シリケートを接触、混合することにより実施され、その混合順序は特に制限されない。   The reaction of the carbonyl compound (1) and the alcohol is usually carried out by contacting and mixing the carbonyl compound (1), the alcohol and the metal-containing silicate, and the mixing order is not particularly limited.

通常は常圧条件下で反応を実施するが、減圧条件下や加圧条件下で実施してもよい。反応温度は、通常0〜200℃の範囲である。   Usually, the reaction is carried out under normal pressure conditions, but may be carried out under reduced pressure conditions or pressurized conditions. The reaction temperature is usually in the range of 0 to 200 ° C.

反応の進行は、例えばガスクロマトグラフィ、高速液体クロマトグラフィ、薄層クロマトグラフィ、核磁気共鳴スペクトル分析、赤外吸収スペクトル分析等の通常の分析手段により確認することができる。   The progress of the reaction can be confirmed by ordinary analysis means such as gas chromatography, high performance liquid chromatography, thin layer chromatography, nuclear magnetic resonance spectrum analysis, infrared absorption spectrum analysis and the like.

反応終了後、例えば、反応液を濾過処理して、金属含有シリケートを分離した後、得られる濾液を濃縮処理もしくは晶析処理することにより、生成したアセタール類を単離することができる。また、前記濾液に、必要に応じて水および/または水に不溶の有機溶媒を加え、抽出処理し、得られる有機層を濃縮処理することにより、アセタール類を単離することもできる。水に不溶の有機溶媒としては、例えば、ジエチルエーテル、メチルtert−ブチルエーテル等のエーテル溶媒;酢酸エチル等のエステル溶媒;ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;ベンゼン、トルエン等の芳香族炭化水素溶媒;などが挙げられ、その使用量は特に制限されない。   After completion of the reaction, for example, the reaction solution is filtered to separate the metal-containing silicate, and then the resulting acetal can be isolated by concentration treatment or crystallization treatment. Moreover, acetals can also be isolated by adding water and / or an organic solvent insoluble in water to the filtrate as necessary, performing an extraction treatment, and concentrating the resulting organic layer. Examples of water-insoluble organic solvents include ether solvents such as diethyl ether and methyl tert-butyl ether; ester solvents such as ethyl acetate; aliphatic hydrocarbon solvents such as hexane and heptane; aromatic hydrocarbons such as benzene and toluene Solvent; and the like, and the amount used is not particularly limited.

得られたアセタール類は、例えば蒸留、カラムクロマトグラフィ等の手段によりさらに精製してもよい。   The obtained acetals may be further purified by means such as distillation or column chromatography.

アルコール類としてアルコール(2)を用いた場合、得られるアセタール類は、式(4)

Figure 2006206576
(式中、R、RおよびRはそれぞれ上記と同じ意味を表す。)
で示されるアセタール(以下、アセタール(4)と略記する。)であり、ジオール(3)を用いた場合、得られるアセタール類は、式(5)
Figure 2006206576
(式中、R、RおよびXはそれぞれ上記と同じ意味を表す。)
で示されるアセタール(以下、アセタール(5)と略記する。)である。 When alcohol (2) is used as the alcohol, the acetals obtained are represented by the formula (4)
Figure 2006206576
(In the formula, R 1 , R 2 and R 3 each have the same meaning as described above.)
When the diol (3) is used, the acetal obtained is represented by the formula (5):
Figure 2006206576
(Wherein R 1 , R 2 and X each have the same meaning as described above.)
Acetal (hereinafter abbreviated as acetal (5)).

アセタール(4)としては、例えばジメトキシメタン、ジエトキシメタン、ジベンジルオキシメタン、1,1−ジメトキシエタン、1,1−ジエトキシエタン、1,1−ジベンジルオキシエタン、1,1−ビス(アリルオキシ)エタン、1,1−ジメトキシプロパン、1,1−ジエトキシプロパン、1,1−ジメトキシブタン、1,1−ジエトキシブタン、1,1−ジベンジルオキシペンタン、1,1−ジメトキシヘキサン、1,1−ジエトキシヘプタン、1,1−ジメトキシウンデカン、2,2−ジメトキシプロパン、2,2−ジエトキシプロパン、2,2−ジメトキシブタン、2,2−ジエトキシブタン、3,3−ジメトキシペンタン、2,2−ジメトキシペンタン、2,2−ジメトキシ−4−メチルペンタン、3,3−ジメトキシ−1−プロペン、3,3−ジエトキシ−1−プロペン、3,3−ジベンジルオキシ−1−プロペン、3,3−ビス(アリルオキシ)−1−プロペン、1,1−ジメトキシ−3−メチル−2−ブテン、1,1−ジエトキシ−3−メチル−2−ブテン、1,1−ジベンジルオキシ−3−メチル−2−ブテン、1,1−ジメトキシシクロブタン、1,1−ジエトキシシクロブタン、3−メチル−1,1−ジメトキシシクロブタン、3−フェニル−1,1−ジエトキシシクロブタン、1,1−ジメトキシシクロペンタン、1,1−ジエトキシシクロペンタン、1,1−ジメトキシシクロヘキサン、1,1−ジエトキシシクロヘキサン、1,1−ビス(アリルオキシ)シクロヘキサン、3−メチル−1,1−ジメトキシシクロヘキサン、4−フェニル−1,1−ジエトキシシクロヘキサン、4−クロロ−1,1−ジメトキシシクロヘキサン、1,1−ジメトキシシクロヘプタン、1,1−ジエトキシシクロヘプタン、1,1−ジメトキシシクロオクタン、1,1−ジエトキシシクロオクタン、1,1−ジメトキシメチルベンゼン、ジエトキシメチルベンゼン、ジベンジルオキシメチルベンゼン、ビス(アリルオキシ)メチルベンゼン、1−ジメトキシメチル−2−フルオロベンゼン、1−ジエトキシメチル−3−クロロベンゼン、1−ジプロポキシメチル−4−ブロモベンゼン、1−ジメトキシエチル−4−メチルベンゼン、4−ジメトキシメチルトルエン、5−(ジメトキシメチル)−2−メトキシフェノール、5−(ジメトキシメチル)−1,2−ジメトキシベンゼン、ピペロナールジメチルアセタール、1,1−ジメトキシ−2−フェニルエタン、1,1−ジメトキシ−1−フェニルエタン、1,1−ジメトキシ−1−フェニルプロパン、1,1−ジメトキシ−1−(3−メトキシフェニル)エタン、2,2−ジメトキシプロピルベンゼン、ベンゾフェノンジメチルアセタール、(3,3−ジメトキシ−1−プロペニル)ベンゼン、(3,3−ジメトキシ−2−メチル−1−プロペニル)ベンゼン、シトロネラール(ジメチルアセタール)、シトロネラール(ジエチルアセタール)、シトラール(ジメチルアセタール)、シトラール(ジエチルアセタール)、(3,3−ジメトキシ−2−メチル−1−プロペニル)ベンゼン、3−(ジメトキシメチル)−2,2−ジメチルシクロプロパンカルボン酸メチル、3−(ジエトキシメチル)−2,2−ジメチルシクロプロパンカルボン酸エチル等が挙げられる。   Examples of the acetal (4) include dimethoxymethane, diethoxymethane, dibenzyloxymethane, 1,1-dimethoxyethane, 1,1-diethoxyethane, 1,1-dibenzyloxyethane, 1,1-bis ( Allyloxy) ethane, 1,1-dimethoxypropane, 1,1-diethoxypropane, 1,1-dimethoxybutane, 1,1-diethoxybutane, 1,1-dibenzyloxypentane, 1,1-dimethoxyhexane, 1,1-diethoxyheptane, 1,1-dimethoxyundecane, 2,2-dimethoxypropane, 2,2-diethoxypropane, 2,2-dimethoxybutane, 2,2-diethoxybutane, 3,3-dimethoxy Pentane, 2,2-dimethoxypentane, 2,2-dimethoxy-4-methylpentane, 3,3-dimethoxy-1 Propene, 3,3-diethoxy-1-propene, 3,3-dibenzyloxy-1-propene, 3,3-bis (allyloxy) -1-propene, 1,1-dimethoxy-3-methyl-2-butene 1,1-diethoxy-3-methyl-2-butene, 1,1-dibenzyloxy-3-methyl-2-butene, 1,1-dimethoxycyclobutane, 1,1-diethoxycyclobutane, 3-methyl- 1,1-dimethoxycyclobutane, 3-phenyl-1,1-diethoxycyclobutane, 1,1-dimethoxycyclopentane, 1,1-diethoxycyclopentane, 1,1-dimethoxycyclohexane, 1,1-diethoxycyclohexane 1,1-bis (allyloxy) cyclohexane, 3-methyl-1,1-dimethoxycyclohexane, 4-phenyl-1, -Diethoxycyclohexane, 4-chloro-1,1-dimethoxycyclohexane, 1,1-dimethoxycycloheptane, 1,1-diethoxycycloheptane, 1,1-dimethoxycyclooctane, 1,1-diethoxycyclooctane, 1,1-dimethoxymethylbenzene, diethoxymethylbenzene, dibenzyloxymethylbenzene, bis (allyloxy) methylbenzene, 1-dimethoxymethyl-2-fluorobenzene, 1-diethoxymethyl-3-chlorobenzene, 1-dipropoxy Methyl-4-bromobenzene, 1-dimethoxyethyl-4-methylbenzene, 4-dimethoxymethyltoluene, 5- (dimethoxymethyl) -2-methoxyphenol, 5- (dimethoxymethyl) -1,2-dimethoxybenzene, pipette Ronal Dimethyla Cetal, 1,1-dimethoxy-2-phenylethane, 1,1-dimethoxy-1-phenylethane, 1,1-dimethoxy-1-phenylpropane, 1,1-dimethoxy-1- (3-methoxyphenyl) ethane 2,2-dimethoxypropylbenzene, benzophenone dimethylacetal, (3,3-dimethoxy-1-propenyl) benzene, (3,3-dimethoxy-2-methyl-1-propenyl) benzene, citronellal (dimethylacetal), citronellal (Diethylacetal), citral (dimethylacetal), citral (diethylacetal), (3,3-dimethoxy-2-methyl-1-propenyl) benzene, 3- (dimethoxymethyl) -2,2-dimethylcyclopropanecarboxylic acid Methyl, 3- (diethoxymethyl) -2,2 dimethylcyclopropane carboxylate, and the like.

アセタール(5)としては、例えば2−メチル−1,3−ジオキソラン、2−メチル−1,3−ジオキサン、2−エチル−1,3−ジオキソラン、2−プロピル−1,3−ジオキソラン、2,2−ジメチル−1,3−ジオキソラン、2,2−ジエチル−1,3−ジオキソラン、2,2−ジメチル−1,3−ジオキサン、2,2−ジエチル−1,3−ジオキサン、2−メチル−2−エチル−1,3−ジオキソラン、2−エテニル−1,3−ジオキソラン、2−エテニル−1,3−ジオキサン、2−(2−メチルプロペニル)−1,3−ジオキソラン、2−(2−メチルプロペニル)−1,3−ジオキサン、2,2−テトラメチレン−1,3−ジオキソラン、2,2−ペンタメチレン−1,3−ジオキソラン、2,2−ペンタメチレン−1,3−ジオキサン、2,2−ヘキサメチレン−1,3−ジオキソラン、2,2−ヘプタメチレン−1,3−ジオキソラン、1,4−シクロヘキサンジオンビス(エチレンアセタール)、アダマンタノン(エチレンアセタール)、2−フェニル−1,3−ジオキソラン、2−フェニル−1,3−ジオキサン、2−(2,4−ジフルオロフェニル)−1,3−ジオキソラン、2−(2,4−ジクロロフェニル)−1,3−ジオキソラン、2−(3,5−ジフルオロフェニル)−1,3−ジオキサン、2−(3−フェノキシフェニル)−1,3−ジオキソラン、2−(3−トリフルオロメチルフェニル)−1,3−ジオキソラン、2−(2−メトキシフェニル)−1,3−ジオキサン、2−ナフチル−1,3−ジオキソラン、5−(1,3−ジオキソラン−2−イル)−2−メトキシフェノール、5−(1,3−ジオキソラン−2−イル)−1,2−ジメトキシベンゼン、2−(3,4−メチレンジオキシフェニル)−m−ジオキサン、2−フェニル−2−メチル−1,3−ジオキソラン、2−(4−フルオロフェニル)−2−メチル−1,3−ジオキソラン、2−(4−クロロフェニル)−2−メチル−1,3−ジオキサン、2,2−ジフェニル−1,3−ジオキソラン、シトロネラール(エチレンアセタール)、ヒドロキシシトロネラール(エチレンアセタール)、シトラール(エチレンアセタール)、2,2,4−トリフェニル−1,3−ジオキソラン、3,4−カレンジオールアセトンアセタール、3−(1,3−ジオキソラン−2−イル)−2,2−ジメチルシクロプロパンカルボン酸メチル、3,3−ジメチル−2−(2,2,5,5−テトラメチル−1,3−ジオキソラン−4−イル)シクロプロパンカルボン酸メチル、3,3−ジメチル−2−(2,2,5,5−テトラメチル−1,3−ジオキソラン−4−イル)シクロプロパンカルボン酸エチル等が挙げられる。   Examples of the acetal (5) include 2-methyl-1,3-dioxolane, 2-methyl-1,3-dioxane, 2-ethyl-1,3-dioxolane, 2-propyl-1,3-dioxolane, 2, 2-dimethyl-1,3-dioxolane, 2,2-diethyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxane, 2,2-diethyl-1,3-dioxane, 2-methyl- 2-ethyl-1,3-dioxolane, 2-ethenyl-1,3-dioxolane, 2-ethenyl-1,3-dioxane, 2- (2-methylpropenyl) -1,3-dioxolane, 2- (2- Methylpropenyl) -1,3-dioxane, 2,2-tetramethylene-1,3-dioxolane, 2,2-pentamethylene-1,3-dioxolane, 2,2-pentamethylene-1,3- Oxane, 2,2-hexamethylene-1,3-dioxolane, 2,2-heptamethylene-1,3-dioxolane, 1,4-cyclohexanedione bis (ethylene acetal), adamantanone (ethylene acetal), 2-phenyl -1,3-dioxolane, 2-phenyl-1,3-dioxane, 2- (2,4-difluorophenyl) -1,3-dioxolane, 2- (2,4-dichlorophenyl) -1,3-dioxolane, 2- (3,5-difluorophenyl) -1,3-dioxane, 2- (3-phenoxyphenyl) -1,3-dioxolane, 2- (3-trifluoromethylphenyl) -1,3-dioxolane, 2 -(2-methoxyphenyl) -1,3-dioxane, 2-naphthyl-1,3-dioxolane, 5- (1,3-dioxolane) 2-yl) -2-methoxyphenol, 5- (1,3-dioxolan-2-yl) -1,2-dimethoxybenzene, 2- (3,4-methylenedioxyphenyl) -m-dioxane, 2- Phenyl-2-methyl-1,3-dioxolane, 2- (4-fluorophenyl) -2-methyl-1,3-dioxolane, 2- (4-chlorophenyl) -2-methyl-1,3-dioxane, 2 , 2-diphenyl-1,3-dioxolane, citronellal (ethylene acetal), hydroxycitronellal (ethylene acetal), citral (ethylene acetal), 2,2,4-triphenyl-1,3-dioxolane, 3,4 -Calenediol acetone acetal, 3- (1,3-dioxolan-2-yl) -2,2-dimethylcyclopropanecarboxylic acid Methyl, 3,3-dimethyl-2- (2,2,5,5-tetramethyl-1,3-dioxolan-4-yl) cyclopropanecarboxylate, 3,3-dimethyl-2- (2,2 , 5,5-tetramethyl-1,3-dioxolan-4-yl) cyclopropanecarboxylate and the like.

また、反応液から分離した金属含有シリケートは、そのままもしくは必要に応じて濃縮処理等を行った後、カルボニル化合物(1)とアルコール類との反応に再使用することができる。   In addition, the metal-containing silicate separated from the reaction solution can be reused in the reaction of the carbonyl compound (1) and the alcohol as it is or after performing a concentration treatment or the like as necessary.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例により限定されるものではない。なお、分析はガスクロマトグラフィ(以下、GCと略記する。)により実施した。また、得られた金属含有シリケートの比表面積および平均細孔径は、いずれもQuantachrome社製Autosorb−6を用い、150℃、1.35×10−5Kg/cm−2(0.013kPa相当)の脱気条件下で窒素吸着法により測定した。そして、比表面積についてはBET多点法(p/p=0.1)を用い、平均細孔径についてはBHJ法を用いて、それぞれ算出した。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples. The analysis was performed by gas chromatography (hereinafter abbreviated as GC). Moreover, the specific surface area and average pore diameter of the obtained metal-containing silicate are both 150 ° C. and 1.35 × 10 −5 Kg / cm −2 (equivalent to 0.013 kPa) using Quantachrome Autosorb-6. Measurements were taken by nitrogen adsorption under degassing conditions. The specific surface area was calculated using the BET multipoint method (p / p 0 = 0.1), and the average pore diameter was calculated using the BHJ method.

参考例1<第四級アンモニウム塩を用いたタングステン含有シリケートの調製>
誘導攪拌器付き500mLフラスコに、タングステン金属(粉末)5gとイオン交換水25gを加え、内温40℃に昇温した後、60重量%過酸化水素水溶液15gを30分かけて滴下し、同温度で2時間保持し、タングステン酸化物含有溶液を得た。該タングステン酸化物含有溶液に、イオン交換水75gおよびエタノール80gを加えた後、内温40℃で、テトラエトキシシラン41.6gを10分かけて仕込んだ後、40重量%水酸化テトラブチルアンモニウム水溶液20gを10分かけて滴下した。その後、内温25℃まで冷却し、同温度で攪拌を継続していると、30分程度で固体が析出してスラリー状となった。そのまま同温度で24時間攪拌、保持した。得られたスラリー液から、固体を濾取し、イオン交換水100gで2回洗浄し、130℃で24時間乾燥し、白色固体38.0gを得た。この白色固体を550℃で6時間焼成し、白色のタングステン含有シリケート 16.5gを得た。
Reference Example 1 <Preparation of tungsten-containing silicate using quaternary ammonium salt>
To a 500 mL flask equipped with an induction stirrer, 5 g of tungsten metal (powder) and 25 g of ion-exchanged water were added, and the temperature was raised to 40 ° C. Then, 15 g of a 60 wt% hydrogen peroxide aqueous solution was added dropwise over 30 minutes. For 2 hours to obtain a tungsten oxide-containing solution. After adding 75 g of ion-exchanged water and 80 g of ethanol to the tungsten oxide-containing solution, 41.6 g of tetraethoxysilane was charged at an internal temperature of 40 ° C. over 10 minutes, and then a 40 wt% tetrabutylammonium hydroxide aqueous solution. 20 g was added dropwise over 10 minutes. Thereafter, when the internal temperature was cooled to 25 ° C. and stirring was continued at the same temperature, a solid was precipitated in about 30 minutes to form a slurry. The mixture was stirred and maintained at the same temperature for 24 hours. From the resulting slurry, the solid was collected by filtration, washed twice with 100 g of ion-exchanged water, and dried at 130 ° C. for 24 hours to obtain 38.0 g of a white solid. This white solid was calcined at 550 ° C. for 6 hours to obtain 16.5 g of a white tungsten-containing silicate.

XRDスペクトル:d値3.77オングストロームに頂点を持つブロードなピークを示した。酸化タングステンに帰属されるシャープなピークは見られなかった。
IRスペクトル(KBr)
νmax:3478,1638,1078,960,806、557cm−1
元素分析値;W:9.8%,Si:39.5%
比表面積:543m/g、平均細孔径:16オングストローム
XRD spectrum: a broad peak having an apex at a d value of 3.77 angstroms was shown. A sharp peak attributed to tungsten oxide was not observed.
IR spectrum (KBr)
ν max : 3478, 1638, 1078, 960, 806, 557 cm −1
Elemental analysis value; W: 9.8%, Si: 39.5%
Specific surface area: 543 m 2 / g, average pore diameter: 16 Å

参考例2<第四級アンモニウム塩を用いたタングステン含有シリケートの調製>
誘導攪拌器付き500mLフラスコに、タングステン金属(粉末)5gとイオン交換水25gを加え、内温40℃に昇温した後、60重量%過酸化水素水溶液15gを30分かけて滴下し、同温度で2時間保持し、タングステン酸化物含有溶液を得た。該タングステン酸化物含有溶液に、イオン交換水75gおよびエタノール80gを加えた後、内温40℃で、テトラエトキシシラン41.6gを10分かけて仕込んだ後、10重量%水酸化テトラプロピルアンモニウム水溶液40gを10分かけて滴下した。その後、内温25℃まで冷却し、同温度で攪拌を継続していると、30分程度で固体が析出してスラリー状となった。そのまま同温度で24時間攪拌、保持した。得られたスラリー液から、固体を濾取し、イオン交換水100gで2回洗浄し、130℃で24時間乾燥し、白色固体38.0gを得た。この白色固体を550℃で6時間焼成し、白色のタングステン含有シリケート17.3gを得た。
Reference Example 2 <Preparation of tungsten-containing silicate using quaternary ammonium salt>
To a 500 mL flask equipped with an induction stirrer, 5 g of tungsten metal (powder) and 25 g of ion-exchanged water were added, and the temperature was raised to 40 ° C. Then, 15 g of a 60 wt% hydrogen peroxide aqueous solution was added dropwise over 30 minutes. For 2 hours to obtain a tungsten oxide-containing solution. After adding 75 g of ion-exchanged water and 80 g of ethanol to the tungsten oxide-containing solution, 41.6 g of tetraethoxysilane was charged at an internal temperature of 40 ° C. over 10 minutes, and then a 10 wt% tetrapropylammonium hydroxide aqueous solution. 40 g was added dropwise over 10 minutes. Then, when it cooled to the internal temperature of 25 degreeC and stirring was continued at the same temperature, solid precipitated in about 30 minutes and became a slurry form. The mixture was stirred and maintained at the same temperature for 24 hours. From the resulting slurry, the solid was collected by filtration, washed twice with 100 g of ion-exchanged water, and dried at 130 ° C. for 24 hours to obtain 38.0 g of a white solid. This white solid was calcined at 550 ° C. for 6 hours to obtain 17.3 g of a white tungsten-containing silicate.

XRDスペクトル:d値3.76オングストロームに頂点を持つブロードなピークを示した。酸化タングステンに帰属されるシャープなピークがわずかに見られた。
IRスペクトル(KBr)
νmax:3480,1638,1078,956,800cm−1
元素分析値;W:11.0%,Si:31.4%
比表面積:573m/g、平均細孔径:22オングストローム
XRD spectrum: a broad peak having an apex at a d value of 3.76 angstroms was shown. A slight sharp peak attributed to tungsten oxide was observed.
IR spectrum (KBr)
ν max : 3480, 1638, 1078, 956, 800 cm −1
Elemental analysis value; W: 11.0%, Si: 31.4%
Specific surface area: 573 m 2 / g, average pore diameter: 22 Å

参考例3<アルキルアミンを用いたモリブデン含有シリケートの調製>
誘導攪拌器付き500mLフラスコに、モリブデン金属(粉末)2gとイオン交換水25gを加え、内温40℃に昇温した後、60重量%過酸化水素水溶液15gを1時間かけて滴下し、同温度で1時間保持し、モリブデン酸化物含有溶液を得た。該モリブデン酸化物含有溶液に、イオン交換水75gおよびエタノール80gを加えた後、内温40℃で、テトラエトキシシラン41.6gを10分かけて仕込んだ後、ドデシルアミン10gを 10分かけて滴下した。すぐに固体が析出してスラリー状となった。内温25℃に冷却し、さらに24時間攪拌、保持した。得られたスラリー液から、固体を濾取し、イオン交換水100gで2回洗浄し、110℃で6時間乾燥し、次いで550℃で6時間焼成し、白色のモリブデン含有シリケート15.5gを得た。
Reference Example 3 <Preparation of Molybdenum-Containing Silicate Using Alkylamine>
To a 500 mL flask equipped with an induction stirrer, 2 g of molybdenum metal (powder) and 25 g of ion-exchanged water were added, the temperature was raised to 40 ° C., and 15 g of a 60 wt% hydrogen peroxide aqueous solution was added dropwise over 1 hour. For 1 hour to obtain a molybdenum oxide-containing solution. After adding 75 g of ion-exchange water and 80 g of ethanol to the molybdenum oxide-containing solution, 41.6 g of tetraethoxysilane was charged over 10 minutes at an internal temperature of 40 ° C., and then 10 g of dodecylamine was added dropwise over 10 minutes. did. Immediately a solid precipitated and became a slurry. The internal temperature was cooled to 25 ° C., and the mixture was further stirred and maintained for 24 hours. From the resulting slurry, the solid was collected by filtration, washed twice with 100 g of ion-exchanged water, dried at 110 ° C. for 6 hours, and then calcined at 550 ° C. for 6 hours to obtain 15.5 g of a white molybdenum-containing silicate. It was.

XRDスペクトル:d値3.8オングストロームに頂点を持つブロードなピークと酸化モリブデンに帰属されるシャープなピークの混合したスペクトルであった。
IRスペクトル(KBr)
νmax:3470,1640,1090,956,915,802cm−1
元素分析値;Mo:13.9%,Si:32.4%
比表面積:171m/g、平均細孔径:73オングストローム
これらの結果から、得られた白色のモリブデン含有シリケートには、酸化モリブデンが混じっていることがわかった。
XRD spectrum: a spectrum in which a broad peak having a peak at a d value of 3.8 angstroms and a sharp peak attributed to molybdenum oxide were mixed.
IR spectrum (KBr)
ν max : 3470, 1640, 1090, 956, 915, 802 cm −1
Elemental analysis value; Mo: 13.9%, Si: 32.4%
Specific surface area: 171 m 2 / g, average pore diameter: 73 Å From these results, it was found that the obtained white molybdenum-containing silicate contained molybdenum oxide.

参考例4<第四級アンモニウム塩を用いたモリブデン含有シリケートの調製>
誘導攪拌器付き500mLフラスコに、モリブデン金属(粉末)2.5gとイオン交換水25gを加え、内温40℃に昇温した後、60重量%過酸化水素水溶液15gを1時間かけて滴下し、同温度で1時間保持し、モリブデン酸化物含有溶液を得た。該モリブデン酸化物含有溶液に、イオン交換水75gおよびエタノール80gを加えた後、内温40℃で、テトラエトキシシラン41.6gを10分かけて仕込んだ後、40重量%水酸化テトラブチルアンモニウム水溶液20gを10分かけて滴下した。15分程度経過すると固体が析出してスラリー状となった。イオン交換水200gを加え、内温25℃に冷却し、 24時間攪拌、保持した。得られたスラリー液から、固体を濾取し、イオン交換水100gで2回洗浄し、110℃で6時間乾燥し、次いで550℃で6時間焼成し、白色のモリブデン含有シリケート15.9gを得た。
Reference Example 4 <Preparation of Molybdenum-Containing Silicate Using Quaternary Ammonium Salt>
To a 500 mL flask equipped with an induction stirrer, 2.5 g of molybdenum metal (powder) and 25 g of ion-exchanged water were added and the temperature was raised to an internal temperature of 40 ° C. Then, 15 g of a 60 wt% aqueous hydrogen peroxide solution was added dropwise over 1 hour. Holding at the same temperature for 1 hour, a molybdenum oxide-containing solution was obtained. After adding 75 g of ion-exchanged water and 80 g of ethanol to the molybdenum oxide-containing solution, 41.6 g of tetraethoxysilane was charged at an internal temperature of 40 ° C. over 10 minutes, and then a 40 wt% tetrabutylammonium hydroxide aqueous solution. 20 g was added dropwise over 10 minutes. After about 15 minutes, a solid precipitated and became a slurry. 200 g of ion exchanged water was added, the internal temperature was cooled to 25 ° C., and the mixture was stirred and maintained for 24 hours. From the resulting slurry, the solid was collected by filtration, washed twice with 100 g of ion-exchanged water, dried at 110 ° C. for 6 hours, and then calcined at 550 ° C. for 6 hours to obtain 15.9 g of a white molybdenum-containing silicate. It was.

XRDスペクトル:d値3.79オングストロームに頂点を持つブロードなピークを示した。酸化モリブデンに帰属されるシャープなピークは見られなかった。
IRスペクトル(KBr)
νmax:3470,1640,1080,956,913,796cm-1
元素分析値;Mo:5.22%,Si:37.0%
比表面積:649m/g、平均細孔径:22オングストローム
XRD spectrum: a broad peak having an apex at a d value of 3.79 angstroms was shown. A sharp peak attributed to molybdenum oxide was not observed.
IR spectrum (KBr)
ν max : 3470, 1640, 1080, 956, 913, 796 cm −1
Elemental analysis value; Mo: 5.22%, Si: 37.0%
Specific surface area: 649 m 2 / g, average pore diameter: 22 Å

参考例5<第四級アンモニウム塩を用いたバナジウム含有シリケートの調製>
誘導攪拌器付き500mLフラスコに、バナジウム金属(粉末)1.3gとイオン交換水25gを加え、内温40℃に昇温した後、30重量%過酸化水素水溶液15gを30分かけて滴下し、同温度で1時間保持し、バナジウム酸化物含有溶液を得た。該バナジウム酸化物含有溶液に、イオン交換水75gおよびエタノール80gを加えた後、内温40℃で、テトラエトキシシラン41.6gを10分かけて仕込んだ後、40重量%水酸化テトラ−n−プロピルアンモニウム水溶液40gを10分かけて滴下した。その後、内温25℃まで冷却し、攪拌を継続していると、30分程度で固体が析出してスラリー状となったが、同温度でさらに24時間攪拌、保持した。得られたスラリー液から、固体を濾取し、イオン交換水100gで2回洗浄し、130℃で8時間乾燥し、次いで550℃で6時間焼成し、褐色のバナジウム含有シリケート16.0gを得た。
Reference Example 5 <Preparation of vanadium-containing silicate using quaternary ammonium salt>
To a 500 mL flask equipped with an induction stirrer, 1.3 g of vanadium metal (powder) and 25 g of ion-exchanged water were added and the temperature was raised to an internal temperature of 40 ° C. Then, 15 g of a 30 wt% aqueous hydrogen peroxide solution was dropped over 30 minutes, Holding at the same temperature for 1 hour, a vanadium oxide-containing solution was obtained. After adding 75 g of ion-exchanged water and 80 g of ethanol to the vanadium oxide-containing solution, 41.6 g of tetraethoxysilane was charged over 10 minutes at an internal temperature of 40 ° C., and then 40 wt% tetra-n-hydroxide hydroxide. 40 g of propylammonium aqueous solution was added dropwise over 10 minutes. Thereafter, when the internal temperature was cooled to 25 ° C. and stirring was continued, a solid was precipitated in about 30 minutes to form a slurry, but the mixture was further stirred and held at the same temperature for 24 hours. From the resulting slurry, the solid is collected by filtration, washed twice with 100 g of ion-exchanged water, dried at 130 ° C. for 8 hours, and then calcined at 550 ° C. for 6 hours to obtain 16.0 g of a brown vanadium-containing silicate. It was.

XRDスペクトル:d値3.85オングストロームに頂点を持つブロードなピークを示した。酸化バナジウムに帰属されるシャープなピークは見られなかった。
IRスペクトル(KBr)
νmax:1050,956,794,629cm-1
元素分析値;V:5.56%,Si:36.1%
比表面積:708m/g、平均細孔径:27オングストローム
XRD spectrum: A broad peak having a peak at a d value of 3.85 angstroms was shown. A sharp peak attributed to vanadium oxide was not observed.
IR spectrum (KBr)
ν max : 1050, 956, 794, 629 cm −1
Elemental analysis value; V: 5.56%, Si: 36.1%
Specific surface area: 708 m 2 / g, average pore diameter: 27 Å

実施例1
磁気回転子および還流冷却管を付した50mLフラスコに、参考例2で調製したタングステン含有シリケート60mg、シクロヘキサノン400mg、メタノール10gを加え、内温60℃で6時間攪拌、保持し、反応させた。得られた反応液を、ろ過し、タングステン含有シリケートを除去し、1,1−ジメトキシシクロヘキサンを含む溶液を得た。 GC内部標準法による分析の結果、収率は91%であった。
Example 1
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, 60 mg of the tungsten-containing silicate prepared in Reference Example 2, 400 mg of cyclohexanone, and 10 g of methanol were added, and the mixture was stirred and held at an internal temperature of 60 ° C. for 6 hours for reaction. The obtained reaction solution was filtered to remove the tungsten-containing silicate to obtain a solution containing 1,1-dimethoxycyclohexane. As a result of analysis by the GC internal standard method, the yield was 91%.

実施例2
実施例1において、参考例2で調製したタングステン含有シリケートに代えて、参考例3で調製したモリブデン含有シリケートを用いること以外は、実施例1と同様に実施したところ、1,1−ジメトキシシクロヘキサンの収率は89%であった。
Example 2
In Example 1, instead of the tungsten-containing silicate prepared in Reference Example 2, the same procedure as in Example 1 was performed except that the molybdenum-containing silicate prepared in Reference Example 3 was used. As a result, 1,1-dimethoxycyclohexane The yield was 89%.

実施例3
磁気回転子および還流冷却管を付した50mLフラスコに、参考例2で調製したタングステン含有シリケート60mg、ベンズアルデヒド424mg、メタノール10gを加え、内温60℃で5時間攪拌、保持し、反応させた。得られた反応液を、ろ過し、タングステン含有シリケートを除去し、1,1−ジメトキシメチルベンゼンを含む溶液を得た。 GC内部標準法による分析の結果、収率は98%であった。
Example 3
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, 60 mg of tungsten-containing silicate prepared in Reference Example 2, 424 mg of benzaldehyde, and 10 g of methanol were added, and the mixture was stirred and held at an internal temperature of 60 ° C. for 5 hours to be reacted. The obtained reaction solution was filtered to remove the tungsten-containing silicate to obtain a solution containing 1,1-dimethoxymethylbenzene. As a result of analysis by the GC internal standard method, the yield was 98%.

実施例4
実施例3において、ベンズアルデヒドに代えて、バレルアルデヒド350mgを用いること以外は、実施例3と同様に実施したところ、1,1−ジメトキシペンタンの収率は、100%であった。
Example 4
In Example 3, it replaced with benzaldehyde and it carried out similarly to Example 3 except using 350 mg of valeraldehyde, and the yield of 1, 1- dimethoxypentane was 100%.

実施例5
実施例3において、ベンズアルデヒドに代えて、3−ホルミル−2,2−ジメチルシクロプロパンカルボン酸メチル624mgを用い、参考例2で調製したタングステン含有シリケートの使用量を50mgとする以外は、実施例3と同様に実施したところ、
3−(ジメトキシメチル)−2,2−ジメチルシクロプロパンカルボン酸メチルの収率は100%であった。
Example 5
In Example 3, Example 3 was used except that 624 mg of methyl 3-formyl-2,2-dimethylcyclopropanecarboxylate was used in place of benzaldehyde and the amount of tungsten-containing silicate prepared in Reference Example 2 was changed to 50 mg. Was carried out in the same way as
The yield of methyl 3- (dimethoxymethyl) -2,2-dimethylcyclopropanecarboxylate was 100%.

実施例6
磁気回転子および還流冷却管を付した50mLフラスコに、参考例3で調製したモリブデン含有シリケート60mg、2−ブタノン2900mg、メタノール10gを加え、内温60℃で5時間攪拌、保持し、反応させた。得られた反応液を、ろ過し、モリブデン含有シリケートを除去し、2,2−ジメトキシブタンを含む溶液を得た。GC内部標準法による分析の結果、収率は52%であった。原料2−ブタノンが、48%回収された。
Example 6
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, 60 mg of the molybdenum-containing silicate prepared in Reference Example 3, 2900 mg of 2-butanone, and 10 g of methanol were added, and the mixture was stirred and held at an internal temperature of 60 ° C. for 5 hours to be reacted. . The resulting reaction solution was filtered to remove the molybdenum-containing silicate to obtain a solution containing 2,2-dimethoxybutane. As a result of analysis by the GC internal standard method, the yield was 52%. The raw material 2-butanone was recovered 48%.

実施例7
磁気回転子および還流冷却管を付した50mLフラスコに、参考例3で調製したモリブデン含有シリケート10mg、アセトフェノン120mg、エチレングリコール 620mgを加え、内温80℃で3時間攪拌、保持し、反応させた。得られた反応液を、ろ過し、モリブデン含有シリケートを除去し、2−フェニル−2−メチル−1,3−ジオキソランを含む溶液を得た。GC内部標準法による分析の結果、収率は36%であった。原料アセトフェノンが、63%回収された。
Example 7
10 mg of the molybdenum-containing silicate prepared in Reference Example 3, 120 mg of acetophenone, and 620 mg of ethylene glycol were added to a 50 mL flask equipped with a magnetic rotor and a reflux condenser, and the mixture was stirred and held at an internal temperature of 80 ° C. for 3 hours for reaction. The obtained reaction solution was filtered to remove the molybdenum-containing silicate to obtain a solution containing 2-phenyl-2-methyl-1,3-dioxolane. As a result of analysis by the GC internal standard method, the yield was 36%. The raw material acetophenone was recovered 63%.

実施例8
磁気回転子および還流冷却管を付した50mLフラスコに、参考例3で調製したモリブデン含有シリケート44mg、α−メチルシンナムアルデヒド440mg、メタノール 10gを加え、3時間還流、保持し、反応させた。得られた反応液を、ろ過し、モリブデン含有シリケートを除去し、(3,3−ジメトキシ−2−メチル−1−プロペニル)ベンゼンを含む溶液を得た。GC内部標準法による分析の結果、収率は52%であった。原料α−メチルシンナムアルデヒドが、45%回収された。
Example 8
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, 44 mg of the molybdenum-containing silicate prepared in Reference Example 3, 440 mg of α-methylcinnamaldehyde, and 10 g of methanol were added, and the mixture was refluxed and held for 3 hours to be reacted. The obtained reaction solution was filtered to remove the molybdenum-containing silicate to obtain a solution containing (3,3-dimethoxy-2-methyl-1-propenyl) benzene. As a result of analysis by the GC internal standard method, the yield was 52%. The raw material α-methylcinnamaldehyde was recovered 45%.

実施例9
磁気回転子および還流冷却管を付した50mLフラスコに、参考例3で調製したモリブデン含有シリケート20mg、ベンズアルデヒド220mg、アリルアルコール1.1gを加え、内温60℃で4時間攪拌、保持し、反応させた。得られた反応液を、ろ過し、モリブデン含有シリケートを除去し、ビス(アリルオキシ)メチルベンゼンを含む溶液を得た。GC内部標準法による分析の結果、収率は51%であった。原料ベンズアルデヒドが、45%回収された。
Example 9
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, 20 mg of the molybdenum-containing silicate prepared in Reference Example 3, 220 mg of benzaldehyde and 1.1 g of allyl alcohol were added, and the mixture was stirred and held at an internal temperature of 60 ° C. for 4 hours to be reacted. It was. The resulting reaction solution was filtered to remove the molybdenum-containing silicate to obtain a solution containing bis (allyloxy) methylbenzene. As a result of analysis by the GC internal standard method, the yield was 51%. The raw material benzaldehyde was recovered 45%.

実施例10
磁気回転子および還流冷却管を付した50mLフラスコに、参考例3で調製したモリブデン含有シリケート40mg、ベンズアルデヒド210mg、ベンジルアルコール650mg、トルエン5gを加え、内温80℃で4時間攪拌、保持し、反応させた。得られた反応液を、ろ過し、モリブデン含有シリケートを除去し、ビス(ベンジルオキシ)メチルベンゼンを含む溶液を得た。GC内部標準法による分析の結果、収率は36%であった。原料ベンズアルデヒドが、64%回収された。
Example 10
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, 40 mg of the molybdenum-containing silicate prepared in Reference Example 3, 210 mg of benzaldehyde, 650 mg of benzyl alcohol, and 5 g of toluene were added, and the mixture was stirred and held at an internal temperature of 80 ° C. for 4 hours. I let you. The resulting reaction solution was filtered to remove the molybdenum-containing silicate to obtain a solution containing bis (benzyloxy) methylbenzene. As a result of analysis by the GC internal standard method, the yield was 36%. The raw material benzaldehyde was recovered 64%.

実施例11
磁気回転子および還流冷却管を付した50mLフラスコに、参考例2で調製したタングステン含有シリケート60mg、ベンズアルデヒド424mg、メタノール10gを加え、内温60℃で6時間攪拌、保持し、反応させた。得られた反応液に、酢酸エチル10gを加えて、GC内部標準法により分析したところ、ジメトキシメチルベンゼンの収率は、98%であった。分析後の溶液からデカンテーションによりタングステン含有シリケートを回収した。
Example 11
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, 60 mg of tungsten-containing silicate prepared in Reference Example 2, 424 mg of benzaldehyde, and 10 g of methanol were added, and the mixture was stirred and held at an internal temperature of 60 ° C. for 6 hours for reaction. When 10 g of ethyl acetate was added to the resulting reaction solution and analyzed by the GC internal standard method, the yield of dimethoxymethylbenzene was 98%. The tungsten-containing silicate was recovered from the solution after analysis by decantation.

実施例12
磁気回転子および還流冷却管を付した50mLフラスコに、実施例11でデカンテーションにより回収したタングステン含有シリケートの全量、ベンズアルデヒド424mg、メタノール10gを加え、内温60℃で6時間攪拌、保持し、反応させた。得られた反応液に、酢酸エチル10gを加えて、GC内部標準法により分析したところ、ジメトキシメチルベンゼンの収率は、98%であった。
Example 12
To a 50 mL flask equipped with a magnetic rotor and a reflux condenser, the total amount of the tungsten-containing silicate recovered by decantation in Example 11, 424 mg of benzaldehyde, and 10 g of methanol were added, and the mixture was stirred and held at an internal temperature of 60 ° C. for 6 hours. I let you. When 10 g of ethyl acetate was added to the resulting reaction solution and analyzed by the GC internal standard method, the yield of dimethoxymethylbenzene was 98%.

本発明は、医農薬、香料等の生物活性物質およびその原料あるいは機能性高分子原料等として重要な化合物であるアセタール類の工業的製法として利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as an industrial process for producing acetals, which are important compounds as bioactive substances such as medicines, agricultural chemicals, and fragrances and their raw materials or functional polymer raw materials.

Claims (10)

周期律表第5族元素および第6族元素からなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケートの存在下に、式(1)
Figure 2006206576
(式中、RおよびRはそれぞれ同一または相異なって、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアリール基または水素原子を表す。RとRがともに置換されていてもよいアルキル基または置換されていてもよいアルケニル基である場合は、それらが互いに結合して、その結合炭素原子とともに環を形成していてもよい。)
で示されるカルボニル化合物とアルコール類とを反応させることを特徴とする対応するアセタール類の製造方法。
In the presence of a silicate containing at least one element selected from the group consisting of Group 5 elements and Group 6 elements of the Periodic Table as a constituent element, Formula (1)
Figure 2006206576
(Wherein, R 1 and R 2 are the same or different and each represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted aryl group or a hydrogen atom. When 1 and R 2 are both an optionally substituted alkyl group or an optionally substituted alkenyl group, they may be bonded to each other to form a ring together with the bonded carbon atoms.
A process for producing a corresponding acetal, characterized in that a carbonyl compound represented by formula (1) is reacted with an alcohol.
アルコール類が式(2)
Figure 2006206576
(式中、Rは置換されていてもよいアルキル基を表す。)
で示されるアルコールであり、得られるアセタール類が式(4)
Figure 2006206576
(式中、R、RおよびRはそれぞれ上記と同じ意味を表す。)
で示されるアセタール類である請求項1に記載の製造方法。
Alcohols are of formula (2)
Figure 2006206576
(Wherein R 3 represents an optionally substituted alkyl group.)
And the obtained acetals are represented by the formula (4)
Figure 2006206576
(In the formula, R 1 , R 2 and R 3 each have the same meaning as described above.)
The manufacturing method of Claim 1 which is acetals shown by these.
アルコール類が式(3)

Figure 2006206576
(式中、Xは置換されていてもよいアルキレン基を表す。)
で示されるジオールであり、得られるアセタール類が式(5)
Figure 2006206576
(式中、R、RおよびXはそれぞれ上記と同じ意味を表す。)
で示されるアセタール類である請求項1に記載の製造方法。
Alcohols are of formula (3)

Figure 2006206576
(In the formula, X represents an alkylene group which may be substituted.)
And the obtained acetals are represented by the formula (5)
Figure 2006206576
(Wherein R 1 , R 2 and X each have the same meaning as described above.)
The manufacturing method of Claim 1 which is acetals shown by these.
周期律表第5族元素および第6族元素からなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケートが、バナジウム、モリブテンおよびタングステンからなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケートである請求項1〜3のいずれかに記載の製造方法。 A silicate containing at least one element selected from the group consisting of Group 5 elements and Group 6 elements as a constituent element in the periodic table has at least one element selected from the group consisting of vanadium, molybdenum and tungsten as a constituent element The method according to any one of claims 1 to 3, wherein the silicate is contained. 周期律表第5族元素および第6族元素からなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケートが、周期律表第5族金属、第6族金属、第5族元素を含む化合物および第6族金属を含む化合物からなる群から選ばれる少なくとも一種と過酸化水素とを反応せしめてなる金属酸化物と、ケイ素化合物とを、有機テンプレートの存在下に反応せしめてなる金属含有シリケートである請求項1〜3のいずれかに記載の製造方法。 A silicate containing as a constituent element at least one element selected from the group consisting of Group 5 elements and Group 6 elements of the Periodic Table contains Group 5 metal, Group 6 metal, and Group 5 element of the Periodic Table A metal-containing silicate obtained by reacting at least one selected from the group consisting of a compound and a compound containing a Group 6 metal with hydrogen peroxide and a silicon compound in the presence of an organic template The manufacturing method according to any one of claims 1 to 3. 金属含有シリケートが、反応終了後、反応生成物を反応液から分離し、分離した反応生成物を洗浄処理または焼成処理して得られる金属含有シリケートである請求項5に記載の製造方法。 6. The production method according to claim 5, wherein the metal-containing silicate is a metal-containing silicate obtained by separating the reaction product from the reaction solution after completion of the reaction and washing or firing the separated reaction product. 周期律表第5族金属、第6族金属、第5族元素を含む化合物および第6族元素を含む化合物が、タングステン金属、モリブデン金属、バナジウム金属、タングステン化合物、モリブデン化合物およびバナジウム化合物である請求項5または6に記載の製造方法。 Periodic table Group 5 metal, Group 6 metal, Group 5 element compound and Group 6 element compound are tungsten metal, molybdenum metal, vanadium metal, tungsten compound, molybdenum compound and vanadium compound. Item 7. The production method according to Item 5 or 6. 有機テンプレートが、アルキルアミン、第四級アンモニウム塩またはノニオン系界面活性剤である請求項5に記載の製造方法。 The production method according to claim 5, wherein the organic template is an alkylamine, a quaternary ammonium salt, or a nonionic surfactant. 有機テンプレートが、アルキルアミンまたは第四級アンモニウム塩である請求項5に記載の製造方法。 The production method according to claim 5, wherein the organic template is an alkylamine or a quaternary ammonium salt. 請求項1に記載の製造方法において、アセタール類の製造後に、周期律表第5族元素および第6族元素からなる群から選ばれる少なくとも一つの元素を構成要素として含有するシリケートを回収し、該シリケートをリサイクル使用する方法。 In the production method according to claim 1, after production of acetals, a silicate containing at least one element selected from the group consisting of Group 5 elements and Group 6 elements in the periodic table as a constituent element is recovered, How to recycle silicate.
JP2005333758A 2004-12-27 2005-11-18 Method for producing acetals Expired - Fee Related JP4961723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333758A JP4961723B2 (en) 2004-12-27 2005-11-18 Method for producing acetals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004375926 2004-12-27
JP2004375926 2004-12-27
JP2005333758A JP4961723B2 (en) 2004-12-27 2005-11-18 Method for producing acetals

Publications (2)

Publication Number Publication Date
JP2006206576A true JP2006206576A (en) 2006-08-10
JP4961723B2 JP4961723B2 (en) 2012-06-27

Family

ID=36963803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333758A Expired - Fee Related JP4961723B2 (en) 2004-12-27 2005-11-18 Method for producing acetals

Country Status (1)

Country Link
JP (1) JP4961723B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188338A (en) * 1984-02-01 1985-09-25 デグツサ・アクチエンゲゼルシヤフト Manufacture of acetal
JPS63146838A (en) * 1986-12-11 1988-06-18 Japan Tobacco Inc Acetalization of aldehyde for ketone
JPH09202745A (en) * 1995-11-20 1997-08-05 Kuraray Co Ltd Production of acetal compound
JPH1121258A (en) * 1997-07-02 1999-01-26 Kuraray Co Ltd Production of acetals
JPH1160533A (en) * 1997-06-11 1999-03-02 Mitsubishi Chem Corp Production of 2,2'-bis(hydroxymethyl)alkanal
JP2003300722A (en) * 2002-02-08 2003-10-21 Sumitomo Chem Co Ltd Metal-containing mesopore silicate, method for manufacturing the same and its use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188338A (en) * 1984-02-01 1985-09-25 デグツサ・アクチエンゲゼルシヤフト Manufacture of acetal
JPS63146838A (en) * 1986-12-11 1988-06-18 Japan Tobacco Inc Acetalization of aldehyde for ketone
JPH09202745A (en) * 1995-11-20 1997-08-05 Kuraray Co Ltd Production of acetal compound
JPH1160533A (en) * 1997-06-11 1999-03-02 Mitsubishi Chem Corp Production of 2,2'-bis(hydroxymethyl)alkanal
JPH1121258A (en) * 1997-07-02 1999-01-26 Kuraray Co Ltd Production of acetals
JP2003300722A (en) * 2002-02-08 2003-10-21 Sumitomo Chem Co Ltd Metal-containing mesopore silicate, method for manufacturing the same and its use

Also Published As

Publication number Publication date
JP4961723B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
Umbarkar et al. Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst
Bing et al. Insights on active sites of CaAl-hydrotalcite as a high-performance solid base catalyst toward aldol condensation
Robinson et al. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates
JP5314330B2 (en) Process for producing 2- (aryloxymethyl) benzaldehyde and its intermediate
JP4961723B2 (en) Method for producing acetals
JP4980045B2 (en) Method for producing monoalkyl glyceryl ether
US7393985B2 (en) Supported ruthenium nanoparticle catalyst for cis -dihydroxylation and oxidative cleavage of alkenes
JP2003300722A (en) Metal-containing mesopore silicate, method for manufacturing the same and its use
WO2004091784A1 (en) Metal catalyst and its use
JP2006188492A (en) Method for producing tetrahydropyran compound and tetrahydropyran compound produced by the production method
JP5297036B2 (en) Process for producing a mixture of 2- (1-hydroxyalkyl) cycloalkanone and its dehydrated product
JP4857676B2 (en) Process for producing unsaturated vicinal diol compound
WO2020202787A1 (en) Acetal production method
JP4651959B2 (en) Cycloalkanone-containing composition
WO2006030877A1 (en) Method for producing unsaturated vicinal diol compound
JP6383883B2 (en) Method for forming propylene oxide from the oxidation of methylbenzyl alcohol
JP5248851B2 (en) Process for producing 2- (1-hydroxyalkyl) cycloalkanone and a mixture of its dehydrates
Abdollahpour et al. (Caffeine)(tetrahydroborato) zinc Complex [Zn (BH4) 2 (caf)]: A New Stable and Efficient Reducing Agent
JP2010528998A (en) Aldol condensation reaction and catalyst for it
US10870643B2 (en) Method for manufacturing 1,3-dioxane-5-one
JP2003073376A (en) Method for producing cyclic acetal
JP6405443B2 (en) Process for producing 1,3-dioxane-5-ones
JP5807286B2 (en) Aldol condensation
JP2008001631A (en) Reduction reaction by borohydride compound using tetrahydropyran as solvent
JP2002201173A (en) METHOD FOR PRODUCING beta-HYDROXYHYDROPEROXIDE AND CARBOXYLIC ACID AND CATALYST THEREFOR

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees