JP2006206541A - Method for stereoselective chemical synthesis of 1'-(s)-acetoxychavicol acetate - Google Patents

Method for stereoselective chemical synthesis of 1'-(s)-acetoxychavicol acetate Download PDF

Info

Publication number
JP2006206541A
JP2006206541A JP2005023641A JP2005023641A JP2006206541A JP 2006206541 A JP2006206541 A JP 2006206541A JP 2005023641 A JP2005023641 A JP 2005023641A JP 2005023641 A JP2005023641 A JP 2005023641A JP 2006206541 A JP2006206541 A JP 2006206541A
Authority
JP
Japan
Prior art keywords
group
optically active
compound
acetate
chemical synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005023641A
Other languages
Japanese (ja)
Inventor
Keiju Murakami
啓寿 村上
Osamu Tamura
理 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Osaka University NUC
Original Assignee
Japan Science and Technology Agency
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Osaka University NUC filed Critical Japan Science and Technology Agency
Priority to JP2005023641A priority Critical patent/JP2006206541A/en
Publication of JP2006206541A publication Critical patent/JP2006206541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stereoselective chemical synthesis of an anti-HIV compound 1'-(S)-acetoxychavicol acetate. <P>SOLUTION: The 1'-(S)-acetoxychavicol acetate is obtained as follows. A ketone compound represented by formula (I) äwherein, R represents a TBS (tert-butyldimethylsilyl) group} is reduced in the presence of an optically active oxazaborolidine with a borane compound to afford an optically active alcohol. The TBS group of the optically active alcohol is eliminated to afford a hydroxy group. The two hydroxy groups are then acetylated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、抗HIV化合物1’−(S)−アセトキシシャビコールアセテート(1’-(S)-acetoxychavicol acetate)の実用的な立体選択的化学合成法に関するものである。   The present invention relates to a practical stereoselective chemical synthesis method of an anti-HIV compound 1 '-(S) -acetoxychavicol acetate (1'-(S) -acetoxychavicol acetate).

エイズ患者、即ちHIV(ヒト免疫不全ウィルス)に感染し、発症した患者の数は発見以来世界規模で増え続けており、早急な治療法の確立が必須である。現段階での化学療法としては、逆転写酵素阻害剤とプロテアーゼ阻害剤を併用して用いる方法が一般に採られている。   The number of AIDS patients, that is, those infected with HIV (Human Immunodeficiency Virus), has been increasing worldwide since the discovery, and the establishment of an immediate treatment is essential. As chemotherapy at the present stage, a method using a reverse transcriptase inhibitor and a protease inhibitor in combination is generally employed.

逆転写酵素は、ウィルスRNAをDNAへと読み換える際に必要なHIVが保有している酵素であり、その阻害剤としてはAZT等が挙げられる。   A reverse transcriptase is an enzyme possessed by HIV that is necessary for translating viral RNA into DNA, and examples of inhibitors include AZT.

プロテアーゼは、ウィルス蛋白翻訳後に必要となる酵素で、その阻害剤としてはサキナビル等が用いられている。   Protease is an enzyme required after viral protein translation, and saquinavir or the like is used as its inhibitor.

ところでHIV遺伝子は、RNA結合蛋白であるRev蛋白をコードしている。このRev蛋白は核外移行シグナル(NES)を持ち、ウィルスmRNAの核外輸送に必要であり、ひいてはHIVの複製・増殖に必須の蛋白といえる。このRev蛋白の機能を阻害・抑制する物質として、これまでleptomycin Bおよびvaltrate等が報告されている(下記の非特許文献1・2参照)。   By the way, HIV gene codes Rev protein which is RNA binding protein. This Rev protein has a nuclear export signal (NES), is necessary for the export of viral mRNA, and can thus be said to be an essential protein for HIV replication / proliferation. As a substance that inhibits or suppresses the function of the Rev protein, leptomycin B, valtrate, and the like have been reported so far (see Non-Patent Documents 1 and 2 below).

Wolff, B. et al., Chem. Biol., 1997, 4, 139-147頁Wolff, B. et al., Chem. Biol., 1997, 4, 139-147 Murakami, N. et al., Bioorg. Med. Chem. Lett., 2002, 12, 2807-2810頁Murakami, N. et al., Bioorg. Med. Chem. Lett., 2002, 12, 2807-2810

上述のように、従来のエイズ治療においては、逆転写酵素阻害剤およびプロテアーゼ阻害剤が一般に使用されている。   As described above, reverse transcriptase inhibitors and protease inhibitors are generally used in conventional AIDS treatment.

しかしながら、HIVは変異の頻度が高く、薬剤耐性ウィルスが容易に出現することが知られている。そこで、上記従来の薬剤とは異なる新規作用機序に基づく抗HIV剤開発の必要性が増大している。   However, it is known that HIV has a high frequency of mutation, and drug-resistant viruses easily appear. Therefore, there is an increasing need for development of anti-HIV agents based on a novel mechanism of action different from the conventional drugs.

このような状況下、本発明者らは、抗HIV活性物質として、下記の化学構造を有する1’−(S)−アセトキシシャビコールアセテート(1’-(S)-acetoxychavicol acetate)を天然物から単離した(特願2003−418796号)。

Figure 2006206541
Under such circumstances, the present inventors have used 1 '-(S) -acetoxychavicol acetate (1'-(S) -acetoxychavicol acetate) having the following chemical structure as an anti-HIV active substance from natural products. Isolated (Japanese Patent Application No. 2003-418796).
Figure 2006206541

1’−(S)−アセトキシシャビコールアセテートは、細胞毒性も低く、HIVの複製に必須のRev蛋白の核外移行を阻害・抑制するという新規作用機序で抗HIV活性を示すことから、新規抗HIV剤、及びその開発のためのリード化合物としての利用が期待されている。そこで、構造活性相関研究等を見据えた各種類縁体の合成を行うにあたり、天然資源からの供給のみによらない1’−(S)−アセトキシシャビコールアセテートの立体選択的な化学合成法の確立は重要な課題となっている。   1 '-(S) -acetoxyshavicol acetate has low cytotoxicity and exhibits anti-HIV activity with a novel mechanism of action that inhibits and suppresses the nuclear export of Rev protein essential for HIV replication. Anti-HIV agents and their use as lead compounds for their development are expected. Therefore, in synthesizing each type of rim with an eye on structure-activity relationship studies, etc., establishment of a stereoselective chemical synthesis method of 1 ′-(S) -acetoxyshabicol acetate that is not solely based on supply from natural resources It is an important issue.

本発明は、上記事情に鑑みなされたものであり、その目的は、抗HIV化合物1’−(S)−アセトキシシャビコールアセテートの立体選択的化学合成法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a stereoselective chemical synthesis method of the anti-HIV compound 1 '-(S) -acetoxyshabicol acetate.

本発明者らは、上記の課題に鑑み鋭意研究を進めた結果、有機合成的手法を用いて1’−(S)−アセトキシシャビコールアセテートを実用的な収率で立体選択的に化学合成する方法を確立し、また、この方法は各種類縁体の立体選択的な化学合成に応用可能であることを見出し、本発明を完成させるに至った。   As a result of diligent research in view of the above problems, the inventors of the present invention stereoselectively chemically synthesize 1 ′-(S) -acetoxychabicol acetate in a practical yield using an organic synthetic method. A method has been established, and it has been found that this method can be applied to the stereoselective chemical synthesis of each type of isomer, and the present invention has been completed.

即ち、本発明は、医療上および産業上有用な発明として、下記(A)・(B)の発明を包含するものである。
(A) 下記一般式(I)

Figure 2006206541

(式中、Rは、水素原子、炭素数2〜8のアシル基、またはトリ(炭素数1〜6の炭化水素基)置換シリル基を表す)で表されるケトン化合物を、光学活性オキサザボロリジンの存在下、ボラン化合物等により還元することを特徴とする下記一般式(II)
Figure 2006206541

(式中、Rは、一般式(I)と同じ意味を表す)で表される光学活性アルコールの製造方法。 That is, the present invention includes the following inventions (A) and (B) as medically and industrially useful inventions.
(A) The following general formula (I)
Figure 2006206541

(In the formula, R represents a hydrogen atom, an acyl group having 2 to 8 carbon atoms, or a tri (hydrocarbon group having 1 to 6 carbon atoms) -substituted silyl group). Reduction with a borane compound or the like in the presence of borolidine, represented by the following general formula (II)
Figure 2006206541

(Wherein R represents the same meaning as in general formula (I)).

(B) 下記式(II)

Figure 2006206541

(式中、Rは水素原子を表す)で表される光学活性アルコールにおいて、二個の水酸基をアセチル化することを特徴とする下記式(III)
Figure 2006206541

で表される1’−(S)−アセトキシシャビコールアセテートの製造方法。 (B) The following formula (II)
Figure 2006206541

(Wherein R represents a hydrogen atom), two hydroxyl groups are acetylated in the optically active alcohol represented by the following formula (III)
Figure 2006206541

The manufacturing method of 1 '-(S) -acetoxy shabicol acetate represented by these.

本発明によれば、例えば、4−ヒドロキシベンズアルデヒドを出発原料として得られるケトン化合物(I)を、上記(A)の方法を用いて、光学活性オキサザボロリジン((R)-oxazaborolidine)の存在下、不斉還元する鍵反応により、1’−(S)−アセトキシシャビコールアセテート(III)を立体選択的に実用的な収率で製造することができる。   According to the present invention, for example, the presence of optically active oxazaborolidine ((R) -oxazaborolidine) is obtained from the ketone compound (I) obtained using 4-hydroxybenzaldehyde as a starting material by using the method (A). Then, 1 ′-(S) -acetoxychabicol acetate (III) can be stereoselectively produced in a practical yield by a key reaction for asymmetric reduction.

また、上記一般式(II)で示される化合物は、1’−(S)−アセトキシシャビコールアセテート類縁体を製造するための中間体として、有効に利用することができる。つまり、この光学活性アルコール(II)から、類縁体の立体選択的な化学合成が可能となるので、構造活性相関研究を含めたリードオプティマイゼーション等に有効な手段となる。   In addition, the compound represented by the general formula (II) can be effectively used as an intermediate for producing a 1 '-(S) -acetoxychabicol acetate analog. That is, from this optically active alcohol (II), an analog can be stereoselectively chemically synthesized, which is an effective means for lead optimization including structure-activity relationship studies.

以下、本発明の好ましい実施形態について説明するが、本発明は、下記の実施形態によって何ら限定されるものではなく、その要旨を変更することなく、様々に改変して実施することができるものである。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and various modifications can be made without changing the gist thereof. is there.

前記のように、一般式(I)において、Rは、水素原子、炭素数2〜8のアシル基、またはトリ(炭素数1〜6の炭化水素基)置換シリル基を表す。Rの炭素数2〜8のアシル基(炭素数にはカルボニル炭素を含む)としては、例えば、アセチル基、ピバロイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、エトキシカルボニル基、メトキシメチル基、メトキシエトキシメチル基、p−メトキシフェニルメチル基などが挙げられる。また、Rのトリ(炭素数1〜6の炭化水素基)置換シリル基としては、例えば、トリメチルシリル基、トリイソプロピルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基などが挙げられ、好ましくはt−ブチルジメチルシリル基が挙げられる。   As described above, in the general formula (I), R represents a hydrogen atom, an acyl group having 2 to 8 carbon atoms, or a tri (hydrocarbon group having 1 to 6 carbon atoms) -substituted silyl group. Examples of the acyl group having 2 to 8 carbon atoms (including carbonyl carbon) of R include, for example, acetyl group, pivaloyl group, hexanoyl group, cyclohexanoyl group, benzoyl group, ethoxycarbonyl group, methoxymethyl group, A methoxyethoxymethyl group, p-methoxyphenylmethyl group, etc. are mentioned. Examples of the tri (C 1-6 hydrocarbon group) substituted silyl group of R include, for example, trimethylsilyl group, triisopropylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, and the like. And preferably a t-butyldimethylsilyl group.

光学活性オキサザボロリジンは、公知のもの(例えば、特開2000−256368号公報、特開平8−134076号公報、特開平7−109231号公報、特開平6−340674号公報などに記載のもの)を使用することができる。   Optically active oxazaborolidine is a known one (for example, those described in JP-A No. 2000-256368, JP-A No. 8-1334076, JP-A No. 7-109231, JP-A No. 6-340673, etc.) ) Can be used.

また、ボラン化合物としては、ジメチルスルフィドボラン錯体の他に、例えば、ジボラン、テトラヒドロフランボラン錯体、ジオキサンボラン錯体、チオキサンボラン錯体、ジメチルアニリンボラン錯体、ジエチルアニリンボラン錯体、フェニルモルホリンボラン錯体、カテーコールボラン等が挙げられる。   Examples of the borane compound include diborane, tetrahydrofuran borane complex, dioxane borane complex, thioxane borane complex, dimethylaniline borane complex, diethylaniline borane complex, phenylmorpholine borane complex, catechol borane, in addition to dimethyl sulfide borane complex. Etc.

ケトン化合物(I)を光学活性オキサザボロリジンの存在下、不斉還元するには、光学活性オキサザボロリジンの使用量は、ケトン化合物(I)に対し、光学活性アルコール(II)換算で、通常0.01〜3モル倍程度、好ましくは0.05〜2モル倍程度使用する。また、ボラン化合物は、光学活性アルコール(II)に対して、ホウ素換算で通常1〜20モル倍程度、好ましくは1〜10モル倍程度使用する。   In order to perform asymmetric reduction of ketone compound (I) in the presence of optically active oxazaborolidine, the amount of optically active oxazaborolidine is used in terms of optically active alcohol (II) relative to ketone compound (I). Usually, about 0.01 to 3 mole times, preferably about 0.05 to 2 mole times is used. The borane compound is usually used in an amount of about 1 to 20 moles, preferably about 1 to 10 moles in terms of boron with respect to the optically active alcohol (II).

また、上記反応に用いられる溶媒としては、例えばテトラヒドロフラン(THF)、1,3−ジオキサン、1,4−ジオキサン、1,3−ジオキソラン、チオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、メチル−t−ブチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族類、1,2−メトキシエタン、n−ヘキサン、n−ヘプタン、シクロヘキサン等の炭化水素類、メチレンクロリド、エチレンクロリド、四塩化炭素等のハロゲン化炭化水素類、これらの混合物などが挙げられる。なお、溶媒はケトン化合物(I)に対して、通常0.5〜30質量倍程度使用する。不斉還元反応の温度は、通常−20〜100℃程度、好ましくは0〜80℃程度である。また、本発明の不斉還元反応は、一般には、アルゴン、窒素等の不活性気体の存在下で実施される。   Examples of the solvent used in the above reaction include tetrahydrofuran (THF), 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, thioxan, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, methyl t-butyl ether, and the like. Ethers, aromatics such as benzene, toluene, xylene, chlorobenzene, hydrocarbons such as 1,2-methoxyethane, n-hexane, n-heptane, cyclohexane, methylene chloride, ethylene chloride, carbon tetrachloride, etc. Examples thereof include halogenated hydrocarbons and mixtures thereof. In addition, a solvent is normally used about 0.5-30 mass times with respect to ketone compound (I). The temperature of the asymmetric reduction reaction is usually about -20 to 100 ° C, preferably about 0 to 80 ° C. In addition, the asymmetric reduction reaction of the present invention is generally performed in the presence of an inert gas such as argon or nitrogen.

こうして、合成された光学活性アルコール(II)は、1’−(S)−アセトキシシャビコールアセテートの類縁体を合成するための中間体として使用することができる。   Thus, the synthesized optically active alcohol (II) can be used as an intermediate for synthesizing an analog of 1 '-(S) -acetoxychabicol acetate.

また、一般式(II)において、Rが水素化合物のものの二個の水酸基をアセチル化することにより、1’−(S)−アセトキシシャビコールアセテートを得ることができる。なお、一般式(II)に記載の光学活性アルコールを合成するにあたり、Rに水素化合物以外の適当な保護基が付加されている場合には、その保護基を脱離した後に、アセチル化の反応を行う。   In the general formula (II), 1 '-(S) -acetoxychabicol acetate can be obtained by acetylating two hydroxyl groups in which R is a hydrogen compound. In synthesizing the optically active alcohol described in the general formula (II), when an appropriate protecting group other than a hydrogen compound is added to R, the protecting group is removed, and then an acetylation reaction is performed. I do.

次に、図1を参照しつつ、本発明の実施例に係る、1’−(S)−アセトキシシャビコールアセテートの製造方法について説明する。   Next, a method for producing 1 '-(S) -acetoxychabicol acetate according to an embodiment of the present invention will be described with reference to FIG.

化合物2(4−ヒドロキシベンズアルデヒド)50 mgを、ジクロロメタン 4 mL 中、イミダゾール40 mg存在下tert−ブチルジメチルシリルクロリド 75 mg を室温で1時間作用させてフェノール性水酸基をtert−ブチルジメチルシリル(TBDMS、又はTBS)基で保護した。反応液を飽和食塩水にあけ、酢酸エチルで抽出後、得られた酢酸エチル層を硫酸マグネシウムで乾燥させた後減圧下溶媒を留去することで化合物3を得た。この化合物3をテトラヒドロフラン(THF)3 mLに溶解し、氷冷下1.0 Mビニルマグネシウムブロミド THF溶液 0.82 mL を用いて1時間反応させた。飽和塩化アンモニウム水溶液によって反応を停止させ、化合物3の合成時と同様の後処理を行い、得られた粗生成物をシリカゲルカラムクロマトグラフィー(シリカゲル 5 g、溶出溶媒;n−ヘキサン:酢酸エチル=3:1)によって精製してアリルアルコール体4を105 mg得た。   50 mg of compound 2 (4-hydroxybenzaldehyde) was allowed to act on tert-butyldimethylsilyl chloride (TBDMS, TBDMS, 75 mg) in 4 mL of dichloromethane in the presence of 40 mg of imidazole in the presence of 40 mg of tert-butyldimethylsilyl chloride at room temperature for 1 hour. Or protected with TBS) groups. The reaction solution was poured into saturated brine, extracted with ethyl acetate, the resulting ethyl acetate layer was dried over magnesium sulfate, and the solvent was evaporated under reduced pressure to give compound 3. This compound 3 was dissolved in 3 mL of tetrahydrofuran (THF) and reacted with 0.82 mL of 1.0 M vinylmagnesium bromide THF solution under ice cooling for 1 hour. The reaction was stopped with a saturated aqueous solution of ammonium chloride, and the post-treatment was carried out in the same manner as in the synthesis of Compound 3. The obtained crude product was subjected to silica gel column chromatography (silica gel 5 g, elution solvent; n-hexane: ethyl acetate = 3). 1) to obtain 105 mg of allyl alcohol form 4.

アリルアルコール4:[α]D 24= 0 °(EtOH, c=1.00). H-NMR (CDCl3) δ: 7.22 (2H, d, J=8.5 Hz), 6.68 (2H, d, J=8.5 Hz), 6.04 (1H, ddd, J=6.1, 10.4, 17.0 Hz), 5.32 (1H, d, 17.0 Hz), 5.18 (1H, d, 10.4 Hz), 5.14 (1H, d, J=6.1 Hz), 0.99 (3H x 3, s), 0.20 (3H x 2, s). FABMS m/z: 265 ([M+H]+). HRFABMS:found 265.1596, calcd. C15H25O2Si; 265.1624. Allyl alcohol 4: [α] D 24 = 0 ° (EtOH, c = 1.00). 1 H-NMR (CDCl 3 ) δ: 7.22 (2H, d, J = 8.5 Hz), 6.68 (2H, d, J = 8.5 Hz), 6.04 (1H, ddd, J = 6.1, 10.4, 17.0 Hz), 5.32 (1H, d, 17.0 Hz), 5.18 (1H, d, 10.4 Hz), 5.14 (1H, d, J = 6.1 Hz ), 0.99 (3H x 3, s), 0.20 (3H x 2, s). FABMS m / z: 265 ([M + H] + ). HRFABMS: found 265.1596, calcd. C 15 H 25 O 2 Si; 265.1624.

続いて、105 mgのアリルアルコール体4を4 mLのジクロロメタン中、Dess-Martin periodinane 500 mgを加えて、室温で2時間攪拌し水酸基をケトカルボニル基へと変換した。反応液に飽和チオ硫酸ナトリウム水溶液と飽和重曹水を添加し透明になるまで室温で攪拌した。この混合液を酢酸エチルで抽出後、化合物3の合成時と同様の後処理の後、シリカゲルカラムクロマトグラフィー(シリカゲル 5 g、溶出溶媒;n−ヘキサン:酢酸エチル=6:1)によって精製し、98 mgのケトン体5を得た。なお、このケトン体5は、本発明における「ケトン化合物」に該当する。   Subsequently, 105 mg of allyl alcohol body 4 was added with 500 mg of Dess-Martin periodinane in 4 mL of dichloromethane, and the mixture was stirred at room temperature for 2 hours to convert the hydroxyl group into a ketocarbonyl group. A saturated aqueous sodium thiosulfate solution and saturated aqueous sodium hydrogen carbonate were added to the reaction mixture, and the mixture was stirred at room temperature until it became transparent. The mixture was extracted with ethyl acetate, and after the same post treatment as in the synthesis of Compound 3, the mixture was purified by silica gel column chromatography (silica gel 5 g, elution solvent; n-hexane: ethyl acetate = 6: 1) 98 mg of ketone body 5 was obtained. The ketone body 5 corresponds to the “ketone compound” in the present invention.

更に、ケトン体5をTHF 5 mL 中、(R)−オキサザボロリジン(下記化合物(IV)。本発明における「光学活性オキサザボロリジン」に該当する)52 mg の存在下、-40℃でボラン化合物であるジメチルスルフィドボラン錯体(BH3・S(CH3)2)2.0 M THF溶液0.23 mLにより還元することで、立体選択的還元反応を行った。

Figure 2006206541
Furthermore, the ketone body 5 was obtained at −40 ° C. in the presence of 52 mg of (R) -oxazaborolidine (compound (IV) below. Corresponding to “optically active oxazaborolidine” in the present invention) in 5 mL of THF. A stereoselective reduction reaction was carried out by reducing with 0.23 mL of a 2.0 M THF solution of dimethyl sulfide borane complex (BH 3 .S (CH 3 ) 2 ), which is a borane compound.
Figure 2006206541

2時間後、反応溶液にMeOHを滴下して反応を停止し、さらに蒸留水を加えて酢酸エチルで抽出し、得られた酢酸エチル層を硫酸マグネシウムで乾燥させた後減圧下溶媒を留去することで、光学活性アルコール6を82 mg得た。このアルコール6は、光学活性HPLCカラム DAICEL chiral ODを用い、光学純度が90%e.e.であることを確認した。   After 2 hours, MeOH was added dropwise to the reaction solution to stop the reaction. Distilled water was added and the mixture was extracted with ethyl acetate. The resulting ethyl acetate layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure. As a result, 82 mg of optically active alcohol 6 was obtained. This alcohol 6 uses an optically active HPLC column DAICEL chiral OD and has an optical purity of 90% e.e. e. It was confirmed that.

光学活性アルコール6:[α]D 24 = -1.2 ° (EtOH, c=1.00). 1H-NMR (CDCl3) δ: 7.21 (2H, d, J=8.5 Hz), 6.68 (2H, d, J=8.5 Hz), 6.03 (1H, ddd, J=6.1, 10.4, 17.1 Hz), 5.31 (1H, d, 17.1 Hz), 5.17 (1H, d, 10.4 Hz), 5.13 (1H, d, J=6.1 Hz), 0.99 (3H x 3, s), 0.20 (3H x 2, s). FABMS m/z: 265 ([M+H]+). HRFABMS:found 265.1599, calcd. C15H25O2Si; 265.1624.
HPLC condition; DAICEL chiral OD 4.6 i.d.x 250 mm, mobile phase; Hex:iPrOH=99:1, flow rate; 1.0 mL/min, detection; UV (λ=254 nm), Rt: S 体 13.2 min, R 体: 12.4 min.
Optically active alcohol 6: [α] D 24 = −1.2 ° (EtOH, c = 1.00). 1 H-NMR (CDCl 3 ) δ: 7.21 (2H, d, J = 8.5 Hz), 6.68 (2H, d, J = 8.5 Hz), 6.03 (1H, ddd, J = 6.1, 10.4, 17.1 Hz), 5.31 (1H, d, 17.1 Hz), 5.17 (1H, d, 10.4 Hz), 5.13 (1H, d, J = 6.1 Hz), 0.99 (3H x 3, s), 0.20 (3H x 2, s). FABMS m / z: 265 ([M + H] + ). HRFABMS: found 265.1599, calcd. C 15 H 25 O 2 Si; 265.1624.
HPLC condition; DAICEL chiral OD 4.6 idx 250 mm, mobile phase; Hex: iPrOH = 99: 1, flow rate; 1.0 mL / min, detection; UV (λ = 254 nm), Rt: S body 13.2 min, R body: 12.4 min.

さらに、82 mgの光学活性アルコール6を3 mLのTHF中、テトラブチルアンモニウムフルオリド(n−Bu4NF)1.0 M THF溶液0.62 mLを加えて室温で2時間攪拌させ、tert−ブチルジメチルシリル基を脱離させ、化合物3の合成時と同様の後処理によってジオール体7とした。このジオール体7をピリジン2 mLに溶解させ、氷冷下でアセチルクロリド(AcCl)0.2 mLを加え、室温で3時間攪拌することにより両水酸基をアセチル化した後、反応液を氷冷した飽和食塩水にあけ酢酸エチルで抽出した。得られた酢酸エチル層を5 % 塩酸、飽和重曹水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥の後、減圧下溶媒を留去して得られる粗生成物をシリカゲルカラムクロマトグラフィー(シリカゲル 4 g、溶出溶媒;n―ヘキサン:酢酸エチル=5:1)によって精製し下記式(III)の1’−(S)−アセトキシシャビコールアセテート65 mg を合成した。

Figure 2006206541
Furthermore, 82 mg of optically active alcohol 6 was added with 0.62 mL of 1.0 M THF solution of tetrabutylammonium fluoride (n-Bu 4 NF) in 3 mL of THF, and the mixture was stirred at room temperature for 2 hours to give a tert-butyldimethylsilyl group. And the diol compound 7 was obtained by post-treatment similar to the synthesis of Compound 3. This diol 7 is dissolved in 2 mL of pyridine, 0.2 mL of acetyl chloride (AcCl) is added under ice cooling, and both hydroxyl groups are acetylated by stirring at room temperature for 3 hours. It was poured into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with 5% hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and saturated brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resulting crude product was purified by silica gel column chromatography (silica gel 4 g, elution solvent: n-hexane: ethyl acetate = 5: 1), and 1 mg of 1 ′-(S) -acetoxychabicol acetate of the following formula (III) was synthesized.
Figure 2006206541

1’-(S)-acetoxychavicol acetate :[α]D 24 = -49.5 ° (EtOH, c=1.00). 1H-NMR (CDCl3) δ: 7.37 (2H, d, J=8,5 Hz), 7.07 (2H, d, J=8.5 Hz), 6.26 (1H, d, J=6.1 Hz), 5.98 (1H, ddd, J=6.1, 11.0, 17.1 Hz), 5.30 (1H, dd, J=1.2, 17.1 Hz), 5.25 (1H, dd, J=1.2, 11.0 Hz), 2.30 (3H, s), 2.11 (3H, s). FABMS m/z: 235 ([M+H]+). HRFABMS: found 235.0966, calcd. C13H15O4; 235.0970. 1 '-(S) -acetoxychavicol acetate: [α] D 24 = -49.5 ° (EtOH, c = 1.00). 1 H-NMR (CDCl 3 ) δ: 7.37 (2H, d, J = 8,5 Hz) , 7.07 (2H, d, J = 8.5 Hz), 6.26 (1H, d, J = 6.1 Hz), 5.98 (1H, ddd, J = 6.1, 11.0, 17.1 Hz), 5.30 (1H, dd, J = 1.2 , 17.1 Hz), 5.25 (1H, dd, J = 1.2, 11.0 Hz), 2.30 (3H, s), 2.11 (3H, s). FABMS m / z: 235 ([M + H] + ). HRFABMS: found 235.0966, calcd.C 13 H 15 O 4 ; 235.0970.

以上のように、本発明によれば、抗HIV化合物1’−(S)−アセトキシシャビコールアセテートを立体選択的に実用的な収率で製造することができる。また、各種類縁体の立体選択的な化学合成にも応用できるので、構造活性相関研究を含めたリードオプティマイゼーション等に有効な手段となる。   As described above, according to the present invention, the anti-HIV compound 1 '-(S) -acetoxychabicol acetate can be produced stereoselectively in a practical yield. In addition, since it can be applied to stereoselective chemical synthesis of each type of rim, it is an effective means for lead optimization including structure-activity relationship studies.

本発明の実施例に係る、1’−(S)−アセトキシシャビコールアセテートの製造工程を示す図である。It is a figure which shows the manufacturing process of 1 '-(S) -acetoxy shabicol acetate based on the Example of this invention.

Claims (2)

下記一般式(I)
Figure 2006206541

(式中、Rは、水素原子、炭素数2〜8のアシル基、またはトリ(炭素数1〜6の炭化水素基)置換シリル基を表す)で表されるケトン化合物を、光学活性オキサザボロリジンの存在下、ボラン化合物等により還元することを特徴とする下記一般式(II)
Figure 2006206541

(式中、Rは、一般式(I)と同じ意味を表す)で表される光学活性アルコールの製造方法。
The following general formula (I)
Figure 2006206541

(In the formula, R represents a hydrogen atom, an acyl group having 2 to 8 carbon atoms, or a tri (hydrocarbon group having 1 to 6 carbon atoms) -substituted silyl group). Reduction with a borane compound or the like in the presence of borolidine, represented by the following general formula (II)
Figure 2006206541

(Wherein R represents the same meaning as in general formula (I)).
下記式(II)
Figure 2006206541

(式中、Rは水素原子を表す)で表される光学活性アルコールにおいて、二個の水酸基をアセチル化することを特徴とする下記式(III)
Figure 2006206541

で表される1’−(S)−アセトキシシャビコールアセテートの製造方法。

The following formula (II)
Figure 2006206541

(Wherein R represents a hydrogen atom), two hydroxyl groups are acetylated in the optically active alcohol represented by the following formula (III)
Figure 2006206541

The manufacturing method of 1 '-(S) -acetoxy shabicol acetate represented by these.

JP2005023641A 2005-01-31 2005-01-31 Method for stereoselective chemical synthesis of 1'-(s)-acetoxychavicol acetate Pending JP2006206541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023641A JP2006206541A (en) 2005-01-31 2005-01-31 Method for stereoselective chemical synthesis of 1'-(s)-acetoxychavicol acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023641A JP2006206541A (en) 2005-01-31 2005-01-31 Method for stereoselective chemical synthesis of 1'-(s)-acetoxychavicol acetate

Publications (1)

Publication Number Publication Date
JP2006206541A true JP2006206541A (en) 2006-08-10

Family

ID=36963772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023641A Pending JP2006206541A (en) 2005-01-31 2005-01-31 Method for stereoselective chemical synthesis of 1'-(s)-acetoxychavicol acetate

Country Status (1)

Country Link
JP (1) JP2006206541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798266A (en) * 2010-03-29 2010-08-11 南昌弘益科技有限公司 Production method of 1'-acetoxyl chavicol acetic ester
CN101823959A (en) * 2010-05-14 2010-09-08 南昌弘益科技有限公司 Production method of 1'-acetoxy chavicol acetic ester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798266A (en) * 2010-03-29 2010-08-11 南昌弘益科技有限公司 Production method of 1'-acetoxyl chavicol acetic ester
CN101823959A (en) * 2010-05-14 2010-09-08 南昌弘益科技有限公司 Production method of 1'-acetoxy chavicol acetic ester

Similar Documents

Publication Publication Date Title
JP3085710B2 (en) Process for producing derivatives of baccatin III and 10-deacetylbaccatin III
CN103827075B (en) The preparation method of 1-palmityl-3-ethanoyl glycerine and use it to prepare the method for 1-palmityl-2-sub-oleoyl-3-ethanoyl glycerine
JP2012136544A (en) Process for producing docetaxel, and medicine
Gung Total synthesis of polyyne natural products
HUT68255A (en) Process for the preparation of beta-phenylisoserine derivatives and use thereof
KR20010102444A (en) A Process for the Preparation of Taxanes from 10-Deacetylbaccatin III
WO1993017997A1 (en) METHOD FOR PREPARING β-PHENYLISOSERINE AND ANALOGUES THEREOF
JP2006206541A (en) Method for stereoselective chemical synthesis of 1&#39;-(s)-acetoxychavicol acetate
JP4081696B2 (en) Taxol production method
JPH11255773A (en) Production of l-paraboronophenylalanine
Kamo et al. Synthesis of enantiomerically pure juglomycin C and NHAB
JP6121492B2 (en) Method for producing (1S, 4R) -2-oxa-3-azabicyclo [2.2.1] hept-5-ene
JPS58219196A (en) Production of 4&#39;-demethyl-epipodophyllotoxin-beta-d- ethylideneglucoside
CN111362989B (en) Preparation method of Sofosbuvir key intermediate
CN108530510A (en) A kind of C19- is acylated the preparation method of triptolide
WO2008080265A1 (en) A synthesis method of docetaxel
CN110981933A (en) Method for efficiently synthesizing Aramchol
WO2014196491A1 (en) METHOD FOR PRODUCING (2R)-2-FLUORO-2-C-METHYL-D-RIBONO-γ-LACTONE
JPH08208688A (en) Production of ginsenoside rh2
CA2196102A1 (en) Streptogramine derivatives, preparation of same and pharmaceutical compositions containing same
JP5291335B2 (en) Tricine production method
KR102436114B1 (en) Novel preparing method of inotodiol
JP4560309B2 (en) Method for producing optically active amino acid derivative
JP2011162494A (en) Method for producing 4-formylpiperidine acetal derivative
JPH0789891A (en) Production of hydroxybenzaldehyde derivative