JP2006206200A - Elevator operating device - Google Patents

Elevator operating device Download PDF

Info

Publication number
JP2006206200A
JP2006206200A JP2005016674A JP2005016674A JP2006206200A JP 2006206200 A JP2006206200 A JP 2006206200A JP 2005016674 A JP2005016674 A JP 2005016674A JP 2005016674 A JP2005016674 A JP 2005016674A JP 2006206200 A JP2006206200 A JP 2006206200A
Authority
JP
Japan
Prior art keywords
circuit
vibration component
elevator
earthquake
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005016674A
Other languages
Japanese (ja)
Inventor
Katsunori Hirose
克則 広瀬
Masaki Takagi
正樹 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005016674A priority Critical patent/JP2006206200A/en
Publication of JP2006206200A publication Critical patent/JP2006206200A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elevator operating device capable of efficiently extracting long periodical vibration among the vibration caused by an earthquake to use it for emergency operation control. <P>SOLUTION: A band path filter circuit 17 extracts a long periodical vibration component on the basis of a difference between a real speed value, which is computed by a real speed computing circuit 12 on the basis of a pulse signal from a pulse generator for generating pulse signal in proportion to travelling distance of an elevator car, and a speed command value from a speed pattern command generating circuit 11. When the extracted vibration component is the predetermined value or more and continued for the predetermined time or more, occurrence of earthquake is determined for emergency operation control of the elevator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はエレベータの運転装置に係わり、特に、地震発生時に管制運転を行なうエレベータの運転装置に関するものである。   The present invention relates to an elevator operating device, and more particularly to an elevator operating device that performs control operation when an earthquake occurs.

従来のエレベータの運転装置において、地震発生時に地震の振動を検知して管制運転駆動手段を駆動させて、エレベータに管制運転を行わせるエレベータの管制運転装置として、例えば、地震発生時に、エレベータが設置された建屋の振動の加速度を検出する加速度センサと、建屋内の共振測定点で予め測定された共振周波数のデータを格納する記憶手段とを有し、加速度センサで検出した振動の加速度が予め設定した基準値を越えると第1の警報信号を出力し、加速度センサが検出した振動の加速度の周波数分布特性を演算して、その最大分布の周波数と上記共振周波数とを比較し、最大分布の周波数と共振周波数とが予め設定した偏差値内で一致すると第2の警報信号を出力して、管制運転駆動手段を駆動させて管制運転制御を行う管制運転装置が開示されている(特許文献1参照)。   In a conventional elevator operation device, when an earthquake occurs, as an elevator control operation device that detects the vibration of the earthquake and drives the control operation driving means to cause the elevator to perform the control operation, for example, when an earthquake occurs, the elevator is installed An acceleration sensor for detecting the acceleration of the vibration of the building and a storage means for storing the data of the resonance frequency measured in advance at the resonance measurement point in the building, and the acceleration of the vibration detected by the acceleration sensor is preset. When the measured reference value is exceeded, a first alarm signal is output, the frequency distribution characteristic of the acceleration of the vibration detected by the acceleration sensor is calculated, the frequency of the maximum distribution is compared with the resonance frequency, and the frequency of the maximum distribution If the resonance frequency and the resonance frequency coincide with each other within a preset deviation value, a second alarm signal is output and the control operation driving means is driven to perform control operation control. Rolling apparatus is disclosed (see Patent Document 1).

特開平7−2450号公報(第2頁、図1)Japanese Patent Laid-Open No. 7-2450 (second page, FIG. 1)

従来のエレベータの運転装置は以上のように構成されているので、地震による振動から、エレベータが設置されている建屋の固有共振周波数の共振の発生を予測し、その振動によって所定時間後に建屋が共振を起こして乗りかごが昇降路内に閉じ込められるような事故を防止するようになっている。
このような、共振による建屋の大きな振動によってエレベータが振動する以外にも、地震の長周期の振動によって建屋が揺れる場合は、昇降路内のロープやケーブル類が共振により各機器と接触したり、損傷したりする危険性がある。一般に大きい地震ほど地震断層が大きく、破壊の開始から停止までにかかる時間が長い。そのため大地震の波動ほど低周波数(長周期)成分を多く含み、特徴的な周波数が低周波に変化すると言われている。上記のような従来のエレベータの運転装置では、感知器が動作しないような建物の長周期の揺れにより、走行を継続する危険性を有するという問題点があった。
Since the conventional elevator operating device is configured as described above, the occurrence of resonance at the natural resonance frequency of the building where the elevator is installed is predicted from the vibration caused by the earthquake, and the building resonates after a predetermined time due to the vibration. To prevent accidents where the car is trapped in the hoistway.
In addition to the elevator vibrating due to the large vibration of the building due to resonance, when the building shakes due to the long-period vibration of the earthquake, the ropes and cables in the hoistway contact each device due to resonance, There is a risk of damage. In general, the greater the earthquake, the larger the fault, and the longer it takes to start and stop the destruction. Therefore, it is said that the wave of a large earthquake contains many low frequency (long period) components and the characteristic frequency changes to a low frequency. The conventional elevator driving apparatus as described above has a problem in that there is a risk of continuing traveling due to long-period shaking of the building in which the sensor does not operate.

この発明は、上記のような問題点を解消するためになされたもので、地震により発生する振動のうちの長周期振動を効率よく抽出して管制運転制御に利用する運転装置を得ることを目的とする。   The present invention was made to solve the above problems, and an object of the present invention is to obtain a driving device that efficiently extracts long-period vibrations from vibrations generated by earthquakes and uses them for control operation control. And

この発明に係わるエレベータの運転装置は、地震を感知して所定の管制運転を行うエレベータの運転装置において、かごの走行距離に比例したパルス信号を発生するパルス発生器と、目標の速度パターンを生成する速度パターン指令発生回路と、パルス信号をもとに実速度を算出する実速度演算回路と、特定の振動成分を抽出するバンドパスフィルタ回路と、異常判定回路とを備え、速度パターン指令発生回路からの速度指令値と実速度演算回路からの実速度値の差分をもとにバンドパスフィルタ回路によって長周期の振動成分を抽出し、振動成分が所定の大きさ以上で所定の時間以上継続したときに、異常判定回路によりこの振動成分が地震発生によるものであると判断してエレベータを管制運転制御するものである。   An elevator operating apparatus according to the present invention is an elevator operating apparatus that performs a predetermined control operation by detecting an earthquake, and generates a pulse generator that generates a pulse signal proportional to the traveling distance of a car and a target speed pattern. Speed pattern command generating circuit, an actual speed calculating circuit for calculating an actual speed based on a pulse signal, a bandpass filter circuit for extracting a specific vibration component, and an abnormality determining circuit, and a speed pattern command generating circuit Based on the difference between the speed command value from the actual speed and the actual speed value from the actual speed calculation circuit, a long-period vibration component is extracted by the bandpass filter circuit, and the vibration component continues for a predetermined time with a predetermined magnitude or more. Sometimes, the abnormality determination circuit determines that this vibration component is due to the occurrence of an earthquake, and controls the operation of the elevator.

また、かごの走行距離に比例したパルス信号を発生するパルス発生器と、特定の振動成分を抽出するバンドパスフィルタ回路と、異常判定回路とを備え、パルス信号をもとにバンドパスフィルタ回路によって長周期の振動成分を抽出し、振動成分が所定の大きさ以上で所定の時間以上継続したときに、異常判定回路によりこの振動成分が地震発生によるものであると判断してエレベータを管制運転制御するものである。   In addition, a pulse generator that generates a pulse signal proportional to the traveling distance of the car, a band-pass filter circuit that extracts a specific vibration component, and an abnormality determination circuit are provided. When a long-period vibration component is extracted and the vibration component continues for a predetermined time with a predetermined magnitude or more, the abnormality determination circuit determines that this vibration component is due to the occurrence of an earthquake and controls the operation of the elevator. To do.

この発明によれば、速度パターン指令発生回路からの速度指令値と、パルス発生器のパルス信号をもとに実速度演算回路で求めた実速度値とから、フィルタ回路により長周期の振動成分を抽出し、この長周期の振動成分が地震によるものであると判断したとき、エレベータを管制運転制御するようにしたので、地震による振動のうち、特に長周期の振動を確実に検出して、長周期の振動により昇降路内のロープやケーブル類が共振により各機器と接触したり、損傷したりするのを防止することができ、エレベータ運行の安全性を向上させることができる。
また、パルス発生器のパルス信号をもとに、フィルタ回路により長周期の振動成分を抽出し、この長周期の振動成分が地震によるものであると判断したとき、エレベータを管制運転制御するようにしたので、簡単な構成で、上記と同様な効果を得ることができる。
According to the present invention, the filter circuit generates a long-period vibration component from the speed command value from the speed pattern command generation circuit and the actual speed value obtained by the actual speed calculation circuit based on the pulse signal of the pulse generator. When it was determined that this long-period vibration component was caused by an earthquake, the elevator was controlled and controlled. It is possible to prevent the ropes and cables in the hoistway from contacting and damaging each device due to resonance due to the vibration of the cycle, and the safety of the elevator operation can be improved.
Also, based on the pulse signal of the pulse generator, a long-cycle vibration component is extracted by a filter circuit, and when it is determined that this long-cycle vibration component is caused by an earthquake, the elevator is controlled and controlled. Therefore, the same effect as described above can be obtained with a simple configuration.

実施の形態1.
図1はこの発明の実施の形態1であるエレベータの運転装置の概略構成図であり、図2は図1のマイクロコンピュータの演算部を示すブロック図である。図1において、エレベータは、かご1と釣り合い錘2を結ぶロープ3が、図示しない電動機に連結された巻上機4のシーブに巻掛けられて、つるべ式に上下に昇降する。巻上機4の回転軸に、巻上機4の回転数に比例した、すなわち、かご1の移動距離に比例したパルスを発生する、例えば回転式エンコーダからなるパルス発生器5が設けられている。そして、このパルス発生器5からのパルス信号を計測する計数回路6と、地震を感知する地震感知器7が設けられており、これらの信号をマイクロコンピュータ8に取り込んで所定の演算処理を行い、処理結果を電力変換回路9に伝達する。電力変換回路9は3相の商用電源をもとに、上記処理結果に基づき所定の3相の交流電力にして巻上機4に供給するように構成されている。
なお、マイクロコンピュータ8は、CPUと、RAM,ROM等の記憶部と、入・出力ポートとで主に構成されている。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram of an elevator operating apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a block diagram showing a calculation unit of the microcomputer of FIG. In FIG. 1, an elevator moves up and down in a slidable manner, with a rope 3 that connects a car 1 and a counterweight 2 wound around a sheave of a hoisting machine 4 connected to an electric motor (not shown). The rotation shaft of the hoisting machine 4 is provided with a pulse generator 5 made of, for example, a rotary encoder that generates a pulse proportional to the rotational speed of the hoisting machine 4, that is, proportional to the moving distance of the car 1. . A counting circuit 6 for measuring a pulse signal from the pulse generator 5 and an earthquake detector 7 for detecting an earthquake are provided, and these signals are taken into a microcomputer 8 to perform predetermined arithmetic processing. The processing result is transmitted to the power conversion circuit 9. The power conversion circuit 9 is configured to supply the hoisting machine 4 with a predetermined three-phase AC power based on the processing result based on a three-phase commercial power source.
The microcomputer 8 is mainly composed of a CPU, a storage unit such as a RAM and a ROM, and input / output ports.

次に、図2によりマイクロコンピュータ8の演算部10について説明する。計数回路6からの信号は、目標速度パターンを生成する速度パターン指令発生回路11と、計数回路6から出力される階段状のパルス信号をもとに実速度を算出する実速度演算回路12に入力される。速度パターン指令発生回路11からの速度パターン指令値と、実速度演算回路12からの実速度信号をもとに、速度制御演算回路13において、状態に応じた最適なモータトルク電流指令を算出する。この算出結果は電流制御回路14に送られ、トルク電流指令値をもとに電流指令信号を算出し、電力変換回路9に供給する。   Next, the calculation unit 10 of the microcomputer 8 will be described with reference to FIG. A signal from the counting circuit 6 is input to a speed pattern command generation circuit 11 that generates a target speed pattern and an actual speed calculation circuit 12 that calculates an actual speed based on the stepped pulse signal output from the counting circuit 6. Is done. Based on the speed pattern command value from the speed pattern command generation circuit 11 and the actual speed signal from the actual speed calculation circuit 12, the speed control calculation circuit 13 calculates an optimal motor torque current command corresponding to the state. This calculation result is sent to the current control circuit 14, a current command signal is calculated based on the torque current command value, and is supplied to the power conversion circuit 9.

一方、地震発生時には、地震感知器7からの信号をコンタクトレシーバ入力処理回路15に取り込み、地震感知信号をもとに運行制御回路16にて地震発生を認識して走行状態に応じ最寄り階への停止指令又は非常停止指令を演算し、速度パターン指令発生回路11又は電力変換回路9に送信する。
更に、速度検出用としてパルス発生器5から計数回路6を介して取り込み、実速度演算回路12で算出された実速度信号から、地震時に発生する振動周波数成分をバンドパスフィルタ回路17で抽出し、この出力信号をもとに、異常判定回路18によって異常判定処理を行う。異常判定回路18ではバンドパスフィルタ回路17の出力信号が所定の値より大きく所定の時間以上継続した場合に地震発生と判定し、その結果を運行制御回路16に入力することにより、運行制御回路16では地震管制運転を実施するように電力変換回路9に指示を出すように構成されている。
On the other hand, when an earthquake occurs, the signal from the earthquake detector 7 is taken into the contact receiver input processing circuit 15 and the operation control circuit 16 recognizes the occurrence of the earthquake based on the earthquake detection signal and returns to the nearest floor according to the traveling state. A stop command or emergency stop command is calculated and transmitted to the speed pattern command generation circuit 11 or the power conversion circuit 9.
Furthermore, the vibration frequency component generated at the time of the earthquake is extracted by the bandpass filter circuit 17 from the actual speed signal calculated by the actual speed calculation circuit 12 from the pulse generator 5 through the counting circuit 6 for speed detection. Based on this output signal, the abnormality determination circuit 18 performs abnormality determination processing. The abnormality determination circuit 18 determines that an earthquake has occurred when the output signal of the band-pass filter circuit 17 is greater than a predetermined value and continues for a predetermined time or more, and inputs the result to the operation control circuit 16, whereby the operation control circuit 16. Then, it is configured to issue an instruction to the power conversion circuit 9 so as to perform the seismic control operation.

次に、本発明におけるバンドパスフィルタ回路17と異常判定回路18による地震管制運転処理機能を図3のフローチャート図により説明する。図の右側に各ステップでの処理内容が理解しやすいようにグラフを示している。
先ず、速度パターン指令発生回路11で生成される速度指令値を取得し、記憶部に変数名Patとして格納すると共に、実速度演算回路12から実速度値を取得し変数名Wr1に格納する(ステップ1。以下、S1のように略す)。次に、上記速度指令値Patと実速度値Wr1との差分を算出し、変数ΔErr1に格納する(S2)。次に、バンドパスフィルタ回路17にて、ΔErr1を入力してフィルタ演算を行う(S3)。ここでは、例えば、実際のデジタル演算回路として、下記式1で表される伝達関数をZ変換した回路構成とする。
1/{(1+T1×S)(1+T2×S)}・・・・・・・(1)
ここで、T1とT2は長周期振動成分のみを抽出する時定数で任意の値とする。Sはラプラス関数を示し、1/Sで積分要素となる。抽出された信号は、フローチャート図の右側のグラフに示すように、特定周波数成分の振動成分を有する信号となる。
Next, the seismic control operation processing function by the band-pass filter circuit 17 and the abnormality determination circuit 18 in the present invention will be described with reference to the flowchart of FIG. A graph is shown on the right side of the figure so that the processing contents at each step can be easily understood.
First, a speed command value generated by the speed pattern command generation circuit 11 is acquired and stored as a variable name Pat in the storage unit, and an actual speed value is acquired from the actual speed calculation circuit 12 and stored in a variable name Wr1 (step) 1. Hereinafter, abbreviated as S1). Next, the difference between the speed command value Pat and the actual speed value Wr1 is calculated and stored in the variable ΔErr1 (S2). Next, the band pass filter circuit 17 inputs ΔErr1 to perform a filter operation (S3). Here, for example, an actual digital arithmetic circuit has a circuit configuration in which a transfer function represented by the following formula 1 is Z-transformed.
1 / {(1 + T1 × S) (1 + T2 × S)} (1)
Here, T1 and T2 are time constants for extracting only long-period vibration components and are arbitrary values. S represents a Laplace function, and becomes an integral element at 1 / S. The extracted signal is a signal having a vibration component having a specific frequency component as shown in the graph on the right side of the flowchart.

次に、異常判定回路18において、ステップ3で抽出された特定周波数成分、すなわち長周期振動成分の振幅を持った信号ΔErr2が、所定の値より大きく、かつ、所定に時間以上継続したかどうかを判断し(S4)、YESの場合は長周期振動の地震が発生していると判断し、ステップ5の処理に移行し、地震管制運転制御信号をONさせて運行制御回路16に伝達する(S5)。NOの場合はステップ6に移行し、地震管制運転制御信号をOFFにして(S6)、以後、再びこの処理を最初から繰り返す。
上記S4でタイマー処理を設けたのは、人の乗降時の振動による誤検出、又は、地震以外の振動要因による誤検出を防止するために、異常状態を所定時間継続したときのみ抽出するようにしたものである。
Next, in the abnormality determination circuit 18, it is determined whether or not the signal ΔErr2 having the amplitude of the specific frequency component extracted in step 3, that is, the long-period vibration component is larger than a predetermined value and continues for a predetermined time or more. Judgment is made (S4). If YES, it is judged that a long-period vibration earthquake has occurred, the process proceeds to step 5, and the seismic control operation control signal is turned on and transmitted to the operation control circuit 16 (S5). ). In the case of NO, the process proceeds to step 6 where the seismic control operation control signal is turned OFF (S6), and thereafter this process is repeated from the beginning.
The reason why the timer process is provided in the above S4 is to extract only when an abnormal state continues for a predetermined time in order to prevent erroneous detection due to vibration when people get on and off, or erroneous detection due to vibration factors other than earthquakes. It is a thing.

上記の処理に基づき、運行制御回路16は異常判定回路18から地震管制運転制御信号を受けたときは、地震発生を認識して走行状態に応じて最寄り階への停止指令を速度パターン指令発生回路11へ送信すると共に、非常停止指令を電力変換回路9へ送信する。   Based on the above processing, when the operation control circuit 16 receives the seismic control operation control signal from the abnormality determination circuit 18, the operation control circuit 16 recognizes the occurrence of the earthquake and issues a stop command to the nearest floor according to the traveling state. 11 and an emergency stop command is transmitted to the power conversion circuit 9.

以上のように、本実施の形態の発明によれば、速度パターン指令発生回路からの速度指令値と、パルス発生器のパルス信号をもとに実速度演算回路で求めた実速度値とから、バンドパスフィルタ回路により長周期の振動成分を抽出し、この長周期の振動成分が地震によるものであると判断したとき、エレベータを管制運転制御するようにしたので、地震により発生する振動のうちの長周期振動を効率よく抽出し、走行状態に応じて地震管制運転制御ができるため、長周期の振動により昇降路内のロープやケーブル類が共振により各機器と接触したり損傷したりするのを防止することができ、エレベータ運行の安全性を向上させることができる。
また、地震感知器が故障したような場合でも、長周期の振動を抽出して地震を感知できるで、エレベータ運転の信頼性が向上する。
As described above, according to the invention of the present embodiment, from the speed command value from the speed pattern command generation circuit and the actual speed value obtained by the actual speed calculation circuit based on the pulse signal of the pulse generator, When a long-period vibration component is extracted by a band-pass filter circuit and it is determined that this long-period vibration component is caused by an earthquake, control of the elevator is controlled. Long-period vibrations can be extracted efficiently and seismic control operation control can be performed according to the running state, so that long-period vibrations can cause the ropes and cables in the hoistway to contact and be damaged by each device due to resonance. Can be prevented, and the safety of elevator operation can be improved.
In addition, even when the earthquake sensor is out of order, it is possible to detect earthquakes by extracting long-period vibrations, improving the reliability of elevator operation.

実施の形態2.
図4はこの発明の実施の形態2におけるエレベータの運転装置のマイクロコンピュータの演算部19を示すブロック図である。運転装置全体の概略構成図は実施の形態1の図1と同等である。実施の形態1と異なるのは、演算部の中の、バンドパスフィルタ回路への入力信号部なので、相違点を中心に説明する。
Embodiment 2. FIG.
FIG. 4 is a block diagram showing a computing unit 19 of the microcomputer of the elevator operating apparatus according to Embodiment 2 of the present invention. A schematic configuration diagram of the entire operation apparatus is the same as that of FIG. The difference from the first embodiment is the input signal part to the band-pass filter circuit in the arithmetic part, so the difference will be mainly described.

図4において、図2と同等部分は同一符号で示し、説明は省略する。図2と異なり本実施の形態では、計数回路6からのパルス信号を直接バンドパスフィルタ回路17に入力している。それ以外は図2と同等である。
このような構成により、マイクロコンピュータの演算部19では次のように処理する。エレベータの加減速度による通常状態で振動成分は設備によって決まるので既知の値である。その中の長周期成分も既知なので、バンドパスフィルタ回路でその長周期成分を除き、それ以外の長周期成分を抽出するように設定する。こうすれば、バンドパスフィルタで抽出された周波数成分は、地震による長周期成分が抽出されることになる。以後、実施の形態1と同様に、抽出した振動成分が所定の大きさ以上で所定の時間以上継続したときに、異常判定回路18により振動成分が地震発生によるものであると判断してエレベータを管制運転制御する。
4, the same parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. Unlike FIG. 2, in the present embodiment, the pulse signal from the counting circuit 6 is directly input to the band-pass filter circuit 17. The rest is the same as FIG.
With this configuration, the microcomputer 19 performs the following processing. In a normal state due to the acceleration / deceleration of the elevator, the vibration component is a known value because it depends on the equipment. Since the long-period component is known, the band-pass filter circuit is set so that the long-period component is removed and other long-period components are extracted. By doing so, the frequency component extracted by the bandpass filter is extracted from the long-period component due to the earthquake. Thereafter, as in the first embodiment, when the extracted vibration component is a predetermined magnitude or more and continues for a predetermined time or more, the abnormality determination circuit 18 determines that the vibration component is due to the occurrence of an earthquake and moves the elevator. Control operation control.

以上のように、本実施の形態の発明によれば、かごの走行距離に比例したパルス信号を発生するパルス発生器からのパルス信号をもとに、バンドパスフィルタ回路によって長周期の振動成分を抽出し、振動成分が所定の大きさ以上で所定の時間以上継続したときに、異常判定回路により振動成分が地震発生によるものであると判断してエレベータを管制運転制御するようにしたので、実施の形態1に比べ、簡単な構成で地震により発生する振動のうちの長周期振動を効率よく抽出でき、実施の形態1と同様の効果を得ることができる。   As described above, according to the invention of the present embodiment, a long-period vibration component is generated by a bandpass filter circuit based on a pulse signal from a pulse generator that generates a pulse signal proportional to the traveling distance of the car. When the vibration component is extracted and continues for a predetermined time with a magnitude greater than or equal to the predetermined time, the abnormality determination circuit determines that the vibration component is due to the occurrence of an earthquake and controls the elevator operation. Compared to the first embodiment, it is possible to efficiently extract long-period vibrations among vibrations generated by an earthquake with a simple configuration, and the same effects as in the first embodiment can be obtained.

地震発生時に管制運転を行なうエレベータの運転装置に広く適用できる。   The present invention can be widely applied to elevator operation devices that perform control operation when an earthquake occurs.

この発明の実施の形態1によるエレベータの運転装置の概略構成図である。1 is a schematic configuration diagram of an elevator operating apparatus according to Embodiment 1 of the present invention. 図1のマイクロコンピュータの演算部を示すブロック図である。It is a block diagram which shows the calculating part of the microcomputer of FIG. 実施の形態1における地震管制運転機能のフローチャート図である。FIG. 3 is a flowchart of the seismic control operation function in the first embodiment. この発明の実施の形態2によるエレベータの運転装置のマイクロコンピュータの演算部を示すブロック図である。It is a block diagram which shows the calculating part of the microcomputer of the operating device of the elevator by Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 かご 5 パルス発生器
6 計数回路 11 速度パターン指令発生回路
12 実速度演算回路 17 バンドパスフィルタ回路
18 異常判定回路。
DESCRIPTION OF SYMBOLS 1 Car 5 Pulse generator 6 Count circuit 11 Speed pattern command generation circuit 12 Actual speed calculation circuit 17 Band pass filter circuit 18 Abnormality determination circuit.

Claims (2)

地震を感知して所定の管制運転を行うエレベータの運転装置において、かごの走行距離に比例したパルス信号を発生するパルス発生器と、目標の速度パターンを生成する速度パターン指令発生回路と、上記パルス信号をもとに実速度を算出する実速度演算回路と、特定の振動成分を抽出するバンドパスフィルタ回路と、異常判定回路とを備え、上記速度パターン指令発生回路からの速度指令値と上記実速度演算回路からの実速度値の差分をもとに上記バンドパスフィルタ回路によって長周期の振動成分を抽出し、上記振動成分が所定の大きさ以上で所定の時間以上継続したときに、上記異常判定回路により上記振動成分が地震発生によるものであると判断してエレベータを管制運転制御することを特徴とするエレベータの運転装置。   In an elevator driving device that detects an earthquake and performs predetermined control operation, a pulse generator that generates a pulse signal proportional to the travel distance of the car, a speed pattern command generation circuit that generates a target speed pattern, and the pulse An actual speed calculation circuit that calculates an actual speed based on the signal, a bandpass filter circuit that extracts a specific vibration component, and an abnormality determination circuit, and the speed command value from the speed pattern command generation circuit and the actual speed When a long-period vibration component is extracted by the band-pass filter circuit based on the difference between the actual speed values from the speed calculation circuit and the vibration component continues for a predetermined time with a predetermined magnitude or more, the abnormality An elevator operating device characterized in that a control circuit determines that the vibration component is caused by an earthquake and controls the elevator. 地震を感知して所定の管制運転を行うエレベータの運転装置において、かごの走行距離に比例したパルス信号を発生するパルス発生器と、特定の振動成分を抽出するバンドパスフィルタ回路と、異常判定回路とを備え、上記パルス信号をもとに上記バンドパスフィルタ回路によって長周期の振動成分を抽出し、上記振動成分が所定の大きさ以上で所定の時間以上継続したときに、上記異常判定回路により上記振動成分が地震発生によるものであると判断してエレベータを管制運転制御することを特徴とするエレベータの運転装置。   In an elevator driving device that senses an earthquake and performs predetermined control operation, a pulse generator that generates a pulse signal proportional to the traveling distance of the car, a bandpass filter circuit that extracts a specific vibration component, and an abnormality determination circuit A long-period vibration component is extracted by the band-pass filter circuit based on the pulse signal, and when the vibration component continues for a predetermined time with a predetermined magnitude or more, the abnormality determination circuit An elevator operating device characterized in that it is determined that the vibration component is caused by an earthquake and the elevator is controlled and controlled.
JP2005016674A 2005-01-25 2005-01-25 Elevator operating device Pending JP2006206200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016674A JP2006206200A (en) 2005-01-25 2005-01-25 Elevator operating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016674A JP2006206200A (en) 2005-01-25 2005-01-25 Elevator operating device

Publications (1)

Publication Number Publication Date
JP2006206200A true JP2006206200A (en) 2006-08-10

Family

ID=36963471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016674A Pending JP2006206200A (en) 2005-01-25 2005-01-25 Elevator operating device

Country Status (1)

Country Link
JP (1) JP2006206200A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204223A (en) * 2006-02-02 2007-08-16 Hitachi Ltd Control operation device and control operation method of elevator
WO2008026246A1 (en) * 2006-08-29 2008-03-06 Mitsubishi Electric Corporation Elevator control apparatus and control method
JP2008081290A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Rope rolling detector for elevator
JP2008090534A (en) * 2006-09-29 2008-04-17 Takenaka Komuten Co Ltd Earthquake damage decision device, earthquake damage decision method, and earthquake damage decision program
JP2009007098A (en) * 2007-06-27 2009-01-15 Toshiba Elevator Co Ltd Governor rope condition detecting device for elevator, and control system for elevator
KR100919548B1 (en) * 2007-12-12 2009-10-01 미쓰비시덴키 가부시키가이샤 Elevator control apparatus and control method
KR100932588B1 (en) * 2006-10-18 2009-12-17 미쓰비시덴키 가부시키가이샤 Control device of elevator
JP2012153480A (en) * 2011-01-26 2012-08-16 Toshiba Elevator Co Ltd Elevator control device, elevator device provided with the elevator control device, and elevator control method
CN111703992A (en) * 2020-06-05 2020-09-25 猫岐智能科技(上海)有限公司 Set frequency band vibration detection method and system, elevator detection method and elevator fault identification method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204223A (en) * 2006-02-02 2007-08-16 Hitachi Ltd Control operation device and control operation method of elevator
WO2008026246A1 (en) * 2006-08-29 2008-03-06 Mitsubishi Electric Corporation Elevator control apparatus and control method
JP5205969B2 (en) * 2006-08-29 2013-06-05 三菱電機株式会社 Elevator control device and control method
US7926620B2 (en) 2006-08-29 2011-04-19 Mitsubishi Electric Corporation Elevator control apparatus and control method
JP4607083B2 (en) * 2006-09-28 2011-01-05 三菱電機株式会社 Elevator rope roll detection device
JP2008081290A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Rope rolling detector for elevator
JP2008090534A (en) * 2006-09-29 2008-04-17 Takenaka Komuten Co Ltd Earthquake damage decision device, earthquake damage decision method, and earthquake damage decision program
KR100935506B1 (en) 2006-10-18 2010-01-06 미쓰비시덴키 가부시키가이샤 Elevator controlling apparatus and its method
KR100935507B1 (en) * 2006-10-18 2010-01-06 미쓰비시덴키 가부시키가이샤 Elevator controlling apparatus and its method
KR100932588B1 (en) * 2006-10-18 2009-12-17 미쓰비시덴키 가부시키가이샤 Control device of elevator
CN101607654B (en) * 2006-10-18 2013-03-06 三菱电机株式会社 Elevator controlling apparatus
JP2009007098A (en) * 2007-06-27 2009-01-15 Toshiba Elevator Co Ltd Governor rope condition detecting device for elevator, and control system for elevator
KR100919548B1 (en) * 2007-12-12 2009-10-01 미쓰비시덴키 가부시키가이샤 Elevator control apparatus and control method
JP2012153480A (en) * 2011-01-26 2012-08-16 Toshiba Elevator Co Ltd Elevator control device, elevator device provided with the elevator control device, and elevator control method
CN111703992A (en) * 2020-06-05 2020-09-25 猫岐智能科技(上海)有限公司 Set frequency band vibration detection method and system, elevator detection method and elevator fault identification method

Similar Documents

Publication Publication Date Title
JP2006206200A (en) Elevator operating device
US8847529B2 (en) Electric motor control
CN105452140B (en) For controlling the method and elevator of elevator
US7882937B2 (en) Elevating machine control apparatus
JP5704700B2 (en) Elevator control device and sensor
JP4896711B2 (en) Elevator control device
JP6610006B2 (en) Elevator diagnostic equipment
JP2009154988A (en) System for preventing traveling of elevator with door opened
JP2009215057A (en) Compulsory deceleration control system of elevator
JP4412175B2 (en) Elevator governor
CN101674996B (en) Elevator
EP3703250A1 (en) Servo driver and state change detecting method
CN105293231B (en) Elevator control gear
JP6766684B2 (en) How to measure dynamic torque
JP6457589B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
CN105174064A (en) Crane machinery brake self-check method and crane machinery brake self-check device
JP2021031256A (en) Abnormality monitoring system for elevator
JP5809788B2 (en) Electric hoist with earthing stop mechanism
EP3828648B1 (en) Motor speed estimation for drive safety system
JP2008081290A (en) Rope rolling detector for elevator
JPH072450A (en) Emergency operating device for elevator
JP2007099494A (en) Operation testing device for elevator governor
KR101801299B1 (en) Drive control device for motor using fault diagnosis information
KR100737676B1 (en) Sensorless vector controled inverter for lifting machine with overload protection and fail safe
JP2004345751A (en) Safety device for elevator