JP2006205243A - Mold for continuous casting and continuous casting method for steel - Google Patents

Mold for continuous casting and continuous casting method for steel Download PDF

Info

Publication number
JP2006205243A
JP2006205243A JP2005023406A JP2005023406A JP2006205243A JP 2006205243 A JP2006205243 A JP 2006205243A JP 2005023406 A JP2005023406 A JP 2005023406A JP 2005023406 A JP2005023406 A JP 2005023406A JP 2006205243 A JP2006205243 A JP 2006205243A
Authority
JP
Japan
Prior art keywords
mold
continuous casting
lubricant
wetting angle
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005023406A
Other languages
Japanese (ja)
Other versions
JP4462052B2 (en
Inventor
Seiji Itoyama
誓司 糸山
Makoto Suzuki
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005023406A priority Critical patent/JP4462052B2/en
Publication of JP2006205243A publication Critical patent/JP2006205243A/en
Application granted granted Critical
Publication of JP4462052B2 publication Critical patent/JP4462052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for continuous casting in which ununiform initial solidification can be suppressed, and further, the suppression effect can be secured/maintained over a long period. <P>SOLUTION: Regarding the mold for continuous casting, on the surface of a mold copper plate 1 on the side in contact with a solidified shell, each covering layer 4 composed of a material whose wetting angle with a lubricant used in the mold as the one between the mold and the solidified shell is made narrowest compared with the wetting angle between the lubricant and copper, the wetting angle between the lubricant and chromium and the wetting angle between the lubricant and nickel is formed at a regular pattern. In this case, preferably, the covering layer is a TiN layer covered by a physical vapor deposition process (PVD process), or, the thickness of the covering layer is controlled to 2 to 20 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、連続鋳造用鋳型及び鋼の連続鋳造方法に関し、詳しくは、鋳型内の凝固開始位置付近における不均一凝固を抑制し、この不均一凝固を起因として生成する鋳片の表面欠陥を防止することのできる連続鋳造用鋳型、並びに、この鋳型を用いた鋼の連続鋳造方法に関するものである。   The present invention relates to a continuous casting mold and a continuous casting method of steel, and more specifically, suppresses non-uniform solidification near the solidification start position in the mold and prevents surface defects of a slab generated due to the non-uniform solidification. The present invention relates to a continuous casting mold that can be used, and a steel continuous casting method using the mold.

鋼のスラブ鋳片を連続鋳造機で製造する場合、溶鋼を水冷鋳型内で冷却し、鋳型との接触面に凝固殻を生成させながら凝固殻を鋳型下方に引き抜くが、この凝固殻は或る程度以上の冷却の不均一が発生すると凝固殻の表面が凹凸になりやすく、この表面の凹凸により更なる凝固殻成長の不均一化を招く結果となり、最悪の場合には鋳片の表面に縦割れが発生する。このような表面縦割れが発生すると、圧延工程への鋳片の搬送に先立って、縦割れなどの表面欠陥部の除去作業、所謂手入れ作業を要することとなる。このような欠陥発生の傾向は、鋳造速度(=鋳片引き抜き速度)の増加に伴って著しく増加する傾向にあり、鋼のスラブ連続鋳造機における鋳造速度が、例えば10年前と比較して約1.5〜2倍に増速していることも、今日の手入れ作業増大の一要因になっている。最近では、薄スラブ連続鋳造機でも同様の問題が顕在化しており、ストリップキャスチングや箔帯の連続鋳造においては、表面欠陥は手入れ除去ができないため、重大な問題である。   When steel slab slabs are manufactured on a continuous casting machine, the molten steel is cooled in a water-cooled mold, and the solidified shell is drawn down while producing a solidified shell on the contact surface with the mold. If the cooling unevenness exceeds a certain level, the surface of the solidified shell tends to become uneven, and this unevenness of the surface leads to further unevenness of solidified shell growth. Cracking occurs. When such surface vertical cracks occur, a work for removing surface defect portions such as vertical cracks, that is, a so-called maintenance work, is required prior to conveying the slab to the rolling process. Such a tendency of occurrence of defects tends to increase remarkably with an increase in casting speed (= slab drawing speed), and the casting speed in a steel slab continuous casting machine is about 10 years ago compared to, for example, 10 years ago. The increase in speed by 1.5 to 2 times is also a factor in the increase in maintenance work today. In recent years, the same problem has become apparent even in a thin slab continuous casting machine. In strip casting and continuous casting of foil strips, surface defects cannot be treated and removed, which is a serious problem.

従って、鋳型内における凝固初期の不均一冷却に伴う凝固殻の不均一成長は、優れた経済性からスラブ鋳片では適用が益々拡大されつつある直送加熱(「ホットチャージ」ともいう)或いは直送圧延(「ダイレクトチャージ」ともいう)の適用阻害要因であると同時に、生産性向上の要件である高速鋳造化の阻害要因にもなっている。   Therefore, the non-uniform growth of the solidified shell accompanying the non-uniform cooling in the initial stage of solidification in the mold is a direct feed heating (also called “hot charge”) or direct feed rolling which is increasingly being applied to slab slabs due to its excellent economic efficiency. (Also referred to as “direct charge”), and at the same time, hinders high-speed casting, which is a requirement for improving productivity.

従来、この凝固初期の不均一冷却に伴う連続鋳造鋳片における縦割れ発生の防止方法としては、凝固の初期段階(以下「初期凝固」と記す)において均一な緩冷却を行い、凝固殻の成長を均一化させることが肝要であると考えられており、そのための対策が行なわれている。   Conventionally, as a method of preventing the occurrence of vertical cracks in continuous cast slabs due to this non-uniform cooling in the initial stage of solidification, uniform slow cooling is performed in the initial stage of solidification (hereinafter referred to as “initial solidification”), and the solidified shell grows. It is thought that it is important to equalize and measures are being taken for that purpose.

例えば、非特許文献1には、凝固殻と接触する鋳型の内壁面に凹凸を付与することで鋳片の表面性状を改善した技術が記載されている。   For example, Non-Patent Document 1 describes a technique for improving the surface properties of a slab by providing irregularities on the inner wall surface of a mold that comes into contact with a solidified shell.

特許文献1には、緩冷却を目的とする連続鋳造用鋳型として、鋳型銅板表面にニッケルメッキを500μm以上の厚みに付与し、化学腐食によりニッケルメッキ層に縦溝加工を施した後、ニッケルメッキの表面に更に20μm以上の厚みの硬化層(ニッケル−燐メッキまたはクロムメッキ)を設けた連続鋳造用鋳型が開示されている。その技術思想は、鋳型表面の縦溝加工部(凹部)に形成される空気層によって伝熱抵抗を大きくして緩冷却化させるというものである。硬化層の形成は、使用中の溝形状の維持とそれによる効果を長時間に亘って持続させる目的であると推定される。   In Patent Document 1, as a casting mold for continuous cooling for the purpose of slow cooling, nickel plating is applied to the surface of the mold copper plate to a thickness of 500 μm or more, and the nickel plating layer is subjected to vertical groove processing by chemical corrosion, followed by nickel plating. Further, there is disclosed a continuous casting mold in which a hardened layer (nickel-phosphorous plating or chromium plating) having a thickness of 20 μm or more is further provided on the surface. The technical idea is that the heat transfer resistance is increased by the air layer formed in the flutes (recesses) on the surface of the mold so that it is cooled slowly. The formation of the hardened layer is presumed to be the purpose of maintaining the groove shape during use and maintaining the effect for a long time.

また、特許文献2には、凝固殻と接触する鋳型表面に深さが100〜1000μmの凹部を設け、この凹部に溶融したモールドパウダーを侵入・固化させ、この固着したモールドパウダー層による伝熱抵抗の増加を利用して緩冷却化させる方法が開示されている。   In Patent Document 2, a recess having a depth of 100 to 1000 μm is provided on the mold surface in contact with the solidified shell, and melted mold powder enters and solidifies in the recess, and the heat transfer resistance due to the fixed mold powder layer. A method of slowly cooling by using the increase of the above is disclosed.

更に、特許文献3及び特許文献4には、銅よりも熱伝導率度の低い異種金属或いは合金の格子状のメッキを鋳型銅板の表面に施した連続鋳造用鋳型が開示されている。格子状のメッキ部は周囲の銅母材部よりも熱伝導率が低いことを利用して、緩冷却化させるというものである。   Further, Patent Document 3 and Patent Document 4 disclose a continuous casting mold in which a surface of a mold copper plate is plated with a dissimilar metal or alloy having a thermal conductivity lower than that of copper. The grid-like plated portion is slowly cooled by utilizing the fact that the thermal conductivity is lower than that of the surrounding copper base material portion.

尚、鋳型の緩冷却を目的とした上記の従来方法は、特許文献3及び特許文献4では、加工した凹部にメッキを施して使用時には平滑な面になってはいるが、何れも凝固殻と接触する鋳型の表面に凹部を設けるための機械加工作業を必要とした技術である。
中井等、鉄と鋼、Vol.73(1987)、p498−504 特開昭61−129257号公報 特開平9−94634号公報 特開平7−284896号公報 特開平10−29043号公報
In the above-mentioned conventional methods for the purpose of slow cooling of the mold, in Patent Document 3 and Patent Document 4, the processed recesses are plated to have a smooth surface when used. This is a technique that requires machining work to provide a recess on the surface of the mold that comes into contact.
Nakai et al., Iron and Steel, Vol.73 (1987), p498-504 JP-A-61-129257 Japanese Patent Laid-Open No. 9-94634 JP-A-7-284896 Japanese Patent Laid-Open No. 10-29043

しかしながら、上記の従来技術には、以下の問題点があった。   However, the above prior art has the following problems.

即ち、使用初期にはそれなりの効果が認められるが、長時間の使用や熱負荷が大きい高速鋳造時には、鋳型銅板の加工溝先端部からの割れの生成や、加工部に充填した異種金属及び合金の鋳型銅板との境界からの剥離などが発生し、長期間の連続使用ができなくなるという問題があった。また、鋳型内溶鋼の流動制御を移動磁場や交流磁場で実施する場合には、鋳型表面に施される異種金属或いは合金として磁性体を使用すると、そこに渦電流が発生するため磁場が減衰し、そのため、鋳型背面で発生させる磁場を効率良く鋳型内の溶鋼に浸透させることができないという問題があった。   In other words, a certain effect is recognized at the beginning of use, but during long-time use and high-speed casting with a large thermal load, cracks are generated from the tip of the processing groove of the mold copper plate, and dissimilar metals and alloys filled in the processing portion. There was a problem that peeling from the boundary with the mold copper plate of the mold occurred and continuous use for a long time became impossible. In addition, when flow control of molten steel in a mold is performed with a moving magnetic field or an alternating magnetic field, if a magnetic material is used as a dissimilar metal or alloy applied to the mold surface, an eddy current is generated there, and the magnetic field is attenuated. For this reason, there has been a problem that the magnetic field generated on the back surface of the mold cannot efficiently penetrate into the molten steel in the mold.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳型内における不均一な初期凝固を抑制することのできる鋳型であって、しかもその抑制効果を長期間に亘って確保・維持することの可能な連続鋳造用鋳型を提供することであり、同時に、この連続鋳造用鋳型を用いた、表面性状に優れる鋳片を製造することのできる、鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is a mold capable of suppressing non-uniform initial solidification in the mold, and ensuring the suppression effect over a long period of time. It is to provide a continuous casting mold that can be maintained, and at the same time, to provide a continuous casting method of steel that can produce a slab having excellent surface properties using this continuous casting mold. That is.

上記課題を解決するための第1の発明に係る連続鋳造用鋳型は、凝固殻と接触する側の鋳型表面に、鋳型と凝固殻との潤滑剤として鋳型内で使用される潤滑剤との濡れ角を、潤滑剤と銅との濡れ角、潤滑剤とクロムとの濡れ角、潤滑剤とニッケルとの濡れ角のどれよりも小さくする材料からなる被覆層が、規則的な模様で形成されていることを特徴とするものである。   The continuous casting mold according to the first aspect of the present invention for solving the above-described problem is that the mold surface on the side in contact with the solidified shell is wetted with the lubricant used in the mold as a lubricant between the mold and the solidified shell. A coating layer made of a material that makes the corner smaller than any of the wetting angle between the lubricant and copper, the wetting angle between the lubricant and chromium, and the wetting angle between the lubricant and nickel is formed in a regular pattern. It is characterized by being.

第2の発明に係る連続鋳造用鋳型は、第1の発明において、前記被覆層が、物理蒸着法(PVD法)により被覆されたTiN層であることを特徴とするものである。   A casting mold for continuous casting according to a second invention is characterized in that, in the first invention, the coating layer is a TiN layer coated by a physical vapor deposition method (PVD method).

第3の発明に係る連続鋳造用鋳型は、第1または第2の発明において、前記被覆層の厚みが、2μm〜20μmであることを特徴とするものである。   A continuous casting mold according to a third invention is characterized in that, in the first or second invention, the coating layer has a thickness of 2 μm to 20 μm.

第4の発明に係る鋼の連続鋳造方法は、第1ないし第3の発明の何れかに記載の連続鋳造用鋳型を用いて溶鋼を鋳造することを特徴とするものである。   A steel continuous casting method according to a fourth invention is characterized in that molten steel is cast using the continuous casting mold according to any one of the first to third inventions.

上記構成の本発明に係る連続鋳造用鋳型によれば、銅、クロム、ニッケルよりも潤滑剤との濡れ角が小さい材料、換言すれば、潤滑剤との濡れ性がよく、よって潤滑剤と鋳型との接触面積が増加する材料からなる被覆層が、凝固殻と接触する側の鋳型表面に形成されているので、鋳型の被覆層が形成されていない部位と被覆層が形成された部位とで抜熱量に差が生じ、あたかも鋳型に凹部を形成したと同等の効果が発現して初期凝固の不均一化が抑制され、縦割れなどのない表面性状に優れた鋳片を製造することが可能となる。また、被覆層は薄く、鋳型表面に被覆層を形成するための凹部を加工する必要がないので、凹部に起因する鋳型の割れなどの発生がなく、長期間に亘って安定して使用することができる。   According to the continuous casting mold according to the present invention having the above-described configuration, a material having a smaller wetting angle with the lubricant than copper, chromium, and nickel, in other words, better wettability with the lubricant. Since the coating layer made of a material that increases the contact area with the solidified shell is formed on the mold surface on the side in contact with the solidified shell, there is a portion where the coating layer of the mold is not formed and a portion where the coating layer is formed. It is possible to produce slabs with excellent surface properties without vertical cracks and the like, as if the amount of heat removal is different, the same effect as if a concave portion was formed in the mold was developed, and the initial solidification was made non-uniform. It becomes. In addition, since the coating layer is thin and there is no need to process the recess for forming the coating layer on the mold surface, there is no occurrence of cracking of the mold due to the recess, and it should be used stably over a long period of time. Can do.

以下、本発明に係る連続鋳造用鋳型を、溶鋼のスラブ連続鋳造機の鋳型に適用した場合を例として、添付図面を参照して具体的に説明する。図1〜3は、本発明の実施の形態を示す図であって、本発明に係る鋳型を構成する鋳型銅板の正面概略図である。尚、溶鋼のスラブ連続鋳造機の鋳型は、通常、相対する一対の鋳型長辺銅板と、この鋳型長辺銅板の内側に内装される、相対する一対の鋳型短辺銅板とが組み合わされ、水平断面が矩形状の鋳型が構成されており、図1〜3は、鋳型長辺銅板の例を示している。   Hereinafter, an example in which the continuous casting mold according to the present invention is applied to a mold of a molten steel slab continuous casting machine will be described in detail with reference to the accompanying drawings. 1-3 is a figure which shows embodiment of this invention, Comprising: It is the front schematic diagram of the casting_mold | template copper plate which comprises the casting_mold | template which concerns on this invention. In addition, the mold of the molten steel slab continuous casting machine is usually a combination of a pair of opposed long-side copper plates and a pair of opposed short-side copper plates that are installed inside the long-side copper plate, A mold having a rectangular cross section is formed, and FIGS. 1 to 3 show examples of a long-side copper plate.

鋼の連続鋳造では、溶鋼を水冷構造の鋳型に注入して冷却し、鋳型との接触面に凝固殻を生成させながら、この凝固殻を鋳型下方に連続的に引き抜き、連続鋳造鋳片を製造している。表層部を凝固殻とし内部を未凝固相とする鋳片は、鋳型下方では鋳片支持ロールで支持されながら水スプレーやエアーミストスプレーによって冷却され、やがて、内部まで完全に凝固する。この連続鋳造においては、銅を母材とし、その表面にクロムまたはニッケル若しくはこれら金属の合金が必要に応じてメッキされた鋳型銅板表面と、生成される凝固殻との摩擦抵抗を減じるために、潤滑剤としてモールドパウダー、菜種油などが使用されている。   In continuous casting of steel, molten steel is poured into a water-cooled mold and cooled, and a solidified shell is formed on the contact surface with the mold, and the solidified shell is continuously drawn below the mold to produce a continuous cast slab. is doing. The slab whose surface layer part is a solidified shell and whose inside is an unsolidified phase is cooled by water spray or air mist spray while being supported by a slab support roll below the mold, and eventually solidifies completely to the inside. In this continuous casting, in order to reduce the frictional resistance between the surface of the mold copper plate with copper as the base material and chromium or nickel or an alloy of these metals plated as necessary, and the solidified shell produced, Mold powder, rapeseed oil, etc. are used as lubricants.

モールドパウダーは、CaO、SiO2 、Al23 、MgO、MnOなどの酸化物を基材とし、これら基材に、基材の物性を調整するためのNa2 O、K2 O、CaF2 、MgF2 、Li2 CO3 、氷晶石などのアルカリ金属又はアルカリ土類金属の酸化物や弗化物または炭酸化物と、基材の主成分であるCaO、SiO2 の成分調整材である炭酸カルシウムや珪藻土と、溶融速度調整材であるカーボンブラック、人造黒鉛などの炭素物質と、が添加されて構成されており、鋳型内の溶鋼上に添加されたモールドパウダーは溶融して鋳型と凝固殻との間隙に流入し、潤滑剤としての機能を発揮する。尚、モールドパウダーには、その他に酸化防止剤、保温剤、溶鋼から浮上してくるアルミナなどの酸化物の吸収剤としての機能も有している。 The mold powder uses an oxide such as CaO, SiO 2 , Al 2 O 3 , MgO, or MnO as a base material, and Na 2 O, K 2 O, CaF 2 for adjusting the physical properties of the base material to these base materials. , MgF 2 , Li 2 CO 3 , oxides or fluorides or carbonates of alkali metals or alkaline earth metals such as cryolite, and carbon dioxide as a component adjusting material for CaO and SiO 2 as the main components of the substrate Calcium and diatomaceous earth, and carbon materials such as carbon black and artificial graphite, which are melting rate adjusting materials, are added to the mold, and the mold powder added on the molten steel in the mold melts to form the mold and solidified shell. It flows into the gap between the two and exerts the function as a lubricant. In addition, the mold powder has a function as an antioxidant, a heat retaining agent, and an absorbent for oxides such as alumina floating from molten steel.

図1〜3に示すように、本発明に係る鋳型を構成する鋳型銅板1には、溶鋼と接触して溶鋼を冷却し、接触部に凝固殻を生成させる側の面に、銅、クロム、ニッケルよりも前述した潤滑剤との濡れ角が小さい材料、換言すれば、潤滑剤との濡れ性がよい材料からなる複数の被覆層4が、縦方向及び横方向に等間隔に、或いは千鳥状の規則配列をするように、蒸着法によって形成されている。被覆層4の形状は、四角形状、円形状、楕円形状、菱形状、正六角形状など、どのような模様にしてもよく、また、格子形状としてもよい。図1は、四角形状の被覆層4をクロムメッキ層3の上に千鳥配置した例を示す図で、図2は、四角形状の被覆層4をクロムメッキ層3の上に縦方向及び横方向に等間隔に配置した例を示す図で、図3は、円形状の被覆層4をクロムメッキ層3の上に千鳥配置した例を示す図である。被覆層4の大きさ及び被覆層4の間隔は、経験上から、被覆層4の大きさ(D1 ,D2 )が2〜20mm程度、被覆層4の間隔(L1 ,L2 )が被覆層4の大きさ(D1 ,D2 )の0.2倍から1.0倍の範囲とすればよい。但し、この範囲を外れても構わない。 As shown in FIGS. 1 to 3, the mold copper plate 1 constituting the mold according to the present invention cools the molten steel in contact with the molten steel, and forms copper, chromium, A plurality of coating layers 4 made of a material having a smaller wetting angle with the above-mentioned lubricant than nickel, in other words, a material having better wettability with the lubricant, are arranged at equal intervals in the longitudinal and lateral directions or in a staggered manner. It is formed by the vapor deposition method so as to have the regular arrangement. The shape of the covering layer 4 may be any pattern such as a square shape, a circular shape, an elliptical shape, a rhombus shape, or a regular hexagonal shape, or may be a lattice shape. FIG. 1 is a view showing an example in which a quadrangular coating layer 4 is staggered on a chrome plating layer 3, and FIG. 2 is a vertical and horizontal direction in which the quadrangular coating layer 4 is placed on the chrome plating layer 3. FIG. 3 is a diagram showing an example in which circular covering layers 4 are staggered on the chromium plating layer 3. From experience, the size of the coating layer 4 and the interval between the coating layers 4 are about 2 to 20 mm in size (D 1 , D 2 ), and the interval between the coating layers 4 (L 1 , L 2 ). The size may be in the range of 0.2 to 1.0 times the size (D 1 , D 2 ) of the coating layer 4. However, it may be out of this range.

これら被覆層4の形成されている部分の鋳型銅板1の断面図を図4に示す。図4に示すように、鋳型銅板1を構成する平滑な銅母材2の表面にクロムメッキ層3が形成され、このクロムメッキ層3の上に規則的な模様で被覆層4が形成されている。図4からも明らかなように、被覆層4を形成させる上で、銅母材2の表面及びクロムメッキ層3の表面には凹部を設けるための機械加工を施す必要はない。尚、図1〜3では、銅母材2の表面にクロムメッキ層3を設け、その上に被覆層4を形成しているが、クロムメッキ層3の代わりにニッケルをメッキしてもよく、また、これらメッキ層を設けることなく銅母材2の表面に直接被覆層4を蒸着してもよい。   FIG. 4 shows a cross-sectional view of the mold copper plate 1 where these coating layers 4 are formed. As shown in FIG. 4, a chrome plating layer 3 is formed on the surface of a smooth copper base material 2 constituting the mold copper plate 1, and a coating layer 4 is formed on the chrome plating layer 3 in a regular pattern. Yes. As is clear from FIG. 4, when forming the coating layer 4, it is not necessary to perform machining for providing a recess on the surface of the copper base material 2 and the surface of the chromium plating layer 3. In FIGS. 1 to 3, a chromium plating layer 3 is provided on the surface of the copper base material 2 and a coating layer 4 is formed thereon, but nickel may be plated instead of the chromium plating layer 3. Moreover, you may vapor-deposit the coating layer 4 directly on the surface of the copper base material 2, without providing these plating layers.

銅、クロム、ニッケルよりも潤滑剤との濡れ角が小さい材料としては現在のところTiNが最適であり、以下、被覆層4としてTiNを蒸着させる場合を例として説明する。   Currently, TiN is most suitable as a material having a smaller wetting angle with the lubricant than copper, chromium, and nickel. Hereinafter, a case where TiN is deposited as the coating layer 4 will be described as an example.

被覆層4としてのTiNの厚みは1μmあれば効果を発揮するが、蒸着時のムラの影響を小さくし、且つ長時間効果を維持するためには2μm以上被覆するのが望ましい。また、TiN膜の密着力(耐剥離性、耐熱衝撃性)を高めるために、TiNの蒸着被覆前にTi膜を0.5〜3μm程度被覆することが望ましい。TiとTiN膜は各一層でもよいが、Ti−TiN−Ti−TiNのように交互に層状に被覆しても問題ない。   If the thickness of TiN as the coating layer 4 is 1 μm, the effect is exhibited. However, in order to reduce the influence of unevenness during vapor deposition and maintain the effect for a long time, it is desirable to coat 2 μm or more. In order to increase the adhesion (peeling resistance, thermal shock resistance) of the TiN film, it is desirable to coat the Ti film by about 0.5 to 3 μm before depositing the TiN film. The Ti and TiN films may each be a single layer, but there is no problem if they are alternately coated in layers like Ti-TiN-Ti-TiN.

TiN膜の効果の飽和現象や凹部の形状を損ねることを考えると、TiN層の厚みは20μm程度あれば十分である。TiN膜の形成は、物理蒸着法(PVD法)であれば、真空蒸着法、スパッタリング法、イオンプレーティング法の何れであってもよいが、特に付着力の強い膜が得られることからイオンプレーティング法のうちのアークイオンプレーティング法(AIP法)により蒸着させることが望ましい。但し、これに限る必要はない。鋳型銅板1の表面に部分的に被覆層4を形成する方法としては、特に限定されるものではなく、(1)全面蒸着後、所定の形状及び配列になるように、薬品によって蒸着膜を化学溶解・除膜する方法、(2)所定の形状及び配列になるような型板を成形し、鋳型銅板1の表面を型板によりマスキング処理した後、TiNを蒸着する方法などがあり、どちらの方法でも構わない。   Considering the saturation phenomenon of the effect of the TiN film and the shape of the recess, it is sufficient that the thickness of the TiN layer is about 20 μm. The TiN film can be formed by vacuum deposition, sputtering, or ion plating as long as it is a physical vapor deposition method (PVD method). It is desirable to deposit by the arc ion plating method (AIP method) in the ting method. However, it is not necessary to limit to this. The method for partially forming the coating layer 4 on the surface of the mold copper plate 1 is not particularly limited. (1) After vapor deposition on the entire surface, the deposited film is chemically treated with chemicals so as to have a predetermined shape and arrangement. There is a method of dissolving and removing the film, (2) forming a template that has a predetermined shape and arrangement, masking the surface of the mold copper plate 1 with the template, and then depositing TiN. It doesn't matter how.

銅、クロム、ニッケルよりも潤滑剤との濡れ角が小さい材料としてTiN以外の材料を蒸着させる場合も、上記に沿って蒸着することとする。また、被覆層4の設置範囲は、鋳型銅板1の表面全体とする必要はなく、初期凝固に影響を及ぼす範囲のみに被覆層4を形成すればよく、具体的には鋳型銅板1の上部側半分とするなどしてもよい。鋳型銅板1としては、鋳型長辺銅板と鋳型短辺銅板とがあるが、その何れかまたは両者に被覆層4を設置する。   Even when a material other than TiN is vapor-deposited as a material having a smaller wetting angle with the lubricant than copper, chromium, and nickel, vapor deposition is performed along the above. The installation range of the coating layer 4 does not have to be the entire surface of the mold copper plate 1, and the coating layer 4 may be formed only in a range that affects the initial solidification. You may make it half. The mold copper plate 1 includes a mold long side copper plate and a mold short side copper plate, and a coating layer 4 is provided on either or both of them.

このような構成の本発明に係る鋳型を用い、潤滑剤としてモールドパウダーを使用して溶鋼を連続鋳造した場合の作用・効果を以下に説明する。   The operation and effect when the molten steel is continuously cast using the mold according to the present invention having such a configuration and using mold powder as a lubricant will be described below.

連続鋳造用鋳型内の溶鋼は潤滑剤として使用されるモールドパウダーに覆われ、このモールドパウダーは溶鋼からの熱によって溶融する。溶融したモールドパウダーは、所定の振幅及び振動数で振動(「オシレーション」という)している鋳型と生成した凝固殻との隙間に流入する。つまり、鋳型表面は、溶融したモールドパウダーが流入して形成されるフィルム状のモールドパウダー層(以下「パウダーフィルム層」と記す)を介して溶鋼或いは凝固殻と接触している。このパウダーフィルム層は、鋳型側では時間の経過に伴って冷却されて固化するものの、鋳片の引き抜き速度よりも遅い速度で連続的に下降しており、そのため、特に鋳型内の溶鋼湯面(以下「メニスカス」と記す)近傍の鋳型表面は、未だ固化していないパウダーフィルム層、即ち溶融状態のモールドパウダーと接触状態にある。   The molten steel in the continuous casting mold is covered with mold powder used as a lubricant, and the mold powder is melted by heat from the molten steel. The melted mold powder flows into the gap between the mold that vibrates with a predetermined amplitude and frequency (referred to as “oscillation”) and the generated solidified shell. That is, the mold surface is in contact with the molten steel or the solidified shell through a film-shaped mold powder layer (hereinafter referred to as “powder film layer”) formed by the flow of molten mold powder. Although this powder film layer is cooled and solidified with the passage of time on the mold side, it is continuously lowered at a speed slower than the drawing speed of the slab. The mold surface in the vicinity (hereinafter referred to as “meniscus”) is in contact with the powder film layer that has not yet solidified, that is, the molten mold powder.

溶融状態のモールドパウダーと接触状態にある部位の鋳型抜熱量は、鋳型の表面材質によって影響される。鋳型の表面材質が、溶融状態のモールドパウダーとの濡れ性が悪い材質、つまり溶融状態のモールドパウダーとの濡れ角が大きい材質、具体的には、表面にメッキ処理などを施していない銅母材、クロムメッキ層、或いはニッケルメッキ層の部位では、鋳型抜熱量が低くなり、溶融状態のモールドパウダーとの濡れ性が銅、クロム、ニッケルに比べて相対的に良い材質、つまり溶融状態のモールドパウダーとの濡れ角が銅、クロム、ニッケルに比べて小さい材質からなる被覆層4の部位では、鋳型抜熱量が相対的に高くなる。つまり、被覆層4を設置することにより、メニスカス近傍の鋳型表面の各部位で鋳型抜熱量に差が生じることになる。パウダーフィルム層の鋳型と接触する部位は、やがて固化するものの、接触した状態で固化しているため、固化後においてもこの接触状態は持続する。そのため、鋳型表面を構成する材料の熱伝導率に関係なく、低抜熱部と高抜熱部が二次元的に隣り合わせで規則的に混在することとなる。   The amount of heat removed from the mold in contact with the molten mold powder is affected by the surface material of the mold. Mold surface material with poor wettability with molten mold powder, that is, material with a large wetting angle with molten mold powder, specifically, copper base material that has not been plated on the surface In the chrome-plated layer or nickel-plated layer, the amount of heat removed from the mold is low, and the wettability with the molten mold powder is relatively better than copper, chromium and nickel, that is, the molten mold powder. In the part of the coating layer 4 made of a material whose wetting angle is smaller than that of copper, chromium, or nickel, the amount of heat removed from the mold is relatively high. That is, by providing the coating layer 4, there is a difference in the amount of heat removed from the mold at each site on the mold surface near the meniscus. The portion of the powder film layer that contacts the mold is solidified, but is solidified in the contacted state, and thus the contact state continues even after solidification. Therefore, regardless of the thermal conductivity of the material constituting the mold surface, the low heat removal portion and the high heat removal portion are regularly mixed side by side in two dimensions.

このような、低抜熱部と高抜熱部が二次元的に隣り合わせで規則的に混在する状況下では、不均一凝固を起こしやすい鋼種、例えば、包晶凝固する中炭素鋼の場合でも、特許文献4に述べられているように、低抜熱部の部位が凝固遅れとなるために、γ→δ変態に伴う凝固収縮に起因する凝固殻の変形が低抜熱部の間隔毎に生じ、凝固殻全体の大きな変形が起こらず、エアーギャップも生成されず、均一な凝固が達成される。それにより、鋳片の表面割れが抑制され、且つ鋳造速度の増大が達成される。   In such a situation where the low heat removal portion and the high heat removal portion are regularly mixed two-dimensionally next to each other, even in the case of a steel type that tends to cause non-uniform solidification, for example, medium carbon steel that peritectic solidifies, As described in Patent Document 4, since the portion of the low heat removal portion becomes solidified, the solidification shell is deformed at every interval of the low heat removal portion due to the solidification shrinkage accompanying the γ → δ transformation. As a result, the entire solidified shell is not greatly deformed, no air gap is generated, and uniform solidification is achieved. Thereby, the surface crack of a slab is suppressed and the increase in casting speed is achieved.

また、本発明に係る連続鋳造用鋳型では、被覆層4を蒸着法によって形成してあるので、被覆層4の剥離や鋳型の割れを防止することができ、長期間に亘って安定して均一な初期凝固を達成することができる。また、被覆層4は、主に非磁性材料であるセラミックスであるので、鋳型内溶鋼の流動制御を移動磁場や交流磁場で実施する場合に、何ら支障とならない。   In the continuous casting mold according to the present invention, since the coating layer 4 is formed by vapor deposition, it is possible to prevent peeling of the coating layer 4 and cracking of the mold, and to stably and uniformly over a long period of time. Initial solidification can be achieved. Moreover, since the coating layer 4 is ceramics which are mainly nonmagnetic materials, there is no problem when the flow control of the molten steel in the mold is performed with a moving magnetic field or an alternating magnetic field.

以上説明したように、本発明に係る連続鋳造用鋳型を用いることで、均一な初期凝固を長期間に亘って安定して確保・維持することが達成され、その結果、表面性状に優れる連続鋳造鋳片を長期間に亘って安定して製造することが可能となる。   As described above, by using the continuous casting mold according to the present invention, it is possible to stably secure and maintain uniform initial solidification over a long period of time, and as a result, continuous casting having excellent surface properties. It becomes possible to manufacture a slab stably over a long period of time.

被覆層としてのTiNが縦方向及び横方向に等間隔になるように型板を製作し、これを鋳型長辺銅板の表面に乗せ、約3μm厚みのTiN膜を規則的な配列でAIP法により蒸着した。被覆層の配列模様は、図1に示す四角形状の千鳥配置(以下「パターンA」と記す)、図2に示す四角形状の整列配置(以下「パターンB」と記す)と、図3に示す円形状の千鳥配置(以下「パターンC」と記す)の3種類とした。蒸着した範囲は、鋳型の鋳造方向では、メニスカス位置を基準として、上側に50mm、下側に200mmとし、鋳型の幅方向では、鋳型全幅に蒸着した。また、比較のために、全面にクロムメッキした鋳型(従来例1)と、特許文献4を再現したニッケルを格子状にメッキした鋳型(従来例2)と、全面にTiN膜を蒸着した鋳型(比較例)も準備した。   A template is manufactured so that TiN as a coating layer is equally spaced in the vertical and horizontal directions, and this is placed on the surface of the long copper plate, and a TiN film having a thickness of about 3 μm is regularly arranged by the AIP method. Vapor deposited. The arrangement pattern of the covering layers is shown in FIG. 3 as a square staggered arrangement (hereinafter referred to as “pattern A”) shown in FIG. 1, a square arrangement shown in FIG. 2 (hereinafter referred to as “pattern B”), and FIG. There were three types of circular staggered arrangement (hereinafter referred to as “pattern C”). The vapor deposition range was 50 mm on the upper side and 200 mm on the lower side with respect to the meniscus position in the casting direction of the mold, and vapor deposition was performed on the entire mold width in the mold width direction. Further, for comparison, a mold having chrome plating on the entire surface (conventional example 1), a mold plated with nickel that reproduces Patent Document 4 in a lattice shape (conventional example 2), and a mold having a TiN film deposited on the entire surface (conventional example 2). A comparative example was also prepared.

これらの鋳型を使用して、炭素含有量が0.08〜0.13質量%(以下「%」と記す)の中炭素鋼を、モールドパウダー(組成:SiO2 ;35%、Al23 ;6.4%、CaO;26%、MgO;1.8%、F;2.9%、Na2 O;4.8%、1300℃粘度=4.1Poise )を使用して、引き抜き速度2.3m/分で鋳造し、厚みが220mm、幅が1500mmから1700mmのスラブ鋳片を製造した。鋳造量は、1チャージの溶鋼量が280トンで500チャージである。また、鋳型表面状況も観察した。 Using these molds, medium carbon steel having a carbon content of 0.08 to 0.13 mass% (hereinafter referred to as “%”) was molded powder (composition: SiO 2 ; 35%, Al 2 O 3 6.4%, CaO; 26%, MgO; 1.8%, F; 2.9%, Na 2 O; 4.8%, 1300 ° C. viscosity = 4.1 Poise), pulling speed 2 Casting was performed at a rate of 3 m / min to produce a slab slab having a thickness of 220 mm and a width of 1500 mm to 1700 mm. The casting amount is 500 charges when the amount of molten steel per charge is 280 tons. Also, the mold surface condition was observed.

尚、鋳型の表面材料と上記組成の溶融状態のモールドパウダーとの濡れ角は、TiNで17度、クロム及びニッケルで44度であった。濡れ角は、横型管状電気炉を使用し、Ar雰囲気中でTiN、クロム、及びニッケルを被覆したSUS304基板上に、溶融させた後に固化させた、フリーカーボンを含まないモールドパウダー粉末1g(100メッシュ)を成形してタブレットとしたものを乗せ、昇温速度10℃/分で炉温制御し、1140℃において測定した。   The wetting angle between the mold surface material and the molten mold powder having the above composition was 17 ° for TiN and 44 ° for chromium and nickel. The wetting angle was 1 g (100 mesh) of mold powder powder containing no free carbon, which was solidified after being melted on a SUS304 substrate coated with TiN, chromium and nickel in an Ar atmosphere using a horizontal tubular electric furnace. ) Was molded into a tablet, the furnace temperature was controlled at a heating rate of 10 ° C./min, and the measurement was performed at 1140 ° C.

鋳型表面の被覆層の設置条件及び試験結果を表1に示す。表1からも明らかなように、本発明の鋳型を使用することで、パターンA、パターンB、パターンCの何れの場合も、鋳片表面の縦割れ並びに鋳型表面が安定して改善されることが確認された。   Table 1 shows the installation conditions of the coating layer on the mold surface and the test results. As is clear from Table 1, by using the mold of the present invention, the vertical cracks on the slab surface and the mold surface can be stably improved in any of Pattern A, Pattern B, and Pattern C. Was confirmed.

Figure 2006205243
Figure 2006205243

本発明に係る鋳型を構成する鋳型長辺銅板の一部分の正面概略図であるFIG. 3 is a schematic front view of a part of the long-side copper plate of the mold constituting the mold according to the present invention. 本発明に係る鋳型を構成する鋳型長辺銅板の一部分の正面概略図であるFIG. 3 is a schematic front view of a part of the long-side copper plate of the mold constituting the mold according to the present invention. 発明に係る鋳型を構成する鋳型長辺銅板の一部分の正面概略図であるIt is a front schematic diagram of a part of a mold long side copper plate constituting a mold according to the invention. 図1〜3に示す鋳型長辺銅板の断面図である。It is sectional drawing of the casting_mold | template long side copper plate shown in FIGS.

符号の説明Explanation of symbols

1 鋳型銅板
2 銅母材
3 クロムメッキ層
4 被覆層
1 Copper mold plate 2 Copper base material 3 Chromium plating layer 4 Coating layer

Claims (4)

凝固殻と接触する側の鋳型表面に、鋳型と凝固殻との潤滑剤として鋳型内で使用される潤滑剤との濡れ角を、潤滑剤と銅との濡れ角、潤滑剤とクロムとの濡れ角、潤滑剤とニッケルとの濡れ角のどれよりも小さくする材料からなる被覆層が、規則的な模様で形成されていることを特徴とする連続鋳造用鋳型。   The wetting angle of the lubricant used in the mold as a lubricant between the mold and the solidified shell on the mold surface on the side in contact with the solidified shell, the wetting angle between the lubricant and copper, and the wetting angle between the lubricant and chromium. A continuous casting mold, characterized in that a coating layer made of a material that makes the corner and the wetting angle between the lubricant and nickel smaller than any other is formed in a regular pattern. 前記被覆層が、物理蒸着法(PVD法)により被覆されたTiN層であることを特徴とする、請求項1に記載の連続鋳造用鋳型。   The continuous casting mold according to claim 1, wherein the coating layer is a TiN layer coated by a physical vapor deposition method (PVD method). 前記被覆層の厚みが、2μm〜20μmであることを特徴とする、請求項1または請求項2に記載の連続鋳造用鋳型。   The continuous casting mold according to claim 1, wherein the coating layer has a thickness of 2 μm to 20 μm. 請求項1ないし請求項3の何れか1つに記載の連続鋳造用鋳型を用いて溶鋼を鋳造することを特徴とする、鋼の連続鋳造方法。   A continuous casting method for steel, characterized by casting molten steel using the continuous casting mold according to any one of claims 1 to 3.
JP2005023406A 2005-01-31 2005-01-31 Continuous casting mold and steel continuous casting method Expired - Fee Related JP4462052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023406A JP4462052B2 (en) 2005-01-31 2005-01-31 Continuous casting mold and steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023406A JP4462052B2 (en) 2005-01-31 2005-01-31 Continuous casting mold and steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2006205243A true JP2006205243A (en) 2006-08-10
JP4462052B2 JP4462052B2 (en) 2010-05-12

Family

ID=36962613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023406A Expired - Fee Related JP4462052B2 (en) 2005-01-31 2005-01-31 Continuous casting mold and steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4462052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9022093B2 (en) 2008-06-13 2015-05-05 Nippon Steel & Sumitomo Corporation Method of casting semi-liquid or semi-solid iron-based alloy and die for casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9022093B2 (en) 2008-06-13 2015-05-05 Nippon Steel & Sumitomo Corporation Method of casting semi-liquid or semi-solid iron-based alloy and die for casting

Also Published As

Publication number Publication date
JP4462052B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
TWI547323B (en) Continuous casting casting and steel continuous casting method
RU2677560C2 (en) Mold for continuous casting machine and continuous casting method for steel
JP6213101B2 (en) Scum weir, thin slab manufacturing method and thin slab manufacturing apparatus
JP4462052B2 (en) Continuous casting mold and steel continuous casting method
JP6611331B2 (en) Continuous casting method of slab made of titanium or titanium alloy
JP2012210647A (en) Immersion nozzle for continuous casting and continuous casting method using the same
JP6859827B2 (en) Scum weir, double-roll continuous casting equipment, and thin-walled slab manufacturing method
WO2013190594A1 (en) Submerged entry nozzle for continuous casting and continous casting method using same
JP4055522B2 (en) Molded copper plate for continuous casting mold and manufacturing method thereof
JPH0433537B2 (en)
JP5336058B2 (en) Continuous casting method of steel using mold flux
JP2020168644A (en) Method for producing thin slab
JP4569099B2 (en) Slab continuous casting method for medium carbon steel
RU2418649C2 (en) Coated crystalliser
JP5701720B2 (en) Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same
WO2024095958A1 (en) Mold copper plate, casting mold for continuous casting, and method for slab casting
JP5626438B2 (en) Continuous casting method
KR101921939B1 (en) Mould Flux
JP2024035077A (en) Continuous casting method for molds and steel
KR102179558B1 (en) Mold, apparatus and method for casting
JP5397213B2 (en) Continuous casting method
JP2017185504A (en) Continuous casting method of slab composed of titanium or titanium alloy
JP5423715B2 (en) Continuous casting method
JP2000225442A (en) Mold for continuous casting
JPH04279258A (en) Molten metal supplying nozzle for continuous casting

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees