JP2006203964A - Magnetostrictive actuator - Google Patents

Magnetostrictive actuator Download PDF

Info

Publication number
JP2006203964A
JP2006203964A JP2005009879A JP2005009879A JP2006203964A JP 2006203964 A JP2006203964 A JP 2006203964A JP 2005009879 A JP2005009879 A JP 2005009879A JP 2005009879 A JP2005009879 A JP 2005009879A JP 2006203964 A JP2006203964 A JP 2006203964A
Authority
JP
Japan
Prior art keywords
magnetostrictive
magnetic field
driving body
movable member
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005009879A
Other languages
Japanese (ja)
Inventor
Nobuaki Tanaka
伸明 田中
Norifumi Ikeda
憲文 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005009879A priority Critical patent/JP2006203964A/en
Publication of JP2006203964A publication Critical patent/JP2006203964A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetostrictive actuator, having a higher input and higher efficiency compared with an actuator that uses a piezoelectric element. <P>SOLUTION: The magnetostrictive actuator comprises a magnetostrictive element connected to a driving body, a magnetic field generation means that imparts a magnetic field to the magnetostrictive element, and a movable member that is pressure-welded to or abutted against the tip of the driving body, and moves the movable member, by developing circular motion at the tip of the driving body by making the magnetic field produced by the magnetic field generation means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁歪素子を駆動素子として使用した磁歪アクチュエータに関し、特に精密位置決めを要する装置に最適な磁歪アクチュエータに関する。   The present invention relates to a magnetostrictive actuator using a magnetostrictive element as a drive element, and more particularly to a magnetostrictive actuator that is optimal for an apparatus that requires precise positioning.

従来は特開平7−184382号公報(特許文献1)に示されるように、1枚の圧電素子に電圧を印加させ、それによって生じる圧電素子の変位を利用し、圧電素子部材を共振させることにより、動力伝達部に楕円運動を形成させて物体を移動させている。   Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 7-184382 (Patent Document 1), a voltage is applied to one piezoelectric element, and displacement of the piezoelectric element generated thereby is used to resonate the piezoelectric element member. The object is moved by forming an elliptical motion in the power transmission unit.

図3はその様子を示しており、物体108を動かすアクチュエータは、長縁部100、101及び短縁部102と第1及び第2の面とを有する少なくとも1つの矩形状圧電板103と、第1及び第2の面に取付けられた電極104〜107と、前記縁部の第1の縁部の中心に取付けられ、物体108に押し付けられる作用可能なセラミックスペーサ109とを備え、弾性力が第1の縁部と反対の第2の縁部の中心に付与され、これによりセラミックスペーサ109は物体108に押し付けられ、電極104〜107の少なくとも一部を交流又は非対称の単一極のパルス電圧のいずれかで通電するようになっている。   FIG. 3 shows this state. The actuator for moving the object 108 includes at least one rectangular piezoelectric plate 103 having long edges 100 and 101 and short edges 102 and first and second surfaces, and a first edge. Electrodes 104-107 attached to the first and second surfaces, and an actuable ceramic spacer 109 attached to the center of the first edge of the edge and pressed against the object 108, with an elastic force of the first Applied to the center of the second edge opposite the one edge, thereby pressing the ceramic spacer 109 against the object 108 and causing at least a portion of the electrodes 104-107 to pass an alternating or asymmetric single pole pulse voltage. Either one is energized.

また、米国特許第6,373,170号明細書(特許文献2)に記載のものでは、図4に示すように圧電素子110及び111の変位を利用し、振動体112に共振現象を生じさせ、それによって生じる弾性体113の変位により物体114を移動させている。この場合のアクチュエータの取付け予圧には、コイルバネが用いられている。   Further, in the device described in US Pat. No. 6,373,170 (Patent Document 2), as shown in FIG. 4, the displacement of the piezoelectric elements 110 and 111 is used to cause a resonance phenomenon in the vibrating body 112. The object 114 is moved by the displacement of the elastic body 113 caused thereby. In this case, a coil spring is used for preloading the actuator.

更に、特開2002−101676号公報に示されるアクチュエータは、圧電素子の変位を利用し、振動体に共振現象を生じさせ、それを駆動させることで、回転体を駆動している。図5はその構成を示しており、所定角度をなすように配置された2つの圧電素子120及び121の交差部分にチップ部材122を設け、圧電素子120及び121を保持するベース部材123と共に、加圧部材124によりチップ部材122をロータ126に加圧接触させている。そして、加圧部材124に加圧力調節機構125を設け、加圧力を調節しながら、チップ部材122の軌跡が所望する形状となるように加圧力を調節するようになっている。
特開平7−184382 米国特許第6,373,170号明細書 特開2002−101676
Further, the actuator disclosed in Japanese Patent Application Laid-Open No. 2002-101676 uses the displacement of the piezoelectric element to cause a resonance phenomenon in the vibrating body and drives it to drive the rotating body. FIG. 5 shows the configuration. A chip member 122 is provided at the intersection of two piezoelectric elements 120 and 121 arranged at a predetermined angle, and a base member 123 that holds the piezoelectric elements 120 and 121 is added together. The tip member 122 is brought into pressure contact with the rotor 126 by the pressure member 124. The pressurizing member 124 is provided with a pressurizing force adjusting mechanism 125, and the pressurizing force is adjusted so that the locus of the tip member 122 has a desired shape while adjusting the pressurizing force.
JP 7-184382 A US Pat. No. 6,373,170 JP2002-101676

上述した従来のアクチュエータはいずれも駆動素子として圧電素子を用いており、アクチュエータの共振現象を利用した圧電アクチュエータは、圧電素子の変位、出力が小さいために十分な駆動力が得られていない。また、圧電素子を使用した場合、電力と駆動量のエネルギー変換効率が悪く、素子自体の耐久性にも問題がある。   Any of the above-described conventional actuators uses a piezoelectric element as a driving element, and a piezoelectric actuator using a resonance phenomenon of the actuator cannot obtain a sufficient driving force because the displacement and output of the piezoelectric element are small. In addition, when a piezoelectric element is used, the energy conversion efficiency between electric power and driving amount is poor, and there is a problem in durability of the element itself.

本発明は上述のような事情からなされたものであり、本発明の目的は、圧電素子の代わりに耐久性の良い磁歪素子を使用し、アクチュエータの出力が大きく、しかも効率の良い磁歪アクチュエータを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetostrictive actuator that uses a highly durable magnetostrictive element instead of a piezoelectric element, and has a large actuator output and high efficiency. There is to do.

本発明は磁歪素子を用いた磁歪アクチュエータに関し、本発明の上記目的は、駆動体に接合された磁歪素子と、前記磁歪素子に磁界を与える磁界発生手段と、前記駆動体の先端部に圧接若しくは当接された可動部材とを設け、前記磁界発生手段で磁界を発生させて前記駆動体の先端部に円状運動を生じさせて前記可動部材を移動させることにより達成され、前記磁界発生手段を前記磁歪素子に巻回されたコイルるとすることにより、より効果的に達成される。   The present invention relates to a magnetostrictive actuator using a magnetostrictive element, and the object of the present invention is to provide a magnetostrictive element joined to a driving body, a magnetic field generating means for applying a magnetic field to the magnetostrictive element, A movable member abutted on, and a magnetic field is generated by the magnetic field generating means to cause a circular motion at the tip of the driving body to move the movable member. This is achieved more effectively by using a coil wound around the magnetostrictive element.

本発明は磁歪素子を用いた磁歪アクチュエータに関し、本発明の上記目的は、交差して配置され、かつ一端が駆動体に接合された少なくとも2個以上の磁歪素子と、前記各磁歪素子に巻回されたコイルと、V字状凹部に前記各磁歪素子の他端が接合され、かつ予圧を与える振動体と、前記駆動体の先端部に圧接若しくは当接された可動部材とを設け、前記コイルに任意の位相差を有する高周波電流を供給することにより、前記駆動体の先端部に円状運動を生じさせて前記可動体を移動させることにより達成される。   The present invention relates to a magnetostrictive actuator using a magnetostrictive element, and the object of the present invention is to provide at least two or more magnetostrictive elements that are arranged so as to intersect with each other and that are joined to a driver, and wound around each of the magnetostrictive elements. A coil that is connected to the other end of each magnetostrictive element in a V-shaped recess and applies a preload, and a movable member that is pressed against or abutted against the tip of the driving body. This is achieved by supplying a high-frequency current having an arbitrary phase difference to cause a circular motion at the tip of the drive body to move the movable body.

また、本発明の上記目的は、前記高周波電流の周波数を、前記磁歪素子と前記振動体の固有振動数にほぼ等しくすることにより、或いは前記磁歪素子の材質を、Tb0.3Dy0.7Fe2を中心組成とする化合物を主成分とすることにより、或いは前記振動体に弾性ヒンジを設け、前記弾性ヒンジによって前記予圧を与えることにより、或いは前記駆動体及び振動体をセラミックス材料で構成することにより、より効果的に達成される。 Further, the object of the present invention is to make the frequency of the high-frequency current substantially equal to the natural frequency of the magnetostrictive element and the vibrating body, or the material of the magnetostrictive element is centered on Tb 0.3 Dy 0.7 Fe 2 . By having a compound as a main component, or by providing an elastic hinge on the vibrating body and applying the preload by the elastic hinge, or by configuring the driving body and the vibrating body with a ceramic material, Effectively achieved.

本発明のアクチュエータは駆動素子として磁歪素子を使用しているので、圧電素子に比べ、高出力で高効率なアクチュエータを実現することができる。また、圧電素子の場合に比べ耐久性にも優れ、エネルギー変換効率も良い。   Since the actuator of the present invention uses a magnetostrictive element as a drive element, an actuator with higher output and higher efficiency can be realized as compared with a piezoelectric element. Moreover, it is excellent in durability and energy conversion efficiency compared with the case of a piezoelectric element.

本発明は駆動素子として、圧電素子ではなく、磁歪素子を使用する。磁歪素子を用いたアクチュエータのため、圧電アクチュエータに比べ、高出力で高効率なアクチュエータを実現できる。   The present invention uses a magnetostrictive element instead of a piezoelectric element as a driving element. Since the actuator uses a magnetostrictive element, it is possible to realize an actuator with higher output and higher efficiency than a piezoelectric actuator.

以下に本発明の実施例を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例を示しており、交差して配置された2つの磁歪素子20及び30の各一端部が駆動体1に接合され、磁歪素子20及び30の各他端部が振動体10のV字状凹部15に接合されている。磁歪素子20及び30にはそれぞれ磁界発生用のコイル21及び31が巻回されており、コイル21及び31には高周波電流が供給されるようになっている。また、振動体10には弾性力を予圧として与えるための3個の弾性ヒンジ、即ちN字状の弾性ヒンジ11、逆N字状の弾性ヒンジ12及び直線状の弾性ヒンジ13が配設されており、振動体10は4角に設けられている固定ネジ14で固定されている。弾性ヒンジ11及び12は駆動体1に対して対称に設けられ、弾性ヒンジ13は振動体10の底部に設けられている。なお、弾性ヒンジ11及び12の形状は代替、つまり弾性ヒンジ11が逆N字状、弾性ヒンジ12がN字状の形状であっても良い。   FIG. 1 shows an embodiment of the present invention, in which one end portions of two magnetostrictive elements 20 and 30 arranged in a crossing manner are joined to a driver 1 and the other end portions of the magnetostrictive elements 20 and 30 are vibrated. It is joined to the V-shaped recess 15 of the body 10. Magnetic field generating coils 21 and 31 are wound around the magnetostrictive elements 20 and 30, respectively, and a high frequency current is supplied to the coils 21 and 31. The vibrating body 10 is provided with three elastic hinges for giving an elastic force as a preload, that is, an N-shaped elastic hinge 11, an inverted N-shaped elastic hinge 12, and a linear elastic hinge 13. The vibrating body 10 is fixed with fixing screws 14 provided at four corners. The elastic hinges 11 and 12 are provided symmetrically with respect to the driving body 1, and the elastic hinge 13 is provided at the bottom of the vibrating body 10. The shape of the elastic hinges 11 and 12 may be alternative, that is, the elastic hinge 11 may have an inverted N shape and the elastic hinge 12 may have an N shape.

また、駆動体1の先端部は移動対象となる可動部材2に圧接若しくは当接されている。駆動体1と可動部材2の圧接力若しくは当接力は、振動体10に設けられているヒンジ11〜13によってバランス良く調整されて与えられる。   Further, the distal end portion of the driving body 1 is in pressure contact with or in contact with the movable member 2 to be moved. The pressure contact force or contact force between the driving body 1 and the movable member 2 is given by a well-balanced adjustment by the hinges 11 to 13 provided on the vibration body 10.

このような構造において、コイル21及び31に、図2(A)及び(B)に示すような位相差を有する正弦波の高周波電流を供給すると、コイル21及び31に磁界が発生されて磁歪素子20及び31が変形し、その位相差に応じて駆動体1が円運動若しくは楕円運動を繰り返し行い、その繰り返し円状運動によって、駆動体1の先端部に圧接若しくは当接されている可動部材2が図示X方向に移動する。供給電流の位相差の関係を逆にすれば、可動部材2は図示Xと反対方向に移動する。   In such a structure, when a sinusoidal high-frequency current having a phase difference as shown in FIGS. 2A and 2B is supplied to the coils 21 and 31, a magnetic field is generated in the coils 21 and 31, and the magnetostrictive element. 20 and 31 are deformed, and the driving body 1 repeatedly performs a circular motion or an elliptical motion according to the phase difference. Moves in the X direction shown in the figure. If the relationship of the phase difference of the supply current is reversed, the movable member 2 moves in the direction opposite to X in the figure.

正弦波高周波の周波数をアクチュエータ自身の共振周波数近傍の値にすると、駆動体1の振動振幅が大きくなり、可動部材2の駆動速度を大きく、つまり単位時間当たりの移動量を大きくすることができる。また、駆動体1及び可動部材2の材質は、摩耗が少なく、大きな摩擦力を得ることのできる材料が望ましい。例えば窒化けい素、炭化けい素、ジルコニア或いはアルミナのようなセラミックス材料が好適である。   When the frequency of the sine wave high frequency is set to a value in the vicinity of the resonance frequency of the actuator itself, the vibration amplitude of the driving body 1 increases, and the driving speed of the movable member 2 can be increased, that is, the amount of movement per unit time can be increased. Moreover, the material of the drive body 1 and the movable member 2 is preferably a material that has little wear and can obtain a large frictional force. For example, a ceramic material such as silicon nitride, silicon carbide, zirconia, or alumina is preferable.

次に、本発明で使用する磁歪素子について説明する。   Next, the magnetostrictive element used in the present invention will be described.

磁歪現象は、磁性材料に磁場を印加すると形状変化を生じる現象である。常温ではこの性質を有する材料を磁歪材料(磁歪素子)と呼んでいる。これらの磁歪材料としては、Fe、Ni、Co等の単元素系の他に、Co-Fe合金やNiFeO、CoFe2O4、Fe3O4などの化合物系の材料が挙げられる。特にY,Pr,Sm,Tb,Dy,Ho,Er,Tmなどの希土類元素と、Fe,Ni,Coなどの金属元素とを組み合わせることにより、大きな磁歪変位を発生させることが可能となる。特にこれらの磁歪材料は数N/mmの大応力を発生させることができ、この材料で駆動部を構成することにより、圧電素子を用いた場合よりもコンパクトで大きな駆動力を得ることが可能である。また、予圧量を外部から制御することも可能である。特にRT(R:ランタノイド元素、T:鉄族遷移元素)のラーベス構造立方晶を有するTb0.3Dy0.7Fe2を中心組成に持つ磁歪材料は、600〜1000ppmの変位歪と、8N/mm程度の発生応力を有しており、本発明のアクチュエータの駆動部材としては最適な特性を有している。 The magnetostriction phenomenon is a phenomenon in which a shape change occurs when a magnetic field is applied to a magnetic material. A material having this property at room temperature is called a magnetostrictive material (magnetostrictive element). As these magnetostrictive materials, in addition to single element systems such as Fe, Ni, and Co, compound-based materials such as Co—Fe alloys, NiFe 2 O 4 , CoFe 2 O 4 , and Fe 3 O 4 can be cited. In particular, by combining rare earth elements such as Y, Pr, Sm, Tb, Dy, Ho, Er, and Tm with metal elements such as Fe, Ni, and Co, large magnetostrictive displacement can be generated. In particular, these magnetostrictive materials can generate a large stress of several N / mm 2 , and by using this material to form a drive unit, it is possible to obtain a compact and large driving force compared to the case where a piezoelectric element is used. It is. It is also possible to control the preload amount from the outside. In particular, a magnetostrictive material having a central composition of Tb 0.3 Dy 0.7 Fe 2 having a Laves structure cubic crystal of RT 2 (R: lanthanoid element, T: iron group transition element) has a displacement strain of 600 to 1000 ppm and 8 N / mm 2. Therefore, the actuator has optimum characteristics as a driving member of the actuator of the present invention.

上記組成を有する磁歪素子としては、単結晶のものと燒結体のものが市販されているが、アクチュエータ用の駆動部として用いる場合には、例えば特開2002−129274に開示されているような燒結体のものが好ましい。このような粉末成形プロセスによる燒結体は任意形状を最初から得られるので、単結晶の材料を削って作製するよりも精度が良い部材を安価に製造できる。しかし、燒結体の磁歪素子を用いる場合、空孔率が10%以上になると、内部酸化により著しく機能が劣化するため、空孔率は10%以下か、特に磁歪材料が反応性の油脂に触れる場合には5%以下とすることが望ましい。また、空孔は応力集中源となって、素子強度を著しく減少させるため、部材の表面部の最大空孔径は500μm以下、好ましくは200μm以下とすることが望ましい。   As the magnetostrictive element having the above composition, a single crystal element and a sintered element are commercially available, but when used as a driving unit for an actuator, for example, a sintering element disclosed in Japanese Patent Application Laid-Open No. 2002-129274. The body is preferred. Since the sintered body obtained by such a powder molding process can have an arbitrary shape from the beginning, a member having higher accuracy than that produced by cutting a single crystal material can be manufactured at a low cost. However, when a sintered magnetostrictive element is used, if the porosity is 10% or more, the function is remarkably deteriorated due to internal oxidation. Therefore, the porosity is 10% or less. In such a case, it is desirable to make it 5% or less. Further, since the vacancies become a stress concentration source and the element strength is remarkably reduced, the maximum vacancy diameter of the surface portion of the member is desirably 500 μm or less, preferably 200 μm or less.

なお、上述の実施例では、予圧を得る手段として弾性ヒンジを用い、弾性ヒンジによる予圧調整を弾性ヒンジの厚み等の変化で、縦方向及び横方向のバネ定数を任意に調整するようにしているが、コイルバネを用いることも可能である。   In the above-described embodiment, an elastic hinge is used as a means for obtaining the preload, and the preload adjustment by the elastic hinge is arbitrarily adjusted for the spring constant in the vertical direction and the horizontal direction by changing the thickness of the elastic hinge. However, it is also possible to use a coil spring.

また、上述では、正弦波の高周波をコイルに供給して磁界を発生する例を説明したが、矩形波の高周波でも駆動可能である。交差して配置される磁歪素子を2個用いて駆動体を駆動するようにしているが、3個以上の複数個の磁歪素子を用いて構成することも可能である。さらに、上述では振動体側を固定し、可動部材を移動させるようにしているが、可動部材側を固定し、振動体側を移動するようにしても良い。   In the above description, an example in which a magnetic field is generated by supplying a high-frequency sine wave to a coil has been described. However, driving with a high-frequency rectangular wave is also possible. The driving body is driven by using two magnetostrictive elements arranged so as to intersect with each other, but it is also possible to use a plurality of three or more magnetostrictive elements. Furthermore, in the above description, the vibrating member side is fixed and the movable member is moved. However, the movable member side may be fixed and the vibrating member side may be moved.

本発明のアクチュエータによれば高出力で高効率な移動量を得ることができるので、工作機械、電機機器、通信機器、自動車等の精密位置決めを要するリニア駆動部に幅広く利用することができる。   According to the actuator of the present invention, a high output and a highly efficient movement amount can be obtained, so that the actuator can be widely used for linear drive units that require precise positioning, such as machine tools, electrical equipment, communication equipment, and automobiles.

本発明の実施例を示す構成図である。It is a block diagram which shows the Example of this invention. 本発明の駆動信号の波形例を示す図である。It is a figure which shows the example of a waveform of the drive signal of this invention. 従来の圧電アクチュエータの例を示す構成図である。It is a block diagram which shows the example of the conventional piezoelectric actuator. 従来の圧電アクチュエータの他の例を示す斜視図である。It is a perspective view which shows the other example of the conventional piezoelectric actuator. 従来の圧電アクチュエータの他の例を示す構成図である。It is a block diagram which shows the other example of the conventional piezoelectric actuator.

符号の説明Explanation of symbols

1 駆動体
2 可動部材
10、 振動体
11〜13 弾性ヒンジ
14 固定ネジ
15 凹部
20、30 磁歪素子
21、31 コイル
DESCRIPTION OF SYMBOLS 1 Drive body 2 Movable member 10, Vibrating bodies 11-13 Elastic hinge 14 Fixing screw 15 Recess 20, 30 Magnetostrictive element 21, 31 Coil

Claims (7)

駆動体に接合された磁歪素子と、前記磁歪素子に磁界を与える磁界発生手段と、前記駆動体の先端部に圧接若しくは当接された可動部材とを具備し、前記磁界発生手段で磁界を発生させて前記駆動体の先端部に円状運動を生じさせて前記可動部材を移動させることを特徴とする磁歪アクチュエータ。 A magnetostrictive element joined to a driving body, a magnetic field generating means for applying a magnetic field to the magnetostrictive element, and a movable member pressed against or in contact with the tip of the driving body, and generating a magnetic field by the magnetic field generating means The magnetostrictive actuator is characterized in that the movable member is moved by causing a circular motion at the tip of the driving body. 前記磁界発生手段が前記磁歪素子に巻回されたコイルである請求項1に記載の磁歪アクチュエータ。 2. The magnetostrictive actuator according to claim 1, wherein the magnetic field generating means is a coil wound around the magnetostrictive element. 交差して配置され、かつ一端が駆動体に接合された少なくとも2個以上の磁歪素子と、前記各磁歪素子に巻回されたコイルと、V字状凹部に前記各磁歪素子の他端が接合され、かつ予圧を与える振動体と、前記駆動体の先端部に圧接若しくは当接された可動部材とを具備し、前記コイルに任意の位相差を有する高周波電流を供給することにより、前記駆動体の先端部に円状運動を生じさせて前記可動部材を移動させることを特徴とする磁歪アクチュエータ。 At least two or more magnetostrictive elements arranged so as to intersect with each other and joined to the driving body, a coil wound around each of the magnetostrictive elements, and the other end of each of the magnetostrictive elements joined to a V-shaped recess. And a driving member that applies a preload and a movable member that is pressed against or abutted against the tip of the driving body, and supplies the coil with a high-frequency current having an arbitrary phase difference, thereby providing the driving body. A magnetostrictive actuator, wherein the movable member is moved by causing a circular motion at a tip end of the magnet. 前記高周波電流の周波数が、前記磁歪素子と前記振動体の固有振動数にほぼ等しい請求項3に記載の磁歪アクチュエータ。 The magnetostrictive actuator according to claim 3, wherein the frequency of the high-frequency current is substantially equal to a natural frequency of the magnetostrictive element and the vibrating body. 前記磁歪素子の材質が、Tb0.3Dy0.7Fe2を中心組成とする化合物を主成分とする請求項3又は4に記載の磁歪アクチュエータ。 The magnetostrictive actuator according to claim 3 or 4, wherein a material of the magnetostrictive element is mainly composed of a compound having a central composition of Tb 0.3 Dy 0.7 Fe 2 . 前記振動体に弾性ヒンジが設けられており、前記弾性ヒンジによって前記予圧を与えるようになっている請求項3乃至5のいずれかに記載の磁歪アクチュエータ。 The magnetostrictive actuator according to claim 3, wherein an elastic hinge is provided on the vibrating body, and the preload is applied by the elastic hinge. 前記駆動体及び振動体がセラミックス材料で成っている請求項3乃至6のいずれかに記載の磁歪アクチュエータ。 The magnetostrictive actuator according to claim 3, wherein the driving body and the vibrating body are made of a ceramic material.
JP2005009879A 2005-01-18 2005-01-18 Magnetostrictive actuator Withdrawn JP2006203964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009879A JP2006203964A (en) 2005-01-18 2005-01-18 Magnetostrictive actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009879A JP2006203964A (en) 2005-01-18 2005-01-18 Magnetostrictive actuator

Publications (1)

Publication Number Publication Date
JP2006203964A true JP2006203964A (en) 2006-08-03

Family

ID=36961477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009879A Withdrawn JP2006203964A (en) 2005-01-18 2005-01-18 Magnetostrictive actuator

Country Status (1)

Country Link
JP (1) JP2006203964A (en)

Similar Documents

Publication Publication Date Title
JP4261964B2 (en) Vibration type driving device and control system
US9523367B2 (en) Cantilever fan
JP2006254627A (en) Ultrasonic motor
JP2011188739A (en) Walking actuator
WO2004107554A2 (en) Piezoelectric motor and method of exciting an ultrasonic traveling wave to drive the motor
JP2011217595A (en) Vibration wave driving apparatus and method for manufacturing vibrating body thereof
Ci et al. A standing wave linear ultrasonic motor operating in face-diagonal-bending mode
Liu et al. A novel plate type linear piezoelectric actuator using dual-frequency drive
JP2006094591A (en) Ultrasonic motor and its operation method
JP5055505B2 (en) Magnetostrictive multi-axis drive actuator
Delibas et al. L1B2 piezo motor using D33 effect
EP3535842A1 (en) Ultrasonic actuator
JP3190634B2 (en) Piezoelectric actuator, method of driving piezoelectric actuator, and computer-readable storage medium storing program for causing computer to execute method of driving piezoelectric actuator
JP2006203964A (en) Magnetostrictive actuator
JPH05175567A (en) Laminated actuator
JP2008236820A (en) Driving device
JP2574577B2 (en) Linear actuator
JP2012121130A (en) Polishing device
Tan et al. Large stroke and high precision positioning using iron–gallium alloy (Galfenol) based multi-DOF impact drive mechanism
JP3190636B2 (en) Computer-readable storage medium storing a piezoelectric actuator, a method for controlling a piezoelectric actuator, and a program for causing a computer to execute the method for controlling a piezoelectric actuator
Shafik et al. A 3D smart actuator for robotic eyes industrial applications using a flexural vibration ring transducer
JP2008199700A (en) Ultrasonic motor, driving method thereof, and ultrasonic motor device
JP4676395B2 (en) Piezoelectric vibrator and ultrasonic motor having the same
JP2004222453A (en) Actuator
Ueno et al. Miniature magnetostrictive linear actuator based on smooth impact drive mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081021