JP2006203835A - Digital ssb turbo transceiver - Google Patents

Digital ssb turbo transceiver Download PDF

Info

Publication number
JP2006203835A
JP2006203835A JP2005041271A JP2005041271A JP2006203835A JP 2006203835 A JP2006203835 A JP 2006203835A JP 2005041271 A JP2005041271 A JP 2005041271A JP 2005041271 A JP2005041271 A JP 2005041271A JP 2006203835 A JP2006203835 A JP 2006203835A
Authority
JP
Japan
Prior art keywords
signal
digital
turbo
ssb
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005041271A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
博 鈴木
Satoshi Suyama
聡 須山
Kazuhiko Fukawa
和彦 府川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005041271A priority Critical patent/JP2006203835A/en
Publication of JP2006203835A publication Critical patent/JP2006203835A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmitter of a digital SSB modulation system capable of performing modulation, using only a single carrier wave and a receiver, capable of receiving signals by realizing a half bandwidth of digital modulated signal, when shaping a spectrum of wireless communication. <P>SOLUTION: The present invention comprises a digital SSB turbo transmitter which uses a pulse shaping filter 1 for performing a band limitation and a pulse shaping filter 2 for realizing Hilbert transformation of the impulse response of the pulse shaping filter 1 to modulate an in-phase component and the quadrature component of an error-correcting encoded digital modulation signal into a single upper or lower side band; and a digital SSB turbo receiver which uses a matched filter 1 of the pulse shaping filter 1 and a matched filter 2 of the pulse-shaping filter 2, to demodulate the in-phase component and the quadrature component of the modulation signal from a reception signal of the upper- or the lower-side band and eliminates inter-code interferences that occurs in matched filter outputs, by repeatedly operating a turbo equalizer and an error-correcting decoder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,ディジタルSSBターボ送受信機に関するものである.  The present invention relates to a digital SSB turbo transceiver.

無線通信において,限られた周波数資源を有効利用するための伝送方式が盛んに検討されている.特に,単側波帯(SSB)変調でディジタル変調信号を伝送するディジタルSSB変調方式が注目されている.ディジタル変調信号には,多値PSK変調であるBPSK,QPSK,8PSK等の変調信号や,多値QAM変調である16QAM,64QAM,256QAM等の変調信号がある.特に,QPSKや16QAMがよく用いられる.In wireless communications, transmission schemes for effectively using limited frequency resources are being actively studied. In particular, digital SSB modulation schemes that transmit digital modulation signals by single sideband (SSB) modulation are attracting attention. Digital modulation signals include modulation signals such as BPSK, QPSK, and 8PSK that are multilevel PSK modulation, and modulation signals such as 16QAM, 64QAM, and 256QAM that are multilevel QAM modulation. In particular, QPSK and 16QAM are often used.

すでに,QPSK信号をSSB変調し,従来のQPSKに対して帯域幅を狭くできるディジタルSSB変調方式の一種であるSSB−QPSK方式が提案されており(例えば、非特許文献1または2参照),非特許文献1では,2つの搬送波でQPSKを伝送するSSB−QPSK方式が提案されている.この方式では,帯域幅をfとすると2倍の帯域幅を有するQPSK信号の同相成分(I成分)と直交成分(Q成分)を,それぞれ上側波帯(USB)に,下側波帯(LSB)に変調した後,USBを/2,LSBをf/2だけ周波数シフトして合成することで,USBとLSBを重ねて占有帯域幅を従来のQPSKの半分にする方式である.An SSB-QPSK system, which is a kind of digital SSB modulation system that can perform SSB modulation of a QPSK signal and narrow the bandwidth compared to the conventional QPSK, has been proposed (for example, see Non-Patent Document 1 or 2). In patent document 1, the SSB-QPSK system which transmits QPSK with two carrier waves is proposed. In this method, when the bandwidth is f s , the in-phase component (I component) and the quadrature component (Q component) of the QPSK signal having a double bandwidth are respectively transmitted to the upper sideband (USB) and the lower sideband ( after modulation to LSB), the USB - f s / 2, LSB to by synthesized frequency shifted by f s / 2, in a manner that half of a conventional QPSK the occupied bandwidth overlapping the USB and LSB is there.

しかしながら,この方式ではI,Q成分が帯域制限フィルタによりパルス整形された場合には,完全にはQPSKの半分の帯域幅を実現できず,2つの搬送波を生成するための周波数発振器が必要であるという問題があった.However, in this method, when the I and Q components are pulse-shaped by the band limiting filter, a bandwidth half of QPSK cannot be realized completely, and a frequency oscillator for generating two carrier waves is required. There was a problem.

そこで,(i)ディジタル変調信号の半分の帯域幅を完全に実現でき,(ii)1つの搬送波のみで変調できるディジタルSSB変調方式を発明した.本発明では,帯域制限フィルタとそのフィルタのインパルス応答をヒルベルト変換したインパルス応答を実現するパルス整形フィルタを用いて,ディジタルSSB変調方式を実現する.また,この方式では原理的に符号間干渉が発生してしまうため,送信機に畳み込み符号やターボ符号などの誤り訂正符号を付加し,受信機で,誤り訂正復号と適応等化を繰り返し行うターボ等化により,符号間干渉の除去を行う.
S.A.Mujtaba,「A novel scheme for transmitting QPSK as a single−sideband signal」 IEEE GLOBECOM 98,vol.1,pp.592−597,1998. 太田現一郎他,「周波数利用効率のための新たな変調方式」電子情報通信学会技術報告RCS2003−184,pp.189−194,2003年11月.
Therefore, the present inventors invented a digital SSB modulation method capable of (i) completely realizing half the bandwidth of a digital modulation signal and (ii) modulating with only one carrier wave. In the present invention, a digital SSB modulation system is realized by using a band shaping filter and a pulse shaping filter that realizes an impulse response obtained by converting the impulse response of the filter into a Hilbert transform. In addition, in this system, intersymbol interference occurs in principle, so an error correction code such as a convolutional code or a turbo code is added to the transmitter, and the receiver performs repeated error correction decoding and adaptive equalization. The intersymbol interference is removed by equalization.
S. A. Mutababa, “A novel scheme for transmitting QPSK as a single-sideband signal” IEEE GLOBECOM 98, vol. 1, pp. 592-597, 1998. Oichiro Genichiro et al., “New Modulation Method for Frequency Utilization Efficiency”, IEICE Technical Report RCS2003-184, pp. 189-194, November 2003.

従来手法には以下のような欠点がある.
1.I成分,Q成分が帯域制限フィルタによりパルス整形された場合には,完全にはディジタル変調信号の半分の帯域幅を実現できない.
2.2つの搬送波を生成するための複数の周波数発振器が必要である.
以上の点を考慮すると,パルス整形時にディジタル変調信号の半分の帯域幅を完全に実現でき,1つの搬送波のみで変調できるディジタルSSB変調方式は存在しない.
The conventional method has the following disadvantages.
1. If the I and Q components are pulse-shaped by a band-limiting filter, it is not possible to realize a bandwidth that is half that of a digitally modulated signal.
2. Multiple frequency oscillators are required to generate two carriers.
Considering the above points, there is no digital SSB modulation method that can completely realize the half bandwidth of the digital modulation signal at the time of pulse shaping, and can modulate only with one carrier wave.

本発明は,このような課題に鑑みてなされたものであり,パルス整形時にディジタル変調信号の半分の帯域幅を完全に実現でき,さらに,1つの搬送波のみで変調できるディジタルSSB変調方式の送信機及びその送信機で送信された信号を受信できる受信機を提供することを目的とする.  The present invention has been made in view of the above problems, and can realize a digital SSB modulation type transmitter capable of completely realizing a half bandwidth of a digital modulation signal at the time of pulse shaping, and further capable of modulation with only one carrier wave. And it aims at providing the receiver which can receive the signal transmitted with the transmitter.

本発明の帯域制限を行うパルス整形フィルタ1と,そのインパルス応答のヒルベルト変換であるインパルス応答を実現するパルス整形フィルタ2とを用いて,誤り訂正符号化されたディジタル変調信号の同相成分と直交成分を上側波帯または下側波帯の単側波帯に変調するディジタルSSBターボ送信機と,前記パルス整形フィルタ1の整合フィルタ1と,前記パルス整形フィルタ2の整合フィルタ2とを用いて,前記上側波帯または前記下側波帯の受信信号からディジタル変調信号の前記同相成分と前記直交成分を復調し,整合フィルタ出力に発生する符号間干渉をターボ等化器と誤り訂正復号器を繰り返し動作させることで除去するディジタルSSBターボ受信機とから構成されており,本発明の前記ディジタルSSBターボ送信機によりディジタル変調信号の半分の帯域幅で同一の伝送速度を実現でき,前記ディジタルSSBターボ受信機によりディジタルSSB変調信号の復調および符号間干渉を除去することにより上述目的は達成される.An in-phase component and a quadrature component of an error-correction-coded digital modulation signal using the pulse shaping filter 1 that performs band limitation of the present invention and a pulse shaping filter 2 that realizes an impulse response that is a Hilbert transform of the impulse response. Using a digital SSB turbo transmitter that modulates the signal into a single sideband of the upper sideband or the lower sideband, the matched filter 1 of the pulse shaping filter 1, and the matched filter 2 of the pulse shaping filter 2. Demodulate the in-phase component and quadrature component of the digital modulation signal from the received signal in the upper sideband or the lower sideband, and repeatedly operate the turbo equalizer and error correction decoder for intersymbol interference generated at the matched filter output And the digital SSB turbo receiver to be eliminated by the digital SSB turbo transmitter of the present invention. At half the bandwidth of the digital modulation signal can achieve the same transmission rate, the above object is achieved by removing the demodulation and intersymbol interference of the digital SSB modulation signal by the digital SSB turbo receiver.

また,本発明の上述目的は,前記ディジタルSSBターボ送信機は,CRC符号器と,誤り訂正符号器と,インターリーバと,マルチプレクサと,シリアル・パラレル変換器と,信号マッピング器と,前記パルス整形フィルタ1と,前記パルス整形フィルタ2と,送信機用減算器と,送信機用加算器と,直交変調器とから構成されることにより,或いは,前記CRC符号器は,送信する情報ビット系列を入力し,CRC符号化を行って情報ビット系列にCRC符号を付加したビット系列を出力するようにし,前記誤り訂正符号器は,前記ビット系列を入力し,誤り訂正符号化を行って,符号化されたビット系列を出力するようにし,前記インターリーバは,前記符号化されたビット系列を入力し,インターリーブされたビット系列を出力するようにし,前記マルチプレクサは,送受信機間で既知なパイロット信号系列と前記インターリーブされたビット系列を入力し,それぞれの系列を時間多重して出力するようにし, 前記シリアル・パラレル変換器は,前記インターリーブされたビット系列または前記パイロット系列を入力し,同相成分用と直交成分用の2系列にパラレル変換して,ビット系列を出力するようにし, 前記信号マッピング器は,パラレル変換されたビット系列を信号点にマッピングし,ディジタル変調信号を出力するようにし,前記パルス整形フィルタ1は,前記ディジタル変調信号を入力し,帯域制限用パルス波形を畳み込み,パルス整形後のディジタル変調信号を出力するようにし,前記パルス整形フィルタ2は,前記ディジタル変調信号を入力し,前記パルス整形フィルタ1の前記帯域制限用パルス波形をヒルベルト変換したパルス波形を畳み込み,パルス整形後のディジタル変調信号を出力するようにし,前記送信機用減算器は,ディジタル変調信号の同相成分を前記パルス整形フィルタ1に入力し,出力した前記パルス整形後のディジタル変調信号から,ディジタル変調信号の直交成分を前記パルス整形フィルタ2に入力し,出力した前記パルス整形後のディジタル変調信号を減算し,ディジタルSSB変調信号の同相成分を出力するようにし,前記送信機用加算器は,ディジタル変調信号の同相成分を前記パルス整形フィルタ2に入力し,出力した前記パルス整形後のディジタル変調信号に,ディジタル変調信号の直交成分を前記パルス整形フィルタ1に入力し,出力した前記パルス整形後のディジタル変調信号を加算し,ディジタルSSB変調信号の直交成分を出力するようにし,前記直交変調器は,ディジタルSSB変調信号の同相成分及び直交成分を入力して,搬送波を用いて直交変調し,ディジタルSSB変調された送信信号を生成することにより,或いは,前記パルス整形フィルタ1は,前記パルス波形として帯域制限用パルス波形に窓関数を乗積したパルス波形を用い,前記パルス整形フィルタ2は,前記パルス波形として前記帯域制限用パルス波形をヒルベルト変換したパルス波形に窓関数を乗積したパルス波形を用いることにより,或いは,前記ディジタルSSBターボ受信機は,直交復調器と,低域通過フィルタ(LPF)と,前記整合フィルタ1と,前記整合フィルタ2と,受信機用加算器と,受信機用減算器と,チャネル推定器と,前記ターボ等化器と,デインターリーバと,インターリーバと,前記誤り訂正復号器と,繰り返し制御器と,CRC復号器とから構成されることにより,或いは,前記直交復調器は,ディジタルSSB変調された受信信号を入力し,搬送波を用いて直交復調して受信信号の同相成分及び直交成分を出力するようにし,前記LPFは,前記受信信号の同相成分または直交成分を入力し,ベースバンド受信信号の同相成分または直交成分のみを抽出して出力するようにし,前記整合フィルタ1は,前記ベースバンド受信信号を入力し,前記パルス整形フィルタ1の帯域制限用パルス波形と整合するパルス波形を畳み込んで,整合後のベースバンド受信信号を出力するようにし,前記整合フィルタ2は,前記ベースバンド受信信号を入力し,前記パルス整形フィルタ2のパルス波形と整合するパルス波形を畳み込んで,整合後のベースバンド受信信号を出力するようにし,前記受信機用加算器は,前記ベースバンド受信信号の同相成分を前記整合フィルタ1に入力し,出力した前記整合後のベースバンド受信信号に,前記ベースバンド受信信号の直交成分を前記整合フィルタ2に入力し,出力した前記整合後のベースバンド受信信号を加算し,ディジタル変調受信信号の同相成分を出力するようにし,前記受信機用減算器は,前記ベースバンド受信信号の直交成分を前記整合フィルタ1に入力し,出力した前記整合後のベースバンド受信信号から,前記ベースバンド受信信号の同相成分を前記整合フィルタ2に入力し,出力した前記整合後のベースバンド受信信号を減算し,ディジタル変調受信信号の直交成分を出力するようにし,前記チャネル推定器は,前記ディジタル変調受信信号の直交成分と同相成分を入力し,送受信機間のチャネル・インパルス応答を推定し,チャネル推定値を出力するようにし,前記ターボ等化器は,前記ディジタル変調受信信号の直交成分と同相成分を入力し,インターリーブされた帰還検波信号,前記チャネル推定値と繰り返し回数を用いて符号間干渉を除去し,検波信号を出力するようにし,前記デインターリーバは,前記検波信号を入力し,デインターリーブして,出力するようにし,前記誤り訂正復号器は,デインターリーバ後の前記検波信号を入力し,誤り訂正復号して受信ビット系列と前記帰還検波信号を出力するようにし,前記CRC復号器は,前記受信ビットを入力し,CRC復号を行ってパケット中の判定誤りを検出して,誤り検出結果と判定誤りが検出されなかった場合には受信ビットとを出力するようにし,前記インターリーバは,前記帰還検波信号を入力し,インターリーブして,出力するようにし,前記繰り返し制御器は,前記誤り検出結果を入力し,判定誤りが検出された場合には,前記繰り返し回数を前記ターボ等化器に出力し,前記インターリーバ,前記ターボ等化器,前記誤り訂正復号器の順番に動作させ,等化処理と復号処理を繰り返す制御を行うことにより,或いは,前記ターボ等化器は,ターボ等化器用減算器と,線形フィルタと,ソフト出力検波器と,符号間干渉(ISI)レプリカ生成器と,タップ係数生成器とから構成されることにより,或いは,前記ISIレプリカ生成器は,インターリーブされた前記帰還検波信号と前記チャネル推定値を入力して,前記ディジタル変調受信信号の符号間干渉成分のレプリカ(ISIレプリカ)を生成,出力するようにし,前記減算器は,前記ディジタル変調受信信号から前記ISIレプリカを減算するようにし,前記タップ係数生成器は,前記繰り返し回数と前記チャネル推定値を用いて符号間干渉または符号間干渉の除去残差の抑圧,雑音の白色化を行う最小2乗法に基づいた前記線形フィルタ用のタップ係数を生成するようにし,前記線形フィルタは,前記ISIレプリカ減算後の前記ディジタル変調受信信号を入力し,前記タップ係数を用いて線形合成し,合成信号を出力するようにし,前記ソフト出力検波器は,前記合成信号を入力して,前記検波信号を生成することにより,或いは,前記チャネル推定器は,トランスバーサルフィルタに前記パイロット信号系列または前記帰還検波信号を用いて生成したディジタル変調信号を入力して受信信号レプリカを生成し,前記受信信号レプリカと前記ディジタル変調受信信号との差の絶対値2乗値が最小になるように最小2乗法を用いて,前記トランスバーサルフィルタのタップ係数として前記チャネル・インパルス応答を推定することにより,或いは,誤り訂正符号化されたディジタル変調信号を従来のディジタル変調送信機で送信し,受信されたディジタル変調信号の受信信号に対して,上側波帯成分を用いて請求項5に記載のディジタルSSBターボ受信機で検波し,また,下側波帯成分を用いて請求項5に記載のディジタルSSBターボ受信機で検波し,それぞれの検波結果を最適合成することで,周波数選択性フェージングチャネルにおける伝送特性を向上させることにより一層効果的に達成される.  The digital SSB turbo transmitter includes a CRC encoder, an error correction encoder, an interleaver, a multiplexer, a serial / parallel converter, a signal mapper, and the pulse shaper. By comprising the filter 1, the pulse shaping filter 2, the transmitter subtractor, the transmitter adder, and the quadrature modulator, or the CRC encoder Input, CRC encoding is performed to output a bit sequence obtained by adding a CRC code to the information bit sequence, and the error correction encoder inputs the bit sequence, performs error correction encoding, and performs encoding. The interleaver inputs the coded bit sequence and outputs the interleaved bit sequence. The multiplexer inputs a known pilot signal sequence between the transceiver and the interleaved bit sequence, and multiplexes and outputs the respective sequences, and the serial-parallel converter includes the interleaver. The converted bit sequence or the pilot sequence is input and parallel-converted into two sequences for the in-phase component and the quadrature component, and the bit sequence is output. The signal mapper converts the parallel-converted bit sequence into a signal Mapping to a point and outputting a digital modulation signal, and the pulse shaping filter 1 inputs the digital modulation signal, convolves a band-limiting pulse waveform, and outputs a digital modulation signal after pulse shaping, The pulse shaping filter 2 inputs the digital modulation signal and inputs the power. The pulse waveform obtained by Hilbert transforming the band limiting pulse waveform of the S shaping filter 1 is convolved to output a digital modulated signal after pulse shaping, and the transmitter subtractor converts the in-phase component of the digital modulated signal to the pulse The quadrature component of the digital modulation signal is input to the pulse shaping filter 2 from the pulse-modulated digital modulation signal that is input to and output from the shaping filter 1, and the digital modulation signal that is output after the pulse shaping is subtracted from the digital modulation signal The in-phase component of the SSB modulation signal is output, and the transmitter adder inputs the in-phase component of the digital modulation signal to the pulse shaping filter 2 and outputs the digital modulation signal to the output digital modulation signal after the pulse shaping. Input the quadrature component of the signal to the pulse shaping filter 1 and output the pulse shaping The digital modulation signal is added to output the quadrature component of the digital SSB modulation signal, and the quadrature modulator inputs the in-phase component and quadrature component of the digital SSB modulation signal, performs quadrature modulation using the carrier wave, By generating a digital SSB modulated transmission signal, or the pulse shaping filter 1 uses a pulse waveform obtained by multiplying a band limiting pulse waveform by a window function as the pulse waveform, and the pulse shaping filter 2 By using a pulse waveform obtained by multiplying the pulse waveform obtained by Hilbert transform of the band limiting pulse waveform with a window function as the pulse waveform, or the digital SSB turbo receiver includes an orthogonal demodulator, a low-pass filter ( LPF), the matched filter 1, the matched filter 2, a receiver adder, and a receiver subtracter A channel estimator, a turbo estimator, a deinterleaver, an interleaver, the error correction decoder, an iterative controller, and a CRC decoder, or The quadrature demodulator receives a digital SSB modulated received signal, performs quadrature demodulation using a carrier wave, and outputs an in-phase component and a quadrature component of the received signal. A component is input, and only the in-phase component or the quadrature component of the baseband received signal is extracted and output. The matched filter 1 receives the baseband received signal, and outputs a band limiting pulse of the pulse shaping filter 1 A pulse waveform that matches the waveform is convoluted to output a matched baseband received signal, and the matched filter 2 includes the baseband A reception signal is input, a pulse waveform that matches the pulse waveform of the pulse shaping filter 2 is convolved, and a matched baseband reception signal is output. The receiver adder is configured to output the baseband reception signal. Are input to the matched filter 1 and output to the matched baseband received signal, and the quadrature component of the baseband received signal is input to the matched filter 2 and output. The signals are added to output the in-phase component of the digitally modulated received signal, and the receiver subtractor inputs the quadrature component of the baseband received signal to the matched filter 1 and outputs the matched base signal The in-phase component of the baseband received signal from the band received signal is input to the matched filter 2 and output from the matched baseband received signal. And the quadrature component of the digital modulation reception signal is output, and the channel estimator inputs the quadrature component and the in-phase component of the digital modulation reception signal, estimates the channel impulse response between the transceiver, The turbo equalizer outputs a quadrature component and an in-phase component of the digital modulation reception signal, and uses an interleaved feedback detection signal, the channel estimation value, and the number of repetitions. The deinterleaver inputs the detection signal, deinterleaves and outputs the detection signal, and the error correction decoder outputs the detection signal after deinterleaving. A signal is input, error correction decoding is performed to output a received bit sequence and the feedback detection signal, and the CRC decoder And a CRC decoding to detect a determination error in the packet, and when an error detection result and a determination error are not detected, a received bit is output, and the interleaver A feedback detection signal is input, interleaved, and output. The repetition controller inputs the error detection result, and when a determination error is detected, the repetition count is input to the turbo equalizer. By outputting and operating in the order of the interleaver, the turbo equalizer, and the error correction decoder, and performing a control to repeat equalization processing and decoding processing, or the turbo equalizer is turbo equalization A subtractor for a device, a linear filter, a soft output detector, an intersymbol interference (ISI) replica generator, and a tap coefficient generator; The Rica generator receives the interleaved feedback detection signal and the channel estimation value, and generates and outputs a replica of the intersymbol interference component (ISI replica) of the digital modulation reception signal. The subtractor The ISI replica is subtracted from the digitally modulated received signal, and the tap coefficient generator uses the repetition count and the channel estimation value to suppress intersymbol interference or intersymbol interference removal residual, noise Tap coefficients for the linear filter based on the least square method for whitening are generated, and the linear filter receives the digital modulation reception signal after subtraction of the ISI replica, and linearly uses the tap coefficients. And the soft output detector receives the combined signal and outputs the detected signal. Or the channel estimator generates a received signal replica by inputting a digital modulation signal generated by using the pilot signal sequence or the feedback detection signal to a transversal filter, and generating the received signal replica Estimating the channel impulse response as the tap coefficient of the transversal filter using the least square method so that the absolute value square value of the difference from the digital modulation reception signal is minimized, or error correction 6. The digital SSB turbo receiver according to claim 5, wherein the encoded digital modulation signal is transmitted by a conventional digital modulation transmitter, and an upper sideband component is used for the received signal of the digital modulation signal. 6. The digital SSB turbo reception according to claim 5, wherein the detection is performed and the lower sideband component is used. This is achieved more effectively by improving the transmission characteristics in the frequency selective fading channel by detecting them by a machine and optimally combining the detection results.

本発明は,以下に記載されるような効果を奏する.
請求項1記載の発明であるディジタルSSBターボ送受信機によれば,帯域制限フィルタによるパルス整形時にディジタル変調信号の半分の帯域幅を完全に実現でき,さらに,1つの搬送波のみで変調できるディジタルSSB変調方式を実現でき,また,この方式で原理的に発生する符号間干渉を,誤り訂正復号器とターボ等化器を繰り返し動作させることで除去できる.
The present invention has the following effects.
According to the digital SSB turbo transmitter / receiver according to the first aspect of the present invention, the digital SSB modulation capable of completely realizing a half bandwidth of the digital modulation signal at the time of pulse shaping by the band limiting filter and further capable of modulating with only one carrier wave. The scheme can be realized, and the intersymbol interference that occurs in principle in this scheme can be eliminated by repeatedly operating the error correction decoder and the turbo equalizer.

以下,本発明を実施するための最良の形態について図面を参照して説明する.ディジタル変調信号には,多値PSK変調であるBPSK,QPSK,8PSK等の変調信号や,多値QAM変調である16QAM,64QAM,256QAM等の変調信号がある.以降では,それらを総称してディジタル変調信号と呼ぶ.  The best mode for carrying out the present invention will be described below with reference to the drawings. Digital modulation signals include modulation signals such as BPSK, QPSK, and 8PSK that are multilevel PSK modulation, and modulation signals such as 16QAM, 64QAM, and 256QAM that are multilevel QAM modulation. In the following, they are generically called digital modulation signals.

まず,ディジタルSSBターボ送受信機に係る第1,第2,第3及び第4の発明を実施するための最良の形態について説明する.ディジタルSSBターボ送信機の基本構成を図1に示す.図1に示されるように,本発明に係るディジタルSSBターボ送信機は,CRC符号器2と,誤り訂正符号器3と,インターリーバ4と,マルチプレクサ5と,シリアル・パラレル変換器7と,信号マッピング器8,パルス整形フィルタ1 9と,パルス整形フィルタ2 10と,送信機用減算器11と,送信機用加算器12と,直交変調器13とから構成される.  First, the best mode for carrying out the first, second, third and fourth aspects of the digital SSB turbo transceiver will be described. Figure 1 shows the basic configuration of the digital SSB turbo transmitter. As shown in FIG. 1, a digital SSB turbo transmitter according to the present invention includes a CRC encoder 2, an error correction encoder 3, an interleaver 4, a multiplexer 5, a serial / parallel converter 7, a signal It comprises a mapping device 8, a pulse shaping filter 19, a pulse shaping filter 2 10, a transmitter subtractor 11, a transmitter adder 12, and a quadrature modulator 13.

ディジタルSSBターボ送信機は,送信ビット入力端子から入力された情報ビット系列に対して,CRC符号器2を用いてCRC符号化を行い,情報ビット系列にCRC符号を付加したビット系列を出力する.誤り訂正符号器3は,そのビット系列を誤り訂正符号化して,符号化されたビット系列を出力する.次に,インターリーバ4は,符号化されたビット系列をインターリーブし出力する.マルチプレクサ5は,送受信機間で既知なパイロット信号系列とインターリーブされたビット系列を時間多重する.出力された系列は,シリアル・パラレル変換器7によって,同相成分用と直交成分用の2系列に変換される.そして,信号マッピング器8はパラレル変換されたビット系列を信号点にマッピングし,ディジタル変調信号を生成する.ディジタル変調信号の同相成分と直交成分は,パルス整形フィルタ19とパルス整形フィルタ2 10により上側波帯または下側波帯信号に変換される.以降では,上側波帯の場合についてのみ説明する.  The digital SSB turbo transmitter performs CRC encoding on the information bit sequence input from the transmission bit input terminal using the CRC encoder 2 and outputs a bit sequence obtained by adding a CRC code to the information bit sequence. The error correction encoder 3 performs error correction encoding on the bit sequence and outputs the encoded bit sequence. Next, the interleaver 4 interleaves the encoded bit sequence and outputs it. The multiplexer 5 time-multiplexes a pilot signal sequence and an interleaved bit sequence that are known between the transceivers. The output sequence is converted by the serial / parallel converter 7 into two sequences for the in-phase component and the quadrature component. The signal mapper 8 maps the parallel-converted bit sequence to signal points and generates a digital modulation signal. The in-phase component and the quadrature component of the digital modulation signal are converted into an upper sideband signal or a lower sideband signal by the pulse shaping filter 19 and the pulse shaping filter 210. In the following, only the case of the upper sideband will be described.

第nシンボルにおけるディジタル変調信号の同相成分をbI,n,直交成分をbQ,nとし,複素シンボルをdとすると,シンボル周期Tのディジタル変調信号m(t)は

Figure 2006203835
=bI,n+jbQ,n (2)
となる.次に,パルス整形フィルタ1のインパルス応答をg(t),パルス整形フィルタ2の
Figure 2006203835
エ変換は,
Figure 2006203835
Figure 2006203835
リエ変換は
Figure 2006203835
となり,パルス整形フィルタ1 9と,パルス整形フィルタ2 10と,送信機用減算器11と,送信機用加算器12とからディジタルSSB変調信号が生成される.Phase component b I of the digital modulated signal in the n symbols, n, the quadrature component b Q, and n, the complex symbols to d n, the digital modulation signal m of the symbol period T (t) =
Figure 2006203835
d n = b I, n + jb Q, n (2)
It becomes. Next, the impulse response of the pulse shaping filter 1 is g (t), and the pulse shaping filter 2
Figure 2006203835
D conversion is
Figure 2006203835
Figure 2006203835
Rie conversion
Figure 2006203835
A digital SSB modulation signal is generated from the pulse shaping filter 19, the pulse shaping filter 2 10, the transmitter subtractor 11, and the transmitter adder 12.

Figure 2006203835
搬送波に変調されて,RF信号として送信される.
Figure 2006203835
Modulated to carrier wave and transmitted as RF signal.

Figure 2006203835
数窓,ハニング窓,ハミング窓,矩形窓等の様々なものが考えられる.指数関数窓を用いる場合には,打ち切りシンボル数をLとすると,窓関数は
Figure 2006203835
となる.
Figure 2006203835
Various windows such as several windows, Hanning windows, Hamming windows, and rectangular windows can be considered. When using an exponential function window, if the number of censored symbols is L, the window function is
Figure 2006203835
It becomes.

以上のことから,本発明を実施するための最良の形態によれば,パルス整形フィルタとそのヒルベルト変換であるパルス整形フィルタによりパルス整形時においても完全にディジタル変調信号の半分の帯域幅でディジタルSSB変調信号を実現でき,さらに,1つの搬送波のみで変調できるディジタルSSBターボ送信機が実現可能である.また,パルス整形フィルタのパルス波形に窓関数を乗積することにより,少ないシンボル数で畳み込む積分が完了し,計算量及び受信機で観測される符号間干渉の量を削減できる.  From the above, according to the best mode for carrying out the present invention, the digital SSB is completely half bandwidth of the digital modulation signal even at the time of pulse shaping by the pulse shaping filter and the pulse shaping filter which is the Hilbert transform. It is possible to realize a digital SSB turbo transmitter that can realize a modulation signal and can only modulate with one carrier wave. In addition, by multiplying the pulse waveform of the pulse shaping filter by the window function, the convolution with a small number of symbols is completed, and the amount of computation and the amount of intersymbol interference observed at the receiver can be reduced.

次に,ディジタルSSBターボ送受信機に係る第1,第5,第6,第7及び第8の発明を実施するための最良の形態について説明する.  Next, the best mode for carrying out the first, fifth, sixth, seventh and eighth aspects of the digital SSB turbo transceiver will be described.

ディジタルSSBターボ受信機の基本構成を図2に示す.図2のように本発明に係るディジタルSSBターボ受信機は,直交復調器16と,LPF17と,整合フィルタ1 18と,整合フィルタ2 19と,受信機用加算器20と,受信機用減算器21と,チャネル推定器22と,ターボ等化器24と,デインターリーバ25と,インターリーバ26と,誤り訂正復号器27と,繰り返し制御器28と,CRC復号器29とから構成される.  Figure 2 shows the basic configuration of the digital SSB turbo receiver. As shown in FIG. 2, the digital SSB turbo receiver according to the present invention includes a quadrature demodulator 16, an LPF 17, a matched filter 118, a matched filter 2 19, a receiver adder 20, and a receiver subtractor. 21, a channel estimator 22, a turbo equalizer 24, a deinterleaver 25, an interleaver 26, an error correction decoder 27, an iterative controller 28, and a CRC decoder 29.

ディジタルSSBターボ受信機における直交復調器16は,ディジタルSSB変調された受信信号に対して,搬送波を用いて直交復調を行い,受信信号の同相成分及び直交成分を抽出する.受信信号の同相成分及び直交成分は,LPF17に入力され,ベースバンド受信

Figure 2006203835
となる.パルス整形フィルタ1及びパルス整形フィルタ2の複素整合フィルタのインパルス応答は
Figure 2006203835
をインパルス応答に持つ整合フィルタ2 19と,受信機用加算器20と,受信機用減算器21とによって実現される.このとき,サンプリング時刻t=kTにおける複素整合フィル
Figure 2006203835
となる.ここで,iは符号間干渉であり,uは雑音の整合フィルタ出力である.さらに,
Figure 2006203835
となり,数式(16),数式(17)から本発明である受信機により整合フィルタ出力であるディジタル変調受信信号の直交成分と同相成分からdが取り出せることがわかる.ただし,数式(13)よりチャネル・インパルス応答h(t)が時間的に広がっていない場合にも符号間干渉が発生するため,これを除去または抑圧する必要がある.The quadrature demodulator 16 in the digital SSB turbo receiver performs quadrature demodulation using a carrier wave on the digital SSB modulated received signal, and extracts the in-phase component and the quadrature component of the received signal. The in-phase and quadrature components of the received signal are input to the LPF 17 for baseband reception.
Figure 2006203835
It becomes. The impulse response of the complex matched filter of the pulse shaping filter 1 and the pulse shaping filter 2 is
Figure 2006203835
Is realized by a matched filter 219 having an impulse response, a receiver adder 20, and a receiver subtractor 21. At this time, the complex matched fill at the sampling time t = kT
Figure 2006203835
It becomes. Here, i k is the intersymbol interference, and u k is the noise matched filter output. further,
Figure 2006203835
From Equations (16) and (17), it can be seen that d k can be extracted from the quadrature component and the in-phase component of the digitally modulated received signal as the matched filter output by the receiver of the present invention. However, since the intersymbol interference occurs even when the channel impulse response h (t) does not spread in time from the equation (13), it is necessary to remove or suppress this.

チャネル推定器22は,ディジタル変調受信信号の直交成分と同相成分を用いて,送受信機間のチャネル・インパルス応答を推定する.チャネル推定器22の詳細については後述する.ターボ等化器24は,そのチャネル推定値,インターリーブされた帰還検波信号と繰り返し回数を用いて,入力されたディジタル変調受信信号の直交成分と同相成分から符号間干渉を除去し,検波信号を出力する.  The channel estimator 22 estimates the channel impulse response between the transmitter and the receiver using the quadrature component and the in-phase component of the digital modulation reception signal. Details of the channel estimator 22 will be described later. The turbo equalizer 24 removes the intersymbol interference from the quadrature component and the in-phase component of the input digital modulation reception signal using the channel estimation value, the interleaved feedback detection signal and the number of repetitions, and outputs the detection signal. Do it.

また,図3に本発明に係るディジタルSSB受信機におけるターボ等化器の構成を示す.ターボ等化器24は,ターボ等化器用減算器31と,線形フィルタ32と,タップ係数生成器33と,ソフト出力検波器34と,ISIレプリカ生成器35とから構成される.  Figure 3 shows the configuration of the turbo equalizer in the digital SSB receiver according to the present invention. The turbo equalizer 24 includes a turbo equalizer subtracter 31, a linear filter 32, a tap coefficient generator 33, a soft output detector 34, and an ISI replica generator 35.

まず,ISIレプリカ生成器35は,誤り訂正復号器からフィードバックされ,インターリーブされた帰還検波信号とチャネル推定値を用いてディジタル変調受信信号のISI成分のレプリカを生成する.帰還検波信号として対数尤度比を用いた場合には,その対数尤度比を用いて各ディジタル変調信号の期待値を計算し,それをディジタル変調信号のレプリカとする.帰還検波信号として受信ビットを誤り訂正符号化したビット系列を用いた場合には,そのビット系列をシリアル・パラレル変換し,ディジタル変調信号にマッピングし,それをディジタル変調信号のレプリカとする.生成されたISIレプリカは,ターボ等化器用減算器31によって,ディジタル変調受信信号から減算され,ISI成分の除去が行われる.  First, the ISI replica generator 35 generates a replica of the ISI component of the digital modulation reception signal using the feedback detection signal and the channel estimation value fed back from the error correction decoder. When the log likelihood ratio is used as the feedback detection signal, the expected value of each digital modulation signal is calculated using the log likelihood ratio and is used as a replica of the digital modulation signal. When a bit sequence in which the received bits are error-corrected coded is used as the feedback detection signal, the bit sequence is serial-to-parallel converted, mapped to a digital modulation signal, and used as a replica of the digital modulation signal. The generated ISI replica is subtracted from the digital modulation reception signal by the turbo equalizer subtractor 31 to remove the ISI component.

さらに,その出力は,線形フィルタに入力され,ISI成分の除去残差の抑圧,雑音の白色化が行われる.誤り訂正復号がまだ行われていない場合には,ISIレプリカ生成ができないため,ISI成分の抑圧,雑音の白色化が線形フィルタで行われる.線形フィルタ用のタップ係数は,タップ係数生成器33で生成される.タップ係数は,繰り返し回数とチャネル推定値及び雑音電力の推定値を用いて,最小2乗法に基づいた係数が生成される.重み係数の導出方法は,非特許文献3,非特許文献4に詳しく記述されている.非特許文献3では,周波数選択性フェージング環境において符号間干渉が発生し,その除去について検討している.
D.Reynolds 他,「Low Complexity Turbo−Equalization for Diversity Channels」Signal Processing,Elsevier Science Publishers,81(5)pp.989−995,2001. H.Fujii他,「Turbo receiver with SC/simplified−MMSE(S−MMSE)type equalizer for MIMO channel signal transmission」 IEEE VTC 2003−Fall,Vol.1,pp.632−636,Oct.2003.
Furthermore, the output is input to a linear filter, where the ISI component removal residual is suppressed and noise whitening is performed. When error correction decoding has not yet been performed, ISI replica generation cannot be performed, so suppression of ISI components and whitening of noise are performed by a linear filter. The tap coefficient for the linear filter is generated by the tap coefficient generator 33. The tap coefficient is generated based on the least square method using the number of iterations, the channel estimation value, and the noise power estimation value. The method for deriving the weighting factor is described in detail in Non-Patent Document 3 and Non-Patent Document 4. In Non-Patent Document 3, intersymbol interference occurs in a frequency selective fading environment, and its removal is studied.
D. Reynolds et al., “Low Complexity Turbo-Equalization for Diversity Channels”, Signal Processing, Elsevier Science Publishers, 81 (5) pp. 199 989-995, 2001. H. Fujii et al., “Turbo received with SC / simplified-MMSE (S-MMSE) type equalizer for MIMO channel signal transmission, IEEE VTC 2003, Fall. 1, pp. 632-636, Oct. 2003.

それに対して,本発明では既述の通り,整合フィルタ出力において上側波帯に多重したディジタル変調信号の同相成分と直交成分を完全に分離できないために発生する符号間干渉の除去を行う.すなわち,本発明では,マルチパス遅延によって発生する符号間干渉と分離不完全性による符号間干渉の両方を除去,抑圧する必要がある.数式(13)に基づいて,複素整形フィルタのインパルス応答と,チャネル・インパルス応答と,複素整合フィルタのインパルス応答との畳み込み積分から発生する符号間干渉の量を計算し,その符号間干渉を抑圧する,或いは,ISI除去後の除去残差を抑圧するタップ係数を用いる.また,雑音成分についても相関が発生するため,数式(14)に基づいて雑音と整合フィルタのインパルス応答から相関関数を計算し,それを用いて雑音の白色化も線形フィルタで実現する.  In contrast, in the present invention, as described above, the intersymbol interference that occurs because the in-phase and quadrature components of the digital modulation signal multiplexed in the upper sideband cannot be completely separated at the matched filter output. That is, in the present invention, it is necessary to remove and suppress both intersymbol interference caused by multipath delay and intersymbol interference due to separation imperfection. Based on Equation (13), the amount of intersymbol interference generated from the convolution integration of the impulse response of the complex shaping filter, the channel impulse response, and the impulse response of the complex matched filter is calculated, and the intersymbol interference is suppressed. Or, tap coefficients that suppress the residual after ISI removal are used. Since the noise component also correlates, the correlation function is calculated from the noise and the impulse response of the matched filter based on Eq. (14), and noise whitening is also realized with a linear filter.

ISI成分の除去残差は,帰還検波信号の精度に依存し,誤り訂正復号とターボ等化を繰り返すことで減少するが,繰り返し毎に除去残差を推定することは計算量が増大するため,タップ係数生成器33は,非特許文献4に記載された繰り返し回数毎に予め除去残差を決めておく方法を用いる.  The removal residual of the ISI component depends on the accuracy of the feedback detection signal and decreases by repeating error correction decoding and turbo equalization. However, estimating the removal residual at each iteration increases the amount of calculation. The tap coefficient generator 33 uses a method in which a removal residual is determined in advance for each iteration described in Non-Patent Document 4.

線形フィルタである合成信号は,ソフト出力検波器によって検波信号に変換され,出力される.検波信号は,デインターリーバ25でデインターリーブされ,その後,誤り訂正復号器27により誤り訂正復号され,受信ビット系列と帰還検波信号が出力される.誤り訂正復号器として,対数尤度比を帰還検波信号として出力する軟入力軟出力復号を用いる場合と,帰還検波信号として受信ビットを誤り訂正符号化したビット系列を用いる軟入力硬出力復号等が考えられる.  The synthesized signal, which is a linear filter, is converted to a detection signal by a soft output detector and output. The detection signal is deinterleaved by the deinterleaver 25, and then error correction decoded by the error correction decoder 27 to output a received bit sequence and a feedback detection signal. There are two types of error correction decoders: soft input soft output decoding that outputs log likelihood ratios as feedback detection signals, and soft input hard output decoding that uses a bit sequence in which received bits are error correction encoded as feedback detection signals. Conceivable.

受信ビットは,CRC復号器29におけるCRC復号によりパケット中の判定誤りが検出され,誤り検出結果が出力される。ただし,判定誤りが検出されなかった場合には受信ビットが出力され,受信処理が終了する.繰り返し制御器28は,誤り検出結果を入力し,判定誤りが検出された場合には,繰り返し回数をターボ等化器に出力し,インターリーバ26,ターボ等化器24,デインターリーバ25,誤り訂正復号器27の順番に動作させ,等化処理と復号処理を縁り返す制御を行う.判定誤りが検出されなくなるか,或いは,帰還検波信号とチャネル推定値を用いて生成した受信信号のレプリカを受信信号から減算して,その誤差量が閾値を超えた場合には繰り返しを終了するか,或いは,予め決められた繰り返し回数まで処理を繰り返す.インターリーバ26は,CRC復号器により判定誤りが検出された場合には,帰還検波信号をインターリーブして出力する.  With respect to the received bits, a determination error in the packet is detected by CRC decoding in the CRC decoder 29, and an error detection result is output. However, if no decision error is detected, the received bit is output and the reception process ends. The iterative controller 28 inputs an error detection result, and when a determination error is detected, outputs the number of repetitions to the turbo equalizer, the interleaver 26, the turbo equalizer 24, the deinterleaver 25, the error The correction decoder 27 is operated in the order to control the equalization process and the decoding process. Whether the determination error is no longer detected, or if the received signal replica generated using the feedback detection signal and the channel estimation value is subtracted from the received signal and the error amount exceeds the threshold value, the iteration is terminated. Alternatively, the process is repeated up to a predetermined number of repetitions. When a determination error is detected by the CRC decoder, the interleaver 26 interleaves and outputs a feedback detection signal.

以上のことから,本発明を実施するための最良の形態によれば,パルス整形フィルタ1の整合フィルタ1と,パルス整形フィルタ2の整合フィルタ2とを用いて,複素整合フィルタを実現することで,上側波帯または下側波帯のディジタルSSB変調方式の受信信号からディジタル変調信号の同相成分と直交成分を復調することができる.また,整合フィルタ出力に発生する符号間干渉を,ターボ等化器と誤り訂正復号器を繰り返し動作させることで除去でき,線形フィルタによりISI成分の除去残差の抑圧,雑音の白色化を行うことができる.  From the above, according to the best mode for carrying out the present invention, a complex matched filter is realized by using the matched filter 1 of the pulse shaping filter 1 and the matched filter 2 of the pulse shaping filter 2. The in-phase and quadrature components of the digital modulation signal can be demodulated from the received signal of the upper sideband or lower sideband digital SSB modulation system. In addition, the intersymbol interference generated in the matched filter output can be removed by repeatedly operating the turbo equalizer and the error correction decoder, and the ISI component removal residual is suppressed and the noise is whitened by the linear filter. Is possible.

ディジタルSSBターボ送受信機に係る第9の発明を実施するための最良の形態について説明する.  The best mode for carrying out the ninth aspect of the digital SSB turbo transceiver will be described.

チャネル推定器22は,パイロット信号のディジタル変調受信信号を入力し,トランスバーサルフィルタを用いて送受信機間のチャネル・インパルス応答を推定する.チャネル・インパルス応答は,トランスバーサルフィルタの重み係数として推定される.まず,トランスバーサルフィルタにパイロット信号を入力し,ディジタル変調受信信号のレプリカを生成する.その際,最初は重み係数を0に設定する.そして,生成したレプリカとパイロット信号のディジタル変調受信信号との差の絶対値2乗値が最小になるように逐次的な最小2乗法を用いて重み係数の更新を行い,最終更新値を推定値とする.逐次的な最小2乗法として,RLSアルゴリズムを用いる.ただし,自己相関逆行列の更新は既知信号のため,予め計算して保存しておくことで計算を省略できる,さらに,データ信号区間では,帰還検波信号から生成したディジタル変調信号をトランスバーサルフィルタに入力することで,同様に最小2乗法によりチャネル・インパルス応答を推定できる.データ信号区間では,パイロット信号区間における推定値を元にチャネル推定が行われるため,RLSアルゴリズムに加えて収束速度の遅いLMSアルゴリズムも用いることができる.  The channel estimator 22 receives the digitally modulated received signal of the pilot signal and estimates the channel impulse response between the transmitter and receiver using a transversal filter. The channel impulse response is estimated as the weighting factor of the transversal filter. First, a pilot signal is input to the transversal filter to generate a replica of the digitally modulated received signal. At that time, the weight coefficient is set to 0 at first. Then, the weight coefficient is updated using the sequential least square method so that the absolute value square value of the difference between the generated replica and the digitally modulated received signal of the pilot signal is minimized, and the final updated value is estimated. Let's say. The RLS algorithm is used as a sequential least square method. However, since the autocorrelation inverse matrix update is a known signal, it can be omitted by calculating and saving in advance. Furthermore, in the data signal section, the digital modulation signal generated from the feedback detection signal is used as a transversal filter. Similarly, the channel impulse response can be estimated by the least squares method. In the data signal section, channel estimation is performed based on the estimated value in the pilot signal section. Therefore, in addition to the RLS algorithm, an LMS algorithm with a slow convergence speed can be used.

以上のことから,本発明を実施するための最良の形態によれば,パイロット信号区間においてトランスバーサルフィルタによりチャネル・インパルス応答を推定し,さらに,データ信号区間において帰還検波信号から生成したディジタル変調信号を用いてチャネル推定を行うことで,処理区間を拡張でき,推定精度を向上することができる.チャネル推定は,RLSアルゴリズムやLMSアルゴリズム等の逐次的な最小2乗法により行われ,比較的計算量を抑えることができ,また,伝搬路が時間的に変動しても追従可能である.  From the above, according to the best mode for carrying out the present invention, a channel impulse response is estimated by a transversal filter in a pilot signal interval, and a digital modulation signal generated from a feedback detection signal in a data signal interval By performing channel estimation using, the processing interval can be extended and the estimation accuracy can be improved. Channel estimation is performed by sequential least squares methods such as RLS algorithm and LMS algorithm, and the amount of calculation can be relatively suppressed, and it can follow even if the propagation path fluctuates in time.

ディジタルSSBターボ送受信機に係る第10の発明を実施するための最良の形態について説明する.  The best mode for carrying out the tenth aspect of the digital SSB turbo transceiver will be described.

本発明に係るディジタルSSBターボ受信機は,誤り訂正符号化されたディジタル変調信号を従来のディジタル変調送信機で送信して受信されたディジタル変調受信信号に対して,まず,既述のように上側波帯成分を整合フィルタ1と整合フィルタ2により取り出し,ターボ等化器によって符号間干渉を除去して検波信号1を計算する.次に,図2のディジタルSSBターボ受信機において受信機用加算器20と受信機用減算器21を入れ換えた受信機で,下側波帯成分を整合フィルタ1と整合フィルタ2により取り出し,ターボ等化器によって符号間干渉を除去して検波信号2を計算する.そして,検波信号1と検波信号2を上側波帯成分と下側波帯成分の通信品質に合わせて最適合成し,インターリーブ後に誤り訂正復号する.判定誤りが検出された場合には,ターボ等化処理と誤り訂正復号処理を繰り返し,符号間干渉をさらに除去する.  The digital SSB turbo receiver according to the present invention is an upper side as described above with respect to a digital modulation reception signal received by transmitting a digital modulation signal subjected to error correction coding with a conventional digital modulation transmitter. The waveband component is extracted by the matched filter 1 and the matched filter 2, and the detection signal 1 is calculated by removing intersymbol interference by a turbo equalizer. Next, in the digital SSB turbo receiver of FIG. 2, the receiver adder 20 and the receiver subtractor 21 are replaced, and the lower sideband components are extracted by the matched filter 1 and the matched filter 2, and the turbo etc. The detection signal 2 is calculated by removing the intersymbol interference by the encoder. The detection signal 1 and the detection signal 2 are optimally combined according to the communication quality of the upper sideband component and the lower sideband component, and error correction decoding is performed after interleaving. If a decision error is detected, turbo equalization and error correction decoding are repeated to further eliminate intersymbol interference.

以上のことから,本発明を実施するための最良の形態によれば,周波数選択性フェージングチャネルにおいて,受信信号の上側波帯成分及び下側波帯成分の電力が著しく下がった場合に,上側波帯または下側波帯のみで検波を行うディジタルSSBターボ受信機を適用することで上側波帯と下側波帯それぞれから検波信号を取り出し最適合成することで伝送特性を向上させることができる.  From the above, according to the best mode for carrying out the present invention, in the frequency selective fading channel, when the power of the upper sideband component and the lower sideband component of the received signal is significantly reduced, the upper sideband By applying a digital SSB turbo receiver that detects only in the lower band or the lower sideband, the transmission characteristics can be improved by extracting and combining the detected signals from the upper and lower sidebands.

なお、上述した各発明を実施するための最良の形態に限らず、本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである.  The present invention is not limited to the best mode for carrying out the invention, and various other configurations can be adopted without departing from the gist of the invention.

本発明によるディジタルSSBターボ送信機の基本構成を示す図である.It is a figure which shows the basic composition of the digital SSB turbo transmitter by this invention. 本発明によるディジタルSSBターボ受信機の基本構成を示す図である.It is a figure which shows the basic composition of the digital SSB turbo receiver by this invention. 本発明によるディジタルSSBターボ受信機におけるターボ等化器の構成を示す図である.It is a figure which shows the structure of the turbo equalizer in the digital SSB turbo receiver by this invention.

符号の説明Explanation of symbols

1:送信ビット入力端子,2:CRC符号器,3:誤り訂正符号器,4:インターリーバ,5:マルチプレクサ,6:パイロット信号入力端子,7:シリアル・パラレル変換器,8:信号マッピング器,9:パルス整形フィルタ1,10:パルス整形フィルタ2,11:送信機用減算器,12:送信機用加算器,13:直交変調器,14:送信信号出力端子,15:受信信号入力端子,16:直交復調器,17:LPF,18:整合フィルタ1,19:整合フィルタ2,20:受信機用加算器,21:受信機用減算器,22:チャネル推定器,23:パイロット信号入力端子,24:ターボ等化器,25:デインターリーバ,26:インターリーバ,27:誤り訂正復号器,28:繰り返し制御器,29:CRC復号器,30:受信ビット出力端子,31:ターボ等化器用減算器,32:線形フィルタ,33:タップ係数生成器,34:ソフト出力検波器,35:ISIレプリカ生成器1: transmission bit input terminal, 2: CRC encoder, 3: error correction encoder, 4: interleaver, 5: multiplexer, 6: pilot signal input terminal, 7: serial / parallel converter, 8: signal mapper, 9: Pulse shaping filter 1, 10: Pulse shaping filter 2, 11: Transmitter subtractor, 12: Transmitter adder, 13: Quadrature modulator, 14: Transmission signal output terminal, 15: Reception signal input terminal, 16: Quadrature demodulator, 17: LPF, 18: matched filter 1, 19: matched filter 2, 20: receiver adder, 21: receiver subtractor, 22: channel estimator, 23: pilot signal input terminal , 24: turbo equalizer, 25: deinterleaver, 26: interleaver, 27: error correction decoder, 28: repetition controller, 29: CRC decoder, 30: output received bit Terminal, 31: turbo equalization dexterity subtractor, 32: linear filter, 33: tap coefficient generator 34: soft output detector, 35: ISI replica generator

Claims (10)

帯域制限を行うパルス整形フィルタ1と,そのインパルス応答のヒルベルト変換であるインパルス応答を実現するパルス整形フィルタ2とを用いて,誤り訂正符号化されたディジタル変調信号の同相成分と直交成分を上側波帯または下側波帯の単側波帯(SSB)に変調するディジタルSSBターボ送信機と,
前記パルス整形フィルタ1の整合フィルタ1と,前記パルス整形フィルタ2の整合フィルタ2とを用いて,前記上側波帯または前記下側波帯の受信信号からディジタル変調信号の前記同相成分と前記直交成分を復調し,整合フィルタ出力に発生する符号間干渉をターボ等化器と誤り訂正復号器を繰り返し動作させることで除去するディジタルSSBターボ受信機とから構成されており,
前記ディジタルSSBターボ送信機により通常のディジタル変調信号の半分の帯域幅で同一の伝送速度を実現でき,前記ディジタルSSBターボ受信機によりディジタルSSB変調信号の復調および符号間干渉を除去することを特徴とするディジタルSSBターボ送受信機.
Using the pulse shaping filter 1 that limits the band and the pulse shaping filter 2 that realizes the impulse response that is the Hilbert transform of the impulse response, the in-phase component and the quadrature component of the error-modulated coded digital modulation signal are used as the upper wave. A digital SSB turbo transmitter that modulates a single sideband (SSB) of a band or lower sideband;
Using the matched filter 1 of the pulse shaping filter 1 and the matched filter 2 of the pulse shaping filter 2, the in-phase component and the quadrature component of the digital modulation signal from the received signal in the upper sideband or the lower sideband. And a digital SSB turbo receiver that removes the intersymbol interference generated in the matched filter output by repeatedly operating the turbo equalizer and the error correction decoder,
The digital SSB turbo transmitter can realize the same transmission rate with a half bandwidth of a normal digital modulation signal, and the digital SSB turbo receiver can demodulate the digital SSB modulation signal and eliminate intersymbol interference. A digital SSB turbo transceiver.
前記ディジタルSSBターボ送信機は,巡回冗長検査(CRC)符号器と,誤り訂正符号器と,インターリーバと,マルチプレクサと,シリアル・パラレル変換器と,信号マッピング器と,前記パルス整形フィルタ1と,前記パルス整形フィルタ2と,送信機用減算器と,送信機用加算器と,直交変調器とから構成される請求項1に記載のディジタルSSBターボ送受信機.  The digital SSB turbo transmitter includes a cyclic redundancy check (CRC) encoder, an error correction encoder, an interleaver, a multiplexer, a serial / parallel converter, a signal mapper, the pulse shaping filter 1, The digital SSB turbo transceiver according to claim 1, comprising the pulse shaping filter 2, a transmitter subtractor, a transmitter adder, and a quadrature modulator. 前記CRC符号器は,送信する情報ビット系列を入力し,CRC符号化を行って情報ビット系列にCRC符号を付加したビット系列を出力するようにし,
前記誤り訂正符号器は,前記ビット系列を入力し,誤り訂正符号化を行って,符号化されたビット系列を出力するようにし,
前記インターリーバは,前記符号化されたビット系列を入力し,インターリーブされたビット系列を出力するようにし,
前記マルチプレクサは,送受信機間で既知なパイロット信号系列と前記インターリーブされたビット系列を入力し,それぞれの系列を時間多重して出力するようにし,
前記シリアル・パラレル変換器は,前記インターリーブされたビット系列または前記パイロット系列を入力し,同相成分用と直交成分用の2系列にパラレル変換して,ビット系列を出力するようにし,
前記信号マッピング器は,パラレル変換されたビット系列を信号点にマッピングし,ディジタル変調信号を出力するようにし,
前記パルス整形フィルタ1は,前記ディジタル変調信号を入力し,帯域制限用パルス波形を畳み込み,パルス整形後のディジタル変調信号を出力するようにし,
前記パルス整形フィルタ2は,前記ディジタル変調信号を入力し,前記パルス整形フィルタ1の前記帯域制限用パルス波形をヒルベルト変換したパルス波形を畳み込み,パルス整形後のディジタル変調信号を出力するようにし,
前記送信機用減算器は,ディジタル変調信号の同相成分を前記パルス整形フィルタ1に入力し,出力した前記パルス整形後のディジタル変調信号から,ディジタル変調信号の直交成分を前記パルス整形フィルタ2に入力し,出力した前記パルス整形後のディジタル変調信号を減算し,ディジタルSSB変調信号の同相成分を出力するようにし,
前記送信機用加算器は,ディジタル変調信号の同相成分を前記パルス整形フィルタ2に入力し,出力した前記パルス整形後のディジタル変調信号に,ディジタル変調信号の直交成分を前記パルス整形フィルタ1に入力し,出力した前記パルス整形後のディジタル変調信号を加算し,ディジタルSSB変調信号の直交成分を出力するようにし,
前記直交変調器は,ディジタルSSB変調信号の同相成分及び直交成分を入力して,搬送波を用いて直交変調し,ディジタルSSB変調された送信信号を生成する請求項2に記載のディジタルSSBターボ送受信機.
The CRC encoder inputs an information bit sequence to be transmitted, performs CRC encoding, and outputs a bit sequence obtained by adding a CRC code to the information bit sequence,
The error correction encoder receives the bit sequence, performs error correction encoding, and outputs an encoded bit sequence;
The interleaver inputs the encoded bit sequence and outputs an interleaved bit sequence;
The multiplexer inputs a known pilot signal sequence between the transmitter and the receiver and the interleaved bit sequence, and multiplexes and outputs the respective sequences in time,
The serial / parallel converter inputs the interleaved bit sequence or the pilot sequence, performs parallel conversion into two sequences for in-phase component and quadrature component, and outputs a bit sequence,
The signal mapper maps the parallel-converted bit sequence to a signal point and outputs a digital modulation signal;
The pulse shaping filter 1 receives the digital modulation signal, convolves a band-limiting pulse waveform, and outputs a digital modulation signal after pulse shaping,
The pulse shaping filter 2 receives the digital modulation signal, convolves a pulse waveform obtained by Hilbert transforming the band limiting pulse waveform of the pulse shaping filter 1, and outputs a digital modulation signal after pulse shaping,
The transmitter subtractor inputs the in-phase component of the digital modulation signal to the pulse shaping filter 1 and inputs the quadrature component of the digital modulation signal to the pulse shaping filter 2 from the output digital modulation signal after the pulse shaping. And subtracting the output digital modulated signal after the pulse shaping so as to output the in-phase component of the digital SSB modulated signal,
The transmitter adder inputs the in-phase component of the digital modulation signal to the pulse shaping filter 2 and inputs the quadrature component of the digital modulation signal to the pulse shaping filter 1 to the output digital modulation signal after the pulse shaping. And adding the output digital modulation signal after the pulse shaping so as to output a quadrature component of the digital SSB modulation signal,
3. The digital SSB turbo transceiver according to claim 2, wherein the quadrature modulator receives an in-phase component and a quadrature component of the digital SSB modulation signal, performs quadrature modulation using a carrier wave, and generates a digital SSB modulated transmission signal. .
前記パルス整形フィルタ1は,前記パルス波形として帯域制限用パルス波形に窓関数を乗積したパルス波形を用い,前記パルス整形フィルタ2は,前記パルス波形として前記帯域制限用パルス波形をヒルベルト変換したパルス波形に窓関数を乗積したパルス波形を用いる請求項2に記載のディジタルSSBターボ送受信機.  The pulse shaping filter 1 uses a pulse waveform obtained by multiplying a band limiting pulse waveform by a window function as the pulse waveform, and the pulse shaping filter 2 uses a pulse obtained by Hilbert transforming the band limiting pulse waveform as the pulse waveform. The digital SSB turbo transceiver according to claim 2, wherein a pulse waveform obtained by multiplying the waveform by a window function is used. 前記ディジタルSSBターボ受信機は,直交復調器と,低域通過フィルタ(LPF)と,前記整合フィルタ1と,前記整合フィルタ2と,受信機用加算器と,受信機用減算器と,チャネル推定器と,前記ターボ等化器と,デインターリーバと,インターリーバと,前記誤り訂正復号器と,繰り返し制御器と,CRC復号器とから構成される請求項1に記載のディジタルSSBターボ送受信機.  The digital SSB turbo receiver includes an orthogonal demodulator, a low-pass filter (LPF), the matched filter 1, the matched filter 2, a receiver adder, a receiver subtractor, and a channel estimation. 2. The digital SSB turbo transceiver according to claim 1, comprising: a detector, a turbo equalizer, a deinterleaver, an interleaver, the error correction decoder, an iterative controller, and a CRC decoder. . 前記直交復調器は,ディジタルSSB変調された受信信号を入力し,搬送波を用いて直交復調して受信信号の同相成分及び直交成分を出力するようにし,
前記LPFは,前記受信信号の同相成分または直交成分を入力し,ベースバンド受信信号の同相成分または直交成分のみを抽出して出力するようにし,
前記整合フィルタ1は,前記ベースバンド受信信号を入力し,前記パルス整形フィルタ1の帯域制限用パルス波形と整合するパルス波形を畳み込んで,整合後のベースバンド受信信号を出力するようにし,
前記整合フィルタ2は,前記ベースバンド受信信号を入力し,前記パルス整形フィルタ2のパルス波形と整合するパルス波形を畳み込んで,整合後のベースバンド受信信号を出力するようにし,
前記受信機用加算器は,前記ベースバンド受信信号の同相成分を前記整合フィルタ1に入力し,出力した前記整合後のベースバンド受信信号に,前記ベースバンド受信信号の直交成分を前記整合フィルタ2に入力し,出力した前記整合後のベースバンド受信信号を加算し,ディジタル変調受信信号の同相成分を出力するようにし,
前記受信機用減算器は,前記ベースバンド受信信号の直交成分を前記整合フィルタ1に入力し,出力した前記整合後のベースバンド受信信号から,前記ベースバンド受信信号の同相成分を前記整合フィルタ2に入力し,出力した前記整合後のベースバンド受信信号を減算し,ディジタル変調受信信号の直交成分を出力するようにし,
前記チャネル推定器は,前記ディジタル変調受信信号の直交成分と同相成分を入力し,送受信機間のチャネル・インパルス応答を推定し,チャネル推定値を出力するようにし,
前記ターボ等化器は,前記ディジタル変調受信信号の直交成分と同相成分を入力し,インターリーブされた帰還検波信号,前記チャネル推定値と繰り返し回数を用いて符号間干渉を除去し,検波信号を出力するようにし,
前記デインターリーバは,前記検波信号を入力し,デインターリーブして,出力するようにし,
前記誤り訂正復号器は,デインターリーバ後の前記検波信号を入力し,誤り訂正復号して受信ビット系列と前記帰還検波信号を出力するようにし,
前記CRC復号器は,前記受信ビットを入力し,CRC復号を行ってパケット中の判定誤りを検出して,誤り検出結果と判定誤りが検出されなかった場合には受信ビットとを出力するようにし,
前記インターリーバは,前記帰還検波信号を入力し,インターリーブして,出力するようにし,
前記繰り返し制御器は,前記誤り検出結果を入力し,判定誤りが検出された場合には,前記繰り返し回数を前記ターボ等化器に出力し,前記インターリーバ,前記ターボ等化器,前記誤り訂正復号器の順番に動作させ,等化処理と復号処理を繰り返す制御を行う請求項5に記載のディジタルSSBターボ送受信機.
The quadrature demodulator receives a digital SSB modulated received signal, performs quadrature demodulation using a carrier wave, and outputs an in-phase component and a quadrature component of the received signal;
The LPF inputs in-phase components or quadrature components of the received signal, extracts only the in-phase components or quadrature components of the baseband received signal, and outputs them.
The matched filter 1 receives the baseband received signal, convolves a pulse waveform that matches the band-limiting pulse waveform of the pulse shaping filter 1, and outputs a matched baseband received signal;
The matched filter 2 receives the baseband received signal, convolves a pulse waveform that matches the pulse waveform of the pulse shaping filter 2, and outputs a matched baseband received signal;
The receiver adder inputs an in-phase component of the baseband received signal to the matched filter 1 and outputs an orthogonal component of the baseband received signal to the matched baseband received signal. The matched baseband received signal that has been input and output is added, and the in-phase component of the digitally modulated received signal is output.
The subtractor for the receiver inputs the quadrature component of the baseband received signal to the matched filter 1 and outputs the in-phase component of the baseband received signal from the matched baseband received signal that has been output. Subtract the matched baseband received signal that was input and output, and output the quadrature component of the digitally modulated received signal,
The channel estimator inputs a quadrature component and an in-phase component of the digital modulation reception signal, estimates a channel impulse response between the transceivers, and outputs a channel estimation value.
The turbo equalizer receives the quadrature component and the in-phase component of the digital modulation reception signal, removes intersymbol interference using the interleaved feedback detection signal, the channel estimation value and the number of repetitions, and outputs a detection signal Like
The deinterleaver inputs the detection signal, deinterleaves it, and outputs it.
The error correction decoder inputs the detection signal after deinterleaver, performs error correction decoding, and outputs a received bit sequence and the feedback detection signal,
The CRC decoder receives the received bit, performs CRC decoding, detects a determination error in the packet, and outputs an error detection result and a received bit when no determination error is detected. ,
The interleaver inputs the feedback detection signal, interleaves it, and outputs it,
The repetition controller inputs the error detection result, and when a determination error is detected, outputs the number of repetitions to the turbo equalizer, the interleaver, the turbo equalizer, and the error correction. 6. The digital SSB turbo transceiver according to claim 5, wherein the digital SSB turbo transceiver is operated in the order of the decoder, and performs control to repeat equalization processing and decoding processing.
前記ターボ等化器は,ターボ等化器用減算器と,線形フィルタと,ソフト出力検波器と,符号間干渉(ISI)レプリカ生成器と,タップ係数生成器とから構成される請求項5に記載のディジタルSSBターボ送受信機.  6. The turbo equalizer includes a turbo equalizer subtracter, a linear filter, a soft output detector, an intersymbol interference (ISI) replica generator, and a tap coefficient generator. Digital SSB turbo transceiver. 前記ISIレプリカ生成器は,インターリーブされた前記帰還検波信号と前記チャネル推定値を入力して,前記ディジタル変調受信信号の符号間干渉成分のレプリカ(ISIレプリカ)を生成,出力するようにし,
前記減算器は,前記ディジタル変調受信信号から前記ISIレプリカを減算するようにし,前記タップ係数生成器は,前記繰り返し回数と前記チャネル推定値を用いて符号間干渉または符号間干渉の除去残差の抑圧,雑音の白色化を行う最小2乗法に基づいた前記線形フィルタ用のタップ係数を生成するようにし,
前記線形フィルタは,前記ISIレプリカ減算後の前記ディジタル変調受信信号を入力し,前記タップ係数を用いて線形合成し,合成信号を出力するようにし,
前記ソフト出力検波器は,前記合成信号を入力して,前記検波信号を生成するようにする請求項7に記載のターボ等化器.
The ISI replica generator receives the interleaved feedback detection signal and the channel estimation value, and generates and outputs a replica of an intersymbol interference component (ISI replica) of the digital modulation reception signal,
The subtractor subtracts the ISI replica from the digitally modulated received signal, and the tap coefficient generator uses the repetition count and the channel estimation value to calculate an intersymbol interference or an intersymbol interference cancellation residual. Generating tap coefficients for the linear filter based on the least square method for suppressing and whitening noise;
The linear filter receives the digital modulation reception signal after the ISI replica subtraction, performs linear synthesis using the tap coefficient, and outputs a synthesis signal;
The turbo equalizer according to claim 7, wherein the soft output detector receives the combined signal and generates the detection signal.
前記チャネル推定器は,トランスバーサルフィルタに前記パイロット信号系列または前記帰還検波信号を用いて生成したディジタル変調信号を入力して受信信号レプリカを生成し,前記受信信号レプリカと前記ディジタル変調受信信号との差の絶対値2乗値が最小になるように最小2乗法を用いて,前記トランスバーサルフィルタのタップ係数として前記チャネル・インパルス応答を推定する請求項5に記載のディジタルSSBターボ送受信機.  The channel estimator inputs a digital modulation signal generated using the pilot signal sequence or the feedback detection signal to a transversal filter to generate a reception signal replica, and generates a reception signal replica and the digital modulation reception signal. 6. The digital SSB turbo transceiver according to claim 5, wherein the channel impulse response is estimated as a tap coefficient of the transversal filter using a least square method so that an absolute value square value of the difference is minimized. 誤り訂正符号化されたディジタル変調信号を従来のディジタル変調送信機で送信し,受信されたディジタル変調信号の受信信号に対して,上側波帯成分を用いて請求項5に記載のディジタルSSBターボ受信機で検波し,また,下側波帯成分を用いて請求項5に記載のディジタルSSBターボ受信機で検波し,それぞれの検波結果を最適合成することで,周波数選択性フェージングチャネルにおける伝送特性を向上させる請求項1に記載のディジタルSSBターボ送受信機.  6. The digital SSB turbo reception according to claim 5, wherein an error correction coded digital modulation signal is transmitted by a conventional digital modulation transmitter, and an upper sideband component is used for the received signal of the digital modulation signal. And detecting with the digital SSB turbo receiver according to claim 5 using the lower sideband component, and optimally combining the detection results to obtain the transmission characteristics in the frequency selective fading channel. The digital SSB turbo transceiver according to claim 1 to be improved.
JP2005041271A 2005-01-20 2005-01-20 Digital ssb turbo transceiver Pending JP2006203835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041271A JP2006203835A (en) 2005-01-20 2005-01-20 Digital ssb turbo transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041271A JP2006203835A (en) 2005-01-20 2005-01-20 Digital ssb turbo transceiver

Publications (1)

Publication Number Publication Date
JP2006203835A true JP2006203835A (en) 2006-08-03

Family

ID=36961400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041271A Pending JP2006203835A (en) 2005-01-20 2005-01-20 Digital ssb turbo transceiver

Country Status (1)

Country Link
JP (1) JP2006203835A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785054B1 (en) 2006-09-12 2007-12-12 국방과학연구소 Apparatus and method for preventing frequency intervention by adjacent channel of radar
JP2008085921A (en) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd Radio transmission apparatus and radio receiving apparatus
JP2010010918A (en) * 2008-06-25 2010-01-14 Panasonic Corp Modulation method and demodulation method
JP2012090239A (en) * 2010-10-22 2012-05-10 Nec Corp Distribution estimation method, distribution estimation device, modulation signal generation method, modulation signal generation device, and computer program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785054B1 (en) 2006-09-12 2007-12-12 국방과학연구소 Apparatus and method for preventing frequency intervention by adjacent channel of radar
JP2008085921A (en) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd Radio transmission apparatus and radio receiving apparatus
JP2010010918A (en) * 2008-06-25 2010-01-14 Panasonic Corp Modulation method and demodulation method
JP2012090239A (en) * 2010-10-22 2012-05-10 Nec Corp Distribution estimation method, distribution estimation device, modulation signal generation method, modulation signal generation device, and computer program

Similar Documents

Publication Publication Date Title
JP5344121B2 (en) Wireless communication method and apparatus in single carrier transmission system
JP4116562B2 (en) Method and apparatus for determining log-likelihood ratio in precoding
US7603612B2 (en) System and method for communicating data using iterative equalizing and decoding and recursive inner code
US20100296556A1 (en) Method and transceiver using blind channel estimation
JP2009159413A (en) Transmitting device, transmitting/receiving device, transmitting method, and transmitting/receiving method
US10033480B2 (en) Wireless communication device and method
EP1583271A2 (en) System and method for spreading on fading channels
JP2005198223A (en) Multi-user detection receiver for packet transmission in multi-carrier
JP2006203835A (en) Digital ssb turbo transceiver
JP2010119070A (en) Phase noise compensation receiver
JP5010329B2 (en) Error vector evaluation method, adaptive subcarrier modulation method, and frequency division communication method
EP1929734A2 (en) Method and system of diversity transmission of data
JP4463852B2 (en) Apparatus and method for iteratively estimating channel transfer function
Shah et al. Low complexity iterative receiver design for shallow water acoustic channels
JP5846601B2 (en) Receiving apparatus and receiving method
JP2004104503A (en) Radio data transmission system
JP2005236364A (en) Multicarrier signal transmitter-receiver
JP2012109951A (en) Interference wave extractor
JP5912025B2 (en) Communication apparatus and communication system
Pooja et al. Design and performance analysis of FEC schemes in OFDM communication system
Gupta et al. Performance of BER for BPSK and DPSK (Coherent and Non-Coherent) Modulation in Turbo-Coded OFDM with Channel Equalization
Shah et al. Iterative equalization for underwater acoustic channels using bit interleaved coded modulation and decision feedback equalization
Nickel et al. Turbo equalization for single antenna cochannel interference cancellation in single carrier transmission systems
JP2012191602A (en) Reception apparatus
Kumar Improving the Bit Error Rate of OFDM using Convolutional codes