JP2006203410A - Interference wave detecting circuit and transmitter/receiver having this interference wave detecting circuit - Google Patents

Interference wave detecting circuit and transmitter/receiver having this interference wave detecting circuit Download PDF

Info

Publication number
JP2006203410A
JP2006203410A JP2005011309A JP2005011309A JP2006203410A JP 2006203410 A JP2006203410 A JP 2006203410A JP 2005011309 A JP2005011309 A JP 2005011309A JP 2005011309 A JP2005011309 A JP 2005011309A JP 2006203410 A JP2006203410 A JP 2006203410A
Authority
JP
Japan
Prior art keywords
circuit
signal
cnir
rssi
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005011309A
Other languages
Japanese (ja)
Inventor
Katsuhiro Asano
勝洋 浅野
Yoshikuni Ito
佳邦 伊藤
Manabu Nakamura
学 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005011309A priority Critical patent/JP2006203410A/en
Publication of JP2006203410A publication Critical patent/JP2006203410A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable detecting an interference wave with a simple circuit configuration in a transmitter/receiver of digital radio communication. <P>SOLUTION: This apparatus is provided with a frequency converting circuit 12 for performing frequency conversion for a reception signal to output a reception IF signal; a quadrature detection circuit 13 for performing quadrature detection processing for the reception IF signal to output a reception baseband signal; a power detection circuit 16 for detecting power of the reception IF signal to output RSSI; an equalization circuit 14 for correcting a transmission path distortion for the reception baseband signal by adaptive signal processing to output an equalized reception baseband signal to a decoding circuit 15, and outputting equalization error power conversion CNIR (carrier to noise and interference ratio) to be generated in a process of the adaptive signal processing; and an interference wave detecting means 17 for referring to the RSSI to be detected by the circuit 16 and the equalization error power conversion CNIR to be output by the circuit 14 and outputting interference wave information for controlling a used frequency band. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はディジタル無線通信の送受信機に関するもので、特に干渉波検出回路及びその干渉波検出回路を有する送受信機に関するものである。   The present invention relates to a transceiver for digital wireless communication, and more particularly to an interference wave detection circuit and a transceiver having the interference wave detection circuit.

従来の干渉波検出方式としては、干渉波検出を行うことを目的として送信波を停止し、通信に用いる周波数上で受信される電力から干渉の有無を判断する等の方法が用いられている。また、特に無線フレームに干渉波検出用の無送信シンボルを設定し、常時干渉状況を観測する方法もある。(特許文献1参照)   As a conventional interference wave detection method, a method of stopping transmission waves for the purpose of performing interference wave detection and determining the presence or absence of interference from the power received on the frequency used for communication is used. There is also a method in which a non-transmission symbol for interference wave detection is set in a radio frame, and the interference state is always observed. (See Patent Document 1)

また、他の干渉波検出装置としては、RF信号についてオートゲインコントロールを行うRF−AGC回路と、中間周波数信号についてオートゲインコントロールを行うIF−AGC回路とを別々に設け、さらに、これらのAGC回路で生成されるRF−RSSI信号とIF−RSSI信号とを入力として、干渉波および希望波の有無および強度をそれぞれ独立に検出する干渉波検出回路を設けるものがある。この干渉波検出回路は、例えばこれらのRSSI信号の比較により、干渉波のみが存在する状態、干渉波と希望信号の両方が存在する状態、および希望波のみが存在する状態を識別して送信電力を制御するものである。(特許文献2参照)
特許第2590441号明細書 特開2004−180156号公報
As another interference wave detection device, an RF-AGC circuit that performs auto gain control on an RF signal and an IF-AGC circuit that performs auto gain control on an intermediate frequency signal are separately provided, and these AGC circuits are further provided. There are some which are provided with an interference wave detection circuit that receives the RF-RSSI signal and the IF-RSSI signal generated in step 1 and detects the presence and intensity of the interference wave and the desired wave independently. For example, by comparing these RSSI signals, this interference wave detection circuit identifies the state where only the interference wave exists, the state where both the interference wave and the desired signal exist, and the state where only the desired wave exists, and transmits the transmission power. Is to control. (See Patent Document 2)
Japanese Patent No. 2590441 JP 2004-180156 A

上記従来の干渉波検出方式で正確に測定するためにはデータ送信を行わない区間が必要になり、フレーム効率の低下が避けられない。また、送信信号を停止するための回路が必要となるため、回路規模増大等の問題がある。
また、上記干渉波検出装置は、干渉波の検出精度が十分でないというの問題がある。
本発明は、このような欠点を改善するために行ったもので、受信回路に等化器を備えた無線通信システムに最適な干渉波検出方式を提供することを目的とする。
In order to perform accurate measurement using the conventional interference wave detection method, a section in which data transmission is not performed is necessary, and a reduction in frame efficiency is inevitable. Further, since a circuit for stopping the transmission signal is required, there is a problem such as an increase in circuit scale.
Further, the interference wave detection device has a problem that the detection accuracy of the interference wave is not sufficient.
The present invention has been made to remedy such drawbacks, and it is an object of the present invention to provide an optimum interference wave detection method for a radio communication system having an equalizer in a receiving circuit.

上記の目的を達成するために、本発明による干渉波検出回路は、受信信号を増幅及び周波数変換を行って受信IF信号を出力する周波数変換回路と、前記受信IF信号に対して直交検波処理を行いI相,Q相二つの系列からなる受信ベースバンド信号を出力する直交検波回路と、前記受信IF信号の電力を検出してRSSIを出力するを電力検出回路と、前記受信ベースバンド信号を適応信号処理により伝送路歪みや送受信装置で発生する波形歪みを補正して等化受信ベースバンド信号を復号回路に出力するとともに、前記適応信号処理の過程で生成される等化誤差電力をシンボル電力で正規化した等化誤差電力換算CNIRを出力する等化回路と、一定の干渉状況における前記受信機の入力レベルにそれぞれ対応するRSSIとCNIRとの換算データを予め保有し、前記換算データを参照して前記電力検出回路により検出されたRSSIからRSSI換算CNIRを出力するRSSI/CNIR換算回路、及び該RSSI/CNIR換算回路からのRSSI換算CNIRと前記等化回路からの前記等化誤差電力換算CNIRとを比較する比較回路とにより構成される干渉波検出手段とを備えたものである。   In order to achieve the above object, an interference wave detection circuit according to the present invention includes a frequency conversion circuit that amplifies and frequency-converts a received signal and outputs a received IF signal, and performs orthogonal detection processing on the received IF signal. A quadrature detection circuit that outputs a reception baseband signal composed of two I-phase and Q-phase sequences, a power detection circuit that detects the power of the reception IF signal and outputs RSSI, and adapts the reception baseband signal The signal processing corrects the transmission path distortion and the waveform distortion generated in the transmitter / receiver to output the equalized reception baseband signal to the decoding circuit, and the equalization error power generated in the process of the adaptive signal processing as symbol power. An equalization circuit for outputting a normalized equalization error power conversion CNIR, an RSSI and a CNIR respectively corresponding to the input level of the receiver in a certain interference situation; The conversion data is stored in advance, the RSSI / CNIR conversion circuit that outputs the RSSI conversion CNIR from the RSSI detected by the power detection circuit with reference to the conversion data, and the RSSI conversion CNIR from the RSSI / CNIR conversion circuit and the And an interference wave detecting means comprising a comparison circuit for comparing the equalization error power conversion CNIR from the equalization circuit.

また、本発明による送受信機は、ディジタル無線通信システムにおける送受信機であって、前記受信機は、受信信号を増幅及び周波数変換を行って受信IF信号を出力する周波数変換回路と、前記受信IF信号に対して直交検波処理を行いI相,Q相二つの系列からなる受信ベースバンド信号を出力する直交検波回路と、前記受信IF信号の電力を検出してRSSIを出力するを電力検出回路と、前記受信ベースバンド信号を適応信号処理により伝送路歪みや送受信装置で発生する波形歪みを補正して等化受信ベースバンド信号を復号回路に出力するとともに、前記適応信号処理の過程で生成される等化誤差電力換算CNIRを出力する等化回路と、前記電力検出回路が検出する前記RSSIと前記等化回路が出力する前記等化誤差電力換算CNIRを参照し、通信に使用している周波数帯域の制御を行うための干渉情報を出力する干渉波検出手段とを備え、前記送信機は、前記干渉情報に基づき使用周波数を必要に応じて切り替える通信周波数制御回路を備えたものである。   The transceiver according to the present invention is a transceiver in a digital radio communication system, wherein the receiver amplifies and frequency-converts a received signal and outputs a received IF signal, and the received IF signal. A quadrature detection circuit that performs quadrature detection processing and outputs a received baseband signal consisting of two I-phase and Q-phase sequences, a power detection circuit that detects the power of the received IF signal and outputs RSSI; The received baseband signal is subjected to adaptive signal processing to correct transmission path distortion and waveform distortion generated in the transmitting / receiving device, and the equalized received baseband signal is output to the decoding circuit, and is generated in the adaptive signal processing process, etc. Equalization error power conversion CNIR output equalization circuit, RSSI detected by the power detection circuit, and equalization error power conversion output by the equalization circuit Interference wave detecting means for outputting interference information for controlling the frequency band used for communication with reference to NIR, and the transmitter switches the used frequency as needed based on the interference information A communication frequency control circuit is provided.

以上詳細に説明したように、本発明を実施することにより、干渉波検出のために特別な回路を付加することなく、干渉波の検出が可能になる等の利点がある。   As described above in detail, by implementing the present invention, there is an advantage that interference waves can be detected without adding a special circuit for detecting the interference waves.

以下本発明を詳細に説明する。本発明に基づく受信機の一構成例のブロック回路図を図1、受信機入力レベルに対するCNIR(Carrier to Noise and Interference Ratio :搬送波対雑音・妨害比)とRSSI(Received Signal Strength Indicator:受信信号強度)の関係の一例を示すグラフ図を図2、干渉波がCNIRに与える影響の一例を示すグラフ図を図3、本発明による干渉波検出部の一構成例のブロック回路図を図4、RSSI/CNIR変換表の一例を示すグラフ図を図5、干渉波検出部の比較回路での式(2)による計算結果の一例を示すグラフ図を図6にそれぞれ示す。干渉波の検出は受信機単体で実施される。   The present invention will be described in detail below. FIG. 1 is a block circuit diagram of a configuration example of a receiver according to the present invention, CNIR (Carrier to Noise and Interference Ratio) and RSSI (Received Signal Strength Indicator) with respect to the receiver input level. 2), FIG. 3 is a graph showing an example of the influence of an interference wave on CNIR, FIG. 4 is a block circuit diagram of a configuration example of an interference wave detection unit according to the present invention, and FIG. FIG. 5 is a graph showing an example of the / CNIR conversion table, and FIG. 6 is a graph showing an example of the calculation result by the expression (2) in the comparison circuit of the interference wave detection unit. The detection of the interference wave is performed by the receiver alone.

図1に示した受信機10において、図示していない送信機から送信された信号をアンテナ11にて受信し、この受信した信号を周波数変換回路12において増幅及び周波数変換を行って受信IF信号を出力する。この受信IF信号に対して直交検波回路13において直交検波処理を行い、I相,Q相二つの系列からなる受信ベースバンド信号を出力する。 また、前述の受信IF信号の電力を電力検出回路16で検出してRSSIを干渉波検出部17に出力する。この電力検出回路16の回路素子としては logアンプ等を用いるのが一般的である。   In the receiver 10 shown in FIG. 1, a signal transmitted from a transmitter (not shown) is received by an antenna 11, and the received signal is amplified and frequency converted by a frequency conversion circuit 12 to obtain a received IF signal. Output. The quadrature detection circuit 13 performs quadrature detection processing on the received IF signal and outputs a received baseband signal composed of two I-phase and Q-phase sequences. Further, the power detection circuit 16 detects the power of the reception IF signal described above, and outputs RSSI to the interference wave detection unit 17. As a circuit element of the power detection circuit 16, a log amplifier or the like is generally used.

直交検波回路13から出力された受信ベースバンド信号は、等化回路14で適応信号処理により伝送路歪みや、送受信装置で発生する波形歪みを補正して等化後受信ベースバンド信号を復号回路15に出力するとともに、適応信号処理の過程で生成される等化誤差電力を干渉波検出部17に出力する。なお、等化回路14は、無線フレームに挿入されたパイロット区間ではトレーニング動作をし、その他の区間ではトラッキング動作をする。例えば、MMSE(Minimum Mean Square Error )型の適応フィルタであり、等化誤差電力は雑音の影響が小さくなるように、複数シンボル(例えば16サンプル)以上の平均化を施した後に出力することが好ましい。干渉波検出部17では電力検出回路16から出力される前記RSSIと、等化回路14から出力される前記等化誤差電力を参照し、通信に使用している周波数帯域における干渉波電力を検出して、使用周波数帯の使用継続又は変更等の制御を行うための干渉情報を出力する。   The reception baseband signal output from the quadrature detection circuit 13 is subjected to adaptive signal processing in the equalization circuit 14 to correct transmission path distortion and waveform distortion generated in the transmission / reception apparatus, and the equalization reception baseband signal is decoded into a decoding circuit 15. And the equalization error power generated in the process of adaptive signal processing is output to the interference wave detector 17. Note that the equalization circuit 14 performs a training operation in a pilot section inserted in a radio frame, and performs a tracking operation in other sections. For example, it is an MMSE (Minimum Mean Square Error) type adaptive filter, and the equalization error power is preferably output after averaging a plurality of symbols (for example, 16 samples) or more so as to reduce the influence of noise. . The interference wave detection unit 17 detects the interference wave power in the frequency band used for communication by referring to the RSSI output from the power detection circuit 16 and the equalization error power output from the equalization circuit 14. Then, interference information for performing control such as continuation or change of the use frequency band is output.

次に干渉波検出部17における動作の詳細について説明する。先ず干渉波が存在しない状態における、等化回路14の出力の等化誤差電力を元に等化誤差電力換算CNIR値を検討する。等化処理に用いる参照系列(トレーニング用の既知パイロットシンボルデータであり、大きさは受信機入力レベルに因らず一定。)の電力をPUW、等化誤差電力をPERR とすると等化誤差電力換算CNIR(CNIREQL )[dB]は次式により算出される。 Next, details of the operation in the interference wave detection unit 17 will be described. First, an equalization error power converted CNIR value is examined based on the equalization error power of the output of the equalization circuit 14 in a state where no interference wave exists. If the power of a reference sequence used for equalization processing (known pilot symbol data for training, the size is constant regardless of the receiver input level) is P UW , and the equalization error power is P ERR , the equalization error Electric power conversion CNIR (CNIR EQL ) [dB] is calculated by the following equation.

CNIREQL =(PERR −PUW)×(−1) (1)
図2は、この干渉波が存在しない状態における、ある受信機の入力レベルに対する等化誤差電力換算CNIRとRSSIの実測値である。このような測定は、アンテナ11入力端子或いは周波数変換回路12内に直接、信号発生器のRF或いはIFの電気信号を入力し、等化回路14を動作させて行うことができる。RSSIは電力検出デバイスの線形性が保証される範囲で使用すれば受信機入力レベルとの関係は線形になるが、CNIRは受信機のCNR限界、量子化精度、信号処理のダイナミックレンジの限界等の要因により飽和傾向が発生してしまう。図2の例ではCNIR=35dB程度から線形性が崩れだし、最大40dBで飽和している。
CNIR EQL = (P ERR −P UW ) × (−1) (1)
FIG. 2 shows measured values of equalization error power conversion CNIR and RSSI with respect to an input level of a certain receiver in a state where the interference wave does not exist. Such measurement can be performed by inputting the RF or IF electrical signal of the signal generator directly into the input terminal of the antenna 11 or the frequency conversion circuit 12 and operating the equalization circuit 14. If the RSSI is used within the range where the linearity of the power detection device is guaranteed, the relationship with the receiver input level becomes linear, but the CNIR limits the receiver CNR limit, quantization accuracy, signal processing dynamic range, etc. Saturation tends to occur due to these factors. In the example of FIG. 2, the linearity starts to break from about CNIR = 35 dB and is saturated at a maximum of 40 dB.

干渉波が存在する場合のRSSI値は干渉波の電力に応じて増加するが、希望波が復調可能な状況(つまり、希望波が干渉波より十分大きいとき)においては干渉成分の増加は無視できる。一方干渉波が存在する場合のCNIR値は、干渉波電力のレベルと等レベルのノイズを与えたことと等価な現象として観測される。たとえば希望波電力に対してXdB低い電力の干渉が存在する環境下ではCNIR値はXdBで飽和する。   The RSSI value in the presence of an interference wave increases according to the power of the interference wave, but in a situation where the desired wave can be demodulated (that is, when the desired wave is sufficiently larger than the interference wave), an increase in interference component can be ignored. . On the other hand, the CNIR value in the presence of an interference wave is observed as a phenomenon equivalent to giving a noise equivalent to the level of the interference wave power. For example, the CNIR value saturates at X dB in an environment where there is interference of X dB lower than the desired wave power.

これを図3に示した受信機入力レベルに対するCNIRの関係グラフの例で説明すると、例えば希望波電力に対して−30dB低い電力の干渉波が存在する場合、観測されるCNIR値は−X−で示すグラフのようにCNR=30dBで飽和し、また希望波電力に対して−20dB低い電力の干渉波が存在する場合は、観測されるCNIR値は−△−で示すグラフのようにCNR=20dBで飽和する特性を示している。
以上説明したようにRSSIとCNIRでは干渉波の影響が異なるので、この二つの値を観測することで干渉状態を把握することができる。
This will be described with reference to the example of the relationship graph of CNIR with respect to the receiver input level shown in FIG. 3. For example, when an interference wave having a power -30 dB lower than the desired signal power exists, the observed CNIR value is -X- When a CNR = 30 dB saturation is present as shown in the graph shown in FIG. 6 and an interference wave having a power -20 dB lower than the desired wave power exists, the observed CNIR value is CNR = A characteristic of saturation at 20 dB is shown.
As described above, since the influence of the interference wave is different between RSSI and CNIR, the interference state can be grasped by observing these two values.

次に上記のようなRSSIとCNIRの特性を利用した干渉状態の検出方法を、図4に示したRSSI/CNIR換算回路41と比較回路42とにより構成された干渉波検出部17の一構成例に基づき説明する。
先ず、前述の図2に示した干渉波のない状況におけるRSSIと受信機入力レベルの関係と、CNIRと受信機入力レベルの関係のデータをRSSI/CNIR換算回路41に保存し、さらにこのデータに基づき、図5のグラフに示すRSSIとCNIRの関係データを、RSSI/CNIR換算回路41の例えば不揮発性メモリ等に保持する。従って、RSSI値をアドレス入力として、対応するCNIR値を参照することができる。
Next, a configuration example of the interference wave detection unit 17 constituted by the RSSI / CNIR conversion circuit 41 and the comparison circuit 42 shown in FIG. Based on
First, the relationship between the RSSI and the receiver input level and the relationship between the CNIR and the receiver input level in the situation where there is no interference wave as shown in FIG. 2 is stored in the RSSI / CNIR conversion circuit 41. Based on this, the relation data between RSSI and CNIR shown in the graph of FIG. 5 is held in, for example, a nonvolatile memory of the RSSI / CNIR conversion circuit 41. Therefore, the corresponding CNIR value can be referred to using the RSSI value as an address input.

次に比較回路42において、RSSI/CNIR換算回路41より出力されるRSSI換算CNIR(CNIRRSSI)と、前述の等化回路14の出力である等化誤差電力より推定される等化誤差電力換算CNIR値(CNIREQL )を比較する。比較方法としては次式に示すように引き算による処理が簡単である。 Next, in the comparison circuit 42, an equalization error power conversion CNIR estimated from the RSSI conversion CNIR (CNIR RSSI ) output from the RSSI / CNIR conversion circuit 41 and the equalization error power output from the equalization circuit 14 described above. Compare the values (CNIR EQL ). As a comparison method, processing by subtraction is simple as shown in the following equation.

干渉電力[dB]=CNIRRSSI−CNIREQL (2)
CNIREQL は干渉波が存在する場合には小さい値を示すので、上記計算により干渉電力を計算することができる。たとえばCNR=30dB相当の干渉波が存在する場合、式(2)の計算結果は図6の−○−に示すようなグラフとなり、同様にCNR=20dB相当の干渉波が存在する場合、式(2)の計算結果は図6の−*−に示すようなグラフとなり、干渉状況に応じた干渉電力が算出されることがわかる。これにより式(2)の干渉電力は、受信機にて観測されるCNIRの劣化の程度、つまり干渉波の影響でどれだけ通信路のパフォーマンスが悪化しているかを示す量として利用できる。なお、CNIREQL の算出は、パイロット区間に限るものではなく、既知の参照系列の電力(PUW)の替りに判定されたデータシンボルの電力を用いてもよい。また、多値変調を行わないのであれば、PUWは任意の固定値として与えてもよい。
Interference power [dB] = CNIR RSSI −CNIR EQL (2)
Since CNIR EQL shows a small value when an interference wave exists, the interference power can be calculated by the above calculation. For example, when there is an interference wave equivalent to CNR = 30 dB, the calculation result of Expression (2) becomes a graph as shown by -O- in FIG. 6. Similarly, when there is an interference wave equivalent to CNR = 20 dB, the expression ( The calculation result of 2) becomes a graph as shown by-*-in FIG. 6, and it can be seen that the interference power corresponding to the interference situation is calculated. As a result, the interference power of equation (2) can be used as an amount indicating the degree of degradation of CNIR observed at the receiver, that is, how much the performance of the communication channel has deteriorated due to the influence of the interference wave. The calculation of CNIR EQL is not limited to the pilot period, and the power of the data symbol determined instead of the known reference sequence power (P UW ) may be used. Further, if multi-level modulation is not performed, P UW may be given as an arbitrary fixed value.

次に本発明の干渉波検出回路を用いた送受信機の一構成例のブロック回路図を図7、本発明による使用周波数制限方法の一例の模式図を図8にそれぞれ示し、以下詳細に説明する。なお、図7の各部の構成のうち図1と同じ部分は同じ記号で示し、その説明を省略する。
図7の送受信機は、図4の干渉波検出部17により検出される干渉情報を用いて通信に用いている周波数を選択するものである。即ち、受信機71では受信処理により得られる通信に使用している周波数帯域の干渉波検出部17で検出された干渉情報(干渉電力)を、通信周波数制御回路72へ入力する。
Next, FIG. 7 shows a block circuit diagram of a configuration example of a transmitter / receiver using the interference wave detection circuit of the present invention, and FIG. 8 shows a schematic diagram of an example of a use frequency limiting method according to the present invention. . 7 that are the same as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
The transmitter / receiver of FIG. 7 selects the frequency used for communication using the interference information detected by the interference wave detector 17 of FIG. That is, the receiver 71 inputs the interference information (interference power) detected by the interference wave detection unit 17 in the frequency band used for communication obtained by the reception process to the communication frequency control circuit 72.

通信周波数制御回路72では、干渉波検出部17で検出された干渉電力が所要性能(CNIR)を満たせないレベル(閾値)に達すると判断される場合に、次回の無線リンク確立時に当該周波数以外の周波数を用い、当該周波数は無線リンク確立動作時に使用しないことの干渉情報を使用可能周波数情報として送信機73と受信機71の周波数変換回路12に通知して通信周波数を制限する。
例えば、図8に示す例のように使用可能な無線周波数がF1,F2.F3の3つがあり、無線局A81と無線局B82の間で周波数F1にて通信を行い、周波数F1で干渉波を発信する干渉源84が無線局B82の近くに存在する状況を想定する。なお、この例では複信方式として送受信機ともに同じ周波数を用いるTDD(Time Division Duplex:時分割双方向通信)を適用することを前提としている。
In the communication frequency control circuit 72, when it is determined that the interference power detected by the interference wave detection unit 17 reaches a level (threshold value) that does not satisfy the required performance (CNIR), the communication frequency control circuit 72 uses a frequency other than that frequency at the next radio link establishment. The frequency is used, and interference information indicating that the frequency is not used during the wireless link establishment operation is notified to the frequency conversion circuit 12 of the transmitter 73 and the receiver 71 as usable frequency information to limit the communication frequency.
For example, as shown in the example shown in FIG. Assume a situation in which there are three F3s, and an interference source 84 that communicates at the frequency F1 between the radio station A81 and the radio station B82 and transmits an interference wave at the frequency F1 is present near the radio station B82. In this example, it is assumed that TDD (Time Division Duplex) using the same frequency for both the transmitter and the receiver is applied as a duplex method.

この場合、無線局A81,無線局B82ではそれぞれ観測される干渉電力レベルは異なり、距離が近い無線局B82がより大きな干渉を受けることになる。
無線局B82の通信周波数制御回路72において、無線局B82で観測される干渉電力が閾値を超えたと判断された場合は、次回無線局2が立ち上げる無線リンクの候補から周波数F1を除外するように使用可能周波数情報としてF2,F3を出力する。
一方、無線局A81の通信周波数制御回路72においては、無線局A81で観測される干渉電力が閾値を超えないと判断される場合は、使用可能周波数情報としてF1,F2,F3を出力する。
In this case, the observed interference power levels are different between the radio station A81 and the radio station B82, and the radio station B82 having a short distance receives more interference.
When the communication frequency control circuit 72 of the radio station B82 determines that the interference power observed at the radio station B82 has exceeded the threshold, the frequency F1 is excluded from the radio link candidates that the radio station 2 will start up next time. F2 and F3 are output as usable frequency information.
On the other hand, in the communication frequency control circuit 72 of the wireless station A81, when it is determined that the interference power observed at the wireless station A81 does not exceed the threshold, F1, F2, and F3 are output as usable frequency information.

このような制御により、図8に示す無線局A81と無線局B82との間の通信に周波数F1を使用することが回避できる。なお、この状況においても無線局A81と無線局C83の間では周波数F1による通信が可能である。一旦使用を禁止した周波数の再利用については無線通信システムの特性に応じて最適な制御を行う必要がある。なお、本発明の干渉波検出回路は、上述のチャネル選択の他、特開平10−93650号に示されているような適応変調制御にも利用できる。また、上述の干渉情報としては、比較回路42の出力である干渉電力の他、CNIREQL 、RSSIを併用してもよい。また、比較回路42の出力は、数値化された干渉電力に限らず、CNIRRSSIがCNIREQL とほぼ一致するか否か(つまり、CNIREQL が受信信号のCNIRを示しているか否か)の単なる比較結果でもよい。 By such control, it is possible to avoid using the frequency F1 for communication between the radio station A81 and the radio station B82 shown in FIG. Even in this situation, communication at the frequency F1 is possible between the radio station A81 and the radio station C83. Regarding the reuse of frequencies once prohibited from being used, it is necessary to perform optimal control according to the characteristics of the wireless communication system. The interference wave detection circuit of the present invention can be used for adaptive modulation control as disclosed in JP-A-10-93650 in addition to the above-described channel selection. In addition to the interference power that is the output of the comparison circuit 42, CNIR EQL and RSSI may be used in combination as the interference information. The output of comparator circuit 42 is not limited to digitized interference power, whether CNIR RSSI substantially coincides with the CNIR EQL (i.e., whether CNIR EQL indicates the CNIR of the received signal) just for It may be a comparison result.

本発明はディジタル無線通信システムにおける、各種の送受信機,受信機の干渉波検出回路に適用できるものである。   The present invention can be applied to interference wave detection circuits of various transceivers and receivers in a digital wireless communication system.

本発明に基づく受信機の一構成例を示すブロック回路図である。It is a block circuit diagram which shows the example of 1 structure of the receiver based on this invention. 受信機入力レベルに対するCNIRとRSSIの関係の一例を示すグラフ図である。It is a graph which shows an example of the relationship between CNIR and RSSI with respect to a receiver input level. 干渉波がCNIRに与える影響の一例を示すグラフ図である。It is a graph which shows an example of the influence which an interference wave has on CNIR. 本発明の干渉波検出回路の主要部を構成する干渉波検出部の一構成例を示すブロック回路図である。It is a block circuit diagram which shows one structural example of the interference wave detection part which comprises the principal part of the interference wave detection circuit of this invention. RSSI/CNIR変換表の一例を示すグラフ図である。It is a graph which shows an example of an RSSI / CNIR conversion table. 干渉波検出部の比較回路での式(2)による計算結果の一例を示すグラフ図である。It is a graph which shows an example of the calculation result by Formula (2) in the comparison circuit of an interference wave detection part. 本発明の干渉波検出回路を用いた送受信機の一例を示すブロック回路図である。It is a block circuit diagram which shows an example of the transmitter / receiver using the interference wave detection circuit of this invention. 本発明の干渉波検出回路を用いた無線局における使用周波数制限方法の一例を示す模式図である。It is a schematic diagram which shows an example of the use frequency limiting method in the radio station using the interference wave detection circuit of this invention.

符号の説明Explanation of symbols

10,71 受信機
11,74 アンテナ
12 周波数変換回路
13 直交検波回路
14 等化回路
15 復号回路
16 電力検出回路
17 干渉波検出部
41 RSSI/CNIR換算回路
42 比較回路
72 通信周波数制御回路
73 送信機
81,82,83 無線局
84 干渉源
DESCRIPTION OF SYMBOLS 10,71 Receiver 11,74 Antenna 12 Frequency conversion circuit 13 Orthogonal detection circuit 14 Equalization circuit 15 Decoding circuit 16 Power detection circuit 17 Interference wave detection part 41 RSSI / CNIR conversion circuit 42 Comparison circuit 72 Communication frequency control circuit 73 Transmitter 81, 82, 83 Radio station 84 Interference source

Claims (2)

受信信号を増幅及び周波数変換を行って受信IF信号を出力する周波数変換回路と、
前記受信IF信号に対して直交検波処理を行いI相,Q相二つの系列からなる受信ベースバンド信号を出力する直交検波回路と、
前記受信IF信号の電力を検出してRSSIを出力するを電力検出回路と、
前記受信ベースバンド信号を適応信号処理により伝送路歪みや送受信装置で発生する波形歪みを補正して等化受信ベースバンド信号を復号回路に出力するとともに、前記適応信号処理の過程で生成される等化誤差電力をシンボル電力で正規化した等化誤差電力換算CNIRを出力する等化回路と、
一定の干渉状況における前記受信機の入力レベルにそれぞれ対応するRSSIとCNIRとの換算データを予め保有し、前記換算データを参照して前記電力検出回路により検出されたRSSIからRSSI換算CNIRを出力するRSSI/CNIR換算回路、及び該RSSI/CNIR換算回路からのRSSI換算CNIRと前記等化回路からの前記等化誤差電力換算CNIRとを比較する比較回路とにより構成される干渉波検出手段と、
を備えた干渉波検出回路。
A frequency conversion circuit for amplifying and frequency converting the received signal and outputting a received IF signal;
A quadrature detection circuit that performs quadrature detection processing on the received IF signal and outputs a received baseband signal composed of two I-phase and Q-phase sequences;
A power detection circuit for detecting the power of the received IF signal and outputting RSSI;
The received baseband signal is subjected to adaptive signal processing to correct transmission path distortion and waveform distortion generated in the transmitting / receiving device, and the equalized received baseband signal is output to the decoding circuit, and is generated in the adaptive signal processing process, etc. An equalization circuit that outputs equalization error power conversion CNIR obtained by normalizing equalization error power with symbol power;
Conversion data of RSSI and CNIR respectively corresponding to the input level of the receiver in a certain interference situation is held in advance, and RSSI conversion CNIR is output from RSSI detected by the power detection circuit with reference to the conversion data An interference wave detection means comprising: an RSSI / CNIR conversion circuit; and a comparison circuit that compares the RSSI conversion CNIR from the RSSI / CNIR conversion circuit with the equalization error power conversion CNIR from the equalization circuit;
Interference wave detection circuit equipped with.
ディジタル無線通信システムにおける送受信機であって、
前記受信機は、受信信号を増幅及び周波数変換を行って受信IF信号を出力する周波数変換回路と、
前記受信IF信号に対して直交検波処理を行いI相,Q相二つの系列からなる受信ベースバンド信号を出力する直交検波回路と、
前記受信IF信号の電力を検出してRSSIを出力するを電力検出回路と、
前記受信ベースバンド信号を適応信号処理により伝送路歪みや送受信装置で発生する波形歪みを補正して等化受信ベースバンド信号を復号回路に出力するとともに、前記適応信号処理の過程で生成される等化誤差電力換算CNIRを出力する等化回路と、
前記電力検出回路が検出する前記RSSIと前記等化回路が出力する前記等化誤差電力換算CNIRを参照し、通信に使用している周波数帯域の制御を行うための干渉情報を出力する干渉波検出手段とを備え、
前記送信機は、前記干渉情報に基づき使用周波数を必要に応じて切り替える通信周波数制御回路を備えて構成された送受信機。
A transceiver in a digital wireless communication system, comprising:
The receiver performs amplification and frequency conversion on the received signal and outputs a received IF signal; and
A quadrature detection circuit that performs quadrature detection processing on the received IF signal and outputs a received baseband signal consisting of two I-phase and Q-phase sequences;
A power detection circuit for detecting the power of the received IF signal and outputting RSSI;
The received baseband signal is subjected to adaptive signal processing to correct transmission path distortion and waveform distortion generated in the transmission / reception device, and the equalized received baseband signal is output to the decoding circuit, and is generated in the process of the adaptive signal processing, etc. An equalization circuit that outputs an equalization error power conversion CNIR;
Referring to the RSSI detected by the power detection circuit and the equalization error power conversion CNIR output from the equalization circuit, interference wave detection for outputting interference information for controlling a frequency band used for communication Means and
The transmitter is a transceiver configured to include a communication frequency control circuit that switches a use frequency as needed based on the interference information.
JP2005011309A 2005-01-19 2005-01-19 Interference wave detecting circuit and transmitter/receiver having this interference wave detecting circuit Pending JP2006203410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011309A JP2006203410A (en) 2005-01-19 2005-01-19 Interference wave detecting circuit and transmitter/receiver having this interference wave detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011309A JP2006203410A (en) 2005-01-19 2005-01-19 Interference wave detecting circuit and transmitter/receiver having this interference wave detecting circuit

Publications (1)

Publication Number Publication Date
JP2006203410A true JP2006203410A (en) 2006-08-03

Family

ID=36961031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011309A Pending JP2006203410A (en) 2005-01-19 2005-01-19 Interference wave detecting circuit and transmitter/receiver having this interference wave detecting circuit

Country Status (1)

Country Link
JP (1) JP2006203410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941914B2 (en) 2014-12-16 2018-04-10 Kabushiki Kaisha Toshiba Receiving device, communication system, and interference detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941914B2 (en) 2014-12-16 2018-04-10 Kabushiki Kaisha Toshiba Receiving device, communication system, and interference detection method

Similar Documents

Publication Publication Date Title
JP5783251B2 (en) Receiving apparatus and receiving method
KR19980042507A (en) Wireless receiver
JP5988527B2 (en) Receiver
CA2232754A1 (en) Gain control method and receiver
US8213891B2 (en) Gain control apparatus and method in receiver of multiband OFDM system
EP3113370B1 (en) Preemptive automatic gain control (agc) for interference mitigation
JP2004336563A (en) Radio reception device and reception filtering method
US6965658B1 (en) Method and means for telecommunication
EP3024150B1 (en) Accurate desensitization estimation of a receiver
JP2006203410A (en) Interference wave detecting circuit and transmitter/receiver having this interference wave detecting circuit
JP5274382B2 (en) Receiving machine
KR100651493B1 (en) Apparatus and method for controllin gain in receiver
JP4613685B2 (en) Receiver
JP2009177568A (en) Receiver, and electronic apparatus using the same
JP4328611B2 (en) Spread spectrum communication equipment
JP4170081B2 (en) Interference wave detection device, reception device, and communication device
JP4779523B2 (en) Received electric field strength detection circuit and method, and receiver using the same
JP4093230B2 (en) Receiving device, receiving method, and integrated circuit for receiving device
JP2007221297A (en) Multi-carrier receiver
JP4028856B2 (en) Receiving device, mobile communication terminal, and communication system
JP4942674B2 (en) Reception device and reception control method
JP4735122B2 (en) Receiving module and receiving device using the same
JP5930028B2 (en) Automatic gain control device, automatic gain control method, and automatic gain control program
JP4744461B2 (en) Reception control method and receiving apparatus
JP5151973B2 (en) Wireless transmitter