JP2006203147A - Radio wave absorption material and wave absorber - Google Patents

Radio wave absorption material and wave absorber Download PDF

Info

Publication number
JP2006203147A
JP2006203147A JP2005043061A JP2005043061A JP2006203147A JP 2006203147 A JP2006203147 A JP 2006203147A JP 2005043061 A JP2005043061 A JP 2005043061A JP 2005043061 A JP2005043061 A JP 2005043061A JP 2006203147 A JP2006203147 A JP 2006203147A
Authority
JP
Japan
Prior art keywords
sheet
radio wave
conductor
absorbing material
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005043061A
Other languages
Japanese (ja)
Inventor
Kenichi Hatakeyama
賢一 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005043061A priority Critical patent/JP2006203147A/en
Publication of JP2006203147A publication Critical patent/JP2006203147A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorption material with large frequency bandwidth, and to provide a 1/4 wavelength type wave absorber by using the electric wave absorption material. <P>SOLUTION: A conductor arrangement sheet, in which conductors, such as linear conductor 1 and cross-shaped conductor, are arranged on a dielectric sheet 2, and a conductive sheet 3 are laminated to form an radio wave absorption material. The radio wave absorption material is provided on one side face of dielectric layer with 1/4 wavelength thickness, and a metallic plate C is mounted on the other face to form a 1/4 wavelength type wave absorber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電波を吸収する素材および電波吸収体に関する。  The present invention relates to a material that absorbs radio waves and a radio wave absorber.

電波吸収体の構成法は各種知られており、たとえば厚みdの電波的な損失のない誘電体よりなる誘電体層の片面に金属板を装着し、該誘電体層のもう一方の側面に面抵抗が377[Ω]の導電シートを電波吸収素材として装着する構成法は1/4波長形吸収体としてよく知られている(例えば非特許文献1)。
電磁波の吸収と遮蔽、清水康敬、杉浦行、石野健編集、ページ135、日経技術図書。 上記導電シートとはシート状の導電材を指し、また上記面抵抗とは1m正方の導電シートの相対する辺間の抵抗を指す。導電シート面に電波を入射するとdが波長の1/4になる周波数で反射が0になり、入射した電波は全て導電シートに吸収されるので、この構成の電波吸収体は1/4波長形吸収体と呼ばれる。上記波長とは、厚みdの誘電体層の内部の波長を指す。上記誘電体層を以下1/4波長層という。
Various methods of constructing the radio wave absorber are known. For example, a metal plate is attached to one side of a dielectric layer made of a dielectric material having a thickness d and no radio wave loss, and the other side surface of the dielectric layer is provided with a surface. A configuration method in which a conductive sheet having a resistance of 377 [Ω] is mounted as a radio wave absorbing material is well known as a quarter wavelength absorber (for example, Non-Patent Document 1).
Absorption and shielding of electromagnetic waves, Yasutaka Shimizu, Yuki Sugiura, Takeshi Ishino, page 135, Nikkei Technical Books. The conductive sheet refers to a sheet-like conductive material, and the sheet resistance refers to resistance between opposing sides of a 1 m square conductive sheet. When radio waves are incident on the surface of the conductive sheet, reflection becomes zero at a frequency at which d is ¼ of the wavelength, and all of the incident radio waves are absorbed by the conductive sheet. Called an absorber. The wavelength refers to the wavelength inside the dielectric layer having a thickness d. The dielectric layer is hereinafter referred to as a quarter wavelength layer.

上記の1/4波長形吸収体は構成が簡単であるという利点がある一方、反射係数が小さくなる周波数帯域が狭いという欠点を有している。本発明の目的は、広い周波数帯域で反射係数が小さくなる1/4波長形電波吸収体を構成するための電波吸収素材、およびこれを用いた電波吸収体を提供することにある。  While the above-described ¼ wavelength absorber has an advantage that the configuration is simple, it has a disadvantage that the frequency band in which the reflection coefficient is small is narrow. An object of the present invention is to provide a radio wave absorber for forming a ¼ wavelength type radio wave absorber having a small reflection coefficient in a wide frequency band, and a radio wave absorber using the same.

発明が解決するための手段Means for Solving the Invention

電波吸収素材Aは、図1に示すように直線状導体1を誘電体シート2の片側面に規則的に配列した導体配列シートと該誘電体シート2のもう一方の面に面抵抗が400[Ω]〜4000[Ω]の導電シート3を図2に示すように積層した構成、または直線状導体1を誘電体シート2の内部に規則的に配列してなる導体配列シートと面抵抗が400[Ω]〜4000[Ω]の導電シート3とを図3に示すように積層した構成、または該導電体配列シートを合成面抵抗が400[Ω]〜4000[Ω]である2枚の導電シート3−1と3−2との間に挟み込んだ図4の構成のいずれかであり、図5に示すように該電波吸収素材Aを1/4波長層Bに積層し、該1/4波長層Bのもう一方の面に金属板Cを装着した構成の電波吸収体とする。上記直線状導体とはアスペクト比(長さ/太さ)が10以上の実質的に直線と見なせる形状の導体を指す。  As shown in FIG. 1, the radio wave absorbing material A has a conductor arrangement sheet in which linear conductors 1 are regularly arranged on one side surface of a dielectric sheet 2 and a sheet resistance of 400 [ A configuration in which conductive sheets 3 of Ω] to 4000 [Ω] are stacked as shown in FIG. 2, or a conductor arrangement sheet formed by regularly arranging linear conductors 1 inside the dielectric sheet 2 and a sheet resistance of 400. A structure in which the conductive sheets 3 of [Ω] to 4000 [Ω] are laminated as shown in FIG. 3, or two conductive sheets having a combined sheet resistance of 400 [Ω] to 4000 [Ω] are combined with the conductor array sheet. 4 is one of the configurations of FIG. 4 sandwiched between the sheets 3-1 and 3-2, and the radio wave absorption material A is laminated on the quarter wavelength layer B as shown in FIG. A radio wave absorber having a configuration in which a metal plate C is mounted on the other surface of the wavelength layer B is used. The linear conductor refers to a conductor having an aspect ratio (length / thickness) of 10 or more and can be regarded as a substantially straight line.

直線状導体1は誘電体シートの表面、あるいは内部にランダムに分散してもよい。あるいは誘電体シート2の表面、または内部に配列する直線状導体1は十字形導体、または4角形や円形の導体で置き換えてもよい。  The linear conductor 1 may be randomly distributed on the surface of the dielectric sheet or inside. Alternatively, the linear conductors 1 arranged on the surface or inside of the dielectric sheet 2 may be replaced with a cross-shaped conductor, or a quadrangular or circular conductor.

発明の効果The invention's effect

本発明の効果を以下に図を用いて説明する。  The effects of the present invention will be described below with reference to the drawings.

図2の構成の電波吸収素材Aを伝送線路として見たときの等価回路は以下のようになる。入射波電波の電界は図1に示すように直線状導体1に平行であるとする。導体配列シートはその厚みが自由空間波長に比べて十分薄いので伝送線路的には集中定数のアドミッタンスYで表せる。同様の理由で導電シート3も集中定数の抵抗Rで表せる。電波吸収素材Aは導体配列シートと導電シート3を積層したものであるから、該電波吸収素材Aの特性を集中定数Yで表すと、YはYとRの並列回路であり、

Figure 2006203147
となる。An equivalent circuit when the radio wave absorbing material A having the configuration of FIG. 2 is viewed as a transmission line is as follows. It is assumed that the electric field of the incident wave radio wave is parallel to the linear conductor 1 as shown in FIG. Since the conductor array sheet its thickness is sufficiently thinner than the free-space wavelength in the transmission line theory can be expressed by the admittance Y A lumped. For the same reason, the conductive sheet 3 can also be expressed by a concentrated constant resistance R S. Since the radio wave absorption material A is a laminate of the conductor array sheet and the conductive sheet 3, when the characteristics of the radio wave absorption material A are expressed by a lumped constant Y T , Y T is a parallel circuit of Y A and R S ,
Figure 2006203147
It becomes.

の周波数特性は以下のようになる。導体配列シートに電波を入射すると、直線状導体1の長さLが波長のおよそ1/2になる周波数fで共鳴現象が生じ、直線状導体1を配列した導体配列シートを均質媒質として見たときの比誘電率ε(=ε’−jε”)は図6に示すように共鳴的な分散特性を示すことが知られている(たとえば特許文献2)。
特願2004−37487。 をεを用いて表すと、

Figure 2006203147
となる。Frequency characteristics of Y A is as follows. When radio waves are incident on the conductor array sheet, a resonance phenomenon occurs at a frequency f 0 at which the length L of the linear conductor 1 is approximately ½ of the wavelength, and the conductor array sheet on which the linear conductors 1 are arrayed is viewed as a homogeneous medium. It is known that the relative dielectric constant ε A (= ε A ′ −jε A ″) at this time exhibits resonant dispersion characteristics as shown in FIG. 6 (for example, Patent Document 2).
Japanese Patent Application No. 2004-37487. When Y A is expressed using ε A ,
Figure 2006203147
It becomes.

数2Number 2

においてλは自由空間波長、dは導体配列シートの厚みである。Yは自由空間の特性アドミッタンスであり、Y=1/377[S]である。Λ 0 is the free space wavelength and d A is the thickness of the conductor array sheet. Y 0 is a characteristic admittance of free space, and Y 0 = 1/377 [S].

なお、導電シート3の比誘電率ε(=ε’−jε”)はε’<<ε”である。導電シートの導電率σは、導電シートの厚みをdとするとσ=1/(R)であり、またε”とσとは角周波数(2π×周波数)をωとすると、ε“=σ/(ωε)の関係式があるので、

Figure 2006203147
となる。εは空気の誘電率である。ε”は図6に点線で示すように周波数に反比例する特性を持つ。The relative dielectric constant ε S (= ε S ′ −jε S ″) of the conductive sheet 3 is ε S ′ << ε S ″. The conductivity σ S of the conductive sheet is σ S = 1 / (R S d S ) where the thickness of the conductive sheet is d S, and ε S ″ and σ S are the angular frequency (2π × frequency) ω Then, since there is a relational expression of ε S “= σ S / (ωε 0 ),
Figure 2006203147
It becomes. ε 0 is the dielectric constant of air. As shown by the dotted line in FIG. 6, ε S ″ has a characteristic inversely proportional to the frequency.

すなわち、本発明による電波吸収素材はその特性を誘電率としてみるとき、図6に示されるように周波数に対して単調に減少する特性のε”と周波数fで共鳴する特性のεとを兼ね備えた特性を持つ特徴がある。That is, when the radio wave absorbing material according to the present invention is viewed as a dielectric constant, the characteristic ε S ″ that monotonically decreases with respect to the frequency and the characteristic ε A that resonates at the frequency f 0 , as shown in FIG. There is a feature with the characteristics that combine.

本発明による電波吸収素材が電波吸収特性に与える効果を規格化アドミッタンスチャートを用いて説明する。図5に示す電波吸収体の構成における等価回路を図7に示す。電波吸収素材Aを表すアドミッタンスYは1/4波長層Bの入力アドミッタンスYに並列に接続され、電波吸収素材Aの表面から見た入力インピーダンスYinはYin=Y+Yである。The effect of the radio wave absorption material according to the present invention on the radio wave absorption characteristics will be described using a standardized admittance chart. An equivalent circuit in the configuration of the radio wave absorber shown in FIG. 5 is shown in FIG. The admittance Y T representing the radio wave absorption material A is connected in parallel to the input admittance Y B of the quarter wavelength layer B, and the input impedance Y in viewed from the surface of the radio wave absorption material A is Y in = Y T + Y B .

図8の規格化アドミッタンスチャートにおいて、イは周波数がfからfにおける規格化したYの特性である。1/4波長層Bは電波的損失がない誘電体よりなる層であるから、規格化したYは該チャートの外周にあり、周波数fにて1/4波長層Bの厚みが丁度1/4波長になるとするとfにおけるYは0である。In normalized admittance chart of FIG. 8, b is the characteristic of Y B whose frequency is normalized in f 2 from f 1. Since the quarter-wave layer B is a layer made of a dielectric material with no radio wave loss, the standardized Y B is on the outer periphery of the chart, and the thickness of the quarter-wave layer B is exactly 1 at the frequency f 0 . If it becomes / 4 wavelength, Y B at f 0 is zero.

まず、従来の電波吸収体の構成である導電シートのみを1/4波長層Bに装着した場合について説明する。ロは面抵抗RがR=377[Ω]である導電シートを1/4波長層Bに装着したときの規格化したYinの特性である。YinはY+1/Rで与えられ、fにおいてはY=0であるからYin=1/377[S]、すなわちYin=Yとなる。Yinと反射係数Γの関係は、

Figure 2006203147
で与えられる。規格化アドミッタンスチャートの中心の値は1、すなわちYin=Yであり、Γ=0となる。ロに示される特性はfでΓ=0となり、入射電波は反射されず全て導電シートに吸収される。図8にロで示される特性の反射係数「は図9に点線で示すようになり、周波数がfから離れるにつれてΓは増加する。First, the case where only the conductive sheet which is the structure of the conventional electromagnetic wave absorber is attached to the quarter wavelength layer B will be described. B is the normalized Y in characteristic when a conductive sheet having a surface resistance R S of R S = 377 [Ω] is mounted on the quarter wavelength layer B. Y in is given by Y B + 1 / RS , and since Y B = 0 at f 0 , Y in = 1/377 [S], that is, Y in = Y 0 . The relationship between Y in and the reflection coefficient Γ is
Figure 2006203147
Given in. The value at the center of the normalized admittance chart is 1, that is, Y in = Y 0 and Γ = 0. The characteristic indicated by B is Γ = 0 at f 0 , and the incident radio wave is not reflected and is completely absorbed by the conductive sheet. The reflection coefficient “of the characteristic shown by B in FIG. 8 becomes as shown by the dotted line in FIG. 9, and Γ increases as the frequency goes away from f 0 .

本発明による電波吸収素材Aはその等価回路が  The electromagnetic wave absorbing material A according to the present invention has an equivalent circuit.

数1Number 1

のYで表される。Represented by the Y T.

数1Number 1

,

数2Number 2

式からわかるように、Yの実数部はRe(Y)+1/Rで与えられる。Re(Y)>0であるからYin=Yとするには(1/R)<Y、すなわちR>(1/Y)=377[Ω]としなければならない。As can be seen from the equation, the real part of Y T is given by Re (Y A ) + 1 / R S. Since Re (Y A )> 0, in order to set Y in = Y 0 , (1 / R S ) <Y 0 , that is, R S > (1 / Y 0 ) = 377 [Ω] must be satisfied.

上記範囲にあるRの導電シート3のみを1/4波長層Bに積層した場合の入力アドミッタンスYinを規格化アドミッタンスチャートに示すと、たとえば図8のハのようになる。ハで示される特性に導体配列シートの効果であるYを付加した場合、すなわち本発明による電波吸収素材Aを1/4波長層Bに積層した場合は図8のニに示すようになる。When the input admittance Y in when only the conductive sheet 3 of RS in the above range is laminated on the quarter wavelength layer B is shown in the standardized admittance chart, for example, as shown in FIG. When added with Y A is the effect of the conductor array sheet to the characteristics indicated by C, that is, when the radio wave absorbing material A according to the present invention was laminated to a quarter wavelength layer B is as shown in two of FIG.

本発明による電波吸収素材を用いると入力アドミッタンスはf付近で規格化アドミッタンスチャートの中心、すなわちΓ=0の点を取り巻くように変化し、Γが小さい値になる周波数範囲が広くなる。この特性は、図6に示されるεの周波数変化によってYが持つ周波数特性により生じたものである。図8のニに示す特性を反射係数Γに変換した値を図9のニに示す。ΓがΓ以下となる周波数範囲であるロの特性のWとニの特性のWでは明らかにW<Wである。When the radio wave absorbing material according to the present invention is used, the input admittance changes so as to surround the center of the normalized admittance chart, that is, the point where Γ = 0 near f 0 , and the frequency range where Γ becomes a small value is widened. This characteristic is caused by the frequency characteristic of Y A due to the frequency change of ε A shown in FIG. The values obtained by converting the characteristics shown in FIG. 8D into the reflection coefficient Γ are shown in FIG. Obviously the gamma is W of W R and two properties of b characteristic is a frequency range of gamma 0 or less A is W R <W A.

導体配列シートの等価的誘電率の虚数部ε”は実験によれば直線状導体1の配列密度を変えることで10〜1000程度の範囲に設定することが可能である。仮にε”=100とし、かつd=0.1mmとするとThe imaginary part ε A ″ of the equivalent dielectric constant of the conductor array sheet can be set in the range of about 10 to 1000 by changing the array density of the linear conductors 1 according to experiments. Suppose ε A ″ = 100 and d A = 0.1 mm

数2Number 2

式より5GHではYの実数部はおよそYとなる。したがってfにおいてΓ=0を得るためだけであればR=∞[Ω]でも設計可能であるが実験的な検討を重ねた結果、Rは400[Ω]<R<4000[Ω]であるとΓが小さい周波数範囲を広くできるという望ましい結果が得られるということがわかった。The real part of 5GH Z in Y A from equation is approximately Y 0. Therefore, R S = ∞ [Ω] can be designed only to obtain Γ = 0 at f 0 , but as a result of repeated experimental studies, R S is 400 [Ω] <R S <4000 [Ω. ], It has been found that a desirable result can be obtained that a frequency range in which Γ is small can be widened.

以上、図2の構成の電波吸収素材を例にとって広帯域な電波吸収特性を持つ1/4波長形電波吸収体が構成できることを説明したが、図3に示すように直線状導体1を誘電体シート2の内部に配列した構造の導体配列シートにおいても直線状導体の共鳴現象による等価的比誘電率は図6に示されるεと同等であるので、図3の構成の電波吸収素材を用いても同様の効果が得られる。As described above, it has been explained that a ¼ wavelength type wave absorber having a broadband wave absorption characteristic can be formed by taking the wave absorbing material having the configuration of FIG. 2 as an example. However, as shown in FIG. 2 is equivalent to ε A shown in FIG. 6 because the equivalent dielectric constant due to the resonance phenomenon of the linear conductor is also equivalent to the ε A shown in FIG. The same effect can be obtained.

図4に示すように導体配列シートを2枚の導電シート3−1と3−2との間に挟みこんだ構成では、伝送線路的には該導電シート3−1と3−2が並列に接続される等価回路になるので、該導電シート3−1と3−2の各々の面抵抗をRS1、RS2とするときの合成面抵抗は1/(1/RS1+1/RS2)である。したがって合成面抵抗が400[Ω]<1/(1/RS1+1/RS2)<4000[Ω]の範囲にあれば図4に示す2枚の導電シートは図2の構成の導電シート3と同様の効果が得られる。As shown in FIG. 4, in the configuration in which the conductor arrangement sheet is sandwiched between the two conductive sheets 3-1 and 3-2, the conductive sheets 3-1 and 3-2 are arranged in parallel in the transmission line. Since it becomes an equivalent circuit to be connected, the combined sheet resistance is 1 / (1 / R S1 + 1 / R S2 ) when the sheet resistances of the conductive sheets 3-1 and 3-2 are R S1 and R S2. It is. Therefore, if the composite surface resistance is in the range of 400 [Ω] <1 / (1 / R S1 + 1 / R S2 ) <4000 [Ω], the two conductive sheets shown in FIG. The same effect can be obtained.

直線状導体1を誘電体シート2の表面に配列してなる導体配列シートは直線状導体1の共鳴周波数をfに合わせなければならない。直線状導体1の共鳴周波数はその長さLが自由空間波長のほぼ1/2になる周波数として見積もることができるが、厳密には直線状導体の長さLだけでなく、直線状導体の周囲の媒質である誘電体シート2の厚みと比誘電率、および導電シートの面抵抗と厚みによって変化する。直線状導体1の共鳴周波数をfに合わせるためには、Lは実験的に定める。Linear conductor 1 conductor array sheet formed by arranging on the surface of the dielectric sheet 2 must align the resonance frequency of the linear conductor 1 on f 0. The resonance frequency of the linear conductor 1 can be estimated as a frequency at which the length L is approximately ½ of the free space wavelength. Strictly speaking, not only the length L of the linear conductor but also the circumference of the linear conductor It varies depending on the thickness and relative dielectric constant of the dielectric sheet 2 as the medium, and the sheet resistance and thickness of the conductive sheet. In order to set the resonance frequency of the linear conductor 1 to f 0 , L is determined experimentally.

これまでの説明で述べた導体配列シートはいずれも直線状導体1を配列したものであり、入射波電波の電界は図2に示すように直線状導体1に平行であるとした。実際の応用を考えた場合、入射波電波の電界は直線状導体1に平行であるとは限らない。入射波電波の電界の方向によらずに本発明の効果を得るには、たとえば図10に示すように2本の直線状導体が直交するようにした十字形形状の導体を配列して導体配列シートを構成する手法、あるいは図11に示すように直線状導体がランダムな方向を向くように配列して導体配列シートを構成する手法があり、いずれも図1に示した導体配列シートと同様の共鳴現象が生じるので本発明の電波吸収素材を構成することができる。  All of the conductor arrangement sheets described in the above description are obtained by arranging the linear conductors 1 and the electric field of the incident wave radio wave is assumed to be parallel to the linear conductors 1 as shown in FIG. When an actual application is considered, the electric field of the incident wave radio wave is not always parallel to the linear conductor 1. In order to obtain the effect of the present invention regardless of the direction of the electric field of the incident wave radio wave, for example, as shown in FIG. 10, a cross-shaped conductor in which two linear conductors are orthogonal to each other is arranged to arrange the conductor. There is a method for forming a sheet, or a method for forming a conductor arrangement sheet by arranging linear conductors in random directions as shown in FIG. 11, both of which are the same as the conductor arrangement sheet shown in FIG. Since a resonance phenomenon occurs, the radio wave absorbing material of the present invention can be configured.

さらに、共鳴現象を生じる導体の形状は線状に限られず、たとえば4角形、円形の導体を配列しても、辺の長さや直径などで定まる或る特定の周波数で共鳴現象が生じることが知られている。したがって、本発明の電波吸収素材に用いる導体の形状は線状、十字形に限られず、たとえば4角形、円形の箔状導体などを配列してもよい。  Furthermore, the shape of the conductor that causes the resonance phenomenon is not limited to a linear shape. For example, even if a rectangular or circular conductor is arranged, it is known that the resonance phenomenon occurs at a specific frequency determined by the length or diameter of the side. It has been. Therefore, the shape of the conductor used for the radio wave absorbing material of the present invention is not limited to a linear shape or a cross shape, and for example, a rectangular or circular foil conductor may be arranged.

誘電体シート2に配列する導体の材質は実質的に電気的良導体であればよく、各種の金属、あるいは各種金属をメッキした繊維状材料、あるいはカーボン繊維、あるいは金属粉やカーボン粉を主成分とする導電塗料などを用いることができる。  The material of the conductor arranged in the dielectric sheet 2 may be substantially a good electrical conductor, and various metals, fibrous materials plated with various metals, carbon fibers, or metal powder or carbon powder as a main component. Conductive paint can be used.

以上の説明では、1/4波長層Bは電波的損失の無い誘電体を用いて構成したが、多少の損失がある誘電体であっても本発明の1/4波長層Bとして用いることは可能である。電波的な損失のある誘電体を1/4波長層Bとして用いたとき、その入力インピーダンスYは、図6に示すアドミッタンスチャートの外周にあるイとは異なりアドミッタンスチャートの内部にある。電波的な損失が大きいほどYの実数部の値であるRe(Y)が大きくなる。本発明による電波吸収素材の導電シート3の面抵抗の最大値は4000[Ω]であり、規格化アドミッタンスの実数部に換算するとおよそ0.1である。さらに、導体配列シートのε”によるアドミッタンスYの実数部はε”=10、f=5GHzとするとおよそ0.1であり、Γ=0の条件であるYin/Y=1とするには、Re(Y)=1−0.1−0.1=0.8である。したがって、Re(Y/Y)<0.8である1/4波長層であれば用いることができる。In the above description, the quarter wavelength layer B is configured by using a dielectric material having no radio loss. However, even a dielectric material having some loss may be used as the quarter wavelength layer B of the present invention. Is possible. When a dielectric having radio loss is used as the ¼ wavelength layer B, the input impedance Y B is inside the admittance chart, unlike the a on the outer periphery of the admittance chart shown in FIG. Re (Y B ), which is the value of the real part of Y B , increases as the radio loss increases. The maximum value of the sheet resistance of the electromagnetic wave absorbing conductive sheet 3 according to the present invention is 4000 [Ω], which is approximately 0.1 when converted to the real part of the standardized admittance. Further, the real part of the admittance Y A due to ε A ″ of the conductor array sheet is approximately 0.1 when ε A ″ = 10 and f 0 = 5 GHz, and Y in / Y 0 = 1 which is the condition of Γ = 0. To achieve this, Re (Y B ) = 1−0.1−0.1 = 0.8. Therefore, any quarter wavelength layer satisfying Re (Y B / Y 0 ) <0.8 can be used.

電気的導電性のよい金属よりなる十字形導体をポリエチレン等の誘電体シートに配列して導体配列シートとし、カーボン粉を主成分とする導電塗料を誘電体シートに塗装して面抵抗が400[Ω]から4000[Ω]の導電シート3とし、該導体配列シートと該導電シート3を積層して電波吸収素材Aを構成する。  A cross-shaped conductor made of a metal having good electrical conductivity is arranged on a dielectric sheet such as polyethylene to form a conductor arrangement sheet, and a conductive paint mainly composed of carbon powder is applied to the dielectric sheet to provide a sheet resistance of 400 [ The conductive sheet 3 of Ω] to 4000 [Ω] is formed, and the radio wave absorbing material A is configured by laminating the conductor arrangement sheet and the conductive sheet 3.

発泡樹脂等の電波的な損失の小さい誘電体の層を1/4波長層Bとして用い、該1/4波長層Bの片側の面に金属板を設け、もう一方の面に上記の電波吸収素材を設けて1/4波長形吸収体を構成する。  A dielectric layer such as foamed resin having a low radio wave loss is used as the quarter-wave layer B, a metal plate is provided on one side of the quarter-wave layer B, and the above-described radio wave absorption is provided on the other side. A quarter wavelength absorber is formed by providing a material.

銀をメッキした太さ110μmの繊維状導体を長さ12mmに切断した直線状導体を厚み120μmのポリエチレンフィルムに規則的に配列して導体配列シートとした。繊維状導体の横方向の配列間隔は20mm、繊維状導体軸方向の配列間隔は35mmとした。さらに厚み0.2mmのポリエチレンフィルムにカーボンを主成分とする導電塗料を塗装し、面抵抗が698[Ω]の導電シートを制作した。上記導体配列シートと上記導電シートを積層し、電波吸収素材とした。  A linear conductor obtained by cutting a fibrous conductor having a thickness of 110 μm plated with silver into a length of 12 mm was regularly arranged on a polyethylene film having a thickness of 120 μm to obtain a conductor arrangement sheet. The arrangement interval in the horizontal direction of the fibrous conductor was 20 mm, and the arrangement interval in the fibrous conductor axial direction was 35 mm. Further, a conductive paint mainly composed of carbon was applied to a polyethylene film having a thickness of 0.2 mm to produce a conductive sheet having a surface resistance of 698 [Ω]. The conductor array sheet and the conductive sheet were laminated to obtain a radio wave absorbing material.

厚み7mmの発泡樹脂を1/4波長層として用い、その片面に上記電波吸収素材を装着し、もう一方の面に金属板を装着して、1/4波長形吸収体を構成した。  A quarter-wave absorber was constructed by using a foamed resin having a thickness of 7 mm as a quarter-wave layer, mounting the above-described radio wave absorbing material on one side, and mounting a metal plate on the other side.

図12に電波吸収素材表面から見た入力アドミッタンスYinの測定値を規格化した値であるYin/Yを▲黒四角▼の記号で示す。測定周波数は4GHzから12GHzとした。Yin/Yは図8のニと同様にチャート中心で取り巻くように変化することがわかる。図13は図12に示した特性を反射係数Γに換算して示したものである。ただし、dBの単位で表してある。fは8GHzであり、図9に示したニの特性と同様に2つの周波数で反射係数が小さくなる特性を有し、たとえば−10dB以下の反射係数になる周波数帯を見ると5GHzから12GHz以上の周波数帯に渡って実現されており、広帯域で良好な電波吸収性能が得られた。In FIG. 12, Y in / Y 0 that is a value obtained by standardizing the measured value of the input admittance Y in viewed from the surface of the radio wave absorbing material is indicated by the symbol “black square”. The measurement frequency was 4 GHz to 12 GHz. It can be seen that Y in / Y 0 changes so as to surround the center of the chart as in FIG. FIG. 13 shows the characteristics shown in FIG. 12 in terms of the reflection coefficient Γ. However, it is expressed in units of dB. f 0 is 8 GHz, and has the characteristic that the reflection coefficient becomes small at two frequencies in the same manner as the characteristics shown in FIG. 9. For example, when looking at the frequency band where the reflection coefficient is -10 dB or less, 5 GHz to 12 GHz or more. It was realized over a wide frequency band, and good radio wave absorption performance was obtained in a wide band.

本発明の電波吸収素材を構成する導体配列シートの図。The figure of the conductor arrangement | sequence sheet | seat which comprises the electromagnetic wave absorption material of this invention. 本発明の電波吸収素材の構成を示す図。The figure which shows the structure of the electromagnetic wave absorption material of this invention. 本発明の電波吸収素材の構成を示す図。The figure which shows the structure of the electromagnetic wave absorption material of this invention. 本発明の電波吸収素材の構成を示す図。The figure which shows the structure of the electromagnetic wave absorption material of this invention. 本発明の電波吸収体の構成を示す図。The figure which shows the structure of the electromagnetic wave absorber of this invention. 導体配列シートの等価的比誘電率を示す図。The figure which shows the equivalent dielectric constant of a conductor arrangement | sequence sheet. 本発明の電波吸収体の伝送線路的等価回路を示す図。The figure which shows the transmission line equivalent circuit of the electromagnetic wave absorber of this invention. 本発明の電波吸収体の規格化入力アドミッタンスを示す図。The figure which shows the normalized input admittance of the electromagnetic wave absorber of this invention. 本発明の電波吸収体の反射係数を示す図。The figure which shows the reflection coefficient of the electromagnetic wave absorber of this invention. 十字形導体を配列した導体配列シートを示す図。The figure which shows the conductor arrangement | sequence sheet which arranged the cross-shaped conductor. 直線状導体をランダムな方向に並べた導体配列シートを示す図。The figure which shows the conductor arrangement | sequence sheet which arranged the linear conductor in the random direction. 実施例の電波吸収体の規格化入力アドミッタンスを示す図。The figure which shows the normalized input admittance of the electromagnetic wave absorber of an Example. 実施例の電波吸収体の反射係数を示す図。The figure which shows the reflection coefficient of the electromagnetic wave absorber of an Example.

符号の説明Explanation of symbols

1: 直線状導体
2: 誘電体シート
3: 導電シート
A: 電波吸収素材
B: 1/4波長層
C: 金属板
イ: 1/4波長層の規格化入力アドミッタンス
ロ: 1/4波長層に導電シートを装着したときの規格化入力アドミッタンス
ロ‘ 1/4波長層に導電シートを装着したときの反射係数
ハ: 1/4波長層に導電シートを装着したときの規格化入力アドミッタンス
ニ: 1/4波長層に本発明の電波吸収素材を装着したときの規格化入力アドミッタンス
ニ‘:1/4波長層に本発明の電波吸収素材を装着したときの反射係数
1: Linear conductor 2: Dielectric sheet 3: Conductive sheet A: Electromagnetic wave absorbing material B: 1/4 wavelength layer C: Metal plate A: 1/4 wavelength layer normalized input admittance slot: 1/4 wavelength layer Normalized input admittance slot when a conductive sheet is attached Reflection coefficient when a conductive sheet is attached to a quarter wavelength layer C: Normalized input admittance when a conductive sheet is attached to a quarter wavelength layer: 1 / 4 standardized input admittance when the wave absorbing material of the present invention is mounted on the ¼ wavelength layer: reflection coefficient when the wave absorbing material of the present invention is mounted on the ¼ wavelength layer

Claims (5)

直線状導体あるいは十字形導体を誘電体シートの表面、または内部に規則的に配列してなる導体配列シートと面抵抗が400[Ω]〜4000[Ω]の導電シートとを積層したことを特徴とする電波吸収素材。A conductor arrangement sheet in which linear conductors or cross-shaped conductors are regularly arranged on or inside a dielectric sheet and a conductive sheet having a sheet resistance of 400 [Ω] to 4000 [Ω] are laminated. Radio wave absorbing material. 面抵抗が各々RS1、RS2である2枚の導電シートの間に直線状導体あるいは十字形導体を誘電体シートの内部に規則的に配列してなる導体配列シートを挟み込んだ構成であり、かつ該2枚の導電シートの面抵抗が400[Ω]<1/(1/RS1+1/RS2)<4000[Ω]であることを特徴とする電波吸収素材。It is a configuration in which a conductor arrangement sheet in which linear conductors or cross-shaped conductors are regularly arranged inside a dielectric sheet is sandwiched between two conductive sheets each having sheet resistance R S1 and R S2 , An electromagnetic wave absorbing material, wherein the sheet resistance of the two conductive sheets is 400 [Ω] <1 / (1 / R S1 + 1 / R S2 ) <4000 [Ω]. 導体配列シートは直線状導体を誘電体シートの表面、または内部にランダムに分散してなることを特徴とする請求項1,2に記載の電波吸収素材。3. The radio wave absorbing material according to claim 1, wherein the conductor array sheet is formed by randomly dispersing linear conductors on the surface or inside of the dielectric sheet. 誘電体シートの表面、あるいは内部に4角形、あるいは円形の箔状導体を配列した導体配列シートであることを特徴とする請求項1に記載の電波吸収素材。2. The radio wave absorbing material according to claim 1, wherein the electromagnetic wave absorbing material is a conductor array sheet in which rectangular or circular foil conductors are arrayed on the surface or inside of the dielectric sheet. 一定の厚みの誘電体層の片面に請求項1,2,3に記載の電波吸収素材を装着し、かつ該誘電体層のもう一方の面に金属板を装着したことを特徴とする電波吸収体。A radio wave absorption comprising the radio wave absorbing material according to claim 1, 2 and 3 mounted on one side of a dielectric layer having a constant thickness, and a metal plate mounted on the other side of the dielectric layer. body.
JP2005043061A 2005-01-21 2005-01-21 Radio wave absorption material and wave absorber Pending JP2006203147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043061A JP2006203147A (en) 2005-01-21 2005-01-21 Radio wave absorption material and wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043061A JP2006203147A (en) 2005-01-21 2005-01-21 Radio wave absorption material and wave absorber

Publications (1)

Publication Number Publication Date
JP2006203147A true JP2006203147A (en) 2006-08-03

Family

ID=36960829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043061A Pending JP2006203147A (en) 2005-01-21 2005-01-21 Radio wave absorption material and wave absorber

Country Status (1)

Country Link
JP (1) JP2006203147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180927A1 (en) 2017-03-29 2018-10-04 富士フイルム株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180927A1 (en) 2017-03-29 2018-10-04 富士フイルム株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber
US11316279B2 (en) 2017-03-29 2022-04-26 Fujifilm Corporation Radio wave absorber and manufacturing method of radio wave absorber

Similar Documents

Publication Publication Date Title
Cheng et al. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures
Kalraiya et al. Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators
Sheokand et al. Transparent broadband metamaterial absorber based on resistive films
Nguyen et al. Angle-and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators
Li et al. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes
Shen et al. An extremely wideband and lightweight metamaterial absorber
Li et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances
Wang et al. A novel ultrathin and broadband microwave metamaterial absorber
Zhi Cheng et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements
Gu et al. A broadband low-reflection metamaterial absorber
Wu et al. A broadband metamaterial absorber design using characteristic modes analysis
KR101759580B1 (en) Multi-layered electromagnetic wave absorber and method for producing a multi-layered electromagnetic wave absorber
Yahiaoui et al. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber
Shen et al. Broadband terahertz metamaterial absorber based on simple multi-ring structures
He et al. Design of an adjustable polarization-independent and wideband electromagnetic absorber
Rui Zhang et al. Analysis and design of triple-band high-impedance surface absorber with periodic diversified impedance
Vahidi et al. A honeycomb-like three-dimensional metamaterial absorber via super-wideband and wide-angle performances at millimeter wave and low THz frequencies
Li et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array
Sharma et al. Ultra‐thin dual‐band polarization‐insensitive conformal metamaterial absorber
Sood et al. A wideband ultrathin low profile metamaterial microwave absorber
Seman et al. Performance enhancement of Salisbury screen absorber using resistively loaded spiral FSS
Liu et al. Wideband and low-profile transmitarray antenna using transmissive metasurface
Shen et al. Integrating absorber with non-planar plasmonic structure for k-vector matching absorption enhancement
Li et al. Loaded metamaterial perfect absorber using substrate integrated cavity
Kundu et al. Reduction of cross-polarized reflection to enhance dual-band absorption