JP2006199915A - Polyester film for laminating metal plate, laminated metal plate and metal container - Google Patents

Polyester film for laminating metal plate, laminated metal plate and metal container Download PDF

Info

Publication number
JP2006199915A
JP2006199915A JP2005159198A JP2005159198A JP2006199915A JP 2006199915 A JP2006199915 A JP 2006199915A JP 2005159198 A JP2005159198 A JP 2005159198A JP 2005159198 A JP2005159198 A JP 2005159198A JP 2006199915 A JP2006199915 A JP 2006199915A
Authority
JP
Japan
Prior art keywords
film
polyester
metal plate
acid
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005159198A
Other languages
Japanese (ja)
Inventor
Hideto Ohashi
英人 大橋
Yoji Takatsu
洋二 高津
Hidenori Shimizu
秀紀 清水
Naonobu Oda
尚伸 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005159198A priority Critical patent/JP2006199915A/en
Publication of JP2006199915A publication Critical patent/JP2006199915A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester laminating film excellent in adhesion with a metal plate and molding processibility and having excellent whitening resistance, to provide film-laminated metal plates, and to provide metal containers. <P>SOLUTION: The polyester film for laminating metal plate is a biaxially oriented polyester film which comprises a polyester composition having 220-250°C melting point and composed mainly of a copolyester comprising ethylene terephthalate component and ethylene isophthalate component and has <1.385 g/cm<SP>3</SP>density and <0.130 plane orientation coefficient, wherein the polyester composition comprises, based on whole acid components of the polyester composition, 2-20 mol% polyoxyalkylene glycol component having ≥3 recurring units of a ≥2C alkylene oxide unit as the ≥2C alkylene oxide unit derived from the polyoxyalkylene glycol component, and contains 0.01-0.15 wt.% wax. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は清涼飲料、ビール、缶詰等の金属容器の腐蝕防止等の目的で使用されるポリエステル系フィルム、該フィルムを金属板にラミネートしたフィルムラミネート金属板、及び該フィルムラミネート金属板を成形してなる金属容器に関するものであり、特に2ピース缶用に好適に用いられるポリエステルフィルムに関するものである。さらに詳細には、金属板との密着性、製缶性(例えば、絞り・しごき加工性)に優れたポリエステル系フィルム、該フィルムを金属板にラミネートしたフィルムラミネート金属板、及び該フィルムラミネート金属板を成形してなる金属容器に関するものである。   The present invention relates to a polyester film used for the purpose of preventing corrosion of metal containers such as soft drinks, beer, and canned foods, a film laminated metal plate obtained by laminating the film on a metal plate, and the film laminated metal plate. In particular, the present invention relates to a polyester film suitably used for a two-piece can. More specifically, a polyester film excellent in adhesion to a metal plate and can manufacturing properties (for example, drawing and ironing properties), a film laminated metal plate obtained by laminating the film on a metal plate, and the film laminated metal plate The present invention relates to a metal container formed by molding.

従来、金属缶の缶内面及び缶外面は腐蝕防止を目的として、エポキシ系,フェノール系等の各種熱硬化性樹脂を溶剤に溶解又は分散させたものを塗布し、金属表面を被覆することが広く行われてきた。しかしながら、この熱硬化性樹脂を被覆する方法は塗料の乾燥に要する時間が長いため生産性が悪く、また多量の有機溶剤を使用するために人体や環境への悪影響など好ましくない問題点があった。   Conventionally, the inner surface and outer surface of a metal can have been widely coated with a solution in which various thermosetting resins such as epoxy and phenol are dissolved or dispersed in a solvent for the purpose of preventing corrosion. Has been done. However, this method of coating the thermosetting resin has poor productivity due to the long time required to dry the paint, and also has undesirable problems such as adverse effects on the human body and environment due to the use of a large amount of organic solvent. .

このような問題を解決するため、金属板に熱可塑性樹脂を溶融押出法で被覆する方法が知られている。(例えば、特許文献1参照)。また、金属板に熱可塑性樹脂フィルムをラミネートする方法が知られている。(例えば、特許文献2参照)。   In order to solve such a problem, a method of coating a metal plate with a thermoplastic resin by a melt extrusion method is known. (For example, refer to Patent Document 1). A method of laminating a thermoplastic resin film on a metal plate is also known. (For example, refer to Patent Document 2).

ところで、飲料用缶には、金属板を円筒成形してなる金属円筒の上下開口部に蓋体を取り付けてなる、いわゆる3ピース缶の他に、金属板を絞り、または絞り・しごき成形して容器部を成形し、この容器部の上面開口部に蓋体を巻締め加工してなる、いわゆる2ピース缶がある。   By the way, for beverage cans, in addition to the so-called three-piece cans, which are obtained by attaching lids to the upper and lower openings of a metal cylinder formed by cylindrical molding of a metal plate, the metal plate is squeezed or squeezed and ironed. There is a so-called two-piece can formed by forming a container part and winding a lid on the upper surface opening of the container part.

しかし、ポリエチレンテレフタレートを主体とするポリエステルフィルムを2ピース缶に適用すると、絞りしごき加工時の成形加工性および金属板に対するフィルムの密着性が不充分であり、デラミネート現象が起こったり、破れたりする場合がある。この傾向はフィルムが配向状態にある2軸延伸フィルムにおいて、より顕著に現れる。   However, when a polyester film mainly composed of polyethylene terephthalate is applied to a two-piece can, the moldability during drawing and ironing and the adhesion of the film to the metal plate are insufficient, causing delaminating or tearing. There is a case. This tendency appears more noticeably in a biaxially stretched film in which the film is in an oriented state.

したがって、フィルムラミネート金属板を2ピース缶に適用するためには、金属板の成形に追随して成形されるという良好な成形性を有し、金属板に対する密着性が優れている必要がある。成形性が不充分であったり、金属板に対するフィルムの密着性が不充分な場合には、フィルムが金属板から剥がれるという、いわゆるデラミネート現象が起こったり、2ピース缶の容器部の作製時にフィルムが破れてしまったりするからである。   Therefore, in order to apply the film-laminated metal plate to a two-piece can, it is necessary to have good formability of forming following the forming of the metal plate and to have excellent adhesion to the metal plate. If the formability is insufficient or the film has insufficient adhesion to the metal plate, a so-called delaminating phenomenon occurs in which the film is peeled off from the metal plate, or the film is produced during the production of the container part of a two-piece can. Because it will be torn.

フィルムラミネート金属板の2ピース缶への成形性を改良する手段として、様様な形態の2軸配向フィルムが提案されている。(例えば、特許文献3、特許文献4、特許文献5参照)しかし、これらに開示された方法は、加工変形率の小さい絞り缶、深絞り缶に用いる場合には確かに効果はあるが、加工変形率の大きい絞り・しごき缶に用いる場合には成形性において十分な効果が得られていなかった。   Biaxially oriented films of various forms have been proposed as means for improving the formability of film laminated metal plates into two-piece cans. (For example, refer to Patent Document 3, Patent Document 4, and Patent Document 5) However, the methods disclosed in these documents are effective when used in a drawn can and a deep drawn can having a low deformation rate. When used for a drawn / ironing can having a large deformation rate, a sufficient effect on moldability has not been obtained.

また、フィルムラミネート金属板を2ピース缶に適用するために、ラミネート後、ポリエステルフィルムの配向を除去するためにフィルムを構成するポリエステルの融点以上で加熱した後、急冷するというリメルト処理が行われている。(例えば、特許文献6参照)。リメルト処理により実質的に無配向状態になったフィルムは絞りしごき缶の成形工程での変形に追随することができる。   In addition, in order to apply the film laminate metal plate to a two-piece can, a remelt process is performed in which, after laminating, heating is performed at a temperature equal to or higher than the melting point of the polyester constituting the film in order to remove the orientation of the polyester film, followed by rapid cooling. Yes. (For example, refer to Patent Document 6). The film that has become substantially non-oriented by the remelt treatment can follow the deformation in the forming process of the drawn iron can.

しかし、無配向フィルムは、一般に2軸延伸フィルムと比べて強度が低く、オリゴマーが析出し易くなったり、脆化が起こり易くなるといわれる。特に、缶内面用フィルムには、打缶時の衝撃によりフィルムにピンホールやクラックが発生することにより金属が侵食されることがないように、耐衝撃性が必要であるが、2ピース缶に成形する際に変形を受けない缶底部分のフィルムは無配向状態のまま残るため、耐衝撃性が低下しやすい。さらに、製缶時に缶胴先端部にツバを残さず打ち抜く成型方法を用いた場合、フィルムの引き裂き性が悪くヒゲ状のフィルム屑が製缶工程に蓄積し、工業的に連続製缶した場合の製缶性を悪化させるといった問題があった。   However, non-oriented films generally have lower strength than biaxially stretched films, and it is said that oligomers tend to precipitate and embrittlement tends to occur. In particular, the film for the inner surface of the can needs to have impact resistance so that the metal is not eroded by the occurrence of pinholes and cracks in the film due to the impact at the time of canning. Since the film at the bottom portion of the can that is not deformed during molding remains in a non-oriented state, the impact resistance tends to decrease. In addition, when using a molding method that punches without leaving a brim at the tip of the can body at the time of can making, the tearing property of the film is poor and beard-like film scraps accumulate in the can making process, and the case of continuous cans made industrially There was a problem of deteriorating can manufacturing.

加えて、製缶時の加工変形率が大きい場合や、製缶速度が100缶/分以上といった高速で製缶した場合には、上記従来技術で得られたフィルムラミネート金属板では、フィルムの延展性、密着性が十分ではなく、缶外面でのフィルムのけずれ(カジリ)や、缶内面のフィルムとポンチとの粘着(ストリップアウト)が発生するといった問題が依然として残っていた。
特開昭57−203545号公報 特開平4−261826号公報 特開昭64−22530号公報 特公平8−19246号公報 特開平3−93525号公報 特表平2−501638号公報
In addition, when the deformation rate during can making is large, or when the can is made at a high speed of 100 cans / minute or more, the film laminate metal plate obtained by the above-described conventional technique can be used to extend the film. However, the problems still remain, such as film slippage (galling) on the outer surface of the can and adhesion between the film on the inner surface of the can and the punch (strip-out).
JP-A-57-203545 JP-A-4-261826 JP-A 64-22530 Japanese Patent Publication No. 8-19246 JP-A-3-93525 Japanese National Patent Publication No. 2-501638

本発明は前記従来技術の問題点を解消することを目的とするものである。即ち、金属板との密着性および成形加工性に優れたポリエステル積層フィルム、フィルムラミネート金属板、および金属容器を提供することにある。   The object of the present invention is to solve the problems of the prior art. That is, it is providing the polyester laminated film excellent in the adhesiveness with a metal plate, and a moldability, a film lamination metal plate, and a metal container.

本発明者らは、上記目的を達成するために鋭意検討した結果、エチレンテレフタレート成分およびエチレンイソフタレート成分からなる共重合ポリエステルを主体とし、特定量の成分を含有する二軸延伸ポリエステルフィルムの密度および面内配向度を適度に制御することにより、フィルムラミネート金属板の絞り・しごき成形加工時の過酷な変形に対するフィルムの伸び性と金属板との良好な接着性を付与し、さらに、キズやクラックのない良好な外観を有する金属缶を得られることを見出し、本発明に到達した。   As a result of diligent studies to achieve the above object, the present inventors have as a main component a copolymer polyester composed of an ethylene terephthalate component and an ethylene isophthalate component, and the density of a biaxially stretched polyester film containing a specific amount of components and By controlling the degree of in-plane orientation appropriately, it gives the film stretchability and good adhesion to the metal plate against severe deformation during drawing and ironing processing of the film laminate metal plate, and also scratches and cracks The present inventors have found that a metal can having a good appearance with no appearance can be obtained.

本発明は以下の通りである。
1.エチレンテレフタレート成分およびエチレンイソフタレート成分からなる共重合ポリエステルを主体とする、融点220〜250℃のポリエステル組成物からなり、密度が1.385g/cm3未満、面配向係数が0.130未満である2軸配向ポリエステルフィルムであり、該ポリエステル組成物が、炭素数が2個以上のアルキレンオキサイド単位の繰り返しが3以上であるポリオキシアルキレングリコール成分を、該ポリオキシアルキレングリコール成分に由来する炭素数が2個以上のアルキレンオキサイド単位として、該ポリエステル組成物の全酸成分に対して2〜20モル%含有し、さらに、ワックスを0.01〜0.15重量%含有することを特徴とする金属板貼合せ用ポリエステルフィルム。
2.上記1.に記載のポリエステルフィルムを構成するポリエステル組成物がポリアルキレンテレフタレート−ポリテトラメチレンオキサイドブロック共重合体を含有することを特徴とする金属板貼合せ用ポリエステルフィルム。
3.上記1〜2.に記載のポリエステルフィルムを金属板の少なくとも片面にラミネートしてなるラミネート金属板。
4.上記3.に記載のラミネート金属板を成形してなることを特徴とする金属容器。
The present invention is as follows.
1. It consists of a polyester composition having a melting point of 220 to 250 ° C. mainly composed of a copolymer polyester composed of an ethylene terephthalate component and an ethylene isophthalate component, and has a density of less than 1.385 g / cm 3 and a plane orientation coefficient of less than 0.130. It is a biaxially oriented polyester film, and the polyester composition has a polyoxyalkylene glycol component in which the repetition of alkylene oxide units having 2 or more carbon atoms is 3 or more, and the carbon number derived from the polyoxyalkylene glycol component is 2 to 20 mol% of the total acid component of the polyester composition as two or more alkylene oxide units, and further 0.01 to 0.15 wt% of a wax. Polyester film for bonding.
2. Above 1. A polyester film for laminating a metal plate, wherein the polyester composition constituting the polyester film described in 1 contains a polyalkylene terephthalate-polytetramethylene oxide block copolymer.
3. Above 1-2. A laminated metal plate obtained by laminating the polyester film described in 1 on at least one surface of a metal plate.
4). 3. above. A metal container formed by molding the laminated metal plate described in 1.

本発明のポリエステルフィルムは、金属板との密着性、絞り・しごき製缶性(特に、過酷な条件下での製缶時の缶内面フィルムと加工ポンチの離型性と缶外面フィルムの耐キズつき性)に優れたフィルムラミネート金属板が得られ、かつ上記フィルムラミネート金属板を成形して得た金属缶の外観が良好であり、極めて有用なポリエステルフィルム、フィルムラミネート金属板、及びフィルムラミネート金属板を成形して得る金属容器である。   The polyester film of the present invention has adhesion to a metal plate, drawability and ironing ability (especially, release characteristics of can inner film and processing punch during canning under severe conditions, and scratch resistance of outer face film of can. Film laminate metal plate having excellent adhesion properties), and a metal can obtained by molding the film laminate metal plate has a good appearance, and is a very useful polyester film, film laminate metal plate, and film laminate metal. It is a metal container obtained by forming a plate.

以下、本発明を詳細に説明する。
本発明に用いられる共重合ポリエステルとは、エチレンテレフタレート成分を主たる構成成分とし、エチレンイソフタレート成分を含む共重合ポリエステルである。該共重合ポリエステルの全酸成分に対するイソフタル酸成分の比率は3〜20モル%であることが好ましく、4〜10モル%であることがさらに好ましい。該共重合ポリエステルはその目的を阻害しない範囲で他の共重合成分を含むことができる。使用できる他の共重合成分のうち、ジカルボン酸成分としては、ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸,コハク酸,アジピン酸,セバシン酸,デカンジカルボン酸,マレイン酸,フマル酸,ダイマー酸等の脂肪族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が使用できる。使用できる上記のジカルボン酸およびそれらのエステル誘導体の量は20モル%以下が好ましく、さらには10モル%以下が好ましい。他のジカルボン酸及びそれらのエステル誘導体の使用量が20モル%を超えるとポリエステルの熱安定性が悪くなり好ましくない。
Hereinafter, the present invention will be described in detail.
The copolymerized polyester used in the present invention is a copolymerized polyester having an ethylene terephthalate component as a main component and an ethylene isophthalate component. The ratio of the isophthalic acid component to the total acid component of the copolymerized polyester is preferably 3 to 20 mol%, and more preferably 4 to 10 mol%. The copolymerized polyester can contain other copolymerization components as long as the purpose is not impaired. Among other copolymerizable components that can be used, dicarboxylic acid components include naphthalene dicarboxylic acid, diphenylsulfone dicarboxylic acid, aromatic dicarboxylic acids such as 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, Aliphatic dicarboxylic acids such as decanedicarboxylic acid, maleic acid, fumaric acid and dimer acid, oxycarboxylic acids such as p-oxybenzoic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid can be used. The amount of the above-mentioned dicarboxylic acids and their ester derivatives that can be used is preferably 20 mol% or less, more preferably 10 mol% or less. If the amount of other dicarboxylic acids and their ester derivatives used exceeds 20 mol%, the thermal stability of the polyester is deteriorated, which is not preferable.

又、本発明の共重合ポリエステルのグリコール成分として、エチレングリコール成分以外に使用できる成分としては、プロパンジオール、ブタンジオ−ル、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールAのエチレンオキサイド付加物,ビスフェノールSのエチレンオキサイド付加物等の芳香族グリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が使用できる。このほか少量のアミド結合、ウレタン結合、エーテル結合、カーボネート結合等を含有する化合物を含んでいてもよい。ここで、使用できる他のグリコール成分の量は20モル%以下が好ましく、さらには10モル%以下が好ましい。他のグリコール成分の使用量が20モル%を超えるとポリエステルの熱安定性が悪くなり好ましくない。   Further, as the glycol component of the copolymerized polyester of the present invention, components that can be used in addition to the ethylene glycol component include aliphatic glycols such as propanediol, butanediol, pentanediol, hexanediol, neopentylglycol, cyclohexanedimethanol, etc. Aromatic glycols such as alicyclic glycol, ethylene oxide adduct of bisphenol A, ethylene oxide adduct of bisphenol S, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like can be used. In addition, a small amount of a compound containing an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be included. Here, the amount of the other glycol component that can be used is preferably 20 mol% or less, and more preferably 10 mol% or less. If the amount of the other glycol component used exceeds 20 mol%, the thermal stability of the polyester deteriorates, which is not preferable.

本発明のポリエステル組成物中には、フィルムラミネート金属板の製缶時の成形密着性および引裂き性を改良するために、炭素数が2個以上のアルキレンオキサイド単位の繰り返しが3以上であるポリオキシアルキレングリコール成分を含有することが必要である。上記成分を含有することにより、ポリエステル組成物の常温、低温での弾性を付与し、また、金属板との成形密着性を向上させることが出来る。特に高速で衝撃的な変形が加わる絞り・しごき製缶時の成形性を向上させるのに効果的である。また、製缶時のフィルムの引裂き性不良による切り屑(ヒゲ)の蓄積による連続生産時の工程異常を防ぐことが出来る。炭素数が2個上のアルキレンオキサイド単位からなるポリオキシアルキレングリコールとしては、ポリエチレングリコール(炭素数2)、ポリトリメチレングリコール(炭素数3)、ポリテトラメチレングリコール(炭素数4)、ポリヘキサメチレングリコール(炭素数6)などが挙げられ、これらの成分のうち1種を単独で用いても良いが、2種以上の成分を混合して用いても良い。ポリオキシアルキレングリコールの平均分子量は500〜3000の範囲のものを好適に用いることができ、平均分子量が800〜2000の範囲のものがさらに好ましい。   In the polyester composition of the present invention, in order to improve the molding adhesion and tearability at the time of making a film-laminated metal plate, a polyoxy group having 3 or more repeating alkylene oxide units having 2 or more carbon atoms. It is necessary to contain an alkylene glycol component. By containing the said component, the elasticity at normal temperature and low temperature of a polyester composition can be provided, and the shaping | molding adhesiveness with a metal plate can be improved. In particular, it is effective in improving the formability during drawing and ironing cans that are subjected to shock deformation at high speed. Moreover, the process abnormality at the time of continuous production by the accumulation | storage of the chip | tip (whisker) by the tearability defect of the film at the time of can making can be prevented. Examples of polyoxyalkylene glycols comprising alkylene oxide units having 2 carbon atoms include polyethylene glycol (2 carbon atoms), polytrimethylene glycol (3 carbon atoms), polytetramethylene glycol (4 carbon atoms), polyhexamethylene Glycol (6 carbon atoms) can be used, and one of these components may be used alone, or two or more components may be mixed and used. A polyoxyalkylene glycol having an average molecular weight in the range of 500 to 3000 can be suitably used, and an average molecular weight in the range of 800 to 2000 is more preferable.

本発明のポリエステル組成物中に、上記のポリオキシアルキレングリコール成分を含有させる方法としては、特に限定されるものではない。例えば、ポリエステル組成物を製造する段階でポリオキシアルキレングリコール成分を他の原料と同様に添加した後、ポリエステル合成反応を終了して得られたポリエステル組成物を用いてもよいし、ポリオキシアルキレングリコールを共重合した別の共重合ポリエステルを本発明のポリエステル組成物に溶融混合してもよい。本発明では、後者の溶融混合する方法が缶の成形性および引裂き性を改良する効果がより効率的に発揮されるため好ましく、特にポリアルキレンテレフタレート−ポリテトラメチレンオキサイドブロック共重合体を溶融混合する方法が最も好ましい形態である。   The method for incorporating the above polyoxyalkylene glycol component into the polyester composition of the present invention is not particularly limited. For example, a polyester composition obtained by adding a polyoxyalkylene glycol component at the stage of producing a polyester composition in the same manner as other raw materials and then terminating the polyester synthesis reaction may be used, or a polyoxyalkylene glycol may be used. Another copolyester obtained by copolymerization of may be melt-mixed with the polyester composition of the present invention. In the present invention, the latter method of melt mixing is preferable because the effect of improving the moldability and tearability of the can is exhibited more efficiently. In particular, the polyalkylene terephthalate-polytetramethylene oxide block copolymer is melt-mixed. The method is the most preferred form.

本発明のポリエステル組成物中に含有されるポリオキシアルキレングリコール成分の量は、ポリオキシアルキレングリコール成分に由来する炭素数が2個以上のアルキレンオキサイド単位の量が、ポリエステル組成物の全酸成分に対して2〜20モル%であることが必要である。ポリオキシアルキレングリコール成分に由来する炭素数が2個以上のアルキレンオキサイド単位とは、アルキレン鎖の両端が酸素原子を挟んで隣りのアルキレン鎖とのエーテル結合を形成している構成単位で、上記の量が2モル%未満では製缶性、引裂き性の改良効果が不十分であり、20モル%を超えるとフィルムの強度、熱特性が低下し、フィルム製造工程、ラミネート金属板の製造工程での取扱い性を悪化させる場合がある。   The amount of the polyoxyalkylene glycol component contained in the polyester composition of the present invention is such that the amount of the alkylene oxide unit having 2 or more carbon atoms derived from the polyoxyalkylene glycol component is the total acid component of the polyester composition. It is necessary that it is 2 to 20 mol%. The alkylene oxide unit having 2 or more carbon atoms derived from the polyoxyalkylene glycol component is a structural unit in which both ends of an alkylene chain form an ether bond with an adjacent alkylene chain with an oxygen atom interposed therebetween, If the amount is less than 2 mol%, the effect of improving the canability and tearability is insufficient, and if it exceeds 20 mol%, the strength and thermal properties of the film deteriorate, and the film production process and the production process of the laminated metal plate The handleability may be deteriorated.

本発明の共重合ポリエステルの融点は220〜250℃であることが製缶性(絞り・しごき加工における缶内面側の樹脂とポンチの離型性の確保、缶外面側の樹脂のかじり(樹脂皮膜での縦方向のキズ)抑制)を確保する点から必要である。さらに、製缶時の加工条件が過酷になった場合には、230〜245℃の範囲にあることが好ましい。上記融点の範囲に入るように共重合成分の種類および含有量を調整する必要がある。   The melting point of the copolymerized polyester of the present invention is 220 to 250 ° C. Can manufacturing properties (ensuring release of the resin and punch on the inner surface of the can in drawing and ironing processes, galling of the resin on the outer surface of the can (resin film) This is necessary from the standpoint of ensuring vertical scratches). Furthermore, when the processing conditions at the time of can-making become severe, it is preferable to be in the range of 230 to 245 ° C. It is necessary to adjust the type and content of the copolymerization component so as to fall within the above melting point range.

本発明のポリエステルフィルムを構成する共重合ポリエステル組成物は単一であっても良いし、組成比の異なる2種類以上のポリエステル組成物のブレンドであっても良い。また、ポリブチレンテレフタレートに代表される他のポリエステル組成物を少量ブレンドすることもできる。本発明のポリエステルフィルムの熱安定性、成形性を満足するために、フィルム全体の最終的な構成成分としてエチレンテレフタレート成分およびエチレンイソフタレート成分の合計が80〜100モル%、かつエチレンイソフタレート成分が3〜20モル%、好ましくはエチレンテレフタレート成分およびエチレンイソフタレート成分の合計が90〜100モル%、かつエチレンイソフタレート成分が4〜10モル%であるように組成および配合を調整することが好ましい。ポリブチレンテレフタレートを少量ブレンドする場合には、ブチレンテレフタレート成分として20モル%以下となるように配合することが熱安定性および成形性の点で好ましい。   The copolymer polyester composition constituting the polyester film of the present invention may be a single composition or a blend of two or more polyester compositions having different composition ratios. In addition, a small amount of other polyester compositions represented by polybutylene terephthalate can be blended. In order to satisfy the thermal stability and moldability of the polyester film of the present invention, the total of the ethylene terephthalate component and the ethylene isophthalate component is 80 to 100 mol% as a final constituent of the entire film, and the ethylene isophthalate component is It is preferable to adjust the composition and blending so that the total content of the ethylene terephthalate component and the ethylene isophthalate component is 3 to 20 mol%, and the ethylene isophthalate component is 4 to 10 mol%. When a small amount of polybutylene terephthalate is blended, it is preferable from the viewpoint of thermal stability and moldability that the butylene terephthalate component is blended so as to be 20 mol% or less.

本発明のポリエステルの製造方法については特に限定しない。即ち、エステル交換法または直接重合法のいずれの方法で製造されたものであっても使用できる。又、分子量を高めるために固相重合法で製造されたものであってもかまわない。さらに、缶に内容物を充填後に実施されるレトルト処理等でのポリエステル樹脂からのオリゴマー量を少なくし、内容物の味やフレーバーの低下を防ぐ保香性の点より、また、製缶ラインの汚染防止の点より、減圧下または不活性ガス雰囲気下での固相重合法で製造されたオリゴマー含有量が低いポリエステルを使用することは好ましい。   It does not specifically limit about the manufacturing method of polyester of this invention. That is, it can be used even if it is produced by either the transesterification method or the direct polymerization method. Further, it may be produced by a solid phase polymerization method in order to increase the molecular weight. In addition, the amount of oligomers from the polyester resin in the retort treatment etc. that is carried out after filling the can into the can is reduced, and from the standpoint of fragrance to prevent the content and flavor from deteriorating, From the viewpoint of preventing contamination, it is preferable to use a polyester having a low oligomer content produced by a solid phase polymerization method under reduced pressure or under an inert gas atmosphere.

ここで、例えばエチレンテレフタレート環状三量体をはじめとするオリゴマー環状三量体の含有量は0.7重量%以下であることが好ましい。   Here, for example, the content of the oligomeric cyclic trimer including ethylene terephthalate cyclic trimer is preferably 0.7% by weight or less.

本発明のポリエステルの極限粘度は0.6〜1.2であることが好ましい。極限粘度が0.6未満の場合には、得られるフィルムの力学特性が低下するおそれがあり、また極限粘度が1.2を越えてもそれ以上の力学特性向上の効果は得られず、逆にポリエステルの製造時の生産性が低下するので経済的ではない。   The intrinsic viscosity of the polyester of the present invention is preferably 0.6 to 1.2. If the intrinsic viscosity is less than 0.6, the mechanical properties of the resulting film may be deteriorated, and even if the intrinsic viscosity exceeds 1.2, no further effect of improving the mechanical properties can be obtained. In addition, the productivity at the time of production of the polyester is lowered, which is not economical.

本発明におけるポリエステルの製造の際には重合触媒としては酸化アンチモン、酸化ゲルマニウム、チタン化合物等が用いられるほか、重合触媒以外に本発明のポリエステル樹脂組成物を用いて溶融押出しフィルムを成形する際の静電密着性を付与するために、酢酸マグネシウム、塩化マグネシウム等のMg塩、酢酸カルシウム、塩化カルシウム等のCa塩、酢酸マンガン、塩化マンガン等のMn塩、塩化亜鉛、酢酸亜鉛等のZn塩、塩化コバルト、酢酸コバルト等のCo塩を各々の金属イオンの総量として300ppm以下、リン酸またはリン酸トリメチルエステル、リン酸トリエチルエステル等のリン酸エステル誘導体をリン原子として200ppm以下の範囲で添加することも可能である。上記重合触媒以外の金属イオンの総量が300ppm、またリン量が200ppmを越えると、得られたポリエステルの着色が顕著になるのみならず,ポリエステルの耐熱性及び耐加水分解性も低下する場合があるので好ましくない。   In the production of the polyester in the present invention, as the polymerization catalyst, antimony oxide, germanium oxide, titanium compound, etc. are used, and in addition to the polymerization catalyst, the polyester resin composition of the present invention is used to form a melt-extruded film. In order to provide electrostatic adhesion, Mg salt such as magnesium acetate and magnesium chloride, Ca salt such as calcium acetate and calcium chloride, Mn salt such as manganese acetate and manganese chloride, Zn salt such as zinc chloride and zinc acetate, Co salt such as cobalt chloride and cobalt acetate should be added within the range of 300 ppm or less as the total amount of each metal ion, and phosphoric acid ester derivatives such as phosphoric acid or phosphoric acid trimethyl ester and phosphoric acid triethyl ester as phosphorous atoms within 200 ppm or less. Is also possible. When the total amount of metal ions other than the above polymerization catalyst exceeds 300 ppm and the amount of phosphorus exceeds 200 ppm, not only is the resulting polyester colored significantly, but the heat resistance and hydrolysis resistance of the polyester may also decrease. Therefore, it is not preferable.

このとき、添加する総リン量と総金属イオン量とのモル比が0.4〜1.0であるときに、耐熱性、耐加水分解性及び、静電密着性のバランスが最も優れたポリエステルが得られるので好ましい。ここで、添加量のモル比=(リン酸、リン酸アルキルエステル、またはその誘導体中のリンの総量(モル原子))/(Mgイオン、Caイオン、Mnイオン、Znイオン、Coイオンの総量(モル原子))である。上記モル比が0.4未満の場合には、本発明の組成物の着色が顕著となり,耐熱性、耐加水分解性が低下する。1.0を超える場合には、十分な静電密着性が得られない。   At this time, when the molar ratio of the total phosphorus amount to be added and the total metal ion amount is 0.4 to 1.0, the polyester having the best balance of heat resistance, hydrolysis resistance, and electrostatic adhesion Is preferable. Here, molar ratio of addition amount = (total amount of phosphorus in phosphoric acid, phosphoric acid alkyl ester or derivative thereof (molar atom)) / (total amount of Mg ion, Ca ion, Mn ion, Zn ion, Co ion ( Mole atom)). When the molar ratio is less than 0.4, the composition of the present invention is markedly colored, and heat resistance and hydrolysis resistance are lowered. If it exceeds 1.0, sufficient electrostatic adhesion cannot be obtained.

また、本発明のポリエステルフィルムには、前述したように、絞りしごき加工により金属容器を製造する際に、加工変形比率が大きくなったり、加工速度が速くなるなど、製造条件が厳しい場合でもラミネート金属板の滑り性を付与するために、不活性粒子を用いることが好ましい。不活性粒子量は特に限定しないが、0.01〜1.0重量%の範囲であることが好ましい。当該フィルムが絞りしごき加工の際に、ポンチやダイスとスムーズに離型させ、缶外面となるフィルムにキズが発生するのを抑えるために、0.01重量%以上の不活性粒子量が好ましいからである。一方、1.0重量%を超える量を含有しても、キズ付き防止の効果が変わらず、コスト的に不利になるだけである。   Further, as described above, the polyester film of the present invention has a laminated metal even when the production conditions are severe, such as when the metal deformation ratio is increased or the processing speed is increased when the metal container is manufactured by drawing and ironing. In order to impart the slipperiness of the plate, it is preferable to use inert particles. The amount of inert particles is not particularly limited, but is preferably in the range of 0.01 to 1.0% by weight. When the film is drawn and ironed, the amount of inert particles is preferably 0.01% by weight or more in order to smoothly release from punches and dies and to prevent scratches on the film that becomes the outer surface of the can. It is. On the other hand, even if it contains an amount exceeding 1.0% by weight, the effect of preventing scratches is not changed, and only the cost is disadvantageous.

ここで、不活性粒子としては、不活性無機粒子や架橋高分子粒子等を用いることが好ましい。不活性無機粒子としては、シリカ、アルミナ、カオリンクレー、酸化チタン、リン酸カルシウム、炭酸カルシウム、フッ化リチウム、硫酸バリウム、カーボンブラック等が例示できる。また、架橋高分子粒子としては、アクリル酸、メタアクリル酸、アクリル酸エステル、メタアクリル酸エステル等のアクリル系単量体、スチレンやアルキル置換スチレン等のスチレン系単量体等と、ジビニルベンゼン、ジビニルスルホン、エチレングリコールジメタアクリレート、トリメチロールプロパントリメチルアクリレート、ペンタエリスリトールテトラメチルアクリレート等の架橋性単量体との共重合体、メラミン系樹脂、ベンゾグアナミン系樹脂、フェノール系樹脂、シリコン含有系樹脂等が例示できる。中でも無機粒子としては一次粒子の凝集体からなる不定形の粒子、とりわけ、凝集シリカ粒子が好ましく、架橋高分子粒子としては架橋型ポリメタクリル酸メチル粒子が好ましい。   Here, as the inert particles, it is preferable to use inert inorganic particles, crosslinked polymer particles, or the like. Examples of the inert inorganic particles include silica, alumina, kaolin clay, titanium oxide, calcium phosphate, calcium carbonate, lithium fluoride, barium sulfate, and carbon black. Moreover, as the crosslinked polymer particles, acrylic monomers such as acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, styrene monomers such as styrene and alkyl-substituted styrene, and divinylbenzene, Copolymers with crosslinking monomers such as divinyl sulfone, ethylene glycol dimethacrylate, trimethylolpropane trimethyl acrylate, pentaerythritol tetramethyl acrylate, melamine resins, benzoguanamine resins, phenol resins, silicon-containing resins, etc. Can be illustrated. Among them, the amorphous particles are preferably amorphous particles composed of aggregates of primary particles, especially the agglomerated silica particles, and the crosslinked polymer particles are preferably crosslinked polymethyl methacrylate particles.

上記不活性粒子の平均粒径は、1.0〜2.5μmが好ましい。1.0μm未満ではフィルムの耐キズ付き性の改良効果が十分に発現できないからである。逆に2.5μmを越えると耐キズ付き性の向上効果が飽和する一方、摩耗による粒子の脱落が起こりやすくなり、金属板とのラミネート時にフィルム破断が起こる場合があるからである。上記不活性粒子の平均粒径はコールターカウンター法により50%重量平均で測定した。   The average particle diameter of the inert particles is preferably 1.0 to 2.5 μm. This is because if it is less than 1.0 μm, the effect of improving the scratch resistance of the film cannot be sufficiently exhibited. On the other hand, if the thickness exceeds 2.5 μm, the effect of improving scratch resistance is saturated, but particles are likely to fall off due to wear, and film breakage may occur during lamination with a metal plate. The average particle diameter of the inert particles was measured by a 50% weight average by a Coulter counter method.

上記不活性粒子のポリエステルフィルムへの添加は、ポリエステル組成物の製造工程で添加してもよいし、ポリエステル組成物と不活性粒子とを溶融混練法で行ってもかまわない。また、ポリエステルフィルムの製造時に高濃度の不活性粒子を含むマスターバッチで添加してもかまわない。本発明に用いられるポリエステルフィルムは、80℃でのフィルムと金属との動摩擦係数が0.45以下であることが好ましい。該動摩擦係数が0.45以下であれば製缶時のダイスやポンチとの滑り性が実用レベルとなる。該動摩擦係数を低下させるためには前記した範囲の不活性粒子を添加することにより達成できるが、無機粒子と架橋高分子粒子やポリエステルに対して非相溶の熱可塑性樹脂を併用することも好ましい実施態様である。   The inert particles may be added to the polyester film in the production process of the polyester composition, or the polyester composition and the inert particles may be melt-kneaded. Moreover, you may add with the masterbatch containing a high concentration inert particle at the time of manufacture of a polyester film. The polyester film used in the present invention preferably has a coefficient of dynamic friction between the film and the metal at 80 ° C. of 0.45 or less. If the dynamic friction coefficient is 0.45 or less, the slipperiness with a die or a punch at the time of can making becomes a practical level. In order to lower the dynamic friction coefficient, it can be achieved by adding inert particles in the above-mentioned range, but it is also preferable to use a combination of inorganic particles and crosslinked polymer particles or polyester incompatible thermoplastic resins. This is an embodiment.

本発明のポリエステルフィルムには、前述したようにフィルムを金属板にラミネートした後に配向を無くすためにリメルト処理をした後のラミネート金属板の滑り性を付与し、絞りしごき加工により金属缶を製造する際に加工変形比率が大きくなったり、加工速度が速くなるなど、製造条件が厳しい場合でも良好な製缶性(特に缶内面側の樹脂とポンチの離型性)を得るために、ポリエステル樹脂組成物中にワックス成分を含有することが必要である。   As described above, the polyester film of the present invention is provided with the slidability of the laminated metal plate after being remelted to eliminate the orientation after the film is laminated to the metal plate, and a metal can is manufactured by drawing and ironing. In order to obtain good can-making properties (especially the resin and punch release properties on the inner surface of the can) even when the manufacturing conditions are severe, such as when the processing deformation ratio increases and the processing speed increases, the polyester resin composition It is necessary to contain a wax component in the product.

本発明のポリエステルフィルムに含有するワックス成分としては、樹脂への配合の作業性、フィルム製膜性の点からパラフィン系ワックス,カルナバワックス、ラノリンワックス等の天然ワックス、ポリエチレンワックス,エステル系ワックス,グリセリン脂肪酸エステル,高級脂肪酸モノアミド等の合成ワックスから選ばれた1種または2種以上のワックスを含有することが好ましく、特にポリエチレンワックスが好ましい。   The wax component contained in the polyester film of the present invention includes natural waxes such as paraffin wax, carnauba wax, lanolin wax, polyethylene wax, ester wax, glycerin from the viewpoint of workability in blending with a resin and film forming properties. It is preferable to contain one or more waxes selected from synthetic waxes such as fatty acid esters and higher fatty acid monoamides, and polyethylene wax is particularly preferable.

ポリエステル樹脂組成物に対するワックスの含有量は0.01〜0.15重量%の範囲であることが必要であり、好ましくは0.02〜0.1重量%である。ワックス含有量が0.01重量%未満では、製缶性改良の効果が十分とはいえず、0.15重量%を超えると、それ以上の製缶性改良効果は期待できず、かえってポリエステル樹脂組成物の熱安定性を損なう可能性があるからである。   The wax content in the polyester resin composition needs to be in the range of 0.01 to 0.15% by weight, and preferably 0.02 to 0.1% by weight. If the wax content is less than 0.01% by weight, it cannot be said that the effect of improving the can-making property is sufficient, and if it exceeds 0.15% by weight, no further effect of improving the can-making property can be expected. This is because the thermal stability of the composition may be impaired.

本発明のポリエステルフィルムにワックスを含有させる方法は特に限定されない。即ち、あらかじめポリエステルとワックスとを溶融混練して得たポリマーを用いてフィルムを作製する方法、ポリエステルとワックスとの混合物を用いて直接フィルムを作製する方法等を使用できる。   The method for incorporating the wax into the polyester film of the present invention is not particularly limited. That is, a method of producing a film using a polymer obtained by melt-kneading polyester and wax in advance, a method of producing a film directly using a mixture of polyester and wax, and the like can be used.

本発明のポリエステルフィルムには、前記不活性粒子、ワックスの他、必要に応じて、非相溶の熱可塑性樹脂、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、顔料、帯電防止剤、潤滑剤、結晶核剤などの添加剤を含有してもよい。特に、フィルムラミネート金属板をリメルト処理する際のフィルムの熱劣化により、リメルト金属板表面に微小なうねりが発生するのを防止するためにも、酸化防止剤を含有することが好ましい。ラミネートフィルムを薄膜化した際には、上記の問題が顕著化するため、酸化防止剤の添加は不可欠である。   In addition to the inert particles and wax, the polyester film of the present invention includes an incompatible thermoplastic resin, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a pigment, and an antistatic agent as necessary. Further, additives such as a lubricant and a crystal nucleating agent may be contained. In particular, it is preferable to contain an antioxidant in order to prevent fine waviness from being generated on the surface of the remelt metal plate due to thermal degradation of the film when the film-laminated metal plate is remelted. When the laminate film is thinned, the above problem becomes remarkable, so the addition of an antioxidant is indispensable.

本発明に用いられる酸化防止剤としては、一次酸化防止剤(これは、フェノール系またはアミン系のラジカル捕捉や連鎖停止作用を有する)、および二次酸化防止剤(これは、リン系、イオウ系などの過酸化物分解作用を有する)が挙げられ、これらのいずれも用いることができる。具体例としては、フェノール系酸化防止剤(例えば、フェノールタイプ、ビスフェノールタイプ、チオビスフェノールタイプ、ポリフェノールタイプなど)、アミン系酸化防止剤(例えば、ジフェニルアミンタイプ、キノリンタイプなど)、リン系酸化防止剤(例えば、ホスファイトタイプ、ホスホナイトタイプなど)、イオウ系酸化防止剤(例えば、チオジプロピオン酸エステルタイプなど)が挙げられる。具体的には、n−オクタデシル−βー(4‘−ヒドロキシ−3,5’−ジ−t−ブチルフェニル)プロピオネート、テトラキス[メチレン−3−(3‘,5’−ジ−t−ブチル−4‘−ヒドロキシフェニル)プロピオネート](これは、「イルガノックス1010」(商品名)として市販されている)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−S−トリアジン−2,4,6(1H,3H,5H)−トリオン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン(これは、「イルガノックス1330」(商品名)として市販されている)、トリス(ミックスドモノおよび/またはジノニルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(2,4−ジ−t−ブチルフェニルホスファイト)、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、ジ−ラウリル−チオジプロピオネート、ジ−ミリスチル−チオジプロピオネート、ジ−ステアリル−チオジプロピオネートなどが挙げられる。これらの酸化防止剤は、1種類で用いてもよいし、2種以上を併用してもよい。   Antioxidants used in the present invention include primary antioxidants (which have a phenol-based or amine-based radical scavenging and chain termination action), and secondary antioxidants (which are phosphorus-based and sulfur-based). Any of these can be used. Specific examples include phenolic antioxidants (eg, phenol type, bisphenol type, thiobisphenol type, polyphenol type, etc.), amine antioxidants (eg, diphenylamine type, quinoline type, etc.), phosphorus antioxidants (eg, For example, phosphite type, phosphonite type, and the like) and sulfur-based antioxidants (for example, thiodipropionic acid ester type and the like). Specifically, n-octadecyl-β- (4′-hydroxy-3,5′-di-t-butylphenyl) propionate, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-) 4′-hydroxyphenyl) propionate] (which is commercially available as “Irganox 1010” (trade name)), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) ) Butane, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) -S-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3, 5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (which is commercially available as "Irganox 1330" (trade name)), tris ( mix Mono and / or dinonylphenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl phosphite), tris (2,4-di-t-butylphenyl phosphite), 2,2-methylene bis (4,6- And di-t-butylphenyl) octyl phosphite, di-lauryl-thiodipropionate, di-myristyl-thiodipropionate, and di-stearyl-thiodipropionate. These antioxidants may be used alone or in combination of two or more.

本発明のポリエステルフィルムに対する酸化防止剤の含有量は0.01〜1重量%が好ましい。   The content of the antioxidant for the polyester film of the present invention is preferably 0.01 to 1% by weight.

本発明のポリエステルフィルムの金属板との接着性をさらに向上させるために、上記で説明したポリエステル組成物からなるフィルム層(I)の片面に他の樹脂層(II)を積層した、2層構成の積層フィルムとすることが好ましい。ここで、樹脂層(II)を構成する樹脂は水分散型樹脂組成物であることがさらに好ましい。   In order to further improve the adhesion of the polyester film of the present invention to the metal plate, a two-layer structure in which another resin layer (II) is laminated on one side of the film layer (I) made of the polyester composition described above It is preferable to use a laminated film. Here, the resin constituting the resin layer (II) is more preferably a water-dispersed resin composition.

水分散型樹脂組成物とはそれ自身は水には不溶であるが、水系溶媒に分散または溶解することが出来る樹脂組成物である。具体的には分子内に親水性基を有するモノマー成分を共重合した樹脂組成物が挙げられる。このような樹脂組成物を用いることにより金属板との優れた密着性を実現することが可能となる。   The water-dispersed resin composition is a resin composition that is insoluble in water but can be dispersed or dissolved in an aqueous solvent. Specifically, the resin composition which copolymerized the monomer component which has a hydrophilic group in a molecule | numerator is mentioned. By using such a resin composition, it is possible to achieve excellent adhesion with a metal plate.

本発明の水分散型樹脂組成物の例としては、親水性基を有するモノマー成分を共重合したポリエステル組成物が挙げられる。親水性基とは、例えば、水酸基、アミノ基、カルボキシル基、スルホン酸基または、それらの誘導体や金属塩基、エーテル基等であり、これらの基を分子内に含むモノマーを共重合し、水に分散可能な状態で存在するものである。親水性基を含むモノマーとしては、具体例としてはポリエチレングリコール、ポリプロピレングリコール、グリセリン、ポリグリセリン、スルホテレフタル酸、5−スルホイソフタル酸、4−スルホイソフタル酸、4−スルホナフタレン−2,7−ジカルボン酸、スルホ−p−キシリレングリコール、2−スルホ−1,4−ビス(ヒドロキシエトキシ)ベンゼン、5(4−スルホフェノキシ)イソフタル酸等のスルホン酸含有モノマーのアルカリ金属塩およびそれらのエステル形成性誘導体が挙げられる。これらのモノマーをジカルボン酸成分およびグリコール成分とともに用いて通常のポリエステルの重合反応を経て得られた水分散型ポリエステル組成物が好適に用いられる。上記のモノマーのうち、5−スルホイソフタル酸、スルホテレフタル酸のナトリウムおよびカリウム塩がより好ましい。   Examples of the water-dispersed resin composition of the present invention include a polyester composition obtained by copolymerizing a monomer component having a hydrophilic group. The hydrophilic group is, for example, a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, or a derivative or metal base thereof, an ether group, or the like, and a monomer containing these groups in the molecule is copolymerized to form water. It exists in a dispersible state. Specific examples of the monomer containing a hydrophilic group include polyethylene glycol, polypropylene glycol, glycerin, polyglycerin, sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid. Alkali metal salts of sulfonic acid-containing monomers such as acid, sulfo-p-xylylene glycol, 2-sulfo-1,4-bis (hydroxyethoxy) benzene, 5 (4-sulfophenoxy) isophthalic acid, and their ester forming properties Derivatives. A water-dispersed polyester composition obtained by a normal polyester polymerization reaction using these monomers together with a dicarboxylic acid component and a glycol component is preferably used. Of the above monomers, sodium and potassium salts of 5-sulfoisophthalic acid and sulfoterephthalic acid are more preferable.

親水性基を有するモノマーが上記スルホン酸含有モノマーのアルカリ金属塩の場合、その添加量は水分散型ポリエステル組成物の全酸成分に対して3〜10モル%であることが、水分散性、耐熱水性を両立する点で好ましい。   When the monomer having a hydrophilic group is an alkali metal salt of the sulfonic acid-containing monomer, the amount added is 3 to 10 mol% based on the total acid component of the water-dispersible polyester composition. It is preferable at the point which balances hot water resistance.

また、他の例としては、共重合ポリエステルに、親水性基を有するビニル系モノマーをグラフト重合させる方法がある。上記親水性基を有するビニル系モノマーとしては、カルボキシル基、水酸基、スルホン酸基、アミド基等を含むもの、親水性基に変化させることが出来る基としては酸無水物基、グリシジル基、クロル基などを含むものが挙げられる。なかでもカルボキシル基を有するものが好ましい。例えば、アクリル酸、メタクリル酸、マレイン酸、及びそれらの塩等のモノマーである。そのほかの親水性基を有するビニル系モノマーとしては、例えば、アリルグリシジルエーテル等のエポキシ基含有モノマー、スチレンスルホン酸、ビニルスルホン酸及びそれらの塩等のスルホン酸基又はその塩を含有するモノマー、クロトン酸、イタコン酸、マレイン酸、フマール酸及びそれらの塩等のカルボキシル基またはその塩を含有するモノマー、無水マレイン酸、無水イタコン酸等の酸無水物を含有するモノマーが挙げられる。これらは他のビニル系モノマーと併用することができる。他のビニル系モノマーとしては、例えば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート等のアルキルアクリレート、メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート等のアルキルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート等のヒドロキシ含有モノマー、アクリルアミド、メタクリルアミド、Nーメチルアクリルアミド、N−メチルメタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−メトキシメチルアクリルアミド、N−メトキシメチルメタクリルアミド、N、N−ジメチロールアクリルアミド、N−フェニルアクリルアミド等のアミド基含有モノマー、スチレン、ビニルメチルエーテル、ビニルエチルエーテル、アクリロニトリル、メタクリロニトリル、塩化ビニリデン、酢酸ビニル、塩化ビニル等が挙げられ、これらの中から1種類または2種類以上を用いて共重合することができる。   As another example, there is a method in which a vinyl monomer having a hydrophilic group is graft-polymerized to a copolyester. Examples of the vinyl monomer having a hydrophilic group include a carboxyl group, a hydroxyl group, a sulfonic acid group, an amide group, and the like, and groups that can be changed to a hydrophilic group include an acid anhydride group, a glycidyl group, and a chloro group. Etc. are included. Of these, those having a carboxyl group are preferred. For example, monomers such as acrylic acid, methacrylic acid, maleic acid, and salts thereof. Other vinyl monomers having a hydrophilic group include, for example, epoxy group-containing monomers such as allyl glycidyl ether, monomers containing sulfonic acid groups such as styrene sulfonic acid, vinyl sulfonic acid and salts thereof, or salts thereof, croton Examples thereof include monomers containing a carboxyl group such as acid, itaconic acid, maleic acid, fumaric acid and salts thereof or salts thereof, and monomers containing acid anhydrides such as maleic anhydride and itaconic anhydride. These can be used in combination with other vinyl monomers. Examples of other vinyl monomers include alkyl acrylates such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and t-butyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, and isopropyl. Alkyl methacrylates such as methacrylate, n-butyl methacrylate and t-butyl methacrylate, hydroxy-containing monomers such as 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate, acrylamide, methacrylamide, N-methyl acrylamide, N-methyl methacrylamide, N -Methylolacrylamide, N-methylolmethacrylamide, N-methoxymethylacrylamide, N-methyl Amide group-containing monomers such as xymethylmethacrylamide, N, N-dimethylolacrylamide, N-phenylacrylamide, styrene, vinyl methyl ether, vinyl ethyl ether, acrylonitrile, methacrylonitrile, vinylidene chloride, vinyl acetate, vinyl chloride, etc. Among these, one or two or more types can be used for copolymerization.

親水性基を含有するビニル系モノマーを樹脂組成物にグラフトさせる方法としては公知のグラフト重合法を用いることが出来る。その代表例として以下の方法があげられる。例えば、光、熱、放射線等によって主鎖の高分子物質にラジカルを発生させてからビニル系モノマーをグラフト重合させるラジカル重合法、或いはAlCl3、TiCl4 等の触媒を用いてカチオンを発生させるカチオン重合法、或いは金属Na、金属Li等を用いてアニオンを発生させるアニオン重合法等がある。また、あらかじめ主鎖の樹脂組成物に重合性不飽和二重結合を導入しこれにビニル系モノマーを反応させる方法があげられる。これに用いられる重合性不飽和二重結合を有するエステル結合可能な化合物としては、フマール酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸、2,5−ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸等をあげることができる。このうち最も好ましいものはフマール酸、マレイン酸、及び2,5−ノルボルネンジカルボン酸である。 As a method of grafting a vinyl monomer containing a hydrophilic group onto a resin composition, a known graft polymerization method can be used. A typical example is the following method. For example, a radical polymerization method in which a radical is generated in a main chain polymer substance by light, heat, radiation, etc., and then a vinyl monomer is graft-polymerized, or a cation that generates a cation using a catalyst such as AlCl 3 or TiCl 4 There is a polymerization method or an anionic polymerization method in which an anion is generated using metal Na, metal Li, or the like. Another example is a method in which a polymerizable unsaturated double bond is introduced into a main chain resin composition and a vinyl monomer is reacted therewith. Examples of the compound capable of forming an ester bond having a polymerizable unsaturated double bond include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, 2,5-norbornene dicarboxylic acid anhydride, and tetrahydrophthalic anhydride. An acid etc. can be mention | raise | lifted. Of these, fumaric acid, maleic acid, and 2,5-norbornene dicarboxylic acid are most preferred.

本発明の水分散性樹脂組成物には良好な耐水密着性を得るために親水基とは異なる反応性基を含有することも可能である。反応性基とは樹脂組成物もしくは親水性物質中のヒドロキシ基、カルボキシル基、重合性不飽和二重結合基などと化学結合反応し得る官能基であって、具体的にはエポキシ基、イソシアネート基、ビニル基、アリル基などの重合性不飽和二重結合基、N,N−ビス(アルコキシメチル)アミノ基、N,N−ビス(ヒドロキシメチル)アミノ基、N−アルコキシメチル−N−ヒドロキシメチルアミノ基、ヒドロキシメチルアミノ基などのアルキロール変性アミノ基またはそのアルキルエーテル化物の基が挙げられる。これらの反応性基は水分散型樹脂組成物に結合している場合、別に添加する化合物に結合している場合、いずれの好適に用いることが出来る。   The water-dispersible resin composition of the present invention may contain a reactive group different from the hydrophilic group in order to obtain good water-resistant adhesion. The reactive group is a functional group that can chemically bond with a hydroxyl group, carboxyl group, polymerizable unsaturated double bond group, etc. in the resin composition or hydrophilic substance, specifically, an epoxy group, an isocyanate group. Polymerizable unsaturated double bond groups such as vinyl group and allyl group, N, N-bis (alkoxymethyl) amino group, N, N-bis (hydroxymethyl) amino group, N-alkoxymethyl-N-hydroxymethyl Examples thereof include alkylol-modified amino groups such as amino groups and hydroxymethylamino groups or alkyl etherified groups thereof. These reactive groups can be suitably used when they are bonded to the water-dispersed resin composition or when they are bonded to a separately added compound.

エポキシ基を樹脂組成物または親水性物質に結合させる方法としては、親水性物質を重合またはグラフトさせる際にグリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有ビニルモノマーを併用する方法、すでに合成された親水性物質またはホスホニウム塩基を含むポリエステル等に含有するカルボキシ基に、またはヒドロキシ基を無水フタル酸、無水トリメリット酸と反応させて得られたカルボキシ基に、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂やフェノール系化合物変性エポキシ樹脂等のエポキシ基を1分子内に2個以上含有するエポキシ化合物をエポキシ基がカルボキシ基に対して過剰量になるように反応させる方法等が挙げられる。   As a method for bonding an epoxy group to a resin composition or a hydrophilic substance, a method of using an epoxy group-containing vinyl monomer such as glycidyl acrylate or glycidyl methacrylate together with the hydrophilic substance for polymerization or grafting, a hydrophilicity that has already been synthesized. For example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a carboxy group obtained by reacting a hydroxy group with phthalic anhydride or trimellitic anhydride, contained in a substance or a polyester containing a phosphonium base. And a method of reacting an epoxy compound containing two or more epoxy groups in one molecule such as a novolak type epoxy resin or a phenol compound-modified epoxy resin so that the epoxy group is in an excessive amount with respect to the carboxy group. .

イソシアネート基を樹脂組成物または親水性物質に結合させる方法としては、親水性物質を重合またはグラフト重合させる際にビニルイソシアネート、アリルイソシアネート等のイソシアネート基含有モノマー併用する方法、すでに合成された親水性物質または樹脂組成物等にヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、トルエンジイソシアネート、などのイソシアネート基を1分子内に2個以上含有するイソシアネート化合物をイソシアネート基がイソシアネート基と反応する官能基に対して過剰量になるように反応させる方法等が挙げられる。   Examples of a method for bonding an isocyanate group to a resin composition or a hydrophilic substance include a method in which an isocyanate group-containing monomer such as vinyl isocyanate or allyl isocyanate is used in combination when a hydrophilic substance is polymerized or graft polymerized, or a hydrophilic substance that has already been synthesized. Or an isocyanate compound containing two or more isocyanate groups such as hexamethylene diisocyanate, diphenylmethane diisocyanate, toluene diisocyanate, etc. in one molecule in the resin composition or the like becomes an excessive amount with respect to the functional group in which the isocyanate group reacts with the isocyanate group. The method of making it react is mentioned.

重合性不飽和二重結合基を樹脂組成物または親水性物に結合させる方法としては前記の方法によってイソシアネート基を結合させた親水性物質または樹脂組成物等に2−ヒドロキシメチルアクリレート、2−ヒドロキシメチルメタクリレート等のヒドロキシル基含有アクリレート類を反応させる方法等が挙げられる。   As a method for bonding a polymerizable unsaturated double bond group to a resin composition or a hydrophilic material, 2-hydroxymethyl acrylate, 2-hydroxy is added to a hydrophilic material or a resin composition to which an isocyanate group is bonded by the above-described method. Examples include a method of reacting hydroxyl group-containing acrylates such as methyl methacrylate.

樹脂組成物や親水性物質とは別に反応性基を含有した化合物を硬化剤として添加する方法は硬化剤の種類、添加量等により硬化後の塗膜物性を調製することができるので好ましい実施形態の一つである。硬化剤の好ましい配合量は樹脂組成物と親水性物質の合計に対して5〜35重量%、さらに好ましくは10〜25重量%である。アルキロール変性アミノ基またはそのアルキルエーテル化物の基を含む硬化剤としてはアルキルエーテル化アミノホルムアルデヒド樹脂、エポキシ基を含む硬化剤としては各種のエポキシ化合物、およびイソシアネート基を含む硬化剤としては各種のイソシアネート化合物等、および、重合性不飽和二重結合基を含む硬化剤としては各種のビニル基含有モノマー類が挙げられる。   A method for adding a compound containing a reactive group as a curing agent separately from a resin composition or a hydrophilic substance is preferable because the coating film physical properties after curing can be prepared depending on the type and amount of the curing agent. one of. A preferable blending amount of the curing agent is 5 to 35% by weight, more preferably 10 to 25% by weight, based on the total of the resin composition and the hydrophilic substance. Curing agents containing alkylol-modified amino groups or alkyl etherated products thereof are alkyl etherified amino formaldehyde resins, curing agents containing epoxy groups are various epoxy compounds, and curing agents containing isocyanate groups are various isocyanates. Examples of the compound and the curing agent containing a polymerizable unsaturated double bond group include various vinyl group-containing monomers.

上記の水分散型樹脂組成物からなる樹脂層(II)を樹脂層(I)に積層する方法としては限定するものではなく、例えば、溶融押出し法、コーティング法などを用いることが可能である。コーティング法を用いる場合には、有機溶剤を使用しないことにより、人体や環境への悪影響を低減することができるため好ましい。該水分散樹脂組成物からなる樹脂層Bの厚みは、0.01〜0.1μmに制御されていることが好ましい。樹脂層(II)層の厚みが0.01μm以下では金属板との十分な密着強度が得られず、0.1μmを超えても過剰品質であり、経済的に好ましくないからである。樹脂層Bの積層をコーティング法で行う場合は、製膜中(インライン)の延伸膜でも製膜後(オフライン)のフィルムに処理してもどちらでも良い。   The method of laminating the resin layer (II) made of the above water-dispersed resin composition on the resin layer (I) is not limited, and for example, a melt extrusion method, a coating method, or the like can be used. When the coating method is used, it is preferable not to use an organic solvent because an adverse effect on the human body and the environment can be reduced. The thickness of the resin layer B made of the water-dispersed resin composition is preferably controlled to 0.01 to 0.1 μm. This is because if the thickness of the resin layer (II) layer is 0.01 μm or less, sufficient adhesion strength with the metal plate cannot be obtained, and if it exceeds 0.1 μm, the quality is excessive and not economically preferable. When the resin layer B is laminated by the coating method, either a stretched film during film formation (in-line) or a film after film formation (off-line) may be used.

本発明のポリエステルフィルムは製膜時や加工時の取扱いに十分な強度を得るという点から2軸延伸フィルムであることが必要である。2軸延伸法としては、遂次2軸延伸、同時2軸延伸があげられる。そして、逐次2軸延伸の場合は、一般的には縦方向に延伸した後、横方向に延伸する方法が採用されているが、逆の順序で延伸する方法で実施してもかまわない。また2軸延伸後、熱処理によりポリエステルの配向を固定することが好ましいが、2軸延伸後、熱処理工程を供する前に長手方向および/または幅方向に再延伸を行なってもよい。さらに、延伸工程またはその前後において、フィルムの片面または両面にコロナ放電処理や所定の塗布処理を施すことも何ら制限を受けない。   The polyester film of the present invention needs to be a biaxially stretched film from the viewpoint of obtaining sufficient strength for handling during film formation or processing. Examples of the biaxial stretching method include sequential biaxial stretching and simultaneous biaxial stretching. In the case of sequential biaxial stretching, generally, a method of stretching in the longitudinal direction and then stretching in the transverse direction is adopted, but it may be carried out by a method of stretching in the reverse order. Further, after biaxial stretching, it is preferable to fix the orientation of the polyester by heat treatment, but after biaxial stretching, re-stretching may be performed in the longitudinal direction and / or the width direction before the heat treatment step. Furthermore, the corona discharge treatment or the predetermined coating treatment is not limited at all on one side or both sides of the film before or after the stretching step.

本発明のポリエステルフィルムの面配向係数は0.130未満でなければならない。面配向係数が0.130以上であると、フィルムを金属板にラミネートする際の密着力が不足する場合があるからである。また、本発明のポリエステルフィルムの密度は1.385g/cm3未満であることが必要である。密度が1.385cm3以上のフィルムではフィルムと金属板との密着性とフィルムの延展性が不足するため、製缶時の変形にフィルムが追随できなくなり金属板からフィルムが剥離したり、局部的にフィルムが破れたりクラックが発生する場合がある。2軸延伸フィルムの製膜、加工時の取り扱い性、フィルムと金属板との密着性、製缶性等をすべて満足するためには、面配向係数は0.110〜0.120、密度は1.345〜1.375cm3の範囲であることが特に好ましい。 The plane orientation coefficient of the polyester film of the present invention must be less than 0.130. This is because if the plane orientation coefficient is 0.130 or more, the adhesion force when the film is laminated on the metal plate may be insufficient. Further, the density of the polyester film of the present invention needs to be less than 1.385 g / cm 3 . A film with a density of 1.385 cm 3 or more lacks the adhesion between the film and the metal plate and the spreadability of the film. Therefore, the film cannot follow the deformation during can making, and the film peels off from the metal plate or is localized. The film may be torn or cracks may occur. In order to satisfy all the requirements for film formation of biaxially stretched film, handleability during processing, adhesion between the film and the metal plate, canability, etc., the plane orientation coefficient is 0.110 to 0.120, and the density is 1 Particularly preferred is a range of .345 to 1.375 cm 3 .

本発明のポリエステルフィルムを金属板にラミネートする方法は特に限定せず、例えば、ドライラミネート法、サーマルラミネート法などを採用することができる。具体的にはフィルムのラミネート面の融点以上に金属板を加熱し、その金属板の表面にフィルムを接触させ、かかる状態でニップロール間を通過させる。次いで、10〜40℃で急冷硬化させることにより、ラミネートする。   The method for laminating the polyester film of the present invention on a metal plate is not particularly limited, and for example, a dry laminating method, a thermal laminating method, or the like can be employed. Specifically, the metal plate is heated to the melting point or higher of the laminate surface of the film, the film is brought into contact with the surface of the metal plate, and passed between the nip rolls in this state. Subsequently, it laminates by making it quench-harden at 10-40 degreeC.

また、フィルムのラミネートは金属板の片面だけに行っても、両面に行ってもよい。両面ラミネートの場合は同時にラミネートしても遂次でラミネートしてもよい。   Moreover, the lamination of the film may be performed only on one side of the metal plate or on both sides. In the case of double-sided lamination, it may be laminated at the same time or sequentially.

本発明において、フィルムラミネート金属板を2ピース缶に適用する場合には、ラミネートの後にポリエステルの分子配向を除去するために、フィルムを構成するポリエステルの融点以上で加熱するリメルト処理を行うことが好ましい。リメルト直後には冷水や圧空等の使用による強制冷却を実施することが好ましい。リメルト後、大気中への放冷等による徐冷却ではポリエステルが冷却固化する過程で結晶化が起こり、その後の製缶プロセスにおいて絞り・しごき加工を受ける際、ポリエステルがその加工による変形に追随せず、結果として製缶できなくなるからである。   In the present invention, when the film laminated metal plate is applied to a two-piece can, it is preferable to perform a remelt treatment in which heating is performed at a temperature equal to or higher than the melting point of the polyester constituting the film in order to remove the molecular orientation of the polyester after lamination. . Immediately after remelting, it is preferable to carry out forced cooling by using cold water or compressed air. After remelting, crystallization occurs during the process of cooling and solidifying the polyester by slow cooling to the air, etc., and when the polyester undergoes drawing and ironing in the subsequent can manufacturing process, the polyester does not follow the deformation caused by the processing. As a result, it becomes impossible to make cans.

前記リメルト処理後のX線観察による分子配向度は、10%以下で、実質的に無配向と言えるものである。つまり、ポリエステルが配向状態にある2軸延伸フィルムでは、塑性変形したり、延びにくいため、容器部を形成するための絞り成形工程を行いにくくなり、ひどい場合には、絞りしごき成形時に金属板から剥がれるというデラミネート現象が起こったり、破れたり、削れたりする。一方、実質的に無配向であれば、ラミネートしている金属板の変形に追随できるので、デラミネートや破れ等を生じることなく、2ピース缶のように、金属の塑性変形を伴う成形を行うことができる。   The degree of molecular orientation by X-ray observation after the remelt treatment is 10% or less, which can be said to be substantially non-oriented. In other words, a biaxially stretched film in which the polyester is in an oriented state is difficult to be plastically deformed or stretched, making it difficult to perform a drawing process for forming the container portion. The delaminating phenomenon of peeling off occurs, tears, or scrapes. On the other hand, if it is substantially non-oriented, it can follow the deformation of the laminated metal plate, so that it can be molded with plastic deformation of the metal like a two-piece can without delaminating or tearing. be able to.

本発明のフィルムラミネート金属容器は、本発明のポリエステルフィルムラミネート金属板を、適宜成形してなる金属容器であり、その容器の形状、金属容器を成形する方法は、特に限定しない。具体的には、天地蓋を巻き締めて内容物を充填する、いわゆる3ピース缶は勿論、金属板を絞り成形して容器部を形成する2ピース缶などに適用できる。   The film-laminated metal container of the present invention is a metal container formed by appropriately forming the polyester film-laminated metal plate of the present invention, and the shape of the container and the method of forming the metal container are not particularly limited. Specifically, the present invention can be applied not only to a so-called three-piece can in which the top cover is wound and filled with contents, but also to a two-piece can that forms a container portion by drawing a metal plate.

本発明の金属容器において、本発明のポリエステルフィルムは、金属容器の内壁面側になるように成形してもよいし、外壁面側になるように成形してもよい。本発明のポリエステルフィルムを外壁面に用いる場合には、あらかじめフィルムの金属と接合される面に隠蔽性を付与するために顔料や着色材を含有した樹脂塗膜を塗布してもよい。   In the metal container of the present invention, the polyester film of the present invention may be molded so as to be on the inner wall surface side of the metal container, or may be molded so as to be on the outer wall surface side. When the polyester film of the present invention is used for the outer wall surface, a resin coating film containing a pigment or a colorant may be applied in advance in order to conceal the surface of the film to be bonded to the metal.

尚、絞り・しごき成形を行う場合、必要に応じて、ポンチ・ダイスが接触するフィルム表面に、潤滑剤を塗布してもよい。   In addition, when performing drawing and ironing, if necessary, a lubricant may be applied to the film surface in contact with the punch and die.

本発明のフィルムラミネート金属容器には、必要に応じて印刷等を施してもよく、また製缶工程・印刷工程等の後、再度リメルト処理を行ってもかまわない。   The film-laminated metal container of the present invention may be subjected to printing or the like as necessary, and may be subjected to a remelt treatment again after a can-making process or a printing process.

本発明では使用する金属板として、ティンフリースチール等の表面処理鋼板あるいはアルミニウム板又はアルミニウム合金板あるいは表面処理を施したアルミニウム板又はアルミニウム合金板が使用できる。   In the present invention, a surface-treated steel plate such as tin-free steel, an aluminum plate, an aluminum alloy plate, or a surface-treated aluminum plate or aluminum alloy plate can be used as the metal plate to be used.

本発明のポリエステルフィルムの厚みは特に限定されないが、被覆効果(防錆性)および成形性、さらには経済性の点から10〜50μmが好ましい。フィルム厚みが10μm未満では、被覆効果が得られず、50μmを超えた場合は過剰品質であり、経済的に好ましくない。   Although the thickness of the polyester film of this invention is not specifically limited, 10-50 micrometers is preferable from the point of a coating effect (rust prevention property), a moldability, and also economical efficiency. If the film thickness is less than 10 μm, the coating effect cannot be obtained, and if it exceeds 50 μm, the film quality is excessive, which is economically undesirable.

以下、実施例を挙げて本発明の内容および効果を具体的に説明するが、本発明は、その要旨を逸脱しない限り以下の実施例に限定するものではない。   EXAMPLES Hereinafter, although an Example is given and the content and effect of this invention are demonstrated concretely, this invention is not limited to a following example, unless it deviates from the summary.

以下に本発明における各種評価方法を示す。   Various evaluation methods in the present invention are shown below.

(1)フィルムの面配向係数
JIS K 7142に準じてアッベ屈折率計の接眼側に変更板アナライザーを取付け、NaD線を光源とし、ヨウ化メチレンを媒液に用いて25℃で縦、横、厚さの三軸方向の屈折率を測定する。Nx(縦方向の屈折率)、Ny(横方向の屈折率)、Nz(厚み方向の屈折率)とし、Nx、Ny、Nzを下式(1)に代入して面配向係数(AO)を求めた。
AO=(Nx+Ny)/2−Nz (1)
(1) Plane orientation coefficient of film A modified plate analyzer is attached to the eyepiece side of an Abbe refractometer according to JIS K 7142, using NaD line as a light source and methylene iodide as a medium at 25 ° C, The refractive index in the triaxial direction of the thickness is measured. Nx (refractive index in the vertical direction), Ny (refractive index in the horizontal direction), and Nz (refractive index in the thickness direction), and Nx, Ny, and Nz are substituted into the following equation (1) to obtain the plane orientation coefficient (AO). Asked.
AO = (Nx + Ny) / 2−Nz (1)

(2)フィルムの密度
JIS K 7112に準じて密度勾配管を用いて25℃で測定した。
(2) Density of film It measured at 25 degreeC using the density gradient tube according to JISK7112.

(3) 極限粘度(IV)
JIS K 7367−5に準じて、キャピラリー粘度計(ウベローデ粘土計を用いて溶媒としてフェノール/テトラクロロエタンー60/40混合溶媒を用いて25℃で測定した値(dl/g)である。
(3) Intrinsic viscosity (IV)
According to JIS K 7367-5, a capillary viscometer (value (dl / g) measured at 25 ° C. using a mixed solvent of phenol / tetrachloroethane-60 / 40 as a solvent using an Ubbelohde clay meter).

(4) ポリエステルの熱特性
ポリエステル組成物を300℃で5分間加熱溶融した後、液体窒素で急冷して得たサンプル10mgを用い、窒素気流中、示差走査型熱量計(DSC)を用いて10℃/分の昇温速度で発熱・吸熱曲線(DSC曲線)を測定したときの、融解に伴う吸熱ピークの頂点温度を融点Tm(℃)とした。
(4) Thermal Properties of Polyester After heating and melting the polyester composition at 300 ° C. for 5 minutes, 10 mg of a sample obtained by quenching with liquid nitrogen was used, and 10 using a differential scanning calorimeter (DSC) in a nitrogen stream. The peak temperature of the endothermic peak accompanying melting when the exothermic / endothermic curve (DSC curve) was measured at a temperature elevation rate of ° C./min was defined as the melting point Tm (° C.).

(5) ポリエステルの組成
ポリエステル樹脂試料を15重量%のトリフルオロ酢酸を含む重クロロホルムに溶解し、1H−NMRを測定した。積層フィルムの場合は、下層の樹脂層を溶剤等で取り除いて残った上層のみの試料を同様に溶解して1H−NMRを測定した。各成分由来のピークの積算強度から組成比を求めた。
(5) Composition of polyester A polyester resin sample was dissolved in deuterated chloroform containing 15% by weight of trifluoroacetic acid, and 1H-NMR was measured. In the case of a laminated film, the lower layer resin layer was removed with a solvent or the like, and the remaining upper layer sample was dissolved in the same manner, and 1H-NMR was measured. The composition ratio was determined from the integrated intensity of the peaks derived from each component.

(6) ポリエステル中のエチレンテレフタレート環状3量体の含有量
ポリエステルをヘキサフルオロイソプロピルアルコール/クロロホルム=2/3(V/V)に溶解し、メタノールでポリエステルを沈殿させ、沈殿物を濾別する。濾液を蒸発乾固し、この蒸発乾固物をジメチルホルムアミドに溶解する。得られた溶液を液体クロマトグラフィー法で展開し、エチレンテレフタレート環状3量体の含有量を定量した。
(6) Content of ethylene terephthalate cyclic trimer in polyester The polyester is dissolved in hexafluoroisopropyl alcohol / chloroform = 2/3 (V / V), the polyester is precipitated with methanol, and the precipitate is filtered off. The filtrate is evaporated to dryness and the evaporated dry matter is dissolved in dimethylformamide. The obtained solution was developed by a liquid chromatography method, and the content of the ethylene terephthalate cyclic trimer was quantified.

(7)ラミネート密着性
ポリエステルフィルムを240℃に加熱した金属板の両面にニップロール間で圧着し、さらに275℃に加熱した後、水中急冷した際、フィルム端面の剥離による収縮幅を測定し評価した。○を実用性ありと判断した。
○:収縮幅が2mm未満
△:収縮幅が2mm以上、5mm未満
×:収縮幅が5mm以上
(7) Laminate adhesion The polyester film was pressure-bonded to both sides of a metal plate heated to 240 ° C. between nip rolls, further heated to 275 ° C., and then quenched in water, and the shrinkage width due to peeling of the film end surface was measured and evaluated. . ○ was judged to be practical.
○: Shrinkage width is less than 2 mm Δ: Shrinkage width is 2 mm or more and less than 5 mm ×: Shrinkage width is 5 mm or more

(8) 缶内面樹脂と加工ポンチの離型性
上記ラミネート金属板を絞り加工によってカップに成形した後、180缶/分の速度で再絞り・しごき加工によって300缶連続製缶し、成形缶上部に起る座屈程度を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:缶開口部の座屈未発生
△:缶開口部円周の約1/3に座屈発生
×:缶開口部円周の1/3以上に座屈発生
(8) Releasability between can inner surface resin and processing punch After forming the above laminated metal plate into a cup by drawing, 300 cans can be continuously made by redrawing and ironing at a speed of 180 cans / minute, and the upper part of the formed can The degree of buckling occurring in the film was visually observed. Evaluation criteria were set as follows, and ○ was evaluated as practical.
○: Buckling has not occurred in the can opening Δ: Buckling has occurred in about 1/3 of the circumference of the can opening ×: Buckling has occurred in more than 1/3 of the circumference of the can opening

(9) 缶外面の耐かじり性(缶外面樹脂における縦方向のキズ)
上記ラミネート金属板を絞り加工によりカップに成形した後、180缶/分の速度で再絞り・しごき加工によって300缶連続製缶し、成形した缶体胴壁部外面樹脂のキズ発生程度を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:キズ未発生
△:外面の約1/3にキズ発生
×:外面の1/3以上に激しいキズ発生
(9) Scratch resistance of the outer surface of the can (longitudinal scratch on the outer surface of the can)
After the laminated metal plate is formed into a cup by drawing, 300 cans are continuously produced by redrawing and ironing at a speed of 180 cans / minute, and the degree of scratches on the outer surface of the molded body wall is visually observed. did. Evaluation criteria were set as follows, and ○ was evaluated as practical.
○: Scratch not occurred △: Scratch occurred about 1/3 of the outer surface ×: Severe scratch generated more than 1/3 of the outer surface

(12)引裂き性
上記のラミネート金属板より7cm角のサンプルを切り出した。このサンプルを希塩酸に浸漬し金属板の一部を溶解除去しフィルムを取り出した。このフィルムにノッチを入れその両端部を引っ張り試験機の上下のチャックに固定し、500mm/分の速度で上下方向に引っ張り、その際の引裂き応力を測定した。測定したフィルムの厚みを測定し、25μm厚みに換算した引裂き応力が0.7N以下であれば、連続製缶時のフィルムの切れ性は実質的に問題ないといえる。
(12) Tearability A 7 cm square sample was cut out from the above laminated metal plate. This sample was immersed in dilute hydrochloric acid to dissolve and remove a part of the metal plate, and the film was taken out. The film was notched, and both ends thereof were fixed to the upper and lower chucks of a tensile tester and pulled in the vertical direction at a speed of 500 mm / min, and the tearing stress at that time was measured. When the thickness of the measured film is measured and the tear stress converted to a thickness of 25 μm is 0.7 N or less, it can be said that there is substantially no problem with the film cutting ability during continuous canning.

次に、実施例および比較例に用いたポリエステルの種類と内容について説明する。   Next, the kind and content of polyester used for the Example and the comparative example are demonstrated.

(1)A−1:ポリエチレンテレフタレート・イソフタレート(エチレンイソフタレートの繰り返し単位10モル%(PET−I(10))、(IV=0.74)
投入口、温度計、圧力計及び精留塔付留出管、撹拌翼を備えた反応装置にテレフタル酸90重量部、イソフタル酸10重量部、エチレングリコール82重量部(エチレングリコール/全酸成分のモル比=2.2)、酸成分に対して酸化ゲルマニウムをGe元素として0.05モル%、酢酸マグネシウムをMg元素として0.05モル%、そして、平均粒径1.3μmの無定形シリカ粒子0.23重量部を仕込み、撹拌しながら窒素を導入し系内の圧力を0.3MPaに保ち、温度230℃〜250℃で生成する水を系外に留去しながらエステル化反応を行った。反応終了後、250℃にて、リン酸トリメチルをP量として0.04モル%加え、昇温しながら徐々に減圧し、275℃、1.0hPa以下の真空下で重縮合反応を行いポリエステルを得た。ついで、このポリエステルを200℃、1.0hPaの真空下で12時間加熱処理して、ポリエステルA−1(PET−I(10))を得た。得られたポリエステルの極限粘度は0.74(dl/g)、エチレンテレフタレート環状3量体は0.5重量%であった。
(1) A-1: Polyethylene terephthalate / isophthalate (ethylene isophthalate repeating unit 10 mol% (PET-I (10)), (IV = 0.74)
90 parts by weight of terephthalic acid, 10 parts by weight of isophthalic acid, 82 parts by weight of ethylene glycol (ethylene glycol / total acid component) were added to a reactor equipped with an inlet, a thermometer, a pressure gauge, a distillation tube with a rectifying column, and a stirring blade. Amorphous silica particles having a molar ratio of 2.2), 0.05 mol% of germanium oxide as the Ge element, 0.05 mol% of magnesium acetate as the Mg element, and an average particle diameter of 1.3 μm with respect to the acid component 0.23 parts by weight were charged, nitrogen was introduced with stirring, the pressure inside the system was maintained at 0.3 MPa, and the esterification reaction was performed while distilling off the water generated at a temperature of 230 ° C. to 250 ° C. outside the system. . After completion of the reaction, 0.04 mol% of trimethyl phosphate as P amount was added at 250 ° C, and the pressure was gradually reduced while the temperature was raised. Obtained. Subsequently, this polyester was heat-treated at 200 ° C. under a vacuum of 1.0 hPa for 12 hours to obtain polyester A-1 (PET-I (10)). The polyester obtained had an intrinsic viscosity of 0.74 (dl / g) and an ethylene terephthalate cyclic trimer of 0.5% by weight.

(2)A−2:ポリエチレンテレフタレート(PET)(IV=0.75)
投入口、温度計、圧力計及び精留塔付留出管、撹拌翼を備えた反応装置にテレフタル酸100重量部に対して、エチレングリコール82重量部(エチレングリコール/テレフタル酸のモル比=2.2)、酸成分に対して酸化ゲルマニウムをGe元素として0.05モル%、酢酸マグネシウムをMg元素として0.05モル%、そして、平均粒径1.3μmの無定形シリカ粒子0.23重量部を仕込み、撹拌しながら窒素を導入し系内の圧力を0.3MPaに保ち、温度230℃〜250℃で生成する水を系外に留去しながらエステル化反応を行った。反応終了後、250℃にて、リン酸トリメチルをP量として0.04モル%加え、昇温しながら徐々に減圧し、275℃、1.0hPa以下の真空下で重縮合反応を行いポリエステルを得た。ついで、このポリエステルを220℃、1.0hPaの真空下で12時間加熱処理して、ポリエステルA−2(PET)を得た。得られたポリエステルの極限粘度は0.75(dl/g)、エチレンテレフタレート環状3量体は0.5重量%であった。
(2) A-2: Polyethylene terephthalate (PET) (IV = 0.75)
82 parts by weight of ethylene glycol (ethylene glycol / terephthalic acid molar ratio = 2) with respect to 100 parts by weight of terephthalic acid in a reactor equipped with an inlet, a thermometer, a pressure gauge, a distillation tube with a rectifying column, and a stirring blade .2) 0.05 mol% of germanium oxide as the Ge element, 0.05 mol% of magnesium acetate as the Mg element, and 0.23 weight of amorphous silica particles having an average particle diameter of 1.3 μm with respect to the acid component Part was charged, nitrogen was introduced with stirring, the pressure inside the system was kept at 0.3 MPa, and the esterification reaction was carried out while distilling out water generated at a temperature of 230 ° C. to 250 ° C. outside the system. After completion of the reaction, 0.04 mol% of trimethyl phosphate as P amount was added at 250 ° C, and the pressure was gradually reduced while the temperature was raised. Obtained. Subsequently, this polyester was heat-treated at 220 ° C. under a vacuum of 1.0 hPa for 12 hours to obtain polyester A-2 (PET). The intrinsic viscosity of the obtained polyester was 0.75 (dl / g), and the ethylene terephthalate cyclic trimer was 0.5% by weight.

(3)B:ポリテトラメチレンテレフタレート−ポリテトラメチレンオキサイドブロック共重合ポリエステル(IV=0.75)
投入口、温度計、圧力計及び精留塔付留出管、撹拌翼を備えた反応装置に、テレフタル酸ジメチル100重量部に対して、1,4−ブタンジオール75重量部、ポリテトラメチレングリコール(平均分子量1000)75重量部、ノルマルブチルチタネート0.05重量部を仕込み、190℃〜230℃で生成するメタノールを系外に留出しながらエステル交換反応を行った。反応終了後、テトラノルマルブチルチタネート0.05重量部、およびリン酸0.025重量部を添加し250℃、減圧下(1.0hPa以下)で重縮合反応を行い、得られた共重合ポリエステル(ポリテトラメチレンテレフタレート−ポリテトラメチレンオキサイドブロック共重合、ポリテトラメチレンオキサイドの比率40重量%、極限粘度0.75)を用いた。
(3) B: Polytetramethylene terephthalate-polytetramethylene oxide block copolymerized polyester (IV = 0.75)
In a reaction apparatus equipped with an inlet, a thermometer, a pressure gauge, a distillation tube with a rectifying column, and a stirring blade, 75 parts by weight of 1,4-butanediol, polytetramethylene glycol with respect to 100 parts by weight of dimethyl terephthalate (Average molecular weight 1000) 75 parts by weight and normal butyl titanate 0.05 parts by weight were charged, and transesterification was carried out while distilling methanol produced at 190 ° C. to 230 ° C. out of the system. After completion of the reaction, 0.05 part by weight of tetranormal butyl titanate and 0.025 part by weight of phosphoric acid were added, and a polycondensation reaction was performed at 250 ° C. under reduced pressure (1.0 hPa or less). Polytetramethylene terephthalate-polytetramethylene oxide block copolymer, polytetramethylene oxide ratio 40% by weight, intrinsic viscosity 0.75) were used.

(4)C−1:ワックス1重量%含有ポリエステル
ポリエステルA−1を99重量部に対して、ポリエチレンワックス(三井化学株式会社製:ハイワックス)1重量部を2軸押出機にて溶融混練して、ワックス1%含有ポリエステル樹脂(C−1)を得た。
(4) C-1: Polyester containing 1% by weight of wax With respect to 99 parts by weight of polyester A-1, 1 part by weight of polyethylene wax (manufactured by Mitsui Chemicals, Inc .: high wax) is melt-kneaded with a twin screw extruder. Thus, a polyester resin (C-1) containing 1% wax was obtained.

(5)C−2:酸化防止剤5重量%含有ポリエステル
ポリエステルA−1を95重量部に対して、フェノール系酸化防止剤(イルガノックス1010、チバガイギー社製)5重量部を2軸押出機にて溶融混練して、酸化防止剤5%含有ポリエステル樹脂(C−2)を得た。
(5) C-2: Polyester containing 5% by weight of antioxidant 5 parts by weight of a phenolic antioxidant (Irganox 1010, manufactured by Ciba Geigy) to 95 parts by weight of polyester A-1 in a twin screw extruder And kneaded to obtain a 5% antioxidant-containing polyester resin (C-2).

実施例1
原料としてA−1/B/C−1=90/5/5(重量%)を、100℃で24時間乾燥し、単軸押出機を用いて270℃で溶融させた後、Tダイより層状に冷却ロール上に押出し、未延伸シートを得た。該未延伸シートを予熱温度80℃、延伸温度100℃で縦方向に3.3倍延伸し、さらにテンターで予熱温度80℃、延伸温度100℃で横方向に3.7倍延伸した後、180℃で8秒間熱処理して厚みが25μmと16μmの2種類のポリエステルフィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して5.2モル%であった。
Example 1
A-1 / B / C-1 = 90/5/5 (% by weight) as a raw material was dried at 100 ° C. for 24 hours, melted at 270 ° C. using a single screw extruder, and then layered from a T die. And extruded on a cooling roll to obtain an unstretched sheet. The unstretched sheet was stretched 3.3 times in the machine direction at a preheating temperature of 80 ° C. and a stretching temperature of 100 ° C., and further stretched by 3.7 times in the transverse direction at a preheating temperature of 80 ° C. and a stretching temperature of 100 ° C. Two types of polyester films (200 m roll film) having a thickness of 25 μm and 16 μm were obtained by heat treatment at 8 ° C. for 8 seconds. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 5.2 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを240℃に加熱した3004系アルミニウム合金板(厚み0.26mm)の両面にニップロール間で圧着し、さらに275℃に加熱した後、水中急冷してラミネート金属板を得た。   This film was pressure-bonded between nip rolls on both sides of a 3004 series aluminum alloy plate (thickness 0.26 mm) heated to 240 ° C., further heated to 275 ° C., and then rapidly cooled in water to obtain a laminated metal plate.

こうして得られたラミネート金属板に成形用潤滑剤を塗布した後、16μmのフィルム側が外面側となるように、加熱して板温70℃で絞り加工を実施した。次いで、得られたカップの温度を40℃にして金型温度80℃で再絞り・しごき加工を実施し、350mlサイズのシームレス缶を得た。   After applying the forming lubricant to the laminated metal plate thus obtained, the laminate was heated and drawn at a plate temperature of 70 ° C. so that the 16 μm film side became the outer surface side. Subsequently, the temperature of the obtained cup was set to 40 ° C., and redrawing and ironing were performed at a mold temperature of 80 ° C. to obtain a 350 ml size seamless can.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本実施例のフィルムはラミ密着性に優れ、かつ、フィルムラミネート板は製缶性および引裂き性に優れていた。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . The film of this example was excellent in laminar adhesion, and the film laminate plate was excellent in can-making property and tearability.

実施例2
原料としてA−1/A−2/B/C−1=45/45/5/5(重量%)を用いた以外は、実施例1と同様の方法により未延伸シートを作成し、さらに実施例1と同様に延伸工程および熱処理工程を経て、厚みが25μmと16μmの2種類のポリエステル系フィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して5.2モル%であった。
Example 2
An unstretched sheet was prepared by the same method as in Example 1 except that A-1 / A-2 / B / C-1 = 45/45/5/5 (% by weight) was used as a raw material, and further carried out. In the same manner as in Example 1, two kinds of polyester films (200 m roll film) having thicknesses of 25 μm and 16 μm were obtained through a stretching process and a heat treatment process. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 5.2 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を得た。   Using this film, a laminated metal plate and a 350 ml size seamless can were obtained in the same manner as in Example 1.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本実施例のフィルムはラミ密着性に優れ、かつ、フィルムラミネート板は製缶性および引裂き性に優れていた。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . The film of this example was excellent in laminar adhesion, and the film laminate plate was excellent in can-making property and tearability.

実施例3
原料としてA−1/B/C−1=93/2/5(重量%)を用いた以外は、実施例1と同様の方法により未延伸シートを作成し、さらに実施例1と同様に延伸工程および熱処理工程を経て厚みが25μmと16μmの2種類のポリエステル系フィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して2.2モル%であった。
Example 3
An unstretched sheet was prepared in the same manner as in Example 1 except that A-1 / B / C-1 = 93/2/5 (% by weight) was used as a raw material, and further stretched in the same manner as in Example 1. Through the steps and the heat treatment step, two kinds of polyester films (200 m roll film) having thicknesses of 25 μm and 16 μm were obtained. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 2.2 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を得た。   Using this film, a laminated metal plate and a 350 ml size seamless can were obtained in the same manner as in Example 1.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本実施例のフィルムはラミ密着性に優れ、かつ、フィルムラミネート板は製缶性および引裂き性に優れていた。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . The film of this example was excellent in laminar adhesion, and the film laminate plate was excellent in can-making property and tearability.

実施例4
原料としてA−1/B/C−1/C−2=88/5/5/2(重量%)を用いた以外は、実施例1と同様の方法により未延伸シートを作成し、さらに実施例1と同様に延伸工程および熱処理工程を経て厚みが25μmと16μmの2種類のポリエステル系フィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して5.2モル%であった。
Example 4
An unstretched sheet was prepared in the same manner as in Example 1 except that A-1 / B / C-1 / C-2 = 88/5/5/2 (% by weight) was used as a raw material, and further implemented. In the same manner as in Example 1, two types of polyester films (200 m roll film) having a thickness of 25 μm and 16 μm were obtained through a stretching process and a heat treatment process. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 5.2 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を得た。   Using this film, a laminated metal plate and a 350 ml size seamless can were obtained in the same manner as in Example 1.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本実施例のフィルムはラミ密着性に優れ、かつ、フィルムラミネート板は製缶性および引裂き性に優れていた。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . The film of this example was excellent in laminar adhesion, and the film laminate plate was excellent in can-making property and tearability.

比較例1
原料としてA−2/B/C−1=90/5/5(重量%)を用いた以外は、実施例1と同様の方法により未延伸シートを作成した。得られた未延伸シートを予熱温度80℃、延伸温度100℃で縦方向に3.3倍延伸し、さらにテンターで予熱温度80℃、延伸温度100℃で横方向に3.7倍延伸した後、210℃で8秒間熱処理して厚みが25μmと16μmの2種類のポリエステルフィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して5.2モル%であった。
Comparative Example 1
An unstretched sheet was prepared in the same manner as in Example 1 except that A-2 / B / C-1 = 90/5/5 (% by weight) was used as a raw material. The obtained unstretched sheet was stretched 3.3 times in the machine direction at a preheating temperature of 80 ° C. and a stretching temperature of 100 ° C., and further stretched by 3.7 times in the transverse direction at a preheating temperature of 80 ° C. and a stretching temperature of 100 ° C. Heat treatment was performed at 210 ° C. for 8 seconds to obtain two kinds of polyester films (200 m roll film) having a thickness of 25 μm and 16 μm. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 5.2 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を作製したが、本比較例のフィルムを金属板にラミネートした際、密着性が弱く、リメルトした際、端部の収縮が起こったため、金属板の温度を250℃に上げてラミネート金属板を得た。また、ラミネート金属板を製缶した際、缶内面フィルムの一部が金属板から剥離し、また、缶外面フィルムにクラックが発生したため、製缶速度を60缶/分に落としてシームレス缶を得た。   Using this film, a laminated metal plate and a 350 ml size seamless can were prepared in the same manner as in Example 1. However, when the film of this comparative example was laminated on the metal plate, the adhesion was weak, and when the film was remelted, Therefore, the temperature of the metal plate was raised to 250 ° C. to obtain a laminated metal plate. In addition, when a laminated metal plate was made, a part of the can inner film was peeled off from the metal plate, and a crack was generated on the outer surface film of the can, so the can making speed was reduced to 60 cans / minute to obtain a seamless can. It was.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本比較例のフィルムはラミ密着性に劣り、フィルムラミネート板は製缶性に劣っていたため、好ましい方法ではない。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . Since the film of this comparative example was inferior in lamellar adhesiveness and the film laminated board was inferior in can-making property, it is not a preferable method.

比較例2
実施例2において、得られた未延伸シートを予熱温度80℃、延伸温度100℃で縦方向に3.5倍延伸し、さらにテンターで予熱温度80℃、延伸温度100℃で横方向に4.0倍延伸した後、150℃で8秒間熱処理して厚みが25μmと16μmの2種類のポリエステルフィルム(200mのロール状フィルム)を得た。
Comparative Example 2
In Example 2, the obtained unstretched sheet was stretched 3.5 times in the machine direction at a preheating temperature of 80 ° C. and a stretching temperature of 100 ° C., and further in the transverse direction at a preheating temperature of 80 ° C. and a stretching temperature of 100 ° C. After stretching 0 times, heat treatment was performed at 150 ° C. for 8 seconds to obtain two kinds of polyester films (200 m roll film) having a thickness of 25 μm and 16 μm.

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を得たが、本比較例のフィルムを金属板にラミネートした際、密着性が弱く、リメルトした際、端部の収縮が起こったため、金属板の温度を250℃に上げてラミネート金属板を得た。   Using this film, a laminated metal plate and a 350 ml size seamless can were obtained in the same manner as in Example 1. However, when the film of this comparative example was laminated on the metal plate, the adhesion was weak, and when the film was remelted, Therefore, the temperature of the metal plate was raised to 250 ° C. to obtain a laminated metal plate.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本比較例のフィルムラミネート板は製缶性および引裂き性に優れていたが、ラミネート時の密着性が劣っていたため好ましい方法ではない。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . The film laminate plate of this comparative example was excellent in canability and tearability, but is not a preferred method because of poor adhesion during lamination.

比較例3
原料としてA−1/B=95/5(重量%)を用いた以外は、実施例1と同様の方法により未延伸シートを作成し、さらに実施例1と同様に延伸工程および熱処理工程を経て厚みが25μmと16μmの2種類のポリエステルフィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して5.2モル%であった。
Comparative Example 3
Except that A-1 / B = 95/5 (% by weight) was used as a raw material, an unstretched sheet was prepared by the same method as in Example 1, and further subjected to a stretching process and a heat treatment process as in Example 1. Two types of polyester films (200 m roll film) having a thickness of 25 μm and 16 μm were obtained. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 5.2 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を作製したが、ラミネート金属板を製缶した際、缶内面フィルムと加工ポンチとの離型性が悪く、缶底の一部に変形がおこり、また缶外面のフィルムに微細なクラックが発生したため、製缶速度を60缶/分に落としてシームレス缶を得た。   Using this film, a laminated metal plate and a seamless can of 350 ml size were produced in the same manner as in Example 1. However, when the laminated metal plate was made, the releasability between the can inner film and the processed punch was poor, and the can Since a part of the bottom was deformed and a fine crack was generated on the film on the outer surface of the can, the can-making speed was reduced to 60 cans / minute to obtain a seamless can.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本比較例のフィルムはラミネート時の密着性および引裂き性に優れていたが、フィルムラミネート板は製缶性(特に内面のポンチ粘着性)に劣っていたため好ましい方法ではない。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . Although the film of this comparative example was excellent in adhesion and tearability at the time of lamination, the film laminate plate was not preferable because it was inferior in can-making property (particularly, punch adhesiveness on the inner surface).

比較例4
原料としてA−1/C−1=95/5(重量%)を用いた以外は、実施例1と同様の方法により未延伸シートを作成し、さらに実施例1と同様に延伸工程および熱処理工程を経て厚みが25μmと16μmの2種類のポリエステルフィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して0モル%であった。
Comparative Example 4
An unstretched sheet is prepared by the same method as in Example 1 except that A-1 / C-1 = 95/5 (% by weight) is used as a raw material. Further, as in Example 1, a stretching process and a heat treatment process are performed. Then, two types of polyester films (200 m roll film) with thicknesses of 25 μm and 16 μm were obtained. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 0 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を作製した。   Using this film, a laminated metal plate and a 350 ml size seamless can were produced in the same manner as in Example 1.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本比較例のフィルムはラミネート時の密着性に優れていたが、フィルムラミネート板は製缶性にやや劣り、また引裂き性にも劣っていたため好ましい方法ではない。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . Although the film of this comparative example was excellent in the adhesion at the time of lamination, the film laminate plate was not preferable because it was slightly inferior in can-making properties and inferior in tearing properties.

比較例5
原料としてA−1/B/C−1=75/20/5(重量%)を用いた以外は、実施例1と同様の方法により未延伸シートを作成し、さらに実施例1と同様に延伸工程および熱処理工程を経て厚みが25μmと16μmの2種類のポリエステルフィルム(200mのロール状フィルム)を得た。このフィルム中のポリテトラメチレングリコール成分由来のテトラメチレンオキサイドの量は酸成分(テレフタル酸、イソフタル酸の総量)に対して23.0モル%であった。
Comparative Example 5
An unstretched sheet was prepared by the same method as in Example 1 except that A-1 / B / C-1 = 75/20/5 (% by weight) was used as a raw material, and further stretched in the same manner as in Example 1. Two types of polyester films (200 m roll film) having a thickness of 25 μm and 16 μm were obtained through the steps and the heat treatment step. The amount of tetramethylene oxide derived from the polytetramethylene glycol component in this film was 23.0 mol% with respect to the acid component (total amount of terephthalic acid and isophthalic acid).

このフィルムを用いて実施例1と同様にラミネート金属板および、350mlサイズのシームレス缶を作製したが、本比較例のフィルムをラミネートした際、フィルムに皺が発生した。またラミネート金属板を製缶した際、缶内面フィルムと加工ポンチとの離型性が悪く、缶底の一部に変形おこり、また、缶外面フィルムにクラックが発生したため、製缶速度を60缶/分に落としてシームレス缶を得た。   Using this film, a laminated metal plate and a 350 ml size seamless can were produced in the same manner as in Example 1. However, when the film of this comparative example was laminated, wrinkles were generated on the film. Moreover, when the laminated metal plate was made, the releasability between the can inner surface film and the processing punch was poor, the part of the can bottom was deformed, and the can outer surface film was cracked. / Min. To obtain a seamless can.

ポリエステルフィルムの組成、融点、密度、面配向係数、ラミ密着性、製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)、引裂き性を表1および表2に示す。本比較例のフィルムはラミネート時の密着性に優れていたが、ラミネート時の取扱い性に劣っていた。また、フィルムラミネート板は製缶性にも劣っていたため好ましい方法ではない。   Tables 1 and 2 show the composition, melting point, density, surface orientation coefficient, lami adhesion, can-making property (releasability of can inner film and punch and degree of scratching on can outer film), and tearability of polyester film. . Although the film of this comparative example was excellent in the adhesiveness at the time of lamination, it was inferior in the handleability at the time of lamination. Moreover, since the film laminate board was also inferior in can-making property, it is not a preferable method.

Figure 2006199915
Figure 2006199915

Figure 2006199915
Figure 2006199915

本発明の積層ポリエステルフィルムは金属板とのラミネート密着性に優れ、さらに得られたフィルムラミネート金属板は製缶性(特に、過酷な条件下での製缶時の缶内面フィルムと加工ポンチの離型性と缶外面フィルムの耐キズつき性)に優れるため、清涼飲料、ビール、缶詰等の金属容器の腐蝕防止等の目的で使用されるポリエステル系フィルム、該フィルムを金属板にラミネートしたフィルムラミネート金属板、及び該フィルムラミネート金属板を成形してなる金属容器として、極めて有用であるといえる。   The laminated polyester film of the present invention is excellent in adhesion to a laminate with a metal plate. Further, the obtained film laminate metal plate has a can-making property (particularly, the separation of a can inner film and a processing punch during can-making under severe conditions). Polyester film used for the purpose of preventing corrosion of metal containers such as soft drinks, beer, canned foods, etc., and a film laminate obtained by laminating the film on a metal plate It can be said that it is extremely useful as a metal container obtained by molding a metal plate and the film-laminated metal plate.

Claims (4)

エチレンテレフタレート成分およびエチレンイソフタレート成分からなる共重合ポリエステルを主体とする、融点220〜250℃のポリエステル組成物からなり、密度が1.385g/cm3未満、面配向係数が0.130未満である二軸配向ポリエステルフィルムであり、該ポリエステル組成物が、炭素数が2個以上のアルキレンオキサイド単位の繰り返しが3以上であるポリオキシアルキレングリコール成分を、該ポリオキシアルキレングリコール成分に由来する炭素数が2個以上のアルキレンオキサイド単位として、該ポリエステル組成物の全酸成分に対して2〜20モル%含有し、さらに、ワックスを0.01〜0.15重量%含有することを特徴とする金属板貼合せ用ポリエステルフィルム。 It consists of a polyester composition having a melting point of 220 to 250 ° C. mainly composed of a copolymer polyester composed of an ethylene terephthalate component and an ethylene isophthalate component, and has a density of less than 1.385 g / cm 3 and a plane orientation coefficient of less than 0.130. It is a biaxially oriented polyester film, and the polyester composition has a polyoxyalkylene glycol component in which the repetition of alkylene oxide units having 2 or more carbon atoms is 3 or more, and the carbon number derived from the polyoxyalkylene glycol component is 2 to 20 mol% of the total acid component of the polyester composition as two or more alkylene oxide units, and further 0.01 to 0.15 wt% of a wax. Polyester film for laminating. 請求項1に記載のポリエステルフィルムを構成するポリエステル組成物がポリアルキレンテレフタレート−ポリテトラメチレンオキサイドブロック共重合体を含有することを特徴とする金属板貼合せ用ポリエステルフィルム。   A polyester film for laminating a metal plate, wherein the polyester composition constituting the polyester film according to claim 1 contains a polyalkylene terephthalate-polytetramethylene oxide block copolymer. 請求項1〜2に記載のポリエステルフィルムを金属板の少なくとも片面にラミネートしてなるラミネート金属板。   A laminated metal plate obtained by laminating the polyester film according to claim 1 on at least one surface of a metal plate. 請求項3に記載のラミネート金属板を成形してなることを特徴とする金属容器。   A metal container formed by molding the laminated metal plate according to claim 3.
JP2005159198A 2004-12-22 2005-05-31 Polyester film for laminating metal plate, laminated metal plate and metal container Pending JP2006199915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159198A JP2006199915A (en) 2004-12-22 2005-05-31 Polyester film for laminating metal plate, laminated metal plate and metal container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004370916 2004-12-22
JP2005159198A JP2006199915A (en) 2004-12-22 2005-05-31 Polyester film for laminating metal plate, laminated metal plate and metal container

Publications (1)

Publication Number Publication Date
JP2006199915A true JP2006199915A (en) 2006-08-03

Family

ID=36958198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159198A Pending JP2006199915A (en) 2004-12-22 2005-05-31 Polyester film for laminating metal plate, laminated metal plate and metal container

Country Status (1)

Country Link
JP (1) JP2006199915A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004923A1 (en) * 2007-07-03 2009-01-08 Toyo Boseki Kabushiki Kaisha Film for metal sheet laminate
JP2010001323A (en) * 2008-06-18 2010-01-07 Toyobo Co Ltd Film for laminating to metal sheet
JP2010023440A (en) * 2008-07-24 2010-02-04 Toyobo Co Ltd Polyester film laminated metal sheet
WO2015001679A1 (en) 2013-07-05 2015-01-08 大和製罐株式会社 Copolyester resin and polyester film for covering metal plates and laminated polyester film comprising same made into film
JP2017030210A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Metal sheet with resin coating film for container

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004923A1 (en) * 2007-07-03 2009-01-08 Toyo Boseki Kabushiki Kaisha Film for metal sheet laminate
JP2010001323A (en) * 2008-06-18 2010-01-07 Toyobo Co Ltd Film for laminating to metal sheet
JP2010023440A (en) * 2008-07-24 2010-02-04 Toyobo Co Ltd Polyester film laminated metal sheet
WO2015001679A1 (en) 2013-07-05 2015-01-08 大和製罐株式会社 Copolyester resin and polyester film for covering metal plates and laminated polyester film comprising same made into film
KR20160029121A (en) 2013-07-05 2016-03-14 다이와 세칸 가부시키가이샤 Copolyester resin and polyester film for covering metal plates and laminated polyester film comprising same made into film
US11046864B2 (en) 2013-07-05 2021-06-29 Daiwa Can Company Copolyester resin and polyester film for covering metal plates and laminated polyester film comprising same made into film
JP2017030210A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Metal sheet with resin coating film for container

Similar Documents

Publication Publication Date Title
JP2006199917A (en) Polyester film for laminating metal plate, laminated metal plate and metal container
JP4178742B2 (en) Thermoplastic composition and film comprising the same
JP2006199915A (en) Polyester film for laminating metal plate, laminated metal plate and metal container
JP4825072B2 (en) Film for laminating metal plates
KR101218488B1 (en) Film for Lamination of Metal Plate
JP4670484B2 (en) Polyester film for laminating metal plates, laminated metal plates and metal containers
JP5458618B2 (en) Film for squeezing and ironing can coating
JP4604844B2 (en) Laminated polyester film for laminating metal plates, laminated metal plates and metal containers
JP2006199017A (en) Laminated polyester film to be laminated on metal sheet, laminated metal sheet and metal container
JP2006199014A (en) Laminated polyester film to be laminated on metal sheet, laminated metal sheet and metal container
EP0685332B1 (en) Laminated polyester film for metal lamination
JP4799197B2 (en) Laminated film for metal plate lamination molding
JP3915294B2 (en) Polyester laminated film and film laminated metal plate and metal container using the same
JPH11207909A (en) Laminated polyester film for metal sheet laminating molding processing
JP2006199015A (en) Laminated polyester film to be laminated on metal sheet, laminated metal sheet and metal container
JP2006007746A (en) Polyester film for coating metal sheet, polyester film coated metal sheet and polyester film coated metal container
JP4910273B2 (en) Film for covering squeezed iron cans, aluminum plate for squeezed iron cans using the same, and squeezed iron cans
JP2951093B2 (en) Polyester film for metal plate lamination processing
JP5326372B2 (en) Film for laminating metal sheets
JP5401769B2 (en) Film for squeezing and ironing can coating
JP2009013243A (en) Film for covering drawn ironed can
JP3865934B2 (en) Polyester film for metal plate lamination molding
JP4839594B2 (en) Polyester film for metal plate coating, polyester film-coated metal plate, and polyester film-coated metal container
JP2006007744A (en) Polyester film for coating metal sheet, polyester film coated metal sheet and polyester film coated metal container
JP4784071B2 (en) Film and film roll for drawing and ironing can coating, film-coated metal plate for drawing and ironing can using the same, and film-coating drawing and ironing can