JP2006198567A - Granulating method and granulator - Google Patents

Granulating method and granulator Download PDF

Info

Publication number
JP2006198567A
JP2006198567A JP2005014996A JP2005014996A JP2006198567A JP 2006198567 A JP2006198567 A JP 2006198567A JP 2005014996 A JP2005014996 A JP 2005014996A JP 2005014996 A JP2005014996 A JP 2005014996A JP 2006198567 A JP2006198567 A JP 2006198567A
Authority
JP
Japan
Prior art keywords
granulation
granulated
granulated product
granulating
dish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005014996A
Other languages
Japanese (ja)
Other versions
JP4556177B2 (en
Inventor
Masahiro Muramatsu
政廣 村松
Jun Mizuno
潤 水野
Toshihiro Matsuba
俊博 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2005014996A priority Critical patent/JP4556177B2/en
Publication of JP2006198567A publication Critical patent/JP2006198567A/en
Application granted granted Critical
Publication of JP4556177B2 publication Critical patent/JP4556177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance processing precision and processing efficiency, and to miniaturize a device. <P>SOLUTION: For granulation by rotating a granulating plate after continuously supplying a granulation raw material and an additive to the slanted granulating plate, the granulating plate is divided into a growing region 12 of a bottom side and a forming region 13 of an open part side by an annular partition wall 11 protruded to the inner peripheral surface of the truncated-cone shaped granulating plate 10. A granulation material A is formed by supplying the granulation raw material into the growing region, and the granulation material formed in the growing region is supplied to a cylindrical sieve 40, a sorting means sorting grains formed in a predetermined size or larger and other sizes through a granulation material transferring means 50, and the formed grains large enough are taken out to the forming region. A granulation material of sizes smaller than the predetermined size is circulated to the growing region and a granulation material formed in the growing region is supplied to the cylindrical sieve 40 again to take out the granulation material to the forming region repeatedly. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、微粉末の造粒物を生成する造粒方法及び造粒装置に関するものである。   The present invention relates to a granulation method and a granulation apparatus for producing a granulated product of fine powder.

従来、微粉末の造粒物を生成する方法(装置)として、傾斜する有底筒状の造粒皿に造粒原料と添加液とを連続して供給し、造粒皿を回転して造粒する造粒方法(装置)が知られている。この造粒方法(装置)によれば、傾斜する造粒皿に粉状の造粒原料と例えば水又は水に凝集剤や結合材を添加した添加液とを供給し、造粒皿の回転に伴う遠心力で持ち上げられ、その自重によって下方への落下により造粒すると共に、所定の粒径の造粒物に成長させ、成長された形成粒をオーバーフローにより排出することができる(例えば、特許文献1参照)。
特開平10−174859公報(特許請求の範囲、図1)
Conventionally, as a method (apparatus) for producing a granulated product of fine powder, a granulated raw material and an additive solution are continuously supplied to an inclined bottomed cylindrical granulation dish, and the granulation dish is rotated to produce a granulated product. A granulating method (apparatus) for granulating is known. According to this granulation method (apparatus), a powdery granulation raw material and, for example, water or an additive liquid in which a flocculant or a binder is added to water are supplied to an inclined granulation dish, and the granulation dish is rotated. It is lifted by the accompanying centrifugal force, granulated by dropping downward due to its own weight, and grown to a granulated product of a predetermined particle diameter, and the formed grains grown can be discharged by overflow (for example, patent document) 1).
Japanese Patent Laid-Open No. 10-174859 (Claims, FIG. 1)

しかしながら、特開平10−174859公報に記載の技術においては、1回の処理によって造粒皿から排出される造粒物中には、所定粒径の形成粒(製品粒)以外に粒径の小さい細粒,粉末や、所定粒径より粒径の大きい粗粒が混在する虞がある。そのため、造粒皿から排出される造粒物を分級して、製品粒と細粒,粉末と粗粒の3種類に分離し、細粒,粉末は、排出後に、コンベアあるいは空気輸送管等の造粒装置とは別の動力を用いた装置によって輸送された後、再度造粒を行って製品粒になるように再処理されている。また、粗粒は、コンベア等の造粒装置とは別の動力を用いた装置によって輸送された後、前工程の乾燥・解砕工程へ戻されて再処理されている。   However, in the technique described in Japanese Patent Application Laid-Open No. 10-174859, the granulated product discharged from the granulation dish by one treatment has a small particle size other than the formed particles (product particles) having a predetermined particle size. There is a possibility that fine particles, powder, and coarse particles having a particle size larger than a predetermined particle size are mixed. Therefore, the granulated product discharged from the granulation dish is classified and separated into three types of product and fine particles, powder and coarse particles. After being transported by a device using power different from that of the granulating device, it is granulated again and reprocessed to become product particles. The coarse particles are transported by a device using power different from a granulator such as a conveyor, and then returned to the previous drying / crushing step for reprocessing.

したがって、従来のこの種の造粒方法(装置)においては、造粒の排出直後の分級装置が必要な上、細粒,粉末及び粗粒共に再処理のために輸送等の余分なエネルギーが必要となり、処理効率の低下及び装置の大型化を招くという問題があった。   Therefore, this type of conventional granulation method (equipment) requires a classification device immediately after the granulation is discharged, and also requires extra energy such as transportation for reprocessing of fine particles, powder and coarse particles. Thus, there is a problem in that the processing efficiency is lowered and the apparatus is enlarged.

この発明は、上記事情に鑑みてなされたもので、処理精度及び処理効率の向上を図ると共に、装置の小型化を図れるようにした造粒方法及び造粒装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a granulation method and a granulation apparatus capable of improving processing accuracy and processing efficiency and reducing the size of the apparatus. It is.

上記目的を達成するため、この発明は、以下のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1記載の発明に係る造粒方法は、傾斜する造粒皿に造粒原料と添加液とを連続して供給し、上記造粒皿を回転して造粒する造粒方法であって、 上記造粒皿の内周面に突設された環状仕切壁にて底部側の成長域と開口部側の形成域とに区画しておき、上記成長域内に上記造粒原料を供給して造粒物を生成し、成長域で生成された造粒物を、所定の粒径の形成粒とそれ以外の粒径に選別する分級手段に供給して、形成粒を上記形成域に取り出し、所定の粒径以下の粒径の造粒物を上記成長域内に循環させて造粒物を生成し、成長域で生成された造粒物を、再度上記分級手段に供給して造粒物を形成域に取り出すことを繰り返して行う、ことを特徴とする。   The granulation method according to the invention of claim 1 is a granulation method in which a granulation raw material and an additive liquid are continuously supplied to an inclined granulation dish, and the granulation dish is rotated and granulated. And partitioning into a growth area on the bottom side and a formation area on the opening side by an annular partition wall protruding from the inner peripheral surface of the granulation dish, and supplying the granulation raw material into the growth area Producing a granulated product, supplying the granulated product produced in the growth zone to a classifying means for selecting a granulated product with a predetermined particle size and a particle size other than that, taking out the formed granule into the forming region, A granulated product having a particle size equal to or smaller than a predetermined particle size is circulated in the growth zone to produce a granulated product, and the granulated product produced in the growth zone is supplied to the classification means again to obtain the granulated product. It is characterized by repeatedly taking out to the formation area.

請求項2記載の発明は、請求項1記載の造粒方法において、 上記成長域内の造粒原料に添加液を供給して造粒原料同士を接着させて造粒物を生成し、上記形成域内の造粒物に添加液を供給して造粒物への付着液分による補強を行う、ことを特徴とする。   The invention according to claim 2 is the granulation method according to claim 1, wherein an additive liquid is supplied to the granulation raw material in the growth region to bond the granulation raw materials together to produce a granulated product, An additive liquid is supplied to the granulated product to reinforce it with the liquid adhering to the granulated product.

請求項4記載の発明に係る造粒装置は、請求項1記載の発明に係る造粒方法を具現化するもので、 傾斜する造粒皿に造粒原料と添加液とを連続して供給し、上記造粒皿を回転して造粒する造粒装置であって、 内周面に突設された環状仕切壁によって区画される底部側の成長域と開口部側の形成域を有する造粒皿と、 上記形成域と成長域に跨って配設され、所定の粒径の形成粒とそれ以外の粒径に選別すると共に、形成粒を上記形成域に取り出し、形成粒の粒径以下の粒径の造粒物を上記成長域に戻す分級手段と、 上記造粒皿の回転に伴って上記成長域内で生成された造粒物を成長域から取り出して上記分級手段に供給する造粒物搬送手段と、を具備する、ことを特徴とする。この場合、上記造粒皿の形状は任意の形状であってもよく、例えば有底円筒状、円錐状あるいは截頭円錐状のいずれであってもよいが、好ましくは截頭円錐状に形成する方がよい。   A granulating apparatus according to a fourth aspect of the present invention embodies the granulating method according to the first aspect of the present invention, wherein the granulating raw material and the additive liquid are continuously supplied to an inclined granulating dish. A granulation apparatus for granulating by rotating the granulation dish, comprising a growth region on the bottom side and a formation region on the opening side, which are partitioned by an annular partition wall projecting on the inner peripheral surface The plate is disposed across the formation region and the growth region, and is sorted into a formation particle having a predetermined particle size and a particle size other than that, and the formation particle is taken out to the formation region, and is equal to or less than the particle size of the formation particle. A classifying means for returning the granulated product having a particle size to the growth zone, and a granulated product for taking out the granulated product generated in the growth zone as the granulation dish rotates and supplying the granulated product to the classifying means. And a conveying means. In this case, the shape of the granulating dish may be any shape, for example, any of a bottomed cylindrical shape, a conical shape, or a truncated cone shape, preferably a truncated cone shape. Better.

請求項5記載の発明は、請求項2記載の発明に係る造粒方法を具現化するもので、 請求項4記載の造粒装置において、 上記成長域内の造粒原料に添加液を供給する第1の液供給手段と、上記形成域内の造粒物に添加液を供給する第2の液供給手段とを更に具備する、ことを特徴とする。   A fifth aspect of the present invention embodies the granulation method according to the second aspect of the present invention. In the granulation apparatus according to the fourth aspect, the additive liquid is supplied to the granulation raw material in the growth zone. 1 liquid supply means, and the 2nd liquid supply means which supplies an additional liquid to the granulated material in the said formation area, It is characterized by the above-mentioned.

請求項6記載の発明は、 請求項4又は5記載の造粒装置において、 上記分級手段を、成長域部が形成粒径より若干小径の多数の選別孔を有し、形成域部が形成粒径と同じ孔径の多数の形成孔を有する筒状篩にて形成し、 上記筒状篩を、該筒状篩の軸方向を外側に向かって下り勾配にすると共に、軸を中心として回転可能に形成し、該筒状篩によって分級された所定粒径以上の造粒物を筒状篩内を介して外部に排出可能に形成してなることを特徴とする。   The invention according to claim 6 is the granulating apparatus according to claim 4 or 5, wherein the classifying means comprises a plurality of sorting holes in which the growth region portion is slightly smaller in diameter than the formation particle size, and the formation region portion is the formation particle. The cylindrical sieve is formed of a cylindrical sieve having a plurality of holes having the same diameter as the diameter, and the cylindrical sieve is inclined downward toward the outside in the axial direction of the cylindrical sieve, and is rotatable about the axis. A granulated product having a predetermined particle size or more formed and classified by the cylindrical sieve is formed so as to be discharged to the outside through the cylindrical sieve.

請求項7記載の発明は、上記造粒物搬送手段は、造粒皿の環状仕切壁に装着され、造粒皿の回転に伴って成長域内で生成された造粒物を掬い取って上記筒状篩の成長域側に落下させる搬送部材と、該搬送部材から落下された造粒物を受け止めて上記筒状篩内に案内する案内シュートと、を具備することを特徴とする。   According to a seventh aspect of the present invention, the granule conveying means is mounted on the annular partition wall of the granulation dish, scoops up the granulation substance generated in the growth zone as the granulation dish rotates, and And a guide chute that receives the granulated material dropped from the transport member and guides it into the cylindrical screen.

この発明において、上記造粒原料は微粉末であれば任意のものでよく、例えばアルミナ粉末を適用することができる(請求項3,8)。   In the present invention, the granulation raw material may be any fine powder as long as it is fine, and for example, alumina powder can be applied.

この発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

(1)請求項1,4記載の発明によれば、傾斜する造粒皿内において形成域と区画された成長域内に造粒原料を供給し、成長域で生成された造粒物を、造粒物搬送手段によって所定の粒径の成長粒とそれ以外の粒径に選別する分級手段に供給して形成粒を形成域に取り出し、所定の粒径以下の粒径の造粒物を成長域内に循環させて造粒物を生成し、成長域で生成された造粒物を、再度造粒物搬送手段によって分級手段に供給して造粒物を形成域に取り出すことを繰り返し行うことにより、処理精度の高い所定の粒径の造粒物(製品粒)を造粒することができる。また、造粒皿内において、所定の粒径の造粒物(製品粒)を造粒することができるので、造粒の処理精度及び処理効率の向上が図れると共に、装置の小型化が図れる。   (1) According to the first and fourth aspects of the present invention, the granulation raw material is supplied into the growth zone partitioned from the formation zone in the inclined granulation dish, and the granulated product generated in the growth zone is granulated. Supply to the classification means for selecting the growth grains with a predetermined particle size and other particle sizes by the particle conveying means and take out the formed particles into the formation area, The granulated product generated in the growth zone is repeatedly circulated to the classification zone by supplying the granulated product again to the classification means by the granule transport means, and repeatedly taking out the granulated product to the formation zone, A granulated product (product grain) having a predetermined particle size with high processing accuracy can be granulated. In addition, since a granulated product (product grain) having a predetermined particle diameter can be granulated in the granulation dish, the processing accuracy and efficiency of granulation can be improved, and the apparatus can be downsized.

(2)請求項2,5記載の発明によれば、造粒皿内に区画された成長域内の造粒原料に添加液を供給して造粒原料同士を接着させて造粒物を生成し、また、形成域内の造粒物に添加液を供給して造粒物への付着液分による補強を行うことにより、上記(1)に加えて、更に処理精度及び処理効率の向上を図ることができる。   (2) According to the inventions of claims 2 and 5, an additive solution is supplied to the granulation raw material in the growth region partitioned in the granulation dish to bond the granulation raw materials together to produce a granulated product. In addition to the above (1), the processing accuracy and the processing efficiency can be further improved by supplying the additive liquid to the granulated material in the forming region and reinforcing the granulated material with the adhering liquid. Can do.

(3)請求項6記載の発明によれば、分級手段を、成長域部が形成粒径より若干小径の多数の選別孔を有し、形成域部が形成粒径と同じ孔径の多数の形成孔を有する筒状篩にて形成し、筒状篩を外側に向かって下り勾配に配設すると共に、軸を中心にして回転し、該筒状篩によって分級された所定粒径以上の造粒物を筒状篩内を介して外部に排出することにより、筒状篩内に供給された造粒物を分散させつつ筒状篩内を移動して形成粒とそれ以外の造粒物とに分級することができる。したがって、上記(1),(2)に加えて、更に処理精度及び処理効率の向上を図ることができる。   (3) According to the invention described in claim 6, the classifying means has a large number of selection holes whose growth region part is slightly smaller in diameter than the formation particle size, and the formation region part has many formations having the same hole diameter as the formation particle size. A cylindrical sieve having a hole is formed, and the cylindrical sieve is arranged in a downward gradient toward the outside, and is rotated around an axis and granulated with a particle size equal to or larger than a predetermined particle size classified by the cylindrical sieve. By discharging the product to the outside through the inside of the cylindrical sieve, the granulated product supplied into the cylindrical sieve is dispersed while moving in the cylindrical sieve to form formed particles and other granulated products. Can be classified. Therefore, in addition to the above (1) and (2), the processing accuracy and processing efficiency can be further improved.

(4)請求項7記載の発明によれば、造粒物搬送手段は、造粒皿の環状仕切壁に装着され、造粒皿の回転に伴って成長域内で生成された造粒物を掬い取って筒状篩の成長域側に落下させる搬送部材と、該搬送部材から落下された造粒物を受け止めて筒状篩内に案内する案内シュートとを具備することにより、搬送部材が造粒皿の回転に伴って回動して成長域内に生成された造粒物を掬い取って、掬い取った造粒物を、案内シュートを介して分級手段に確実に供給することができる。したがって、上記(1)〜(3)に加えて、更に処理精度及び処理効率の向上を図ることができる。   (4) According to the invention described in claim 7, the granulated material transporting means is attached to the annular partition wall of the granulating dish, and scoops the granulated material generated in the growth zone as the granulating dish rotates. The conveying member is granulated by comprising a conveying member that is taken and dropped to the growth region side of the cylindrical sieve, and a guide chute that receives the granulated material dropped from the conveying member and guides it into the cylindrical sieve. The granulated product rotated in accordance with the rotation of the dish and generated in the growth region can be scooped up, and the scrubbed granulated product can be reliably supplied to the classification means via the guide chute. Therefore, in addition to the above (1) to (3), it is possible to further improve processing accuracy and processing efficiency.

(5)請求項3,8記載の発明によれば、アルミナ粉末から均一粒径のアルミナを連続的に造粒することができる。   (5) According to the third and eighth aspects of the invention, alumina having a uniform particle diameter can be continuously granulated from the alumina powder.

以下に、この発明の最良の実施形態を添付図面に基づいて詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、この発明に係る造粒装置の一例を示す概略断面図である。ここでは、アルミナの造粒装置について説明する。   FIG. 1 is a schematic sectional view showing an example of a granulating apparatus according to the present invention. Here, an alumina granulator will be described.

上記造粒装置は、鉛直方向に対して傾斜して配設され、内周面に突設された環状仕切壁11によって区画される底部側の成長域12と開口部側の形成域13を有する回転可能な造粒皿10と、造粒皿10の成長域12内に造粒原料であるアルミナ粉末を供給する原料供給ノズル20と、成長域12と形成域13内にそれぞれ添加液(例えば水)を供給する第1及び第2の液供給手段31,32(以下に、第1,第2の噴霧ノズル31,32という)と、形成域13と成長域12に跨って配設され、所定の粒径の形成粒とそれ以外の粒径に選別すると共に、形成粒を形成域13に取り出し、形成粒の粒径以下の粒径の造粒物を成長域12に戻す分級手段である筒状篩40と、造粒皿10内に配設され、成長域12内で生成された造粒物Aを成長域12から取り出して筒状篩40に供給する造粒物搬送手段50とで主に構成されている。   The granulation apparatus is provided with a growth area 12 on the bottom side and a formation area 13 on the opening side, which are arranged with an inclination with respect to the vertical direction and are partitioned by an annular partition wall 11 protruding from the inner peripheral surface. A rotatable granulation dish 10, a raw material supply nozzle 20 for supplying alumina powder as a granulation raw material into the growth area 12 of the granulation dish 10, and an additive liquid (for example, water) in the growth area 12 and the formation area 13, respectively. ) And the second liquid supply means 31 and 32 (hereinafter referred to as the first and second spray nozzles 31 and 32), the formation region 13 and the growth region 12, and are arranged in a predetermined manner. A cylinder which is a classifying means for sorting out the formed particles having a particle size of 5 mm and other particle sizes, taking out the formed particles into the forming region 13, and returning the granulated material having a particle size equal to or smaller than the formed particle size to the growing region 12. Grown granulated product A, which is arranged in the sieve 40 and the granulating dish 10 and generated in the growth zone 12 Is mainly composed of a granulated substance conveying means 50 for supplying a tubular sieve 40 is removed from the 12.

上記造粒皿10は、截頭円錐状に形成されており、モータ7によって回転可能に設けられている。この場合、図4及び図5に示すように、架台1上に取付部材2を介して回転方向の変換可能な回転伝達部3が載置されており、この回転伝達部3の出力側に、造粒皿10の底部に突設される回転軸14が連結されている。また、回転伝達部3の入力側には従動プーリ4が装着され、この従動プーリ4と、架台に載置されたモータ7の駆動軸7aに装着された駆動プーリ5とに伝達ベルト6が掛け渡されて、モータ7からの駆動が回転伝達部3によって回転方向が変換されて回転軸14及び造粒皿10に伝達されるようになっている。   The granulation dish 10 is formed in a frustoconical shape and is rotatably provided by a motor 7. In this case, as shown in FIG. 4 and FIG. 5, a rotation transmission unit 3 capable of changing the rotation direction is placed on the gantry 1 via the mounting member 2, and on the output side of the rotation transmission unit 3, A rotating shaft 14 protruding from the bottom of the granulating dish 10 is connected. Further, a driven pulley 4 is mounted on the input side of the rotation transmitting unit 3, and a transmission belt 6 is hung on the driven pulley 4 and a driving pulley 5 mounted on a driving shaft 7a of a motor 7 mounted on a gantry. The rotation direction is changed by the rotation transmission unit 3 and the drive from the motor 7 is transmitted to the rotating shaft 14 and the granulating dish 10.

上記原料供給ノズル20は、図1に示すように、開閉バルブV1を介設する供給管路22を介して原料収容タンク21に接続されている。   As shown in FIG. 1, the raw material supply nozzle 20 is connected to a raw material storage tank 21 via a supply line 22 having an open / close valve V1.

上記第1及び第2の噴霧ノズル31,32は、圧送用気体である空気によって添加液を成長域12内の造粒物A、又は形成域13内の造粒物Aに向かって噴霧する例えば2流体ノズルによって形成されている。この場合、第1及び第2の噴霧ノズル31,32は、例えば、図2に示すように、ノズル孔33に連通する空気供給路34の途中に添加液供給路35が連通されており、空気供給路34に開閉バルブV2を介設した空気供給管路36を介して空気供給源37が接続され、添加液供給路35に開閉バルブV3を介設した添加液供給管路38を介して添加液供給源39が接続されている。   The first and second spray nozzles 31 and 32 spray the additive liquid toward the granulated product A in the growth region 12 or the granulated product A in the formation region 13 with air, which is a gas for pumping, for example. It is formed by a two-fluid nozzle. In this case, the first and second spray nozzles 31 and 32 have an additive liquid supply path 35 in communication with an air supply path 34 that communicates with the nozzle hole 33, as shown in FIG. An air supply source 37 is connected to the supply path 34 via an air supply line 36 having an opening / closing valve V2, and added to an additive liquid supply path 35 via an additive liquid supply line 38 having an opening / closing valve V3. A liquid supply source 39 is connected.

上記のように構成される第1の噴霧ノズル31によれば、回転する造粒皿10の成長域12内に供給された造粒原料であるアルミナ粉末に添加液を噴霧状に供給することにより、アルミナ粉末同士を接着させて造粒物Aを生成することができる。また、第2の噴霧ノズル32によれば、形成域13内の造粒物Aに添加液を噴霧状に供給することにより、造粒物Aへの付着液分による補強を行うことができる。   According to the 1st spray nozzle 31 comprised as mentioned above, by supplying an additive liquid to the alumina powder which is the granulation raw material supplied in the growth area | region 12 of the rotating granulation dish 10, by spraying. The granulated product A can be produced by bonding alumina powders together. Further, according to the second spray nozzle 32, the additive liquid can be supplied to the granulated product A in the formation region 13 in a spray form, whereby reinforcement by the adhering liquid component on the granulated product A can be performed.

なお、上記説明では、第1及び第2の噴霧ノズル31,32が2流体ノズルにて形成される場合について説明したが、第1及び第2の噴霧ノズル31,32は必ずしも2流体ノズルである必要はなく、1流体ノズルであってもよい。また、噴霧ノズル31,32に代えて、添加液を供給する液供給手段を用いてもよい。   In the above description, the case where the first and second spray nozzles 31 and 32 are formed by two-fluid nozzles has been described. However, the first and second spray nozzles 31 and 32 are not necessarily two-fluid nozzles. There is no need, and a single fluid nozzle may be used. Further, instead of the spray nozzles 31 and 32, liquid supply means for supplying the additive liquid may be used.

上記筒状篩40は、成長域部が形成粒径より若干小径の多数の選別孔42を有し、形成域部が形成粒径と同じ孔径の多数の形成孔43を有する円筒状の篩体41にて形成されており、筒状篩40によって分級された所定粒径以上の造粒物(粗粒)を筒状篩40内を介して外部に排出可能に形成されている。また、筒状篩40は、該筒状篩40の軸方向を外側に向かって下り勾配に配設されると共に、軸を中心として回転可能に形成されている。この場合、図6に示すように、篩体41の外方側端部に環状部材44が装着され、この環状部材44の周方向に適宜間隔をおいて突設される複数の連結部材45を介して円板46が連結されており、連結部材45間に形成される開口部47から所定粒径以上の造粒物(粗粒)が外部に排出されるようになっている。また、円板46の中心部に篩用回転軸48が突設されており、この篩用回転軸48に装着される従動プーリ8aと、装置内の固定部(図示せず)に設置される筒状篩回転用モータ7Aの駆動軸7bに装着される駆動プーリ8bに伝達ベルト9が掛け渡されている。   The cylindrical sieve 40 has a cylindrical sieve body in which the growth region portion has a large number of selection holes 42 having a diameter slightly smaller than the formation particle size, and the formation region portion has a large number of formation holes 43 having the same diameter as the formation particle size. The granulated product (coarse particles) having a predetermined particle size or more classified by the cylindrical sieve 40 can be discharged to the outside through the cylindrical sieve 40. Further, the cylindrical sieve 40 is disposed in a downward gradient in the axial direction of the cylindrical sieve 40 and is formed to be rotatable about the axis. In this case, as shown in FIG. 6, an annular member 44 is attached to the outer side end portion of the sieve body 41, and a plurality of connecting members 45 protruding at appropriate intervals in the circumferential direction of the annular member 44 are provided. The circular plates 46 are connected to each other, and a granulated material (coarse particles) having a predetermined particle diameter or more is discharged from the opening 47 formed between the connecting members 45 to the outside. In addition, a sieving rotary shaft 48 projects from the center of the disc 46, and is installed on a driven pulley 8a attached to the sieving rotary shaft 48 and a fixed part (not shown) in the apparatus. A transmission belt 9 is stretched around a drive pulley 8b mounted on a drive shaft 7b of the cylindrical sieve rotating motor 7A.

なお、筒状篩40は、造粒皿10の回転方向と同じ方向に回転されるように構成されている。このように、筒状篩40の回転方向を、造粒皿10の回転方向と同じ方向にすることにより、筒状篩40の回転に伴って分級(選別)されて形成域13内に落下する造粒物A(形成粒)が筒状篩40の回転に伴って落下するため、同方向に回転する造粒皿10の形成域内の造粒物に衝突して舞上がるのを抑制することができ、外部への飛散を防止することができる。   The cylindrical sieve 40 is configured to be rotated in the same direction as the rotation direction of the granulating dish 10. Thus, by making the rotation direction of the cylindrical sieve 40 the same direction as the rotation direction of the granulating dish 10, it is classified (sorted) with the rotation of the cylindrical sieve 40 and falls into the formation zone 13. Since the granulated product A (formed granule) falls with the rotation of the cylindrical sieve 40, it is possible to suppress the collision with the granulated product in the formation region of the granulating dish 10 rotating in the same direction. It is possible to prevent scattering to the outside.

一方、上記造粒物搬送手段50は、造粒皿10の環状仕切壁11に装着され、造粒皿10の回転に伴って成長域内で生成された造粒物Aを掬い取って筒状篩40の成長域側に落下させる搬送部材51と、該搬送部材51から落下された造粒物Aを受け止めて筒状篩40内に案内する案内シュート52とで主に構成されている。   On the other hand, the granulated material conveying means 50 is attached to the annular partition wall 11 of the granulating plate 10 and scoops up the granulated material A generated in the growth region with the rotation of the granulating plate 10 to obtain a cylindrical sieve. 40 is mainly composed of a conveying member 51 that drops to the growth region side 40 and a guide chute 52 that receives the granulated material A dropped from the conveying member 51 and guides it into the cylindrical sieve 40.

この場合、搬送部材51は、図3に示すように、対向する略矩形状の側片53,54と、両側片53,54の一端同士を連結する略矩形状の傾斜連結片55とからなる略コ字状のピース部材によって形成されている。この場合、側片53,54のうちの一方の側片53は、他方の側片54より長く形成されており、接着手段例えば磁石又は両面接着テープ等によって環状仕切壁11の成長域側面に接着されている。また、他方の側片54の先端には、側片53側に向かって略直角状に折曲する折曲片56が形成されている。なお、搬送部材51は、環状仕切壁11に適宜間隔をおいて複数例えば3個取り付けられている。   In this case, as shown in FIG. 3, the conveying member 51 includes substantially rectangular side pieces 53 and 54 that face each other, and a substantially rectangular inclined connecting piece 55 that connects one ends of both side pieces 53 and 54. It is formed by a substantially U-shaped piece member. In this case, one side piece 53 of the side pieces 53, 54 is formed longer than the other side piece 54, and is bonded to the growth region side surface of the annular partition wall 11 by an adhesive means such as a magnet or a double-sided adhesive tape. Has been. Further, a bent piece 56 is formed at the tip of the other side piece 54 so as to be bent at a substantially right angle toward the side piece 53 side. A plurality of, for example, three conveying members 51 are attached to the annular partition wall 11 at an appropriate interval.

このように構成される搬送部材51は、造粒皿10の回転方向に開口するように側片53が接着されて、造粒皿10の回転に伴って成長域12内に生成された造粒物Aを掬い、掬い取った造粒物Aを上方部位から筒状篩40の成長域側に落下させることができるようになっている。この場合、搬送部材51の材質は任意でよいが、造粒材料や添加液の影響を受けない材料を選定する必要がある。例えば、酸性液を噴霧する場合には、耐酸性を有する材料を使用する必要がある。   The conveying member 51 configured as described above has a side piece 53 bonded so as to open in the rotation direction of the granulation dish 10, and the granulation generated in the growth region 12 as the granulation dish 10 rotates. The product A is sowed and the granulated product A that has been scooped up can be dropped from the upper part to the growth region side of the cylindrical sieve 40. In this case, the material of the conveying member 51 may be arbitrary, but it is necessary to select a material that is not affected by the granulating material or the additive liquid. For example, when spraying an acidic liquid, it is necessary to use a material having acid resistance.

また、案内シュート52は、上方に向かって拡開するホッパ57と、このホッパ57の下端に連通する垂下ダクト58と、垂下ダクト58の下端に屈曲状に連通して筒状篩40の先端開口部内に挿入配置される供給ダクト59とで構成されている。   The guide chute 52 has a hopper 57 that expands upward, a hanging duct 58 that communicates with the lower end of the hopper 57, and a bent opening that communicates with the lower end of the hanging duct 58 in a bent shape. It is comprised with the supply duct 59 inserted and arrange | positioned in a part.

上記のように、搬送部材51と案内シュート52とで造粒物搬送手段50を構成することにより、造粒皿10の回転に伴って成長域12内に造粒された造粒物Aを搬送部材51によって掬い取って上方に移動し、上方位置で搬送部材51が反転して掬い取った造粒物Aを案内シュート52のホッパ57内に落下させ、垂下ダクト58及び供給ダクト59を介して筒状篩40内に確実に供給することができる。   As described above, the granulated product A is transported by the conveying member 51 and the guide chute 52 to convey the granulated product A granulated in the growth region 12 as the granulating dish 10 rotates. The granulated material A picked up by the member 51 and moved upward, and the conveying member 51 turned upside down at the upper position and dropped is dropped into the hopper 57 of the guide chute 52, and is passed through the hanging duct 58 and the supply duct 59. It can be reliably supplied into the cylindrical sieve 40.

次に、この発明に係る造粒方法の手順について説明する。まず、開閉バルブV1を開放して原料収容タンク21内に収容されている造粒原料を、原料供給ノズル20を介して回転する造粒皿10の成長域12内に供給する。成長域12内に供給された造粒原料は、造粒皿10の回転に伴う遠心力で持ち上げられ、その自重によって下方への落下により造粒すると共に、第1の噴霧ノズル31から供給される添加液によって互いに接着して所定の粒径の造粒物Aに成長する。このとき、造粒皿10が截頭円錐状に形成されているので、造粒皿10の回転に伴う遠心力によって造粒原料は環状仕切壁11側に円滑に移動することができる。   Next, the procedure of the granulation method according to the present invention will be described. First, the open / close valve V1 is opened and the granulated raw material stored in the raw material storage tank 21 is supplied into the growth region 12 of the granulating dish 10 rotating through the raw material supply nozzle 20. The granulation raw material supplied into the growth zone 12 is lifted by the centrifugal force accompanying the rotation of the granulation dish 10, granulated by dropping downward by its own weight, and supplied from the first spray nozzle 31. It grows into a granulated product A having a predetermined particle size by adhering to each other with the additive solution. At this time, since the granulation dish 10 is formed in a frustoconical shape, the granulation raw material can smoothly move to the annular partition wall 11 side by the centrifugal force accompanying the rotation of the granulation dish 10.

成長域12内で所定の粒径に成長された造粒物Aは、造粒皿10の回転と共に回動する搬送部材51によって掬い取られた後、造粒皿10内における上方位置から案内シュート52のホッパ57内に落下し、垂下ダクト58及び供給ダクト59を介して筒状篩40内に供給される。   The granulated product A grown to a predetermined particle size in the growth zone 12 is scooped up by a conveying member 51 that rotates with the rotation of the granulating dish 10 and then guided from an upper position in the granulating dish 10. 52 falls into the hopper 57 of 52 and is supplied into the cylindrical sieve 40 through the hanging duct 58 and the supply duct 59.

このとき、筒状篩40は外方に向かって下り勾配に傾斜し、かつ、回転しているので、筒状篩40内に供給された造粒物Aは、周方向に分散されつつ筒状篩40の内方側の一端から外方側の他端に向かって略螺旋状に移動し、この移動過程において、まず、形成粒径より小径の造粒物Aは選別孔42を通過して成長域12内に戻され、次に形成粒径と同じ孔径の造粒物Aは形成孔43を通過して形成域13内に取り出される。形成域13内に取り出された造粒物Aには第2の噴霧ノズル32から添加液が供給されるので、造粒物Aは付着液分によって補強される。なお、形成粒径以上の造粒物A(粗粒)は筒状篩40内を通って筒状篩40の外側端部の開口部47を介して外部に排出される。   At this time, since the cylindrical sieve 40 is inclined downward and rotating outward, the granulated product A supplied into the cylindrical sieve 40 is cylindrical while being dispersed in the circumferential direction. The sieve 40 moves in a substantially spiral shape from one end on the inner side to the other end on the outer side. In this movement process, first, the granulated product A having a diameter smaller than the formed particle size passes through the sorting hole 42. After returning to the growth area 12, the granulated product A having the same diameter as the formation particle diameter passes through the formation holes 43 and is taken out into the formation area 13. Since the additive liquid is supplied from the second spray nozzle 32 to the granulated product A taken out into the formation zone 13, the granulated product A is reinforced by the adhering liquid. The granulated product A (coarse particles) having a particle size larger than the formed particle size passes through the cylindrical sieve 40 and is discharged to the outside through the opening 47 at the outer end of the cylindrical sieve 40.

造粒皿10及び筒状篩40を連続して回転することにより、上記の工程が連続して行われるので、成長域12内に戻された所定粒径以下の造粒物は再度成長されて、搬送部材51によって掬い取られて、上記と同様に案内シュート52を介して筒状篩40内に供給され、筒状篩40によって分級(選別)される。以後、同様に所定粒径以下の造粒物を循環させて所定粒径の造粒物A(形成粒)を生成する。形成域13内に取り出された造粒物A(形成粒)は、形成粒収容タンク70に収容されて、造粒装置から搬出される。   By continuously rotating the granulation dish 10 and the cylindrical sieve 40, the above steps are performed continuously, so that the granulated product having a predetermined particle size or less returned into the growth region 12 is grown again. Then, it is scooped by the conveying member 51 and supplied into the cylindrical sieve 40 through the guide chute 52 in the same manner as described above, and is classified (selected) by the cylindrical sieve 40. Thereafter, similarly, a granulated product having a predetermined particle size or less is circulated to produce a granulated product A (formed particle) having a predetermined particle size. The granulated product A (formed granule) taken out into the forming area 13 is accommodated in the formed granule storage tank 70 and is carried out from the granulating apparatus.

なお、筒状篩40内から外部に排出された所定粒径以上の造粒物(粗粒)は、粗粒収容タンク71内に収容されて、再度、解砕装置によって粉砕された後、原料収容タンク21内に収容されて、再度、造粒装置によって造粒される。   The granulated product (coarse particles) having a predetermined particle diameter or more discharged from the cylindrical sieve 40 to the outside is stored in the coarse particle storage tank 71 and pulverized again by the crushing device, and then the raw material. It is accommodated in the storage tank 21 and granulated again by a granulating device.

なお、上記実施形態では、この発明に係る造粒装置(方法)をアルミナの造粒に適用した場合について説明したが、アルミナ以外の粒体の造粒にも適用可能である。   In addition, although the said embodiment demonstrated the case where the granulation apparatus (method) based on this invention was applied to granulation of alumina, it is applicable also to granulation of granules other than alumina.

次に、この発明に係る造粒装置(方法)を用いた造粒物の製造実験について説明する。   Next, an experiment for producing a granulated product using the granulating apparatus (method) according to the present invention will be described.

<実験条件>
・原料:ローソーダアルミナ(LS−110){日本軽金属(株)製}、
粒径;1.37μm、比表面積;2.0m/g
・試験設備
a)実施例:造粒皿サイズ;900mmφ外、435mmφ内×400mmH、
ベーンフィーダ、
回転円筒篩;目開きが2.0mmと3.0mmの2種類の篩網を使用
b)比較例:造粒皿サイズ;900mmφ外、435mmφ内×400mmH、
環状仕切壁及び回転円筒篩なし、
ベーンフィーダ
・運転条件
a)実施例:連続原料投入量;10〜15kg/h、
水供給量;0.5〜3kg/h・ノズル×2、
造粒皿回転数;15〜20rpm、造粒皿傾斜角度;53°
b)比較例:連続原料投入量;10〜15kg/h、
水供給量;0.5〜3kg/h・ノズル×1、
造粒皿回転数;15〜20rpm、造粒皿傾斜角度;53°
上記条件の下で実験を行ったところ、表1に示すような結果が得られた。

Figure 2006198567
<Experimental conditions>
Raw material: Lawsoda alumina (LS-110) {manufactured by Nippon Light Metal Co., Ltd.}
Particle size: 1.37 μm, specific surface area: 2.0 m 2 / g
Test equipment a) Example: Granulation dish size: 900 mmφ outside, 435 mmφ inside × 400 mmH,
Vane feeder,
B) Comparative example: granulated dish size; 900 mmφ outside, 435 mmφ inside × 400 mmH,
Without annular partition and rotating cylindrical sieve,
Vane feeder ・ Operating conditions a) Example: Continuous raw material input amount: 10-15 kg / h,
Water supply amount: 0.5 to 3 kg / h nozzle 2
Granulation dish rotation speed: 15-20 rpm, granulation dish inclination angle: 53 °
b) Comparative example: continuous raw material input amount: 10-15 kg / h,
Water supply amount: 0.5-3 kg / h / nozzle × 1,
Granulation dish rotation speed: 15-20 rpm, granulation dish inclination angle: 53 °
When the experiment was conducted under the above conditions, the results shown in Table 1 were obtained.
Figure 2006198567

上記実験の結果、実施例では、粒度が3.00mmφより大きい造粒物の収率は1%であり、ほとんど無視し得る造粒皿内剥離スケールの範囲であった。また、粒度が2.36〜3.00mmφの造粒物の収率は、7%であり、粒度が2.00〜2.36mmφの造粒物の収率は50%、粒度が1.70〜2.00mmφの造粒物の収率は41%、粒度が1.40〜1.70mmφの造粒物の収率は1%であった。なお、粒度が1.40mmφより小さい造粒物の収率は0であった。実施例では、平均粒径が約2mmφのシャープな粒度分布を有する造粒物を得ることができた。   As a result of the above experiment, in the examples, the yield of the granulated product having a particle size larger than 3.00 mmφ was 1%, which was in the range of the peeling scale in the granulating dish that could be almost ignored. The yield of the granulated product having a particle size of 2.36 to 3.00 mmφ is 7%, the yield of the granulated product having a particle size of 2.00 to 2.36 mmφ is 50%, and the particle size is 1.70. The yield of the granulated product having ˜2.00 mmφ was 41%, and the yield of the granulated product having a particle size of 1.40 to 1.70 mmφ was 1%. The yield of the granulated product having a particle size smaller than 1.40 mmφ was 0. In the examples, a granulated product having a sharp particle size distribution with an average particle size of about 2 mmφ could be obtained.

これに対し、比較例では、粒度が3.00mmφより大きい造粒物の収率は、5%であり、粒度が2.36〜3.00mmφの造粒物の収率は6%、粒度が2.00〜2.36mmφの造粒物の収率は5%、粒度が1.70〜2.00mmφの造粒物の収率は36%、粒度が1.40〜1.70mmφの造粒物の収率は23%、粒度が1.00〜1.40mmφの造粒物の収率は11%であった。なお、粒度が1.00mmφより小さい造粒物の収率は15%であった。比較例では、粒径が1.00mmφよりも小さいものから3.00mmφよりも大きいものまでを含むブロードな粒径分布を有する造粒物となってしまい、実施例のようなほぼ均一な粒径を有する造粒物を得ることは難しい。   On the other hand, in the comparative example, the yield of the granulated product having a particle size larger than 3.00 mmφ is 5%, the yield of the granulated product having a particle size of 2.36 to 3.00 mmφ is 6%, and the particle size is The yield of granulated product with 2.00 to 2.36 mmφ is 5%, the yield of granulated product with particle size of 1.70 to 2.00 mmφ is 36%, and the granulated product with granule size of 1.40 to 1.70 mmφ The yield of the product was 23%, and the yield of the granulated product having a particle size of 1.00 to 1.40 mmφ was 11%. The yield of the granulated product having a particle size smaller than 1.00 mmφ was 15%. In the comparative example, a granulated product having a broad particle size distribution including those having a particle size smaller than 1.00 mmφ to larger than 3.00 mmφ is obtained, and the substantially uniform particle size as in the example is obtained. It is difficult to obtain a granulated product having

この発明に係る造粒装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the granulation apparatus which concerns on this invention. この発明に係る造粒装置の噴霧ノズルの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the spray nozzle of the granulation apparatus which concerns on this invention. この発明における搬送部材を示す斜視図である。It is a perspective view which shows the conveyance member in this invention. この発明における造粒皿の一部を断面で示す造粒装置の側面図である。It is a side view of the granulation apparatus which shows a part of granulation dish in this invention in a section. 上記造粒皿の要部を断面で示す造粒装置の正面図である。It is a front view of the granulation apparatus which shows the principal part of the said granulation dish in a cross section. この発明における筒状篩の一部を断面で示す側面図である。It is a side view which shows a part of cylindrical sieve in this invention in a cross section.

符号の説明Explanation of symbols

A 造粒物
7 造粒皿回転用モータ
7A 筒状篩回転用モータ
10 造粒皿
11 環状仕切壁
12 成長域
13 形成域
20 原料供給ノズル
31 第1の噴霧ノズル(第1の液供給手段)
32 第2の噴霧ノズル(第2の液供給手段)
40 筒状篩(分級手段)
42 選別孔
43 形成孔
50 造粒物搬送手段
51 搬送部材
52 案内シュート

A granulated product 7 granulating dish rotating motor 7A cylindrical sieve rotating motor 10 granulating dish 11 annular partition wall 12 growth zone 13 forming zone 20 raw material supply nozzle 31 first spray nozzle (first liquid supply means)
32 Second spray nozzle (second liquid supply means)
40 Cylindrical sieve (classification means)
42 Sorting hole 43 Formation hole 50 Granulated material conveying means 51 Conveying member 52 Guide chute

Claims (8)

傾斜する造粒皿に造粒原料と添加液とを連続して供給し、上記造粒皿を回転して造粒する造粒方法であって、
上記造粒皿の内周面に突設された環状仕切壁にて底部側の成長域と開口部側の形成域とに区画しておき、上記成長域内に上記造粒原料を供給して造粒物を生成し、成長域で生成された造粒物を、所定の粒径の形成粒とそれ以外の粒径に選別する分級手段に供給して、形成粒を上記形成域に取り出し、所定の粒径以下の粒径の造粒物を上記成長域内に循環させて造粒物を生成し、成長域で生成された造粒物を、再度上記分級手段に供給して造粒物を形成域に取り出すことを繰り返して行う、ことを特徴とする造粒方法。
A granulation method in which a granulation raw material and an additive liquid are continuously supplied to an inclined granulation dish, and the granulation dish is rotated and granulated,
An annular partition wall protruding from the inner peripheral surface of the granulation dish is partitioned into a growth area on the bottom side and a formation area on the opening side, and the granulation raw material is supplied into the growth area for production. A granule is generated, and the granulated product generated in the growth region is supplied to a classification means for sorting into a formed particle having a predetermined particle size and a particle size other than that, and the formed particle is taken out to the forming region, A granulated product having a particle size equal to or smaller than the particle size is circulated in the growth zone to produce a granulated product, and the granulated product generated in the growth zone is supplied again to the classification means to form a granulated product. A granulation method characterized by repeatedly performing extraction into a region.
請求項1記載の造粒方法において、
上記成長域内の造粒原料に添加液を供給して造粒原料同士を接着させて造粒物を生成し、上記形成域内の造粒物に添加液を供給して造粒物への付着液分による補強を行う、ことを特徴とする造粒方法。
The granulation method according to claim 1, wherein
An additive liquid is supplied to the granulated raw material in the growth zone to produce a granulated product by bonding the granulated raw materials to each other, and an additive liquid is supplied to the granulated product in the forming zone to adhere to the granulated product. A granulation method characterized by performing reinforcement by minutes.
請求項1又は2記載の造粒方法において、
上記造粒原料がアルミナ粉末であることを特徴とする造粒方法。
In the granulation method according to claim 1 or 2,
A granulation method wherein the granulation raw material is alumina powder.
傾斜する造粒皿に造粒原料と添加液とを連続して供給し、上記造粒皿を回転して造粒する造粒装置であって、
内周面に突設された環状仕切壁によって区画される底部側の成長域と開口部側の形成域を有する造粒皿と、
上記形成域と成長域に跨って配設され、所定の粒径の形成粒とそれ以外の粒径に選別すると共に、形成粒を上記形成域に取り出し、形成粒の粒径以下の粒径の造粒物を上記成長域に戻す分級手段と、
上記造粒皿の回転に伴って上記成長域内で生成された造粒物を成長域から取り出して上記分級手段に供給する造粒物搬送手段と、を具備する、ことを特徴とする造粒装置。
A granulating apparatus for continuously supplying a granulation raw material and an additive liquid to an inclined granulation dish and rotating the granulation dish to granulate,
A granulation dish having a growth area on the bottom side and a formation area on the opening side defined by an annular partition wall projecting on the inner peripheral surface;
Arranged across the formation area and the growth area, the formed grains having a predetermined particle size and other particle sizes are selected, and the formed particles are taken out to the formation region, and the particle diameter is equal to or smaller than the particle diameter of the formed particles. A classifying means for returning the granulated product to the growth area;
A granulating material conveying means for taking out the granulated material generated in the growth area with the rotation of the granulating dish and supplying it to the classification means; .
請求項4記載の造粒装置において、
上記成長域内の造粒原料に添加液を供給する第1の液供給手段と、上記形成域内の造粒物に添加液を供給する第2の液供給手段とを更に具備する、ことを特徴とする造粒装置。
The granulating apparatus according to claim 4, wherein
A first liquid supply means for supplying an additive liquid to the granulation raw material in the growth area; and a second liquid supply means for supplying an additive liquid to the granulated material in the formation area, Granulating equipment to do.
請求項4又は5記載の造粒装置において、
上記分級手段を、成長域部が形成粒径より若干小径の多数の選別孔を有し、形成域部が形成粒径と同じ孔径の多数の形成孔を有する筒状篩にて形成し、
上記筒状篩を、該筒状篩の軸方向を外側に向かって下り勾配にすると共に、軸を中心として回転可能に形成し、該筒状篩によって分級された所定粒径以上の造粒物を筒状篩内を介して外部に排出可能に形成してなる、ことを特徴とする造粒装置。
In the granulating apparatus according to claim 4 or 5,
The classification means is formed by a cylindrical sieve having a large number of selection holes whose growth region part is slightly smaller than the formation particle diameter, and the formation region part having a large number of formation holes having the same hole diameter as the formation particle diameter,
The above-mentioned cylindrical sieve is formed so as to be inclined downward toward the outside in the axial direction of the cylindrical sieve, and is formed to be rotatable around the axis, and is a granulated product having a predetermined particle size or more classified by the cylindrical sieve. Is formed so that it can be discharged to the outside through the inside of a cylindrical sieve.
請求項4ないし6のいずれかに記載の造粒装置において、
上記造粒物搬送手段は、造粒皿の環状仕切壁に装着され、造粒皿の回転に伴って成長域内で生成された造粒物を掬い取って上記筒状篩の成長域側に落下させる搬送部材と、該搬送部材から落下された造粒物を受け止めて上記筒状篩内に案内する案内シュートと、を具備する、ことを特徴とする造粒装置。
In the granulation apparatus according to any one of claims 4 to 6,
The granulated material conveying means is attached to the annular partition wall of the granulating dish, scoops up the granulated material generated in the growing area as the granulating dish rotates, and falls to the growing area side of the cylindrical sieve. A granulating apparatus comprising: a conveying member to be moved; and a guide chute that receives the granulated material dropped from the conveying member and guides the granulated material into the cylindrical sieve.
請求項4ないし7のいずれかに記載の造粒装置において、
上記造粒原料がアルミナ粉末であることを特徴とする造粒装置。

The granulation device according to any one of claims 4 to 7,
A granulating apparatus, wherein the granulating raw material is alumina powder.

JP2005014996A 2005-01-24 2005-01-24 Granulation method and granulation apparatus Active JP4556177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014996A JP4556177B2 (en) 2005-01-24 2005-01-24 Granulation method and granulation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014996A JP4556177B2 (en) 2005-01-24 2005-01-24 Granulation method and granulation apparatus

Publications (2)

Publication Number Publication Date
JP2006198567A true JP2006198567A (en) 2006-08-03
JP4556177B2 JP4556177B2 (en) 2010-10-06

Family

ID=36957017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014996A Active JP4556177B2 (en) 2005-01-24 2005-01-24 Granulation method and granulation apparatus

Country Status (1)

Country Link
JP (1) JP4556177B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351279A (en) * 2018-12-14 2019-02-19 巫溪县明申肥业有限公司 A kind of fertilizer granulator
CN110694552A (en) * 2019-10-29 2020-01-17 齐学生 Compound fertilizer granulation method
CN115590222A (en) * 2022-10-17 2023-01-13 广东容大生物股份有限公司(Cn) Preparation method of feed additive granules and granulating and shot blasting equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548450A (en) * 2019-04-23 2019-12-10 山东金钻石纳米科技有限公司 Adjustable damping type ball forming machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883005A (en) * 1972-02-10 1973-11-06
JPS6135834A (en) * 1984-07-27 1986-02-20 ロマツク インコーポレイテツド Apparatus and method for pulverizing 4, 4'-methylenebis(2-chloroaniline)
JPS61147142U (en) * 1985-03-04 1986-09-10
JPS61291029A (en) * 1985-06-20 1986-12-20 Ube Ind Ltd Granulation apparatus
JPH01130768A (en) * 1987-11-16 1989-05-23 Toshiba Corp Apparatus for sorting particulate material
JP2000279788A (en) * 1999-03-31 2000-10-10 Sumitomo Chem Co Ltd Rotary pan type granulator, and production of granular material using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883005A (en) * 1972-02-10 1973-11-06
JPS6135834A (en) * 1984-07-27 1986-02-20 ロマツク インコーポレイテツド Apparatus and method for pulverizing 4, 4'-methylenebis(2-chloroaniline)
JPS61147142U (en) * 1985-03-04 1986-09-10
JPS61291029A (en) * 1985-06-20 1986-12-20 Ube Ind Ltd Granulation apparatus
JPH01130768A (en) * 1987-11-16 1989-05-23 Toshiba Corp Apparatus for sorting particulate material
JP2000279788A (en) * 1999-03-31 2000-10-10 Sumitomo Chem Co Ltd Rotary pan type granulator, and production of granular material using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351279A (en) * 2018-12-14 2019-02-19 巫溪县明申肥业有限公司 A kind of fertilizer granulator
CN110694552A (en) * 2019-10-29 2020-01-17 齐学生 Compound fertilizer granulation method
CN115590222A (en) * 2022-10-17 2023-01-13 广东容大生物股份有限公司(Cn) Preparation method of feed additive granules and granulating and shot blasting equipment
CN115590222B (en) * 2022-10-17 2023-06-09 广东容大生物股份有限公司 Preparation method of feed additive particles and granulating and shot blasting equipment

Also Published As

Publication number Publication date
JP4556177B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
US9925636B2 (en) Polishing device and polishing method
JP5634198B2 (en) Crushed sand and crushed stone production system
JP6447529B2 (en) Granule manufacturing equipment and granulated product manufacturing method
JP4556177B2 (en) Granulation method and granulation apparatus
EP1070543A1 (en) Disintegrating and grain-regulating device for granules
CN204429668U (en) Fertilizer screening prilling granulator
JP6150697B2 (en) Granular material separator
JP6432711B1 (en) Granulated product manufacturing equipment and method of manufacturing granulated product
JP2008284789A (en) Device and method for sorting pulverized plastic
JPH06304491A (en) Disintegrating and grading machine
CN107927883A (en) A kind of preparation method and preparation facilities of micronutrient supplement particle
CN107470121A (en) A kind of screening technique of granule materials
CN214262039U (en) Continuous crushing and screening device
CN1023974C (en) Spray-drying granulation apparatus
CN115400942A (en) Screening equipment for building ceramsite raw materials
JP6660045B1 (en) Granulated material production equipment
JP6399265B1 (en) Conveyor system
WO2004028711A1 (en) Method and system for removing powdery matter from powder, carrying powder vertically and separating duct therefrom
JP2018202303A (en) Powder classifier and classification system
CN208177408U (en) A kind of granulating mechanism of rotating pelletizer
CA2010897A1 (en) Screening machine
KR101293309B1 (en) Powder feeder apparatus
CN220263149U (en) Particle packaging machine with blanking adjusting structure
CN214877858U (en) Material separation device of spiral feeding machine
RU2297884C1 (en) Centrifugal air vibration concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4556177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350