JP2006198497A - Method and apparatus for producing sterilized water - Google Patents

Method and apparatus for producing sterilized water Download PDF

Info

Publication number
JP2006198497A
JP2006198497A JP2005011744A JP2005011744A JP2006198497A JP 2006198497 A JP2006198497 A JP 2006198497A JP 2005011744 A JP2005011744 A JP 2005011744A JP 2005011744 A JP2005011744 A JP 2005011744A JP 2006198497 A JP2006198497 A JP 2006198497A
Authority
JP
Japan
Prior art keywords
water
electrode
electrolysis chamber
tank body
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005011744A
Other languages
Japanese (ja)
Other versions
JP4680610B2 (en
Inventor
Yoshinori Kamiya
喜則 紙谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2005011744A priority Critical patent/JP4680610B2/en
Publication of JP2006198497A publication Critical patent/JP2006198497A/en
Application granted granted Critical
Publication of JP4680610B2 publication Critical patent/JP4680610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve each problem caused by a pressure difference between an anode side electrolytic chamber R1 and a cathode side electrolytic chamber R2 in production of sterilized water including electrolytic treatment of water containing a chlorine component such as sea water as water to be treated in the anode side electrolytic chamber R1, degassing treatment of the water to be treated generated by the electrolytic treatment in a degassing membrane and the electrolytic treatment of the water to be treated generated by the degassing treatment in the cathode side electrolytic chamber R2. <P>SOLUTION: As a diaphragm partitioning to form the anode side electrolytic chamber R1 and the cathode side electrolytic chamber R2, a diaphragm electrolytic cell incorporating a permeable degassing membrane 22 having permeability and gas-liquid separation performance is employed, the water to be treated is electrolyzed in the anode side electrolytic chamber R1, electrolytic generation water generated by the electrolytic treatment is passed through the permeable degassing membrane 22 to carry out degassing treatment and the electrolytic generation water subjected to the degassing treatment is electrolyzed in the cathode side electrolytic chamber R2, thus the sterilized water is produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、海水等塩素成分を含有する水を殺菌または滅菌処理して除菌水を製造する除菌水の製造方法、および、除菌水を製造する製造装置に関する。   The present invention relates to a method for producing sterilized water for producing sterilized water by sterilizing or sterilizing water containing chlorine components such as seawater, and a production apparatus for producing sterilized water.

水は、飲料用水、調理用水、食品加工用水、衛生処理用水、製氷用水、各種の工業用水、空調用水、水泳プール用水等、極めて広い分野で利用されている物質であり、全ての生物にとっては必須不可欠の物質である。これらの多くの利用分野の水では、特に、人に直接関わる利用分野の水では、各種の雑菌が実質的に存在しない無菌状態があることが望ましく、これらの利用分野では、実質的に無菌状態の水が要請されている。このため、かかる要請に対処すべき、無菌水や除菌水の製造方法の開発が要請されていており、かかる要請に対処すべき手段の一例としては、「無菌水の製造方法及びその装置」なる名称で特許出願されている(特許文献1を参照)。   Water is a substance that is used in a wide range of fields such as drinking water, cooking water, food processing water, sanitary processing water, ice making water, various industrial water, air conditioning water, swimming pool water, etc. It is an indispensable substance. In many of these fields of use, it is desirable to have a sterile condition in which various bacteria are not substantially present, especially in the field of water directly related to humans. Water is requested. For this reason, development of a method for producing aseptic water or sterilized water that should cope with such a request has been requested. As an example of means to cope with such a request, “a method for producing aseptic water and its device” A patent application has been filed under the name (see Patent Document 1).

当該特許文献にて提案されている製造方法および製造装置は、中性の無菌水を製造することを意図しているもので、当該無菌水の用途としては、食品加工用水、水泳プール用水、建物内の上水用水、空調用クーラボックスのクーラ用水への使用を意図している。当該無菌水の製造方法は、一般の水を被処理水とするもので、被処理水を被電解水とする有隔膜電解にて処理する方法を採用している。当該有隔膜電解では、先ず、被電解水を有隔膜電解槽の陽極側電解室に導入して電解処理し、次いで、生成された電解生成水を有隔膜電解槽の陰極側電解室に導入して電解処理するもので、これらの2回に亘る電解処理により、被電解水は陽極側電解室の電解にて酸化されて無菌化され、無菌化された電解生成水は陰極側電解室にて中和される。これにより、被処理水(被電解水)は、中性の無菌水に生成される。   The production method and the production apparatus proposed in the patent document are intended to produce neutral aseptic water, and as the use of the aseptic water, food processing water, swimming pool water, buildings It is intended to be used for water in the internal water and air conditioner cooler box. The method for producing aseptic water employs a method of treating with ordinary membrane water using diaphragm water electrolysis using water to be treated as electrolyzed water. In the diaphragm electrolysis, first, electrolyzed water is introduced into the anode-side electrolysis chamber of the diaphragm electrolyzer and electrolyzed, and then the generated electrolyzed water is introduced into the cathode-side electrolysis chamber of the diaphragm electrolyzer. Through these two electrolysis processes, the water to be electrolyzed is oxidized and sterilized by electrolysis in the anode side electrolysis chamber, and the sterilized electrolyzed water is produced in the cathode side electrolysis chamber. Neutralized. Thereby, to-be-processed water (electrolyzed water) is produced | generated in neutral aseptic water.

当該製造方法は、中性の無菌水を製造する限りにおいては、有効な製造方法であるということができる。しかしながら、当該製造方法においては、陽極側電解室の電解処理にて生成された電解生成水は無菌化されてはいるが、塩素および酸素を多く溶存していることから、溶存酸素や溶存塩素が陰極側電解室での電解処理にて発生する有用な水素ガスを消費し、生成される無菌水は酸化還元電位が高いものとなり、特に、飲料用水、製氷用水、調理用水、食品加工用水等、人の飲食に関わる水として適した、酸化還元電位が低く実質的に負である無菌水とはなり得ない。   It can be said that this production method is an effective production method as long as neutral sterile water is produced. However, in the manufacturing method, the electrolytically generated water generated by the electrolytic treatment in the anode side electrolytic chamber is sterilized, but a large amount of chlorine and oxygen is dissolved, so that dissolved oxygen and dissolved chlorine are not dissolved. Consumable hydrogen gas generated by electrolytic treatment in the cathode side electrolysis chamber is consumed, and the generated sterile water has a high oxidation-reduction potential, in particular, drinking water, ice making water, cooking water, food processing water, etc. It cannot be a sterile water having a low redox potential and being substantially negative, which is suitable as water for human consumption.

本発明者は、酸化還元電位が低く実質的に負である無菌水(除菌還元水)を製造するべく鋭意研究して、除菌還元水の製造方法および製造装置を開発し、かかる技術を「除菌還元水の製造方法および製造装置」なる名称で特許出願している(特願2004−40234号)。   The present inventor has eagerly studied to produce sterile water (sterilized reduced water) having a low oxidation-reduction potential and substantially negative, and has developed a method and an apparatus for producing sanitized reduced water. A patent application has been filed under the name “Method and apparatus for producing sterilized reduced water” (Japanese Patent Application No. 2004-40234).

当該除菌水の製造方法は、被処理水を被電解水として有隔膜電解槽の陽極側電解室にて電解処理し、電解処理して生成された処理水を脱気膜にて脱気処理し、脱気処理して生成された処理水を有隔膜電解槽の陰極側電解室にて電解処理することからなる製造方法である。当該製造方法によれば、陽極側電解室の電解処理にて生成された無菌化された電解生成水中の溶存酸素や溶存塩素は、脱気膜が有する気液分離作用によって脱気され、陰極側電解室での電解処理にて発生する有用な水素ガスを消費する溶存酸素や溶存塩素が実質的に皆無となる。このため、陰極側電解室内で生成される電解生成水は、酸化還元電位が低く実質的に負である除菌水、実質的には、無菌水となる。   The method for producing sterilized water is obtained by subjecting treated water to electrolyzed water in the anode-side electrolysis chamber of the diaphragm electrolyzer, and degassing the treated water generated by the electrolysis treatment with a degassing membrane. And it is a manufacturing method which comprises subjecting the treated water produced | generated by the deaeration process to electrolysis in the cathode side electrolysis chamber of a diaphragm electrolyzer. According to the manufacturing method, dissolved oxygen and dissolved chlorine in the sterilized electrolytically generated water generated by the electrolytic treatment in the anode side electrolytic chamber are degassed by the gas-liquid separation action of the degassing membrane, and the cathode side There is virtually no dissolved oxygen or dissolved chlorine that consumes useful hydrogen gas generated by electrolytic treatment in the electrolysis chamber. For this reason, the electrolyzed water produced in the cathode side electrolysis chamber is sterilized water having a low redox potential and being substantially negative, and substantially sterile water.

また、当該除菌水の製造方法を実施するための製造装置は、有隔膜電解槽と気液分離器を主体とするものである。当該有隔膜電解槽は、槽本体と、槽本体内を一対の隔室に区画する隔膜と、区画された隔室に配設されて各隔室を各電解室に形成する一対の電極と、各電解室内に配設されて各電極と隔膜間を所定の間隔に保持する複数のスペーサにて構成されている。気液分離器は、当該有隔膜電解槽の陽極側電解室の下流側と陰極側電解室の上流側とを連結する流水管路に介在していて、陽極側電解室にて生成される電解生成水は前記気液分離器を通過する間に脱気処理をうけるようになっている。
特許第2714662号公報
Moreover, the manufacturing apparatus for implementing the manufacturing method of the said disinfecting water mainly has a diaphragm electrolyzer and a gas-liquid separator. The diaphragm electrolyzer is composed of a tank body, a diaphragm that partitions the tank body into a pair of compartments, a pair of electrodes that are disposed in the partitioned compartments and form each compartment in each electrolytic chamber, It is comprised by the some spacer which is arrange | positioned in each electrolytic chamber and hold | maintains between each electrode and a diaphragm at predetermined spacing. The gas-liquid separator is interposed in a flowing water line connecting the downstream side of the anode-side electrolysis chamber and the upstream side of the cathode-side electrolysis chamber of the diaphragm membrane electrolytic cell, and electrolysis generated in the anode-side electrolysis chamber. The produced water is degassed while passing through the gas-liquid separator.
Japanese Patent No. 2714662

ところで、当該除菌水の製造装置を使用する除菌水の製造方法では、陽極側電解室内で生成された電解生成水を、陽極側電解室と陰極側電解室を連通させている流水管路の途中で脱気処理することから両電解室内の圧力に差が生じ、陽極側電解室の内圧が陰極側電解室の内圧に比較して高い状態になる。このため、両電解室を区画形成している隔膜は、陽極側電解室の内圧によって陰極側電解室側へ押圧されて撓み、陰極側電解室での隔膜と電極間の間隔が狭くなり、陰極側電解室内の流路を設定された大きさより狭くなる。この結果、脱気処理された電解生成水の陰極側電解室内での流量を設定された流量に確保することは難しく、脱気処理された電解生成水の陰極側電解室での電解処理が十分にはできなくなる。   By the way, in the method for producing sterilized water using the device for producing sterilized water, the electrolyzed water produced in the anode-side electrolysis chamber is connected to the water-flow conduit that connects the anode-side electrolysis chamber and the cathode-side electrolysis chamber. Since the deaeration process is performed in the middle of the process, a difference occurs between the pressures in the two electrolytic chambers, and the internal pressure in the anode side electrolytic chamber becomes higher than the internal pressure in the cathode side electrolytic chamber. For this reason, the diaphragm that partitions both electrolytic chambers is pressed and bent by the internal pressure of the anode side electrolytic chamber toward the cathode side electrolytic chamber, and the distance between the diaphragm and the electrode in the cathode side electrolytic chamber is reduced. The flow path in the side electrolysis chamber becomes narrower than the set size. As a result, it is difficult to ensure the flow rate in the cathode side electrolysis chamber of the electrolyzed water subjected to deaeration treatment to the set flow rate, and the electrolysis treatment in the cathode side electrolysis chamber of the electrolysis water subjected to deaeration treatment is sufficient. Will not be able to.

かかる問題を解消するには、脱気処理された電解生成水の陰極側電解室内での流量を設定された流量に確保することが不可欠である。これに対処するには、スペーサを硬質に形成するとともに本数を多くし、かつ、隔膜を硬質にすることによって、隔膜の陰極側電解室側への撓みを阻止することが考えられる。しかしながら、このような手段を採ることは不可能に近い。なお、陰極側電解室を予め大きく設定しておけば、脱気処理された電解生成水の陰極側電解室内での流量を設定された流量にほぼ保持することができるが、かかる手段では有隔膜電解槽が大型化するという問題がある。   In order to solve such a problem, it is indispensable to secure the flow rate in the cathode side electrolysis chamber of the electrolyzed electrolyzed water that has been deaerated. In order to cope with this, it is conceivable to prevent the diaphragm from bending toward the cathode side electrolytic chamber by forming the spacers hard, increasing the number of the spacers, and making the diaphragm hard. However, it is almost impossible to take such measures. In addition, if the cathode side electrolysis chamber is set large in advance, the flow rate of the electrolyzed electrolyzed water that has been deaerated can be substantially maintained at the set flow rate. There is a problem that the electrolytic cell is enlarged.

従って、本発明の目的は、海水等塩素成分を含有する水を被処理水として有隔膜電解槽の陽極側電解室にて電解処理し、電解処理にて生成された処理水を脱気膜にて脱気処理し、脱気処理にて生成された処理水を前記有隔膜電解槽の陰極側電解室にて電解処理することからなる除菌水の製造方法、および、当該製造方法を実施するめの製造装置において、上記した各問題を解消することにある。   Accordingly, an object of the present invention is to subject the water containing a chlorine component such as seawater as water to be treated to electrolytic treatment in the anode electrolysis chamber of the diaphragm membrane electrolytic cell, and use the treated water generated by the electrolytic treatment as a degassing membrane. And a method for producing sterilized water comprising subjecting the treated water produced by the deaeration treatment to electrolytic treatment in the cathode-side electrolysis chamber of the diaphragm electrolytic cell, and a method for carrying out the production method. In the manufacturing apparatus, the above-mentioned problems are to be solved.

本発明は、除菌水の製造方法および製造装置に関する。本発明に係る除菌水の製造方法は、海水等塩素成分を含有する水を被処理水として有隔膜電解槽の陽極側電解室にて電解処理し、電解処理にて生成された処理水を脱気膜にて脱気処理し、脱気処理にて生成された処理水を前記有隔膜電解槽の陰極側電解室にて電解処理することからなる除菌水の製造方法である。   The present invention relates to a method and apparatus for producing sterilized water. In the method for producing sterilized water according to the present invention, water containing chlorine components such as seawater is treated as water to be treated in the anode-side electrolysis chamber of the diaphragm membrane electrolytic cell, and the treated water generated by the electrolytic treatment is treated. It is a method for producing sterilized water, comprising deaeration treatment with a deaeration membrane and electrolytic treatment of the treated water generated by the deaeration treatment in the cathode side electrolysis chamber of the diaphragm membrane electrolytic cell.

しかして、本発明に係る除菌水の製造方法においては、前記陽極側電解室と前記陰極側電解室とを区画形成する隔膜として透水性で気液分離能を有する透水性脱気膜を採用してなる有隔膜電解槽を採用し、前記被処理水を前記陽極側電解室にて電解処理し、電解処理にて生成された電解生成水を前記透水性脱気膜を透過して脱気処理し、脱気処理された電解生成水を前記陰極側電解室にて電解処理することを特徴とするものである。本発明に係る除菌水の製造方法においては、前記透水性脱気膜として、通水性のケーシングに多数の中空糸を充填してなる気液分離膜を採用することができる。   Thus, in the method for producing sterilized water according to the present invention, a permeable degassing membrane having water permeability and gas-liquid separation capability is adopted as a diaphragm for partitioning the anode side electrolysis chamber and the cathode side electrolysis chamber. A separation membrane electrolytic cell is used, and the water to be treated is electrolyzed in the anode-side electrolysis chamber, and the electrolyzed water generated by the electrolysis treatment is permeated through the water-permeable degassing membrane. The electrolytically produced water that has been treated and deaerated is subjected to electrolytic treatment in the cathode-side electrolysis chamber. In the method for producing sterilized water according to the present invention, a gas-liquid separation membrane formed by filling a water-permeable casing with a large number of hollow fibers can be adopted as the water-permeable degassing membrane.

また、本発明に係る除菌水の製造装置は、本発明に係る除菌水の製造方法を実施するための製造装置であって、筒状で所定長さの槽本体と、同槽本体内の基端側に配設されている第1の電極と、同槽本体内の先端側に配設されて前記第1の電極とは所定間隔を保持して位置している第2の電極と、同槽本体内にて前記両電極間に配設されている前記透水性脱気膜とを備え、同透水性脱気膜と前記第1の電極および前記第2の電極との間が各電解室に形成していることを特徴とするものである。本発明に係る製造装置においては、前記透水性脱気膜として、透水性のケーシングに多数の中空糸を充填してなる気液分離器を構成する中空糸を採用することができる。   Moreover, the apparatus for producing sterilized water according to the present invention is a production apparatus for carrying out the method for producing sterilized water according to the present invention, and is a cylindrical tank body having a predetermined length, and the tank body. A first electrode disposed on the base end side of the first tank, and a second electrode disposed on the distal end side in the tank body and positioned at a predetermined distance from the first electrode; And the water-permeable deaeration membrane disposed between the electrodes in the tank body, and the space between the water-permeable deaeration membrane and the first electrode and the second electrode. It is characterized by being formed in the electrolysis chamber. In the production apparatus according to the present invention, a hollow fiber constituting a gas-liquid separator formed by filling a water-permeable casing with a large number of hollow fibers can be employed as the water-permeable deaeration membrane.

本発明に係る製造装置においては、第1の電極および第2の電極として、電導性材料からなる環状体を採用することができる。この場合には、前記第1の電極を前記槽本体の基端側を構成する管部内に嵌合固定し、または、同槽本体の基端側部を構成する分割された管部間に介在し、かつ、前記第2の電極を前記槽本体の先端側を構成する管部内に嵌合固定し、または、同槽本体の先端側部を構成する分割されている管部間に介在して位置させることができる。   In the manufacturing apparatus according to the present invention, an annular body made of a conductive material can be adopted as the first electrode and the second electrode. In this case, the first electrode is fitted and fixed in the tube portion constituting the base end side of the tank body, or interposed between the divided tube portions constituting the base end side portion of the tank body. And, the second electrode is fitted and fixed in a tube part constituting the tip side of the tank body, or interposed between divided pipe parts constituting the tip side part of the tank body. Can be positioned.

また、本発明に係る製造装置において、前記第1の電極および第2の電極として、電導性材料からなる棒状体を採用することができる。この場合には、前記第1の電極を前記槽本体の基端側を構成する管部の外周側から内部に挿入して位置させ、かつ、前記第2の電極を前記槽本体の先端側を構成する管部の外周側から内部に挿入して位置させることができる。   In the manufacturing apparatus according to the present invention, rod-shaped bodies made of a conductive material can be employed as the first electrode and the second electrode. In this case, the first electrode is inserted and positioned from the outer peripheral side of the tube portion constituting the base end side of the tank main body, and the second electrode is positioned on the tip end side of the tank main body. It can be inserted and positioned from the outer peripheral side of the tube portion to be configured.

また、本発明に係る製造装置においては、前記第1の電極および第2の電極として、電導性材料からなる多数の通水孔を有する円板状体を採用することができる。この場合には、前記第1の電極を前記槽本体の基端側を構成する管部内に嵌合固定し、または、同槽本体の基端側部を構成する分割された管部間に介在し、かつ、前記第2の電極を前記槽本体の先端側を構成する管部内に嵌合固定し、または、同槽本体の先端側部を構成する分割されている管部間に介在して位置させることができる   In the manufacturing apparatus according to the present invention, a disk-like body having a large number of water holes made of a conductive material can be adopted as the first electrode and the second electrode. In this case, the first electrode is fitted and fixed in the tube portion constituting the base end side of the tank body, or interposed between the divided tube portions constituting the base end side portion of the tank body. And, the second electrode is fitted and fixed in a tube part constituting the tip side of the tank body, or interposed between divided pipe parts constituting the tip side part of the tank body. Can be positioned

本発明に係る除菌水の製造装置は、陽極側電解室と陰極側電解室とを区画形成する隔膜として透水性脱気膜を採用してなる有隔膜電解槽を主体とする構成のものである。当該製造装置を使用する電解運転では、例えば、第1の電極を陽極側電極とし第2の電極を陰極側電極に設定し、被処理水である被電解水を、槽本体の基端側から槽本体内に導入する。導入された被電解水は、槽本体内に位置している第1の電極(陽極電極)を通過して透水性脱気膜に至り、透水性脱気膜を透過して第2の電極(陰極電極)を通過し、槽本体の先端側から導出される。当該製造装置においては、透水性脱気膜が従来の有隔膜電解槽の隔膜としても機能する。   The apparatus for producing sterilized water according to the present invention is composed mainly of a diaphragm membrane electrolyzer that employs a water-permeable degassing membrane as a diaphragm that partitions the anode-side electrolysis chamber and the cathode-side electrolysis chamber. is there. In the electrolysis operation using the manufacturing apparatus, for example, the first electrode is set as the anode side electrode and the second electrode is set as the cathode side electrode, and the water to be treated is treated water from the base end side of the tank body. Introduce into the tank body. The introduced electrolyzed water passes through the first electrode (anode electrode) located in the tank body to reach the water permeable deaeration film, passes through the water permeable deaeration film, and passes through the second electrode ( It passes through the cathode electrode) and is led out from the front end side of the tank body. In the said manufacturing apparatus, a water-permeable deaeration membrane functions also as a diaphragm of the conventional diaphragm membrane electrolytic cell.

このため、被処理水は、槽本体内の第1の電極と透水性脱気膜との間に形成されている陽極側電解室で電解処理されて、無菌または無菌に近い状態に除菌された電解生成水(除菌水)になる。当該電解生成水は、透水性脱気膜と透過する間に脱気処理されて、溶存酸素および溶存塩素が揮発除去される。脱気処理された電解生成水は、透水性脱気膜と第2の電極との間に形成されている陰極側電解室でさらに電解処理されて中性化される。これにより、実質的の中性で酸化還元電位が負の除菌水が製造される。すなわち、本発明に係る製造装置によれば、本発明に係る製造方法を容易に実施することができる。   For this reason, the water to be treated is electrolyzed in an anode-side electrolysis chamber formed between the first electrode in the tank body and the water-permeable degassing membrane, and sterilized to be aseptic or nearly aseptic. Electrolyzed water (sanitized water). The electrolytically generated water is deaerated while passing through the water-permeable deaerated membrane, so that dissolved oxygen and dissolved chlorine are volatilized and removed. The electrolytically generated water that has been deaerated is neutralized by further electrolytic treatment in a cathode-side electrolysis chamber formed between the water-permeable deaerated membrane and the second electrode. As a result, sterilized water having a substantially neutral and negative oxidation-reduction potential is produced. That is, according to the manufacturing apparatus according to the present invention, the manufacturing method according to the present invention can be easily performed.

このように、本発明に係る製造装置は、脱気処理器を装備する従来の有隔膜電解槽を主体とする除菌水の製造装置と同等に機能するが、陽極側電解室と陰極側電解室とを区画形成する隔膜として透水性脱気膜を採用して、陽極側電解室で生成された電解生成水を、当該隔膜を透して陰極側電解室に導入する方法を採っている。このような方法は、上記した従来の製造装置が実施する方法とは発想を全く異にする方法であって、従来の製造装置において問題となっている、陽極側電解室と陰極側電解室間に生じる圧力差は全く問題にならないものである。   As described above, the manufacturing apparatus according to the present invention functions in the same way as the manufacturing apparatus for sterilized water mainly composed of a conventional diaphragm membrane electrolytic cell equipped with a deaeration processor, but the anode-side electrolysis chamber and the cathode-side electrolysis. A water-permeable deaeration membrane is employed as a diaphragm that partitions the chamber, and electrolytically generated water generated in the anode-side electrolysis chamber is introduced through the diaphragm into the cathode-side electrolysis chamber. Such a method is completely different from the method performed by the above-described conventional manufacturing apparatus, and is a problem in the conventional manufacturing apparatus, between the anode-side electrolysis chamber and the cathode-side electrolysis chamber. The pressure difference that occurs is not a problem at all.

このため、本発明に係る製造装置、および、当該製造装置を使用して実施される本発明に係る製造方法には、陽極側電解室と陰極側電解室間に生じる圧力差に起因する問題は存在しない。すなわち、当該圧力差に起因して、陽極側電解室の内圧によって隔膜が陰極側電解室側へ押圧されて撓み、陰極側電解室での隔膜と電極間の間隔が狭くなり、陰極側電解室内の流路を設定された大きさに確保することができないという問題、これに起因して、脱気処理された電解生成水の陰極側電解室内での流量を設定された流量に確保し得ないという問題、これに起因して、脱気処理された電解生成水の陰極側電解室での電解処理が十分にはできなくなるという問題等、多くの問題は解消される。   For this reason, in the manufacturing apparatus according to the present invention and the manufacturing method according to the present invention implemented using the manufacturing apparatus, the problem caused by the pressure difference generated between the anode-side electrolysis chamber and the cathode-side electrolysis chamber is not exist. That is, due to the pressure difference, the diaphragm is pressed and bent toward the cathode side electrolysis chamber by the internal pressure of the anode side electrolysis chamber, and the distance between the diaphragm and the electrode in the cathode side electrolysis chamber becomes narrow, and the cathode side electrolysis chamber The problem is that the flow path cannot be secured at the set size, and as a result, the flow rate in the cathode side electrolysis chamber of the deaerated electrolytically generated water cannot be secured at the set flow rate. Many problems such as the problem that the electrolytic treatment in the cathode side electrolysis chamber of the deaerated electrolytically generated water cannot be sufficiently performed due to this problem are solved.

また、本発明に係る製造装置では、脱気処理を従来とは発想を大きく転換して、陽極側電解室と陰極側電解室を区画形成する隔膜にて行う方法を採用していることから、従来の製造装置では不可欠としている、陽極側電解室の下流側と陰極側電解室の上流側に連結されている流水管路、および、当該流水管路に介在させている脱気処理器等が不要である。従って、本発明に係る製造装置は、従来のこの種の製造装置に比較して大幅に小型化することができるという利点がある。   In addition, the manufacturing apparatus according to the present invention adopts a method in which the deaeration process is performed in a diaphragm that forms a partition between the anode side electrolysis chamber and the cathode side electrolysis chamber, by largely changing the idea from the conventional one. Indispensable in the conventional manufacturing apparatus, there are a flowing water pipe connected to the downstream side of the anode-side electrolysis chamber and the upstream side of the cathode-side electrolysis chamber, and a deaeration processor interposed in the flowing water pipe. It is unnecessary. Therefore, the manufacturing apparatus according to the present invention has an advantage that it can be significantly reduced in size compared with the conventional manufacturing apparatus of this type.

本発明は、除菌水の製造方法および製造装置に関する。本発明に係る製造装置は、海水等塩素成分を含有する水を被処理水として有隔膜電解槽の陽極側電解室にて電解処理し、電解処理にて生成された処理水を脱気膜にて脱気処理し、脱気処理にて生成された処理水を前記有隔膜電解槽の陰極側電解室にて電解処理することからなる除菌水の製造方法を実施し得る製造装置である。図1には、本発明に係る製造装置の基本形態を示し、図2〜図4には、当該製造装置の具体的な実施形態をそれぞれ示している。   The present invention relates to a method and apparatus for producing sterilized water. The production apparatus according to the present invention performs electrolytic treatment in the anode-side electrolysis chamber of a diaphragm membrane electrolytic cell using water containing a chlorine component such as seawater as treated water, and uses the treated water generated by the electrolytic treatment as a degassing membrane. This is a production apparatus capable of carrying out a method for producing sterilized water, which comprises subjecting the treated water produced by the deaeration treatment to the electrolytic treatment of the treated water generated by the deaeration treatment in the cathode side electrolysis chamber of the diaphragm membrane electrolytic cell. FIG. 1 shows a basic form of a manufacturing apparatus according to the present invention, and FIGS. 2 to 4 show specific embodiments of the manufacturing apparatus.

本発明に係る製造装置は、基本的には図1に示すように、円筒状で所定長さの槽本体10aと、槽本体10a内の基端側に配設されている第1の電極12と、槽本体10a内の先端側に配設されて第1の電極12とは所定間隔を保持して位置している第2の電極13と、槽本体10a内にて第1の電極12および第2の電極13間にてそれぞれ所定の間隔を保持して配設されている気液分離器20を備える構成となっている。   As shown in FIG. 1, the manufacturing apparatus according to the present invention basically has a cylindrical tank body 10a having a predetermined length, and a first electrode 12 disposed on the base end side in the tank body 10a. A second electrode 13 disposed on the front end side in the tank body 10a and positioned at a predetermined distance from the first electrode 12, and the first electrode 12 and the first electrode 12 in the tank body 10a. The gas-liquid separator 20 is disposed between the second electrodes 13 with a predetermined interval.

気液分離器20は、通水性のケーシング21に多数の中空糸22を充填して形成してなるもので、ケーシング21内には吸気管路23を通して吸気負圧が付与されるようになっている。気液分離器20は、槽本体10a内の長手方向の略中央部に位置して、第1の電極12との間の空間部を陽極側電解室R1に形成し、かつ、第2の電極13との間の空間部を陰極側電解室R2に形成している。従って、当該気液分離器20は、充填されている多数の中空糸22が透水性脱気膜を構成して、陽極側電解室R1と陰極側電解室R2とを区画成形する隔膜としても機能する。   The gas-liquid separator 20 is formed by filling a water-permeable casing 21 with a number of hollow fibers 22, and a negative intake pressure is applied to the casing 21 through an intake pipe 23. Yes. The gas-liquid separator 20 is located at a substantially central portion in the longitudinal direction in the tank body 10a, and forms a space between the first electrode 12 in the anode-side electrolysis chamber R1, and the second electrode. 13 is formed in the cathode side electrolysis chamber R2. Accordingly, the gas-liquid separator 20 also functions as a diaphragm that partitions and molds the anode-side electrolysis chamber R1 and the cathode-side electrolysis chamber R2 with a large number of filled hollow fibers 22 constituting a water-permeable deaeration membrane. To do.

本発明に係る製造装置を使用する電解運転では、例えば、第1の電極12を陽極側電極に設定し、かつ、第2の電極13を陰極側電極に設定し、被処理水を、槽本体10aの基端側から槽本体10a内に導入する。導入された被処理水は、槽本体10a内に位置している第1の電極12(陽極電極)および陽極側電室R1を通過して気液分離器20に至り、気液分離器20を透過して、陰極側電解室R2および第2の電極13(陰極電極)を通過し、槽本体10aの先端側から導出される。この間、気液分離器20は、従来の有隔膜電解槽の隔膜として機能するとともに、脱気処理装置としても機能する。   In the electrolysis operation using the manufacturing apparatus according to the present invention, for example, the first electrode 12 is set as the anode side electrode, the second electrode 13 is set as the cathode side electrode, and the water to be treated is supplied to the tank body. It introduce | transduces in the tank main body 10a from the base end side of 10a. The introduced water to be treated passes through the first electrode 12 (anode electrode) and the anode-side electric chamber R1 located in the tank body 10a to reach the gas-liquid separator 20, and the gas-liquid separator 20 is The light passes through the cathode side electrolysis chamber R2 and the second electrode 13 (cathode electrode), and is led out from the front end side of the tank body 10a. During this time, the gas-liquid separator 20 functions as a diaphragm of a conventional diaphragm membrane electrolytic cell and also functions as a deaeration treatment device.

このため、槽本体10a内に導入された被処理水は、槽本体10a内の第1の電極12と気液分離器20間の陽極側電解室R1にて電解処理されて、無菌または無菌に近い状態に除菌された電解生成水(除菌水)になる。当該電解生成水は、気液分離器20の中空糸22を透過する間に脱気処理されて、溶存酸素および溶存塩素が揮発除去(脱気)される。脱気処理された電解生成水は、気液分離器20と第2の電極13との間の陰極側電解室R2にて電解処理されて中性化され、実質的の中性で酸化還元電位が負の除菌水となる。   For this reason, the water to be treated introduced into the tank body 10a is electrolyzed in the anode-side electrolysis chamber R1 between the first electrode 12 and the gas-liquid separator 20 in the tank body 10a to be aseptic or aseptic. It becomes electrolyzed water (sanitized water) sterilized to a close state. The electrolyzed water is degassed while passing through the hollow fiber 22 of the gas-liquid separator 20, and the dissolved oxygen and dissolved chlorine are volatilized and removed (degassed). The electrolyzed water that has been degassed is subjected to electrolysis in the cathode side electrolysis chamber R2 between the gas-liquid separator 20 and the second electrode 13 to be neutralized, and is substantially neutral and redox potential. Becomes negative sanitized water.

このように、本発明に係る製造装置は、脱気処理装置を装備する従来の有隔膜電解槽を主体とする除菌水の製造装置とは同等に機能するが、陽極側電解室R1と陰極側電解室R2とを区画形成する隔膜として気液分離器20の中空糸22が構成する透水性脱気膜を採用して、陽極側電解室R1で生成された電解生成水を、透水性脱気膜22を透して陰極側電解室R2に導入する方法を採っている。このような方法は、上記した従来の製造方法および製造装置とは全く異なる方法であって、これらからは全く予測し得ない画期的な方法であり、従来の製造装置において問題となっている、陽極側電解室と陰極側電解室間に生じる圧力差が問題になるようなことはない。   As described above, the manufacturing apparatus according to the present invention functions in the same manner as a conventional apparatus for manufacturing sterilized water mainly composed of a diaphragm membrane electrolytic cell equipped with a degassing apparatus, but the anode-side electrolysis chamber R1 and the cathode. Adopting a water permeable degassing membrane formed by the hollow fiber 22 of the gas-liquid separator 20 as a diaphragm that partitions the side electrolysis chamber R2, the electrolyzed water generated in the anode side electrolysis chamber R1 is permeable to water. A method is adopted in which the gas is introduced through the gas film 22 into the cathode-side electrolysis chamber R2. Such a method is a completely different method from the above-described conventional manufacturing method and manufacturing apparatus, and is an epoch-making method that cannot be predicted from these methods. The pressure difference generated between the anode-side electrolysis chamber and the cathode-side electrolysis chamber does not become a problem.

このため、本発明に係る製造装置、および、当該製造装置を使用して実施される本発明に係る製造方法には、陽極側電解室R1と陰極側電解室R2間に生じる圧力差に起因する問題は存在しない。すなわち、当該圧力差に起因して、隔膜(透水性脱気膜22)が陽極側電解室R1の内圧によって陰極側電解室R2側へ押圧されて、陰極側電解室R2の隔膜と第2電極13間の間隔が狭くなり、陰極側電解室R2内の流路を設定された大きさに確保することができないという問題は存在しない。また、かかる問題に起因して、脱気処理された電解生成水の陰極側電解室R2内での流量を設定された流量に確保し得ないという問題、これに起因して、脱気処理された電解生成水の陰極側電解室R2での電解処理が十分にはできなくなるという問題等も存在しない。   For this reason, the manufacturing apparatus according to the present invention and the manufacturing method according to the present invention implemented using the manufacturing apparatus are caused by a pressure difference generated between the anode-side electrolysis chamber R1 and the cathode-side electrolysis chamber R2. There is no problem. That is, due to the pressure difference, the diaphragm (water-permeable deaeration film 22) is pressed toward the cathode-side electrolysis chamber R2 by the internal pressure of the anode-side electrolysis chamber R1, and the diaphragm and the second electrode in the cathode-side electrolysis chamber R2 There is no problem that the interval between 13 becomes narrow and the flow path in the cathode side electrolysis chamber R2 cannot be secured to a set size. In addition, due to such a problem, the flow rate in the cathode side electrolysis chamber R2 of the deaerated electrolytically generated water cannot be secured at the set flow rate, and due to this, the deaerated treatment is performed. There is no problem that the electrolytic treatment of the electrolyzed water in the cathode side electrolysis chamber R2 cannot be sufficiently performed.

また、本発明に係る製造装置では、脱気処理を従来とは発想を大きく転換した方法を採用して、陽極側電解室R1と陰極側電解室R2を区画形成する隔膜にて行う方法を採用していることから、従来の製造装置では不可欠としている、陽極側電解室の下流側と陰極側電解室の上流側を連通させる流水管路、および、当該流水管路に介在させている脱気処理装置等が不要である。従って、本発明に係る製造装置においては、従来のこの種の製造装置に比較して簡単に構成することができるとともに、大幅に小型化することができる。本発明に係る製造装置は、具体的には、図2〜図4に示す実施形態のごとく構成することができる。   In addition, the manufacturing apparatus according to the present invention employs a method in which the deaeration process is performed by a diaphragm that partitions and forms the anode-side electrolysis chamber R1 and the cathode-side electrolysis chamber R2 by adopting a method that largely changes the concept from the conventional one. Therefore, it is indispensable in the conventional manufacturing apparatus, the flowing water conduit communicating the downstream side of the anode side electrolytic chamber and the upstream side of the cathode side electrolytic chamber, and the deaeration interposed in the flowing water conduit A processing device or the like is unnecessary. Therefore, the manufacturing apparatus according to the present invention can be easily configured as compared with the conventional manufacturing apparatus of this type, and can be greatly reduced in size. Specifically, the manufacturing apparatus according to the present invention can be configured as in the embodiment shown in FIGS.

図2に示す第1の実施形態の製造装置においては、第1の電極12および第2の電極13として、金属材料からなる円環状の電極を採用している。当該製造装置が採用している気液分離器20のケーシング21は、合成樹脂製の円筒体21aと、円筒体21aの各先端開口部に固着して開口部を閉塞している多数の貫通孔を有する合成樹脂製の蓋体21b、21cとかなる合成樹脂製のもので、ケーシング21内には、多数の中空糸が充填されている。   In the manufacturing apparatus according to the first embodiment shown in FIG. 2, as the first electrode 12 and the second electrode 13, annular electrodes made of a metal material are employed. A casing 21 of the gas-liquid separator 20 employed by the manufacturing apparatus includes a cylindrical body 21a made of synthetic resin, and a large number of through-holes that are fixed to the respective opening ends of the cylindrical body 21a and close the openings. Synthetic resin lids 21b and 21c made of synthetic resin, and the casing 21 is filled with a number of hollow fibers.

当該製造装置を構成する槽本体10bは、気液分離器20のケーシング21の円筒体21aを利用しているもので、基端側から第1円筒体11a、第2円筒体11b、ケーシング21の円筒体21a(第3円筒体)、第4円筒体11cおよび、第5円筒体11dある合成樹脂製の円筒体を構成部材としている。第2円筒体11bと第4円筒体11cは、第3円筒体21aの各端部に接合されていて、第2円筒体11bの先端に第1の電極12が接続され、かつ第1の電極12の先端に第1円筒体11aが接続されている。また、第4の円筒体11cの先端には、第2の電極13が接続され、かつ、第2の電極13の先端に第5円筒体11d接続されている。   The tank body 10b constituting the manufacturing apparatus uses the cylindrical body 21a of the casing 21 of the gas-liquid separator 20, and the first cylindrical body 11a, the second cylindrical body 11b, and the casing 21 from the base end side. The cylindrical body 21a (third cylindrical body), the fourth cylindrical body 11c, and the fifth cylindrical body 11d are synthetic resin cylindrical bodies. The second cylindrical body 11b and the fourth cylindrical body 11c are joined to each end of the third cylindrical body 21a, the first electrode 12 is connected to the tip of the second cylindrical body 11b, and the first electrode A first cylindrical body 11 a is connected to the tip of 12. The second electrode 13 is connected to the tip of the fourth cylinder 11c, and the fifth cylinder 11d is connected to the tip of the second electrode 13.

かかる構成においては、槽本体10bは、第1円筒体11a、第1の電極12、第2円筒体11b、第3円筒体21a、第4円筒体11c、第2の極13、および第5円筒体11dより形成されていて、槽本体10b内の基端側に第1の電極12が位置し、槽本体10b内の先端側に第2の電極13が位置し、第1の電極12と第2の電極13との間に気液分離器20が位置している。気液分離器20は、第1の電極12との間に電解室R1を形成し、かつ、第2の電極13との間に電解室R2を形成している。第1の電極12と第2の電極13には所定の電圧が印加されて、電解室R1は例えば陽極側電解室として機能し、かつ、電解室R2は例えば印極側電解室として機能する。   In such a configuration, the tank body 10b includes the first cylinder 11a, the first electrode 12, the second cylinder 11b, the third cylinder 21a, the fourth cylinder 11c, the second pole 13, and the fifth cylinder. The first electrode 12 is located on the base end side in the tank body 10b, the second electrode 13 is located on the distal end side in the tank body 10b, and the first electrode 12 and the first electrode 12 A gas-liquid separator 20 is located between the two electrodes 13. The gas-liquid separator 20 forms an electrolysis chamber R 1 between the first electrode 12 and an electrolysis chamber R 2 between the second electrode 13. A predetermined voltage is applied to the first electrode 12 and the second electrode 13, and the electrolysis chamber R1 functions as, for example, an anode-side electrolysis chamber, and the electrolysis chamber R2 functions, for example, as a sign-electrode-side electrolysis chamber.

図3に示す第2の実施形態の製造装置においては、第1の電極12および第2の電極13として、金属材料からなる棒状の電極を採用している。また、気液分離器については、気液分離器20を採用している。当該製造装置を構成する槽本体10cは、気液分離器20のケーシング21の円筒体21aを利用しているもので、基端側の第1円筒体14a、ケーシング21の円筒体21a(第2円筒体)、および第3円筒体14bである合成樹脂製の円筒体を構成部材としている。第1円筒体14aと第3円筒体14bは、第2円筒体21aの各端部に接合されている。   In the manufacturing apparatus of the second embodiment shown in FIG. 3, rod-shaped electrodes made of a metal material are employed as the first electrode 12 and the second electrode 13. Moreover, the gas-liquid separator 20 is employ | adopted about the gas-liquid separator. The tank body 10c constituting the manufacturing apparatus uses the cylindrical body 21a of the casing 21 of the gas-liquid separator 20, and the first cylindrical body 14a on the base end side and the cylindrical body 21a of the casing 21 (second The cylindrical body) and the synthetic resin cylindrical body that is the third cylindrical body 14b are used as constituent members. The first cylindrical body 14a and the third cylindrical body 14b are joined to each end of the second cylindrical body 21a.

かかる構成においては、槽本体10cは、第1円筒体14a、第2円筒体21aおよび第3円筒体14bにより形成されていて、槽本体10c内の基端側に第1の電極12が位置し、槽本体10c内の先端側に第2の電極13が位置し、第1の電極12と第2の電極13との間に気液分離器20が位置している。気液分離器20は、第1の電極12との間に電解室R1を形成し、かつ、第2の電極13との間に電解室R2を形成している。第1の電極12と第2の電極13には所定の電圧が印加されて、電解室R1は例えば陽極側電解室として機能し、かつ、電解室R2は例えば印極側電解室として機能する。   In this configuration, the tank body 10c is formed by the first cylindrical body 14a, the second cylindrical body 21a, and the third cylindrical body 14b, and the first electrode 12 is located on the proximal end side in the tank body 10c. The second electrode 13 is located on the front end side in the tank body 10 c, and the gas-liquid separator 20 is located between the first electrode 12 and the second electrode 13. The gas-liquid separator 20 forms an electrolysis chamber R 1 between the first electrode 12 and an electrolysis chamber R 2 between the second electrode 13. A predetermined voltage is applied to the first electrode 12 and the second electrode 13, and the electrolysis chamber R1 functions as, for example, an anode-side electrolysis chamber, and the electrolysis chamber R2 functions, for example, as a sign-electrode-side electrolysis chamber.

図4に示す第3の実施形態の製造装置においては、第1の電極12および第2の電極13として、金属材料からなる貫通孔を多数有する円板状の電極を採用している。また、気液分離器については、気液分離器20を採用している。当該製造装置を構成する槽本体10dは、気液分離器20のケーシング21の円筒体21aを利用しているもので、基端側から第1円筒体15a、第2円筒体15b、ケーシング21の円筒体21a(第3円筒体)、第4円筒体15c、および第5円筒体15dである合成樹脂製の円筒体を構成部材としている。第2円筒体15bと第4円筒体15cは、第3円筒体21aの各端部に接合されていて、第2円筒体15bの先端側内部に第1の電極12が嵌合固定され、かつ、第4円筒体15cの先端側内部に第2の電極13が嵌合固定されている。また、第2円筒体15bの先端に第1円筒体15aが接続され、かつ、第4円筒体15c先端に第5円筒体15d接続されている
かかる構成においては、槽本体10dは、第1円筒体15a、第2円筒体15b、第3円筒体21a、第4円筒体15c、および第5円筒体15dにより形成されていて、槽本体10dの基端側に第1の電極12が位置し、槽本体10dの先端側に第2の電極13が位置し、第1の電極12と第2の電極13との間に気液分離器20が位置している。気液分離器20は、第1の電極12との間に電解室R1を形成し、かつ、第2の電極13との間に電解室R2を形成している。第1の電極12と第2の電極13には所定の電圧が印加されて、電解室R1は例えば陽極側電解室として機能し、かつ、電解室R2は例えば印極側電解室として機能する。
In the manufacturing apparatus of the third embodiment shown in FIG. 4, disk-shaped electrodes having a large number of through holes made of a metal material are employed as the first electrode 12 and the second electrode 13. Moreover, the gas-liquid separator 20 is employ | adopted about the gas-liquid separator. The tank main body 10d constituting the manufacturing apparatus uses the cylindrical body 21a of the casing 21 of the gas-liquid separator 20, and the first cylindrical body 15a, the second cylindrical body 15b, and the casing 21 from the base end side. The cylindrical body 21a (third cylindrical body), the fourth cylindrical body 15c, and the fifth cylindrical body 15d are synthetic resin cylindrical bodies. The second cylindrical body 15b and the fourth cylindrical body 15c are joined to each end of the third cylindrical body 21a, and the first electrode 12 is fitted and fixed inside the distal end side of the second cylindrical body 15b. The second electrode 13 is fitted and fixed inside the distal end side of the fourth cylindrical body 15c. In this configuration, the first cylinder 15a is connected to the tip of the second cylinder 15b, and the fifth cylinder 15d is connected to the tip of the fourth cylinder 15c. In this configuration, the tank body 10d has the first cylinder Formed by the body 15a, the second cylindrical body 15b, the third cylindrical body 21a, the fourth cylindrical body 15c, and the fifth cylindrical body 15d, the first electrode 12 is located on the base end side of the tank body 10d, The second electrode 13 is located on the front end side of the tank body 10 d, and the gas-liquid separator 20 is located between the first electrode 12 and the second electrode 13. The gas-liquid separator 20 forms an electrolysis chamber R 1 between the first electrode 12 and an electrolysis chamber R 2 between the second electrode 13. A predetermined voltage is applied to the first electrode 12 and the second electrode 13, and the electrolysis chamber R1 functions as, for example, an anode-side electrolysis chamber, and the electrolysis chamber R2 functions, for example, as a sign-electrode-side electrolysis chamber.

本発明に係る除菌水の製造装置の基本形態を示す側面図である。It is a side view which shows the basic form of the manufacturing apparatus of the disinfection water based on this invention. 同製造装置の第1の実施形態を示す一部縦断側面図である。It is a partially longitudinal side view which shows 1st Embodiment of the manufacturing apparatus. 同製造装置の第2の実施形態を示す一部縦断側面図である。It is a partially longitudinal side view which shows 2nd Embodiment of the manufacturing apparatus. 同製造装置の第3の施形態を示す一部縦断側面図である。It is a partially vertical side view which shows 3rd embodiment of the manufacturing apparatus.

符号の説明Explanation of symbols

10a,10b,10c,10d…槽本体、11a…第1円筒体、11b…第2円筒体、11c…第3円筒体、11d…第5円筒体、12…第1の電極、13…第2の電極、14a…第1円筒体、14c…第2円筒体、15a…第1円筒体、15b…第2円筒体、15c…第3円筒体、15d…第5円筒体、20…気液分離器、21…ケーシング、21a…円筒体(第2,第3)、21b,21c…蓋体、22…中空糸、23…吸気管路、R1…陽極側電解室、R2…陰極側電解室。 10a, 10b, 10c, 10d ... tank body, 11a ... first cylinder, 11b ... second cylinder, 11c ... third cylinder, 11d ... fifth cylinder, 12 ... first electrode, 13 ... second 14a ... first cylinder, 14c ... second cylinder, 15a ... first cylinder, 15b ... second cylinder, 15c ... third cylinder, 15d ... fifth cylinder, 20 ... gas-liquid separation 21 ... casing, 21a ... cylindrical body (second and third), 21b, 21c ... lid, 22 ... hollow fiber, 23 ... intake pipe, R1 ... anode side electrolytic chamber, R2 ... cathode side electrolytic chamber.

Claims (7)

海水等塩素成分を含有する水を被処理水として有隔膜電解槽の陽極側電解室にて電解処理し、電解処理にて生成された処理水を脱気膜にて脱気処理し、脱気処理にて生成された処理水を前記有隔膜電解槽の陰極側電解室にて電解処理することからなる除菌水の製造方法であり、前記陽極側電解室と前記陰極側電解室とを区画形成する隔膜として透水性で気液分離能を有する透水性脱気膜を採用してなる有隔膜電解槽を採用し、前記被処理水を前記陽極側電解室にて電解処理し、電解処理にて生成された電解生成水を前記透水性脱気膜を透過して脱気処理し、脱気処理された電解生成水を前記陰極側電解室にて電解処理することを特徴とする除菌水の製造方法。 Water containing chlorine components such as seawater is treated in the anode-side electrolysis chamber of the diaphragm membrane electrolytic cell as treated water, and the treated water generated by the electrolytic treatment is degassed with a degassing membrane and degassed. A method for producing sterilized water comprising subjecting treated water generated by treatment to electrolytic treatment in a cathode-side electrolysis chamber of the diaphragm electrolyzer, and partitioning the anode-side electrolysis chamber and the cathode-side electrolysis chamber Adopting a diaphragm electrolyzer that employs a water-permeable gas-liquid separation membrane that is water-permeable and gas-liquid separating as the diaphragm to be formed, and electrolytically treating the water to be treated in the anode-side electrolysis chamber. The sterilized water is characterized in that the electrolyzed water produced in this way is permeated through the permeable degassing membrane and deaerated, and the deaerated electrolyzed water is electrolyzed in the cathode side electrolysis chamber. Manufacturing method. 請求項1に記載の除菌水の製造方法において、前記透水性脱気膜として、通水性のケーシングに多数の中空糸を充填してなる気液分離膜を採用することを特徴とする除菌水の製造方法。 The method for producing sanitized water according to claim 1, wherein a gas-liquid separation membrane formed by filling a water-permeable casing with a number of hollow fibers is used as the water-permeable degassing membrane. Water production method. 請求項1または2に記載の除菌水の製造方法を実施するための製造装置であり、当該製造装置は、筒状で所定長さの槽本体と、同槽本体内の基端側に配設されている第1の電極と、同槽本体内の先端側に配設されて前記第1の電極とは所定間隔を保持して位置している第2の電極と、同槽本体内にて前記両電極間に配設されている前記透水性脱気膜とを備え、同透水性脱気膜と前記第1の電極および前記第2の電極との間が各電解室に形成していることを特徴とする除菌水の製造装置。 It is a manufacturing apparatus for implementing the manufacturing method of the sanitization water of Claim 1 or 2, Comprising: The said manufacturing apparatus is arrange | positioned at the base end side in the tank main body and the predetermined length in the tank main body. A first electrode that is provided, a second electrode that is disposed at a distal end side in the tank body and is located at a predetermined distance from the first electrode, and in the tank body And the water-permeable deaeration membrane disposed between the electrodes, and a space between the water-permeable deaeration membrane and the first electrode and the second electrode is formed in each electrolytic chamber. An apparatus for producing sanitized water. 請求項3に記載の除菌水の製造装置において、前記透水性脱気膜は、通水性のケーシングに多数の中空糸を充填してなる気液分離膜器を構成する中空糸であることを特徴とする除菌水の製造装置。 4. The apparatus for producing sanitized water according to claim 3, wherein the water-permeable degassing membrane is a hollow fiber constituting a gas-liquid separation membrane device formed by filling a water-permeable casing with a number of hollow fibers. A device for producing sanitized water. 請求項3に記載の除菌水の製造装置において、前記第1の電極および第2の電極は電導性材料からなる環状体であって、前記第1の電極は前記槽本体の基端側を構成する管部内に位置し、または、同槽本体の基端側部を構成する分割された管部間に介在し、かつ、前記第2の電極は前記槽本体の先端側を構成する管部内に嵌合固定され、または、同槽本体の先端側部を構成する分割されている管部間に介在していることを特徴とする除菌水の製造装置。 4. The apparatus for producing sanitized water according to claim 3, wherein the first electrode and the second electrode are annular bodies made of a conductive material, and the first electrode is disposed on the base end side of the tank body. Located in the tube section constituting, or interposed between the divided tube sections constituting the base end side portion of the tank body, and the second electrode is in the tube section constituting the distal end side of the tank body A device for producing sterilized water, wherein the device is fitted and fixed to or between the divided pipe portions constituting the tip side portion of the tank body. 請求項3に記載の除菌水の製造装置において、前記第1の電極および第2の電極は電導性材料からなる棒状体であって、前記第1の電極は前記槽本体の基端側を構成する管部の外周側から内部に挿入されて位置し、かつ、前記第2の電極は前記槽本体の先端側を構成する管部の外周側から内部に挿入されて位置していることを特徴とする除菌水の製造装置。 4. The apparatus for producing sterilized water according to claim 3, wherein the first electrode and the second electrode are rod-shaped bodies made of a conductive material, and the first electrode is disposed on the base end side of the tank body. The second electrode is positioned so as to be inserted from the outer peripheral side of the tube portion constituting the distal end side of the tank body, and is located inside from the outer peripheral side of the tube portion constituting the inner portion. A device for producing sanitized water. 請求項3に記載の除菌水の製造装置において、前記第1の電極および第2の電極は電導性材料からなる多数の通水孔を有する円板状体であって、前記第1の電極は前記槽本体の基端側を構成する管部内に位置し、または、同槽本体の基端側部を構成する分割された管部間に介在し、かつ、前記第2の電極は前記槽本体の先端側を構成する管部内に嵌合固定され、または、同槽本体の先端側部を構成する分割されている管部間に介在していることを特徴とする除菌水の製造装置。 4. The apparatus for producing sterilized water according to claim 3, wherein the first electrode and the second electrode are disk-shaped bodies having a large number of water holes made of a conductive material, and the first electrode. Is located in the tube part constituting the base end side of the tank body, or is interposed between the divided pipe parts constituting the base end side part of the tank body, and the second electrode is the tank An apparatus for producing sterilized water, which is fitted and fixed in a pipe part constituting the front end side of the main body or interposed between divided pipe parts constituting the front end side part of the tank main body .
JP2005011744A 2005-01-19 2005-01-19 Method and apparatus for producing sanitized water Expired - Fee Related JP4680610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011744A JP4680610B2 (en) 2005-01-19 2005-01-19 Method and apparatus for producing sanitized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011744A JP4680610B2 (en) 2005-01-19 2005-01-19 Method and apparatus for producing sanitized water

Publications (2)

Publication Number Publication Date
JP2006198497A true JP2006198497A (en) 2006-08-03
JP4680610B2 JP4680610B2 (en) 2011-05-11

Family

ID=36956955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011744A Expired - Fee Related JP4680610B2 (en) 2005-01-19 2005-01-19 Method and apparatus for producing sanitized water

Country Status (1)

Country Link
JP (1) JP4680610B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446046U (en) * 1987-09-14 1989-03-22
JPH06296966A (en) * 1993-04-15 1994-10-25 Japan Organo Co Ltd Decarbonating device and pure water producer assembled with the device
JPH07214066A (en) * 1994-02-09 1995-08-15 Hoshizaki Electric Co Ltd Method for removing carbon dioxide dissolved in water and device therefor and electrolytic water forming device provided this device
JPH10225689A (en) * 1998-02-10 1998-08-25 Miura Denshi Kk Production of electrolytic sterilized water or aseptic water
JP2000093977A (en) * 1998-07-21 2000-04-04 Toto Ltd Filtering method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446046U (en) * 1987-09-14 1989-03-22
JPH06296966A (en) * 1993-04-15 1994-10-25 Japan Organo Co Ltd Decarbonating device and pure water producer assembled with the device
JPH07214066A (en) * 1994-02-09 1995-08-15 Hoshizaki Electric Co Ltd Method for removing carbon dioxide dissolved in water and device therefor and electrolytic water forming device provided this device
JPH10225689A (en) * 1998-02-10 1998-08-25 Miura Denshi Kk Production of electrolytic sterilized water or aseptic water
JP2000093977A (en) * 1998-07-21 2000-04-04 Toto Ltd Filtering method and apparatus

Also Published As

Publication number Publication date
JP4680610B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US20070017801A1 (en) High electric field electrolysis cell
US8518225B2 (en) Apparatus and method for producing hydrogen-dissolved drinking water
JP6008359B2 (en) In-liquid plasma generation apparatus, liquid to be treated purification apparatus, and ion-containing liquid generation apparatus
JP4751994B1 (en) Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell
JP6836914B2 (en) Water treatment equipment, dialysate preparation water production equipment and hydrogen water server
JP2015217357A (en) Electrolytic water production apparatus, and production method of electrolytic water using the same
JPWO2017141284A1 (en) Electrolyzed water generator
WO2003000956A1 (en) Portable device for electrochemical processing of liquids
EA013774B1 (en) Device for the electrochemical treatment of the water and the water solutions
JP6490166B2 (en) Electrolytic reduction module and water purifier
JP4680610B2 (en) Method and apparatus for producing sanitized water
JP2005279538A (en) Water modifying method in making electrolytic water, and electrolytic water making apparatus
KR20060007369A (en) High electric field electrolysis cell
JP2005329331A (en) Water treatment method and water treatment apparatus
JP6132234B2 (en) Electrolyzed water generator
JP2007252963A (en) Electrolytic water producer
JP2015178061A (en) Electrolytic water generator
JP4726821B2 (en) Method for preparing cleaning liquid for sterilization
KR101402227B1 (en) Water treatment apparatus
JP3150370B2 (en) Electrolytic treatment method for treated water containing microorganisms
JPH07299464A (en) Multipurpose water treating equipment and water treatment using the same
JP3056511B2 (en) Treatment water treatment equipment
JP2005161196A (en) Electrolytic sterilized water producing apparatus
KR20060079643A (en) Apparatus for generating magnetic resonance ionic water using electrolysis equipment and magenetization equipment
KR20100073230A (en) Electrolyzor for generating ion water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20110203

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20140210

LAPS Cancellation because of no payment of annual fees