JP2006196417A - Method of driving cold cathode fluorescent lamp and its driving power supply - Google Patents

Method of driving cold cathode fluorescent lamp and its driving power supply Download PDF

Info

Publication number
JP2006196417A
JP2006196417A JP2005009427A JP2005009427A JP2006196417A JP 2006196417 A JP2006196417 A JP 2006196417A JP 2005009427 A JP2005009427 A JP 2005009427A JP 2005009427 A JP2005009427 A JP 2005009427A JP 2006196417 A JP2006196417 A JP 2006196417A
Authority
JP
Japan
Prior art keywords
voltage
fluorescent lamp
anode
cold cathode
cathode fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005009427A
Other languages
Japanese (ja)
Other versions
JP4685457B2 (en
Inventor
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2005009427A priority Critical patent/JP4685457B2/en
Publication of JP2006196417A publication Critical patent/JP2006196417A/en
Application granted granted Critical
Publication of JP4685457B2 publication Critical patent/JP4685457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable phosphor to emit light with high luminance and have long life. <P>SOLUTION: The cold cathode fluorescent lamp comprises a transformer TS of which secondary coil L2 has a middle point NP grounded; a first rectifier diode D1 of which anode is connected to one end of the secondary coil of the transformer TS; a second rectifier diode D2 of which cathode is connected to the other end of the secondary coil, wherein a pulse voltage is applied to the primary coil L1 of the transformer TS, positive differential pulse-like voltage induced on one end side of the secondary coil is applied to the anode 13 of the cold cathode fluorescent lamp 10 through the first rectifier diode D1 and negative differential pulse-like voltage induced on the other end side of the secondary coil is applied to the cathode 14 of the cold cathode fluorescent lamp 10 through the second rectifier diode D2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光体付きアノードと電界放出型の線状カソードとを対向配置し、蛍光体の発光に必要な電界エネルギーをアノード・カソードの対向空間に付与するため、アノード・カソード間に電圧(アノード・カソード間電圧Vak)を印加する電界放出型の冷陰極蛍光ランプの駆動方法およびその駆動電源に関するものである。   In the present invention, an anode with a phosphor and a field emission type linear cathode are arranged to face each other, and electric field energy necessary for light emission of the phosphor is given to the facing space between the anode and the cathode. The present invention relates to a driving method of a field emission type cold cathode fluorescent lamp to which an anode-cathode voltage Vak) is applied, and a driving power source thereof.

この種の冷陰極蛍光ランプにおいては、蛍光体付きの平面状のアノードと、このアノードのアノード面全体に電子を放出するカソードとを対向配置し、アノード・カソード間に電圧Vakを印加して電子を蛍光体に加速衝突させて該蛍光体を励起発光させるものがある(特許文献1参照。)。このような電界放出型の冷陰極蛍光ランプでは、その蛍光体の発光のために、アノード・カソード間に電圧Vakを印加して、その対向空間にカソードから電子放出させるための電界を形成する必要がある。このアノード・カソード間電圧Vakとエミッション電流Ie(カソードからの電子放出量)との間には図3で示す電圧電流特性がある。図3において横軸はアノード・カソード間電圧Vak(kV/mm)、縦軸はエミッション電流Ie(mA/cm2)を示す。アノード・カソード間電圧Vakにおいて、Vthは、蛍光体が発光を開始するのに必要な動作開始電圧で例えば1.1kV程度、V1−V2は蛍光体が発光するのに必要な動作電圧の範囲であり、例えば2.0−2.5kV程度(エミッション電流Ieは例えば数mA程度)、V0は定格電圧であり、例えば3.0kV程度(エミッション電流Ieは例えば8−10mA程度)である。 In this type of cold cathode fluorescent lamp, a flat anode with a phosphor and a cathode that emits electrons across the entire anode surface of the anode are arranged opposite to each other, and a voltage Vak is applied between the anode and cathode to apply electrons. There is a type in which the phosphor is excited to collide with the phosphor to cause the phosphor to excite and emit light (see Patent Document 1). In such a field emission type cold cathode fluorescent lamp, it is necessary to apply a voltage Vak between the anode and the cathode to form an electric field for emitting electrons from the cathode in the opposite space in order to emit light from the phosphor. There is. There is a voltage-current characteristic shown in FIG. 3 between the anode-cathode voltage Vak and the emission current Ie (amount of electron emission from the cathode). In FIG. 3, the horizontal axis represents the anode-cathode voltage Vak (kV / mm), and the vertical axis represents the emission current Ie (mA / cm 2 ). In the anode-cathode voltage Vak, Vth is an operation start voltage necessary for the phosphor to start emitting light, for example, about 1.1 kV, and V1-V2 is an operating voltage range necessary for the phosphor to emit light. For example, about 2.0-2.5 kV (emission current Ie is about several mA, for example), V0 is a rated voltage, for example, about 3.0 kV (emission current Ie is about 8-10 mA, for example).

従来の電界放出型の冷陰極蛍光ランプでは、エミッション電流Ieに対して上記関係を有するアノード・カソード間電圧Vakを直流電圧の形態にしてアノード・カソード間に印加しており、蛍光体そのものの発光寿命が極めて短くなり、実用性が低かった。
特開平05−251021号公報
In the conventional field emission type cold cathode fluorescent lamp, the anode-cathode voltage Vak having the above relationship with respect to the emission current Ie is applied in the form of a DC voltage between the anode and the cathode, and the phosphor itself emits light. The service life was extremely short and the practicality was low.
Japanese Patent Laid-Open No. 05-251021

本発明により解決すべき課題は、蛍光体を所要の輝度で発光させ、かつ、その発光寿命を長寿命化できるように冷陰極蛍光ランプを駆動する方法およびその駆動電源を提供することである。   The problem to be solved by the present invention is to provide a method of driving a cold cathode fluorescent lamp so that the phosphor emits light with a required luminance and the light emission lifetime can be extended, and a driving power source thereof.

本発明者は、従来の電界放出型の冷陰極蛍光ランプでは、アノード・カソード間電圧Vakを直流電圧の形態にしてアノード・カソード間に印加していたために、蛍光体の発光寿命が短いことに鑑み、その発光寿命を延ばし実用に供することができる冷陰極蛍光ランプの開発していた。その結果、アノード・カソード間にパルス電圧を印加して蛍光体の発光寿命を向上することができる技術の開発に成功した。しかしながら、このパルス電圧は、カソードを接地し、アノードに対して例えば6kV程度もの高電圧を印加する必要があることにより、蛍光体そのものの発光寿命が向上しても、極めて高電圧のパルス電圧を生成するパルス電源が必要となり、パルス電源の大型重量化並びにコスト高という新たな課題が発生した。そこで、さらに鋭意研究を進めた結果、本発明を完成できるに至ったのである。すなわち、   In the conventional field emission type cold cathode fluorescent lamp, the inventor has applied the anode-cathode voltage Vak in the form of a direct current voltage between the anode and the cathode, so that the emission life of the phosphor is short. In view of this, a cold cathode fluorescent lamp has been developed that extends its light emission lifetime and can be put to practical use. As a result, we have succeeded in developing a technology that can improve the light emission lifetime of a phosphor by applying a pulse voltage between the anode and cathode. However, since this pulse voltage requires the cathode to be grounded and a high voltage of about 6 kV, for example, must be applied to the anode, even if the light emission life of the phosphor itself is improved, A pulse power source to be generated is required, and new problems such as an increase in weight and cost of the pulse power source have occurred. As a result of further earnest research, the present invention has been completed. That is,

(1)本発明による冷陰極蛍光ランプの駆動方法は、アノード・カソードの対向空間に電界を形成してカソードから電子を放出させる冷陰極蛍光ランプの駆動方法において、互いのピーク値間電圧が蛍光体の発光に必要な動作電圧以上である正負二つの微分パルス状電圧を立ち上がりを同期させて生成し、正の微分パルス状電圧をアノードに、また、負の微分パルス状電圧をカソードにそれぞれ印加することを特徴とするものである。  (1) The cold cathode fluorescent lamp driving method according to the present invention is a cold cathode fluorescent lamp driving method in which an electric field is formed in the space between the anode and the cathode and electrons are emitted from the cathode. Two positive and negative differential pulse voltages that are equal to or higher than the operating voltage required for light emission of the body are generated in synchronization with the rising edges, and a positive differential pulse voltage is applied to the anode and a negative differential pulse voltage is applied to the cathode. It is characterized by doing.

本発明によると、まず、蛍光体には連続して電子を照射せず、アノード・カソード間には微分パルス状電圧を周期的に印加してカソードから電子放出させ、この放出した電子を蛍光体に照射するから、蛍光体に対する電子の照射時間が極めて短時間、換言すれば、蛍光体の励起発光動作を短時間で済ませることができるので、蛍光体の発光寿命特性が大幅に向上する。この場合、蛍光体は発光すると残光特性(励起光の照射停止から発光が消失するまでの時間)を有するので、冷陰極蛍光ランプの表示特性は損なわれない。すなわち、本発明では、冷陰極蛍光ランプを直流電圧で連続駆動して蛍光体を励起発光するのではなく、間歇的に蛍光体を励起発光するので、蛍光体の寿命は大幅に向上する。   According to the present invention, first, the phosphor is not continuously irradiated with electrons, a differential pulse voltage is periodically applied between the anode and the cathode to emit electrons from the cathode, and the emitted electrons are emitted from the phosphor. Since the irradiation time of the electrons to the phosphor is extremely short, in other words, the excitation light emission operation of the phosphor can be completed in a short time, the emission lifetime characteristics of the phosphor are greatly improved. In this case, when the phosphor emits light, it has an afterglow characteristic (time from the stop of irradiation of the excitation light until the light emission disappears), so that the display characteristic of the cold cathode fluorescent lamp is not impaired. That is, in the present invention, the cold cathode fluorescent lamp is not continuously driven at a direct current voltage to excite the phosphor to emit light, but the phosphor is intermittently excited to emit light, so that the lifetime of the phosphor is greatly improved.

以上の特徴において、アノード・カソード間には蛍光体の発光に高電圧(駆動電圧)を印加する必要があるが、カソードを接地しアノードに微分パルス状電圧を高電圧で駆動電圧を印加するのではなく、アノード側とカソード側それぞれに印加する電圧に駆動電圧を分担したので、冷陰極蛍光ランプの駆動電圧としては半分に低減することができ、冷陰極蛍光ランプ用駆動電源としては、低電圧仕様のもので済み、小型軽量化並びに低コスト化が可能となり、その上、駆動電源として取り扱いが容易なものとなる。   In the above features, it is necessary to apply a high voltage (driving voltage) between the anode and the cathode for light emission of the phosphor, but the cathode is grounded and the driving voltage is applied to the anode with a differential pulse voltage at a high voltage. Instead, the drive voltage is shared between the voltage applied to the anode side and the cathode side, so the drive voltage of the cold cathode fluorescent lamp can be reduced to half, and the drive voltage for the cold cathode fluorescent lamp is a low voltage The specification is sufficient, and the size and weight can be reduced and the cost can be reduced. In addition, the drive power source can be easily handled.

特に、本発明によれば、冷陰極蛍光ランプを低電圧駆動することができることは、液晶表示装置のバックライト等、低消費電力化と共に、さらに低電圧駆動が要求される冷陰極蛍光ランプとしては多大な利点となるものである。これは、バックライトを組み込む液晶電子機器が小型化、薄型化し、これに伴ない、その電子機器にバックライトとして組み込む冷陰極蛍光ランプも細管化、小型化等に伴ない、低電圧駆動仕様が要求されてくるからである。   In particular, according to the present invention, the cold cathode fluorescent lamp can be driven at a low voltage, such as a backlight of a liquid crystal display device. This is a great advantage. This is because liquid crystal electronic devices incorporating backlights have become smaller and thinner, and along with this, cold cathode fluorescent lamps incorporated as backlights in electronic devices have become smaller, smaller, etc. This is because it is required.

本発明の冷陰極蛍光ランプの駆動方法においては、具体構成として、駆動側に二次側コイルの中点が接地されたトランスと、該トランスの二次側コイル一端側にアノードが接続された第1の整流ダイオードと、二次側コイル他端側にカソードが接続された第2の整流ダイオードとを備えさせ、トランスの一次側コイルにパルス電圧を印加し、冷陰極蛍光ランプのアノードには二次側コイル一端側に誘起した正の微分パルス状電圧を第1の整流ダイオードを介して印加し、冷陰極蛍光ランプのカソードには二次側コイル他端側に誘起した負の微分パルス状電圧を第2の整流ダイオードを介して印加することができる。この構成では、簡単でかつ確実にアノード・カソード間に必要とする高電圧を印加することができる。   In the driving method of the cold cathode fluorescent lamp of the present invention, as a specific configuration, a transformer in which the middle point of the secondary side coil is grounded on the driving side, and an anode is connected to one end side of the secondary side coil of the transformer. 1 and a second rectifier diode having a cathode connected to the other end of the secondary coil, a pulse voltage is applied to the primary coil of the transformer, and the anode of the cold cathode fluorescent lamp has two A positive differential pulse voltage induced on one end of the secondary coil is applied via the first rectifier diode, and a negative differential pulse voltage induced on the other end of the secondary coil is applied to the cathode of the cold cathode fluorescent lamp. Can be applied via a second rectifier diode. In this configuration, a high voltage required between the anode and the cathode can be applied easily and reliably.

本発明の冷陰極蛍光ランプの駆動方法においては、アノードを面状とし、カソードを、アノード面に対しほぼ平行な線状に延びて対向する導線と、該導線の表面に形成された電界集中用の多数の微細突起付き炭素薄膜とで構成し、その導線の表面に電界集中補助用の凹凸を形成することができる。この構成では、微細突起の電界集中性能をさらに効果的に高めて、電子放出量を増大させて、蛍光体を高輝度で発光させることができるので、アノード・カソード間に印加する電圧をさらに低くすることができる。   In the driving method of the cold cathode fluorescent lamp of the present invention, the anode is formed into a planar shape, the cathode extends in a line substantially parallel to the anode surface, and the opposing conductive wire is formed on the surface of the conductive wire. The carbon thin film with a large number of fine protrusions can be formed, and unevenness for assisting electric field concentration can be formed on the surface of the conducting wire. In this configuration, the electric field concentration performance of the fine protrusions can be further effectively improved, the amount of electron emission can be increased, and the phosphor can emit light with high brightness. Therefore, the voltage applied between the anode and the cathode can be further reduced. can do.

(2)本発明による冷陰極蛍光ランプ用駆動電源は、アノード・カソードの対向空間に電界を形成してカソードからアノードに向けて電子を放出させる冷陰極蛍光ランプ用駆動電源において、アノードとカソードにそれぞれ、互いのピーク値間電圧が蛍光体の発光に必要な動作電圧以上である正負二つの微分パルス状電圧を立ち上がりを同期させて発生する電圧発生手段と、両微分パルス状電圧のうち正の微分パルス状電圧を冷陰極蛍光ランプのアノードに、負の微分パルス状電圧を冷陰極蛍光ランプのカソードに、それぞれ印加する電圧印加手段とを備えたことを特徴とするものである。  (2) A cold cathode fluorescent lamp driving power source according to the present invention is a cold cathode fluorescent lamp driving power source in which an electric field is formed in a space facing the anode and cathode to emit electrons from the cathode toward the anode. Voltage generating means for generating two differential pulsed voltages whose positive and negative voltages are equal to or higher than the operating voltage necessary for light emission of the phosphor in synchronism with each other, and positive of both differential pulsed voltages Voltage application means for applying a differential pulse voltage to the anode of the cold cathode fluorescent lamp and a negative differential pulse voltage to the cathode of the cold cathode fluorescent lamp are provided.

本発明の冷陰極蛍光ランプ用駆動電源によると、アノード・カソード間に微分パルス状電圧を印加するから、冷陰極蛍光ランプのカソードからは微分パルス状電圧に応答して電子放出し、蛍光体に対する電子の照射時間は極めて短時間、換言すれば、蛍光体の励起発光動作を短時間で済ませることができ、蛍光体の発光寿命が向上するよう冷陰極蛍光ランプを駆動することができる。この場合、蛍光体は発光すると残光特性(励起光の照射停止から発光が消失するまでの時間)を有するので、冷陰極蛍光ランプの表示特性は損なわれない。   According to the driving power source for the cold cathode fluorescent lamp of the present invention, a differential pulse voltage is applied between the anode and the cathode, so that electrons are emitted from the cathode of the cold cathode fluorescent lamp in response to the differential pulse voltage and The electron irradiation time is extremely short, in other words, the excitation light emission operation of the phosphor can be completed in a short time, and the cold cathode fluorescent lamp can be driven so that the emission life of the phosphor is improved. In this case, when the phosphor emits light, it has an afterglow characteristic (time from the stop of irradiation of the excitation light until the light emission disappears), so that the display characteristic of the cold cathode fluorescent lamp is not impaired.

特に、本発明の冷陰極蛍光ランプ用駆動電源によると、冷陰極蛍光ランプを低電圧駆動することができるので、液晶表示装置用バックライトとして低電圧駆動仕様としてその有用性は極めて高いものである。すなわち、近年における液晶表示装置の薄型大型化、低消費電力化に加えて、低電圧駆動仕様の要求に伴ない、そのバックライトにおいても、低消費電力化等に加えて、低電圧駆動が要求されてきている中においては、多大な利点となるものである。これは、バックライトを組み込む液晶電子機器が小型化、薄型化し、これに伴ない、その電子機器にバックライトとして組み込む冷陰極蛍光ランプも細管化、小型化等に伴ない、低電圧駆動仕様が要求されてくるからである。   In particular, according to the cold cathode fluorescent lamp driving power source of the present invention, the cold cathode fluorescent lamp can be driven at a low voltage, and therefore, its usefulness as a low voltage driving specification as a backlight for a liquid crystal display device is extremely high. . In other words, in addition to the recent demands for low-voltage drive specifications in addition to the reduction in thickness and size of liquid crystal display devices and the reduction in power consumption, the backlight also requires low-voltage drive in addition to lower power consumption. Of course, this is a great advantage. This is because liquid crystal electronic devices incorporating backlights have become smaller and thinner, and along with this, cold cathode fluorescent lamps incorporated as backlights in electronic devices have become smaller, smaller, etc. This is because it is required.

本発明の冷陰極蛍光ランプ用駆動電源は、好ましくは、上記電圧発生手段が、二次側コイルの中点が接地されたトランスを備え、上記電圧印加手段が、該トランスの二次側コイル一端側にアノードが接続された第1の整流ダイオードと、二次側コイル他端側にカソードが接続された第2の整流ダイオードとを備える。   In the driving power source for a cold cathode fluorescent lamp according to the present invention, preferably, the voltage generating means includes a transformer with the middle point of the secondary coil grounded, and the voltage applying means has one end of the secondary coil of the transformer. A first rectifier diode having an anode connected to the side, and a second rectifier diode having a cathode connected to the other end of the secondary coil.

上記本発明の冷陰極蛍光ランプは、液晶表示装置用バックライトに限定されず、照明ランプ等、他の用途にも適用することができることは勿論である。   Of course, the cold cathode fluorescent lamp of the present invention is not limited to a backlight for a liquid crystal display device, and can be applied to other uses such as an illumination lamp.

本発明によれば、蛍光体を高輝度発光と長寿命化とを達成することができる。   According to the present invention, it is possible to achieve high-luminance emission and long life of the phosphor.

以下、添付した図面を参照して、本発明の実施の形態に係る電界放出型の冷陰極蛍光ランプの駆動方法とその駆動電源とを説明する。図1は、実施の形態1に係る冷陰極蛍光ランプとその駆動電源とを示す図、図2は駆動電源の各部電圧波形と冷陰極蛍光ランプのアノード・カソード間の電圧波形とを示す図、図3はアノード・カソード間電圧Vakとエミッション電流Ieとの関係を示す図、図4は冷陰極蛍光ランプの構造を示す断面図である。   Hereinafter, a driving method of a field emission cold cathode fluorescent lamp according to an embodiment of the present invention and a driving power source thereof will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing a cold cathode fluorescent lamp and its driving power source according to Embodiment 1, and FIG. 2 is a diagram showing voltage waveforms of respective parts of the driving power source and voltage waveforms between the anode and cathode of the cold cathode fluorescent lamp, FIG. 3 is a diagram showing the relationship between the anode-cathode voltage Vak and the emission current Ie, and FIG. 4 is a cross-sectional view showing the structure of the cold cathode fluorescent lamp.

図1を参照して、10は冷陰極蛍光ランプ、20は駆動電源である。冷陰極蛍光ランプ10は、真空容器11内に、蛍光体12付きのアノード13と、線状カソード14とを対向配置して構成されている。   Referring to FIG. 1, 10 is a cold cathode fluorescent lamp, and 20 is a drive power source. The cold cathode fluorescent lamp 10 is configured by disposing an anode 13 with a phosphor 12 and a linear cathode 14 facing each other in a vacuum vessel 11.

駆動電源20は、電圧発生手段20aと、電圧印加手段20bとを備えている。電圧発生手段20aは、二次側コイルL2の中点NPが接地されたトランスTSを備える。電圧発生手段20aは、トランスTSの一次側コイルL1の両端間にパルス電圧を印加する手段を備えるが、特にその図示を省略している。電圧印加手段26は、トランスTSの二次側コイルL2一端側にアノードが接続された第1の整流ダイオードD1と、二次側コイルL2他端側にカソードが接続された第2の整流ダイオードD2とを備える。第1の整流ダイオードD1のカソードは冷陰極蛍光ランプ10のアノード13に、第2の整流ダイオードD2のアノードは冷陰極蛍光ランプ10のカソード14にそれぞれ接続されている。   The drive power supply 20 includes a voltage generation unit 20a and a voltage application unit 20b. The voltage generating means 20a includes a transformer TS in which the middle point NP of the secondary coil L2 is grounded. The voltage generation means 20a includes means for applying a pulse voltage between both ends of the primary coil L1 of the transformer TS, but is not particularly shown. The voltage applying means 26 includes a first rectifier diode D1 having an anode connected to one end of the secondary coil L2 of the transformer TS, and a second rectifier diode D2 having a cathode connected to the other end of the secondary coil L2. With. The cathode of the first rectifier diode D1 is connected to the anode 13 of the cold cathode fluorescent lamp 10, and the anode of the second rectifier diode D2 is connected to the cathode 14 of the cold cathode fluorescent lamp 10.

図2を参照してトランスTSの一次側コイルL1両端間には図2(a)で示すパルス電圧Vpが印加される。トランスTSの二次側コイルL2の一端側L2aには図2(b)で示す正の微分パルス状電圧Vaが誘起生成され、この生成された微分パルス状電圧Vaは冷陰極蛍光ランプ10のアノード13に印加される。二次側コイルL2の他端側L2bには図2(c)で示す負の微分パルス状電圧Vkが誘起生成され、この生成された微分パルス状電圧Vkは冷陰極蛍光ランプ10のカソード14に印加される。この場合、両微分パルス状電圧Va,Vkの立ち上がりは同期している。両微分パルス状電圧Va,Vkの互いのピーク値間電圧は、カソード14から電子がアノード13に向けて放出され、この放出した電子が蛍光体12に衝突して発光することができる電圧である。以上により、冷陰極蛍光ランプ10のアノード・カソード13,14間には図2(d)で示す電圧Vakが印加されて、カソード14から電子がアノード13に向けて放出され、この放出した電子が蛍光体12に衝突して発光する。   Referring to FIG. 2, a pulse voltage Vp shown in FIG. 2A is applied between both ends of the primary coil L1 of the transformer TS. A positive differential pulse voltage Va shown in FIG. 2B is induced and generated at one end L2a of the secondary coil L2 of the transformer TS, and the generated differential pulse voltage Va is the anode of the cold cathode fluorescent lamp 10. 13 is applied. A negative differential pulse voltage Vk shown in FIG. 2C is induced and generated at the other end L2b of the secondary coil L2, and the generated differential pulse voltage Vk is applied to the cathode 14 of the cold cathode fluorescent lamp 10. Applied. In this case, the rising edges of both differential pulse voltages Va and Vk are synchronized. The voltage between the peak values of the differential pulse voltages Va and Vk is a voltage at which electrons can be emitted from the cathode 14 toward the anode 13 and the emitted electrons can collide with the phosphor 12 to emit light. . As described above, the voltage Vak shown in FIG. 2D is applied between the anode and the cathodes 13 and 14 of the cold cathode fluorescent lamp 10, and electrons are emitted from the cathode 14 toward the anode 13. It collides with the phosphor 12 and emits light.

ここで、冷陰極蛍光ランプ10のアノード・カソード間電圧Vakとエミッション電流Ie(電子放出量)との関係を図3を参照して説明すると、横軸はアノード・カソード間電圧Vak(kV/mm)、縦軸はエミッション電流Ie(mA/cm2)を示す。アノード・カソード間電圧Vakにおいて、Vthは、動作開始電圧で例えば1.1kV、V1−V2は蛍光体が発光する動作電圧範囲であり、例えば2.0−2.5kVである。動作電圧の範囲は適宜に決定することができる。V0は定格電圧であり、例えば3.0kVである。したがって、図2(d)で示すアノード・カソード間電圧Vakは、この動作電圧範囲に設定することができる。 Here, the relationship between the anode-cathode voltage Vak and the emission current Ie (electron emission amount) of the cold cathode fluorescent lamp 10 will be described with reference to FIG. 3. The horizontal axis represents the anode-cathode voltage Vak (kV / mm). ), The vertical axis represents the emission current Ie (mA / cm 2 ). In the anode-cathode voltage Vak, Vth is an operation start voltage, for example, 1.1 kV, and V1-V2 is an operation voltage range in which the phosphor emits light, for example, 2.0-2.5 kV. The range of the operating voltage can be determined as appropriate. V0 is a rated voltage, for example, 3.0 kV. Therefore, the anode-cathode voltage Vak shown in FIG. 2D can be set within this operating voltage range.

図4を参照して冷陰極蛍光ランプ10の構造を詳しい説明すると、10は冷陰極蛍光ランプ全体を示す。11は真空容器、12は蛍光体、13はアノード、14はカソードである。真空容器11の形状はバックライトを始めとして光源の用途に応じて様々な形態をとることができる。真空容器11は前面部11aがガラス基板、石英やサファイヤ等からなる。前面部11aの内面にはアノード13がITO(酸化インジウム・錫)やアルミニウム等の金属をスパッタリングやEB蒸着等により薄膜状にして形成されている。蛍光体12は、アノード13にスラリー塗布法、スクリーン印刷法、電気永動法、沈降法等により塗布されている。カソード14は、アノード13と間隔を隔てて一方向に線状に延びて配置される。カソード14は、アノード・カソード間電圧Vakの印加によりアノード13との間で発生する電界によりアノード13に向けて電子を放出する電界放射型のカソードである。カソード14は、導線14aと、この導線14aの表面に形成された多数のナノチューブ状、ナノウォール状、その他の微細突起を有する炭素薄膜14bとにより形成されている。   The structure of the cold cathode fluorescent lamp 10 will be described in detail with reference to FIG. 4. Reference numeral 10 denotes the entire cold cathode fluorescent lamp. 11 is a vacuum vessel, 12 is a phosphor, 13 is an anode, and 14 is a cathode. The shape of the vacuum vessel 11 can take various forms depending on the use of the light source including the backlight. The front surface 11a of the vacuum vessel 11 is made of a glass substrate, quartz, sapphire, or the like. On the inner surface of the front surface portion 11a, an anode 13 is formed in a thin film by sputtering, EB vapor deposition or the like of a metal such as ITO (indium oxide / tin) or aluminum. The phosphor 12 is applied to the anode 13 by a slurry application method, a screen printing method, an electric perturbation method, a sedimentation method, or the like. The cathode 14 is arranged to extend linearly in one direction at a distance from the anode 13. The cathode 14 is a field emission type cathode that emits electrons toward the anode 13 by an electric field generated between the anode 13 and the anode 13 by applying an anode-cathode voltage Vak. The cathode 14 is formed by a conductive wire 14a and a carbon thin film 14b having a number of nanotubes, nanowalls, and other fine protrusions formed on the surface of the conductive wire 14a.

カソード14は、導線14aの表面が電界集中をより発生しやすくする表面粗さに積極的に設定されており、この表面粗さの凹凸14cは炭素薄膜14bだけの微細突部にさらに全体の凹凸14dを形成しており微細突部での電界集中を助長する電界集中補助部として作用する。この表面粗さは微視的であるが、可視的な凹凸でもよい。例えば、複数の導線を撚り合わせてなる凹凸や、導線表面をねじ切り加工する凹凸でもよい。   The cathode 14 is positively set to have a surface roughness that makes it easier for the surface of the conducting wire 14a to generate electric field concentration. The surface roughness unevenness 14c is further formed on the fine protrusions formed only by the carbon thin film 14b. 14d is formed and acts as an electric field concentration assisting part that promotes electric field concentration at the fine protrusions. This surface roughness is microscopic but may be visible irregularities. For example, the unevenness | corrugation which twists several conducting wires and the unevenness | corrugation which carries out the threading process of the conducting wire surface may be sufficient.

以上の構成を備えた冷陰極蛍光ランプ10においては、蛍光体12が発光する期間は、微分パルス状電圧Va,Vbからなるアノード・カソード間電圧Vakが印加される極めて短い期間だけであるから、蛍光体12の発光寿命を長寿命にすることができる。また、アノード・カソード間電圧Vakはパルス状であるから、ピーク−ピーク間電圧を高くすることができ、この高くした電圧により、カソード14から高速で電子を放出させて蛍光体12に衝突させることができるので、数個の蛍光体粒子の積層からなる蛍光体12に対して、電子を容易に蛍光体粒子の表面層ではなく内部深くまで侵入させて発光させることができ、その発光効率を高くすることができる。   In the cold cathode fluorescent lamp 10 having the above configuration, the phosphor 12 emits light only during a very short period in which the anode-cathode voltage Vak composed of the differential pulse voltages Va and Vb is applied. The light emission life of the phosphor 12 can be extended. Further, since the anode-cathode voltage Vak is pulsed, the peak-to-peak voltage can be increased, and the increased voltage causes electrons to be emitted from the cathode 14 at a high speed and collide with the phosphor 12. Therefore, with respect to the phosphor 12 made of a laminate of several phosphor particles, electrons can be easily penetrated into the interior of the phosphor particles instead of the surface layer to emit light, and the luminous efficiency is increased. can do.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

本発明の実施の形態に係り、電界放出型の冷陰極蛍光ランプとその駆動電源とを示す図である。It is a figure which shows the field emission type cold cathode fluorescent lamp and its drive power source concerning embodiment of this invention. 図1の駆動回路の動作説明に供するタイミングチャートである。2 is a timing chart for explaining the operation of the drive circuit of FIG. 1. 図1の冷陰極蛍光ランプの電圧電流特性を示す図である。It is a figure which shows the voltage-current characteristic of the cold cathode fluorescent lamp of FIG. 冷陰極蛍光ランプの構造を示す断面図である。It is sectional drawing which shows the structure of a cold cathode fluorescent lamp.

符号の説明Explanation of symbols

10 冷陰極蛍光ランプ
20 駆動電源
20a 電圧発生手段
20b 電圧印加手段
DESCRIPTION OF SYMBOLS 10 Cold cathode fluorescent lamp 20 Drive power supply 20a Voltage generation means 20b Voltage application means

Claims (5)

アノード・カソードの対向空間に電界を形成してカソードから電子を放出させる冷陰極蛍光ランプの駆動方法において、互いのピーク値間電圧が蛍光体の発光に必要な動作電圧以上である正負二つの微分パルス状電圧を立ち上がりを同期させて生成し、正の微分パルス状電圧をアノードに、また、負の微分パルス状電圧をカソードにそれぞれ印加する、ことを特徴とする冷陰極蛍光ランプの駆動方法。   In the driving method of a cold cathode fluorescent lamp in which an electric field is formed in the opposing space between the anode and the cathode and electrons are emitted from the cathode, the differential between the positive and negative differentials in which the voltage between the peak values is equal to or higher than the operating voltage required for the phosphor emission A driving method of a cold cathode fluorescent lamp, characterized in that a pulsed voltage is generated in synchronization with rising, and a positive differential pulsed voltage is applied to an anode and a negative differential pulsed voltage is applied to a cathode. 駆動側に二次側コイルの中点が接地されたトランスと、該トランスの二次側コイル一端側にアノードが接続された第1の整流ダイオードと、二次側コイル他端側にカソードが接続された第2の整流ダイオードとを備えさせ、トランスの一次側コイルにパルス電圧を印加し、冷陰極蛍光ランプのアノードには二次側コイル一端側に誘起した正の微分パルス状電圧を第1の整流ダイオードを介して印加し、冷陰極蛍光ランプのカソードには二次側コイル他端側に誘起した負の微分パルス状電圧を第2の整流ダイオードを介して印加する、ことを特徴とする請求項1に記載の冷陰極蛍光ランプの駆動方法。   A transformer with the middle point of the secondary coil grounded on the drive side, a first rectifier diode with an anode connected to one end of the secondary coil of the transformer, and a cathode connected to the other end of the secondary coil A pulse voltage is applied to the primary coil of the transformer, and a positive differential pulse voltage induced at one end of the secondary coil is applied to the anode of the cold cathode fluorescent lamp as the first rectifier diode. The negative differential pulse voltage induced on the other end side of the secondary coil is applied to the cathode of the cold cathode fluorescent lamp via the second rectifier diode. The driving method of the cold cathode fluorescent lamp according to claim 1. アノードが面状であり、カソードが、アノード面に対しほぼ平行な線状に延びて対向する導線と、該導線の表面に形成された電界集中用の多数の微細突起付き炭素薄膜とを備え、該導線はその表面に電界集中補助用の凹凸が形成されている、ことを特徴とする請求項1または2に記載の冷陰極蛍光ランプの駆動方法。   The anode has a planar shape, and the cathode includes a conductive wire extending in a line substantially parallel to the anode surface and facing, and a carbon thin film with a large number of fine protrusions for electric field concentration formed on the surface of the conductive wire, 3. The driving method for a cold cathode fluorescent lamp according to claim 1, wherein the conductive wire has an unevenness for assisting electric field concentration formed on a surface thereof. アノード・カソードの対向空間に電界を形成してカソードからアノードに向けて電子を放出させる冷陰極蛍光ランプ用駆動電源において、アノードとカソードにそれぞれ、互いのピーク値間電圧が蛍光体の発光に必要な動作電圧以上である正負二つの微分パルス状電圧を立ち上がりを同期させて発生する電圧発生手段と、両微分パルス状電圧のうち正の微分パルス状電圧を冷陰極蛍光ランプのアノードに、負の微分パルス状電圧を冷陰極蛍光ランプのカソードに、それぞれ印加する電圧印加手段とを備えた、ことを特徴とする冷陰極蛍光ランプ用駆動電源。   In a cold cathode fluorescent lamp drive power supply that forms an electric field in the space between the anode and cathode and emits electrons from the cathode toward the anode, the voltage between the peak values of the anode and the cathode is required for the phosphor to emit light. Voltage generating means for generating two differential pulsed voltages having positive and negative values that are equal to or higher than the normal operating voltage in synchronization with rising edges, and a positive differential pulsed voltage of both differential pulsed voltages is applied to the anode of the cold cathode fluorescent lamp, A drive power supply for a cold cathode fluorescent lamp, comprising voltage applying means for applying a differential pulse voltage to each cathode of the cold cathode fluorescent lamp. 上記電圧発生手段が、二次側コイルの中点が接地されたトランスを備え、
上記電圧印加手段が、該トランスの二次側コイル一端側にアノードが接続された第1の整流ダイオードと、二次側コイル他端側にカソードが接続された第2の整流ダイオードとを備える、ことを特徴とする請求項4に記載の冷陰極蛍光ランプ用駆動電源。
The voltage generating means includes a transformer in which the middle point of the secondary coil is grounded,
The voltage application means includes a first rectifier diode having an anode connected to one end of the secondary coil of the transformer, and a second rectifier diode having a cathode connected to the other end of the secondary coil. The drive power supply for a cold cathode fluorescent lamp according to claim 4.
JP2005009427A 2005-01-17 2005-01-17 Driving method of cold cathode fluorescent lamp and driving power source thereof Expired - Fee Related JP4685457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009427A JP4685457B2 (en) 2005-01-17 2005-01-17 Driving method of cold cathode fluorescent lamp and driving power source thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009427A JP4685457B2 (en) 2005-01-17 2005-01-17 Driving method of cold cathode fluorescent lamp and driving power source thereof

Publications (2)

Publication Number Publication Date
JP2006196417A true JP2006196417A (en) 2006-07-27
JP4685457B2 JP4685457B2 (en) 2011-05-18

Family

ID=36802307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009427A Expired - Fee Related JP4685457B2 (en) 2005-01-17 2005-01-17 Driving method of cold cathode fluorescent lamp and driving power source thereof

Country Status (1)

Country Link
JP (1) JP4685457B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436950A (en) * 1990-05-31 1992-02-06 Matsushita Electron Corp Cold cathode fluorescent lamp
JPH1125909A (en) * 1997-07-03 1999-01-29 Mitsubishi Electric Corp Rare gas discharge lamp device
JP2002082327A (en) * 2000-05-18 2002-03-22 Hitachi Ltd Liquid crystal display
JP2002373569A (en) * 2001-06-15 2002-12-26 Mitsubishi Electric Corp Electron source and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436950A (en) * 1990-05-31 1992-02-06 Matsushita Electron Corp Cold cathode fluorescent lamp
JPH1125909A (en) * 1997-07-03 1999-01-29 Mitsubishi Electric Corp Rare gas discharge lamp device
JP2002082327A (en) * 2000-05-18 2002-03-22 Hitachi Ltd Liquid crystal display
JP2002373569A (en) * 2001-06-15 2002-12-26 Mitsubishi Electric Corp Electron source and its manufacturing method

Also Published As

Publication number Publication date
JP4685457B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
EP1775751A2 (en) Light emitting device using electron emission and flat display apparatus using the same
KR101002278B1 (en) Field emission type backlight device
JP2006294494A (en) Fluorescent lamp
CN101009197A (en) Generation device of the plane light source and the method for driving the same
JP4685457B2 (en) Driving method of cold cathode fluorescent lamp and driving power source thereof
US9288885B2 (en) Electrical power control of a field emission lighting system
CN1959503A (en) Field emission element in use for background light
KR100669719B1 (en) Field emission type backlight unit and flat panel display device using the same
US7622858B2 (en) Planar light source generating apparatus
Liu et al. Luminance and luminous efficacy improvement of mercury-free flat fluorescent lamp with arclike electrode
JP4591956B2 (en) Driving method of field emission type cold cathode fluorescent lamp and driving power source thereof
TWI240126B (en) Fluorescent lamp for backlight device
US20060158094A1 (en) Field emission display (FED)
US20080018259A1 (en) Mirror having a field emission information display
JP5010685B2 (en) Field emission device
CN1933085A (en) Plasma display device utilizing high-frequency preheating and plasma body discharging method
JP4628744B2 (en) Backlight device for liquid crystal display device
KR100804699B1 (en) Light emitting device and liquid crystal display with the light emitting device as back light unit
JP2008059904A (en) Field emission lamp
KR100623096B1 (en) Flat lamp of emitting light from both sides
JP5346310B2 (en) Light emitting device
KR100708716B1 (en) Light emitting device using electron emission, flat display apparatus using the same and the method of manufacturing the same
JP2006179202A (en) Flat face light source
JP2008192339A (en) Light emitting drive method of cold-cathode fluorescent lamp
JP2008084659A (en) Field emission lamp, and drive method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees