JP2006195754A - Circuit operation verification method, circuit operation verification device, and computer program - Google Patents

Circuit operation verification method, circuit operation verification device, and computer program Download PDF

Info

Publication number
JP2006195754A
JP2006195754A JP2005006895A JP2005006895A JP2006195754A JP 2006195754 A JP2006195754 A JP 2006195754A JP 2005006895 A JP2005006895 A JP 2005006895A JP 2005006895 A JP2005006895 A JP 2005006895A JP 2006195754 A JP2006195754 A JP 2006195754A
Authority
JP
Japan
Prior art keywords
voltage drop
power supply
drop amount
supply voltage
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005006895A
Other languages
Japanese (ja)
Inventor
Tamiyo Nakabayashi
太美世 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005006895A priority Critical patent/JP2006195754A/en
Publication of JP2006195754A publication Critical patent/JP2006195754A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit operation verification method, a circuit operation verification device, and a computer program, capable of correctly and speedily verifying whether or not a circuit element built in a semiconductor integrated circuit malfunctions by considering each voltage drop of power supply wiring and grounding wiring. <P>SOLUTION: Based on a function showing the relation between the total amount of voltage drops and the amount of a delay variation, the amount of an allowable power supply voltage drop ΔV<SB>DDY</SB>and the amount of an allowable grounding voltage drop ΔV<SB>SSY</SB>corresponding to the amount of the delay variation P<SB>Y</SB>which satisfies design constraints are determined, and when the amount of a power supply voltage drop ΔV<SB>DDDC</SB>of the circuit element determined based on mask layout data is smaller than ΔV<SB>DDY</SB>, or the amount of a grounding voltage drop ΔV<SB>SSDC</SB>is smaller than ΔV<SB>SSY</SB>, the circuit element is determined to malfunction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体集積回路が有する回路素子の動作を回路動作検証装置で検証する回路動作検証方法、回路動作検証装置及びコンピュータプログラムに関する。   The present invention relates to a circuit operation verification method, a circuit operation verification apparatus, and a computer program for verifying the operation of a circuit element included in a semiconductor integrated circuit using a circuit operation verification apparatus.

例えば自動配置配線装置を用いた半導体集積回路の設計工程においては、自動配置配線装置がフォトマスクのマスクレイアウトデータを生成する。そして、生成されたマスクレイアウトデータに基づいて、半導体集積回路が製造される。   For example, in a semiconductor integrated circuit design process using an automatic placement and routing apparatus, the automatic placement and routing apparatus generates mask layout data for a photomask. Then, a semiconductor integrated circuit is manufactured based on the generated mask layout data.

半導体集積回路の動作時には、電源配線の抵抗によって、電源配線経路に沿った電源電圧の変化が生じる。特に、半導体集積回路が高集積化、高速化、低電圧化された場合、電源配線による電圧降下(以下、電源電圧降下という)の影響が大きくなり、半導体集積回路の回路動作速度の低下、半導体集積回路の誤動作等の不具合が生じるという問題がある。このような問題を解決するために、電源電圧降下を考慮した設計を行なう必要がある。   During operation of the semiconductor integrated circuit, the power supply voltage changes along the power supply wiring path due to the resistance of the power supply wiring. In particular, when a semiconductor integrated circuit is highly integrated, increased in speed, and reduced in voltage, the effect of a voltage drop (hereinafter referred to as a power supply voltage drop) due to power supply wiring becomes large, and the circuit operation speed of the semiconductor integrated circuit decreases. There is a problem that a malfunction such as malfunction of the integrated circuit occurs. In order to solve such a problem, it is necessary to design in consideration of a power supply voltage drop.

電源電圧降下の解析手法としては、回路シミュレーションによって解析する手法、動的(ダイナミック)な解析手法、及び静的(スタティック)な解析手法が知られている。回路シミュレーションによって解析する手法は、最も正確であるが、コンピュータによるシミュレーション実行時間、コンピュータに搭載されるメモリの記憶容量等の制約上、特に、大規模な半導体集積回路を検証することが不可能である。また、動的な解析手法は、適用可能な半導体集積回路の規模に限界があり、また、モデリングの精度が低いという問題がある。以上のことから、一般に、静的な解析手法が用いられている(非特許文献1参照)。   As a power supply voltage drop analysis method, a method of analyzing by circuit simulation, a dynamic analysis method, and a static analysis method are known. The method of analysis by circuit simulation is the most accurate, but it is not possible to verify a large-scale semiconductor integrated circuit in particular due to constraints such as the computer simulation execution time and the storage capacity of the memory installed in the computer. is there. In addition, the dynamic analysis method has a problem that the scale of applicable semiconductor integrated circuits is limited and the modeling accuracy is low. From the above, a static analysis method is generally used (see Non-Patent Document 1).

静的な解析手法では、半導体集積回路を、電流源と抵抗素子とを備える等価回路に置き換える。まず、等価回路の電流源に与える消費電流Iavg を算出する(静的な平均消費電流の算出)。次に、マスクレイアウトデータに基づき、電源配線の抵抗成分Rを抽出する(電源配線抵抗網の抽出)。最後に、抽出された抵抗網に電流源を付加してDC解析を行なうことによって、電源配線の電圧降下を求める。 In the static analysis method, the semiconductor integrated circuit is replaced with an equivalent circuit including a current source and a resistance element. First, the consumption current I avg applied to the current source of the equivalent circuit is calculated (calculation of static average consumption current). Next, the resistance component R of the power supply wiring is extracted based on the mask layout data (extraction of the power supply wiring resistance network). Finally, a current source is added to the extracted resistance network and DC analysis is performed to obtain a voltage drop in the power supply wiring.

静的な解析手法による電源電圧降下量ΔVstは、
ΔVst=Iavg ×R (1)
である。
The power supply voltage drop ΔV st by the static analysis method is
ΔV st = I avg × R (1)
It is.

静的な解析手法は、従来、回路シミュレーションによって解析する手法、及び動的な解析手法を用いて解析することができなかった大規模な半導体集積回路の正確な解析を現実的な時間で実行することができる。このため、静的な解析手法は、現在の電源電圧降下の解析を行なうCADツールに採用されている解析手法の主流になっている。   In static analysis methods, accurate analysis of large-scale semiconductor integrated circuits that could not be analyzed using circuit analysis and dynamic analysis methods is performed in real time. be able to. For this reason, the static analysis method has become the mainstream of the analysis method adopted in the current CAD tool for analyzing the power supply voltage drop.

さて、電源電圧降下によって半導体集積回路が誤動作するか否かを検証するために、回路素子に対して入出力される信号の遅延時間の変化(以下、遅延変化という)を考慮することが一般に行われている(特許文献1参照)。   Now, in order to verify whether or not a semiconductor integrated circuit malfunctions due to a power supply voltage drop, it is generally considered to take into account changes in the delay time of signals input to and output from circuit elements (hereinafter referred to as delay changes). (See Patent Document 1).

遅延変化は、電源電圧降下、接地配線による電圧降下(以下、接地電圧降下という)等を要因として発生する。各回路素子に係る遅延変化の値が、半導体集積回路の設計制約条件を満たす許容遅延変化の値を上回る場合、回路素子は誤作動すると判定される。
特開2000−195960号公報 フル−チップ ヴァリフィケーション オブ UDSM デザインズ(Full-Chip Verification of UDSM Designs),アール.サレハ(R.Saleh),シンプレック ソリューションズ(Simplex Solutions),シグナル インテグリティ エフェクツ イン カスタム IC アンド ASIC デザインズ(Signal Integrity Effects in Custom IC and ASIC Designs),ワイリー インターサイエンス(Wiley Interscience),IEEE プレス(IEEE Press),2002, pp.245-252.
The delay change occurs due to a power supply voltage drop, a voltage drop caused by ground wiring (hereinafter referred to as a ground voltage drop), and the like. If the value of the delay change associated with each circuit element exceeds the allowable delay change value that satisfies the design constraint conditions of the semiconductor integrated circuit, it is determined that the circuit element malfunctions.
JP 2000-195960 A Full-Chip Verification of UDSM Designs, Earl. Saleh (R. Saleh), Simplex Solutions, Signal Integrity Effects in Custom IC and ASIC Designs, Wiley Interscience, IEEE Press , 2002, pp.245-252.

しかしながら、特許文献1に開示されている遅延計算装置は、電源電圧降下による遅延変化は考慮しているが、接地電圧降下による遅延変化を考慮していないため、半導体集積回路の誤動作を検証するには不十分であった。   However, the delay calculation device disclosed in Patent Document 1 considers a delay change due to a power supply voltage drop, but does not consider a delay change due to a ground voltage drop. Was insufficient.

また、特許文献1においては、電源電圧降下を考慮した遅延時間の算出と、半導体集積回路の論理シミュレーションとを行ない、算出された遅延時間と論理シミュレーションの結果とに基づいて、回路素子が誤動作するか否かを判定していた。このため、誤作動する回路素子が検出された場合、回路素子が誤作動すると判定されなくなるまで、マスクレイアウトデータの修正、遅延時間の算出、及び論理シミュレーションを繰り返し行なう必要があった。このため、半導体集積回路の動作検証に要する工程が増加するという問題があった。   In Patent Document 1, the delay time is calculated in consideration of the power supply voltage drop and the logic simulation of the semiconductor integrated circuit is performed, and the circuit element malfunctions based on the calculated delay time and the result of the logic simulation. It was determined whether or not. Therefore, when a malfunctioning circuit element is detected, it is necessary to repeat mask layout data correction, delay time calculation, and logic simulation until it is determined that the circuit element malfunctions. For this reason, there is a problem that the number of steps required for operation verification of the semiconductor integrated circuit increases.

本発明は斯かる事情に鑑みてなされたものであり、許容電源電圧降下量を、半導体集積回路が有する回路素子が誤作動するか否かの判定基準とし、また、回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係に基づいて許容電源電圧降下量を算出することにより、電源電圧降下及び接地電圧降下を考慮しつつ、正確かつ簡易に誤作動を検証することができる回路動作検証方法及びコンピュータプログラムを提供することを目的とする。   The present invention has been made in view of such circumstances. The allowable power supply voltage drop amount is used as a criterion for determining whether or not a circuit element included in a semiconductor integrated circuit malfunctions, and a power supply related to the type of circuit element. By calculating the allowable power supply voltage drop based on the relationship between the voltage drop, ground voltage drop, and delay variation, it is possible to verify the malfunction accurately and easily while considering the power supply voltage drop and ground voltage drop. An object of the present invention is to provide a circuit operation verification method and a computer program capable of performing the above.

本発明の他の目的は、記憶手段に記憶してある電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係に基づいて許容電源電圧降下量を算出する構成とすることにより、電源電圧降下及び接地電圧降下を考慮しつつ、正確、簡易かつ高速に誤作動を検証することができる回路動作検証方法及び回路動作検証装置を提供することにある。   Another object of the present invention is to calculate the allowable power supply voltage drop based on the relationship between the power supply voltage drop, the ground voltage drop, and the delay variation stored in the storage means. It is another object of the present invention to provide a circuit operation verification method and a circuit operation verification apparatus capable of verifying a malfunction accurately, simply and at high speed while considering a ground voltage drop.

本発明の他の目的は、記憶手段に記憶してある電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係に基づいて許容接地電圧降下量を算出する構成とすることにより、更に正確に誤作動を検証することができる回路動作検証装置を提供することにある。   Another object of the present invention is to more accurately calculate the allowable ground voltage drop amount based on the relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount stored in the storage means. An object of the present invention is to provide a circuit operation verification device capable of verifying a malfunction.

本発明の他の目的は、半導体集積回路が有する回路素子に係る電源電圧降下量及び接地電圧降下量を、回路素子の消費電流、並びに電源配線及び接地配線夫々の抵抗に基づいて算出する構成とすることにより、誤作動を検証する際に、煩雑な計算を行なうことなく電源電圧降下及び接地電圧降下を考慮することができる回路動作検証装置を提供することにある。   Another object of the present invention is to calculate a power supply voltage drop amount and a ground voltage drop amount related to a circuit element included in a semiconductor integrated circuit based on current consumption of the circuit element and resistances of the power supply wiring and the ground wiring. Accordingly, it is an object of the present invention to provide a circuit operation verification device that can consider a power supply voltage drop and a ground voltage drop without performing complicated calculations when verifying a malfunction.

本発明の更に他の目的は、許容電源電圧降下量及び許容接地電圧降下量夫々を算出するための遅延変化量を、回路素子に対する入力信号及び出力信号に基づいて算出する構成とすることにより、誤作動を検証する際に、煩雑な計算を行なうことなく電源電圧降下及び接地電圧降下を考慮することができる回路動作検証装置を提供することにある。   Still another object of the present invention is to calculate a delay change amount for calculating each of an allowable power supply voltage drop amount and an allowable ground voltage drop amount based on an input signal and an output signal to a circuit element. An object of the present invention is to provide a circuit operation verification device capable of considering a power supply voltage drop and a ground voltage drop without performing complicated calculations when verifying a malfunction.

本発明に係る回路動作検証方法は、半導体集積回路が有する回路素子が誤作動するか否かを、回路動作検証装置で検証する回路動作検証方法において、前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて、前記半導体集積回路の設計制約条件を満たす許容電源電圧降下量を求め、前記半導体集積回路が有する回路素子に接続される電源配線による電圧降下を示す電源電圧降下量が、求められた許容電源電圧降下量超過であるか否かを判定し、前記電源電圧降下量が前記許容電源電圧降下量超過であると判定した場合、前記回路素子が誤作動すると判定することを特徴とする。   The circuit operation verification method according to the present invention is a circuit operation verification method for verifying whether or not a circuit element included in a semiconductor integrated circuit malfunctions by using a circuit operation verification apparatus. The power supply wiring and ground wiring included in the semiconductor integrated circuit A power supply connected to a circuit element included in the semiconductor integrated circuit by obtaining an allowable power supply voltage drop satisfying a design constraint condition of the semiconductor integrated circuit based on a power supply voltage drop amount and a ground voltage drop amount indicating a voltage drop due to each. When the power supply voltage drop amount indicating the voltage drop due to the wiring is determined whether or not the obtained allowable power supply voltage drop amount is exceeded, and it is determined that the power supply voltage drop amount is more than the allowable power supply voltage drop amount, It is determined that the circuit element malfunctions.

本発明に係る回路動作検証方法は、半導体集積回路が有する回路素子が誤作動するか否かを、前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて、記憶手段を備える回路動作検証装置で検証する回路動作検証方法であって、前記半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量の関係を前記記憶手段に記憶しておき、前記記憶手段に記憶してある前記関係と、所与の遅延変化量とに基づいて、許容電源電圧降下量を求め、前記半導体集積回路が有する回路素子に係る前記電源電圧降下量が、求められた許容電源電圧降下量超過であるか否かを判定することを特徴とする。   In the circuit operation verification method according to the present invention, whether or not a circuit element included in a semiconductor integrated circuit malfunctions, a power supply voltage drop amount and a ground voltage indicating a voltage drop due to each of the power supply wiring and the ground wiring included in the semiconductor integrated circuit. A circuit operation verification method for verifying with a circuit operation verification apparatus having a storage means based on a drop amount, wherein the power supply voltage drop amount relating to a circuit element of the same type as the type of circuit element included in the semiconductor integrated circuit and the circuit element A relationship between a ground voltage drop amount and a delay change amount indicating a change due to the voltage drop in a delay time of a signal input / output to / from the circuit element of the type is stored in the storage unit and stored in the storage unit. The allowable power supply voltage drop amount is obtained based on the relationship and the given delay change amount, and the power supply voltage drop amount related to the circuit element included in the semiconductor integrated circuit is obtained. And judging the allowable whether the power is the voltage drop amount exceeds that is.

本発明に係る回路動作検証装置は、半導体集積回路が有する回路素子が誤作動するか否かを、前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて検証する回路動作検証装置であって、前記半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量の関係を記憶する記憶手段と、該記憶手段に記憶してある前記関係、及び所与の遅延変化量に基づいて、許容電源電圧降下量を求める許容電源電圧降下量算出手段と、前記半導体集積回路が有する回路素子に係る前記電源電圧降下量が、前記許容電源電圧降下量算出手段が求めた許容電源電圧降下量超過であるか否かを判定する判定手段とを備えることを特徴とする。   In the circuit operation verification apparatus according to the present invention, whether or not a circuit element included in the semiconductor integrated circuit malfunctions is determined, a power supply voltage drop amount and a ground voltage indicating a voltage drop caused by the power supply wiring and the ground wiring included in the semiconductor integrated circuit, respectively. A circuit operation verification device for verifying based on a drop amount, the power supply voltage drop amount and the ground voltage drop amount relating to the same type of circuit element as the type of the circuit element included in the semiconductor integrated circuit, and the circuit of the type Storage means for storing a relationship of a delay change amount indicating a change due to the voltage drop of a delay time of a signal input / output to / from the element, the relationship stored in the storage means, and a given delay change amount Based on the allowable power supply voltage drop amount calculation means for obtaining the allowable power supply voltage drop amount, and the power supply voltage drop amount related to the circuit element included in the semiconductor integrated circuit is the allowable power supply voltage drop amount. Characterized in that it comprises a determination means for determining whether the amount calculating means is an allowable power supply voltage drop amount exceeds determined.

本発明に係る回路動作検証装置は、前記記憶手段に記憶してある前記関係、及び前記所与の遅延変化量に基づいて、許容接地電圧降下量を求める許容接地電圧降下量算出手段と、前記回路素子に係る前記接地電圧降下量が、前記許容接地電圧降下量算出手段が求めた許容接地電圧降下量超過であるか否かを判定する超過判定手段とを備えることを特徴とする。   The circuit operation verification apparatus according to the present invention includes an allowable ground voltage drop amount calculating means for obtaining an allowable ground voltage drop amount based on the relationship stored in the storage means and the given delay change amount; And an excess determining means for determining whether or not the ground voltage drop amount relating to the circuit element is an excess of the allowable ground voltage drop amount obtained by the allowable ground voltage drop amount calculating means.

本発明に係る回路動作検証装置は、前記回路素子の消費電流、及び前記電源配線の抵抗に基づいて、前記回路素子に係る前記電源電圧降下量を求める電源電圧降下量算出手段と、前記消費電流、及び前記接地配線の抵抗に基づいて、前記回路素子に係る前記接地電圧降下量を求める接地電圧降下量算出手段とを備え、前記判定手段は、前記電源電圧降下量算出手段が求めた電源電圧降下量が、前記許容電源電圧降下量超過であるか否かを判定するようにしてあり、前記超過判定手段は、前記接地電圧降下量算出手段が求めた接地電圧降下量が、前記許容接地電圧降下量超過であるか否かを判定するようにしてあることを特徴とする。   The circuit operation verification apparatus according to the present invention includes a power supply voltage drop amount calculating means for obtaining the power supply voltage drop amount related to the circuit element based on the current consumption of the circuit element and the resistance of the power supply wiring, and the current consumption And a ground voltage drop amount calculating means for determining the ground voltage drop amount related to the circuit element based on the resistance of the ground wiring, and the determining means is a power supply voltage obtained by the power supply voltage drop amount calculating means. It is determined whether or not a drop amount exceeds the allowable power supply voltage drop amount, and the excess determination means determines that the ground voltage drop amount obtained by the ground voltage drop amount calculation means is the allowable ground voltage. It is characterized in that it is determined whether or not the descent amount is exceeded.

本発明に係る回路動作検証装置は、前記種類の回路素子に対する入力信号及び出力信号に基づいて、前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量を求める遅延変化量算出手段を備え、前記種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記遅延変化量算出手段が算出した遅延変化量の関係を前記記憶手段に記憶するようにしてあることを特徴とする。   The circuit operation verification apparatus according to the present invention is based on an input signal and an output signal for the type of circuit element, and shows a delay indicating a change due to the voltage drop of a delay time of a signal input to and output from the type of circuit element. A delay change amount calculating means for obtaining a change amount, wherein the storage means stores the relationship between the power supply voltage drop amount and the ground voltage drop amount related to the circuit element of the type, and the delay change amount calculated by the delay change amount calculation means; It is characterized in that it is stored in the memory.

本発明に係るコンピュータプログラムは、コンピュータに、半導体集積回路が有する回路素子が誤作動するか否かを、前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて検証させるためのコンピュータプログラムであって、コンピュータに、前記半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量の関係と、所与の遅延変化量とに基づいて、許容電源電圧降下量を求めさせるステップと、コンピュータに、前記半導体集積回路が有する回路素子に係る前記電源電圧降下量が、求められた許容電源電圧降下量超過であるか否かを判定させるステップとを実行させることを特徴とする。   The computer program according to the present invention is a computer program for determining whether or not a circuit element included in a semiconductor integrated circuit malfunctions in a computer and indicating a voltage drop caused by a power supply wiring and a ground wiring included in the semiconductor integrated circuit. A computer program for verifying based on a voltage drop amount, wherein the computer causes the power supply voltage drop amount and the ground voltage drop amount to be related to a circuit element of the same type as a circuit element included in the semiconductor integrated circuit, and An allowable power supply voltage drop amount is obtained based on a relationship between a delay change amount indicating a change due to the voltage drop of a delay time of a signal input / output to / from the type of circuit element and a given delay change amount. A power supply voltage drop amount relating to a circuit element included in the semiconductor integrated circuit is obtained in a step Characterized in that to execute the step of determining whether a pressure drop amount exceeded.

本発明にあっては、半導体集積回路の設計制約条件を満たす許容電源電圧降下量を、半導体集積回路が有する回路素子が誤作動するか否かの判定基準とする。許容電源電圧降下量は、例えば、半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る電源電圧降下量及び接地電圧降下量、並びに半導体集積回路が有する回路素子の種類と同じ種類の回路素子に対して入出力される信号の遅延時間の変化を示す遅延変化量の関係と、所与の遅延変化量とに基づいて求められる。   In the present invention, the allowable power supply voltage drop that satisfies the design constraint conditions of the semiconductor integrated circuit is used as a criterion for determining whether or not a circuit element included in the semiconductor integrated circuit malfunctions. The allowable power supply voltage drop amount is, for example, the same type of power supply voltage drop amount and ground voltage drop amount related to the same type of circuit element as that of the semiconductor integrated circuit, and the same type of circuit element of the semiconductor integrated circuit. It is obtained on the basis of the relationship between the delay change amount indicating the change in the delay time of the signal input / output to / from the circuit element and the given delay change amount.

以下では、半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る電源電圧降下量及び接地電圧降下量を、回路素子の種類に係る電源電圧降下量及び接地電圧降下量といい、半導体集積回路が有する回路素子の種類と同じ種類の回路素子に対して入出力される信号の遅延時間の変化を示す遅延変化量を、回路素子の種類に係る遅延変化量という。   Hereinafter, the power supply voltage drop amount and the ground voltage drop amount related to the same type of circuit element as the type of the circuit element included in the semiconductor integrated circuit are referred to as the power supply voltage drop amount and the ground voltage drop amount related to the type of the circuit element. A delay change amount indicating a change in delay time of a signal input / output to / from a circuit element of the same type as that of the circuit element included in the integrated circuit is referred to as a delay change amount according to the type of the circuit element.

電圧降下が生じない理想的な状態において回路素子に印加される電源電圧VVDD は、電圧降下が生じた状態において回路素子に印加される電源電圧VDDより高く、電源電圧降下量ΔVDDは、電圧降下が生じない理想的な状態において回路素子に印加される電源電圧VVDD と電圧降下が生じた状態において回路素子に印加される電源電圧VDDとの差である。
VDD >VDD (2)
ΔVDD=VVDD −VDD (3)
The power supply voltage V VDD applied to the circuit element in an ideal state where no voltage drop occurs is higher than the power supply voltage V DD applied to the circuit element in a state where the voltage drop occurs, and the power supply voltage drop amount ΔV DD is This is a difference between the power supply voltage V VDD applied to the circuit element in an ideal state where no voltage drop occurs and the power supply voltage V DD applied to the circuit element in a state where a voltage drop occurs.
V VDD > V DD (2)
ΔV DD = V VDD −V DD (3)

また、電圧降下が生じない理想的な状態において回路素子に印加される接地電圧VVSS は、電圧降下が生じた状態において回路素子に印加される接地電圧VSSより低く、接地電圧降下量ΔVSSは、電圧降下が生じた状態において回路素子に印加される接地電圧VSSと電圧降下が生じない理想的な状態において回路素子に印加される接地電圧VVSS との差である。
VSS <VSS (4)
ΔVSS=VSS−VVSS (5)
In addition, the ground voltage V VSS applied to the circuit element in an ideal state where no voltage drop occurs is lower than the ground voltage V SS applied to the circuit element in a state where the voltage drop occurs, and the ground voltage drop amount ΔV SS. Is the difference between the ground voltage V SS applied to the circuit element in a state where a voltage drop occurs and the ground voltage V VSS applied to the circuit element in an ideal state where no voltage drop occurs.
V VSS <V SS (4)
ΔV SS = V SS −V VSS (5)

遅延時間の変化は、半導体集積回路が有する電源配線及び接地配線夫々による電圧降下に起因する。また、電圧降下が生じた状態における遅延時間Td は、電圧降下が生じない理想的な状態における遅延時間Tddより長くなる。遅延変化量Pは、例えば、電圧降下が生じた状態における遅延時間Td と電圧降下が生じない理想的な状態における遅延時間Tddとの差である。
dd<Td (6)
P=Td −Tdd (7)
The change in the delay time is caused by a voltage drop caused by each of the power supply wiring and the ground wiring included in the semiconductor integrated circuit. Further, the delay time T d in a state where a voltage drop occurs is longer than the delay time T dd in an ideal state where no voltage drop occurs. The delay change amount P is, for example, the difference between the delay time T d in a state where a voltage drop occurs and the delay time T dd in an ideal state where no voltage drop occurs.
T dd <T d (6)
P = T d −T dd (7)

記憶手段は、回路素子の種類に係る電源電圧降下量及び接地電圧降下量と、回路素子の種類に係る遅延変化量との関係を記憶する。回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係は、これらの値のテーブル、これらの値に基づいて求められた関数等であり、例えば、予め記憶手段に記憶してあるか、又は、回路シミュレータを用いて回路動作検証装置で算出して記憶手段に記憶しておく。   The storage unit stores the relationship between the power supply voltage drop amount and the ground voltage drop amount related to the type of the circuit element, and the delay change amount related to the type of the circuit element. The relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of circuit element is a table of these values, a function obtained based on these values, and the like, for example, stored in the storage means in advance. Or calculated by a circuit operation verification device using a circuit simulator and stored in a storage means.

許容電源電圧降下量算出手段は、記憶手段に記憶してある電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係と、所与の遅延変化量とに基づいて、許容電源電圧降下量を求める。所与の遅延変化量としては、一般に、半導体集積回路の設計制約条件を満たす遅延変化量が用いられる。このため、求められた許容電源電圧降下量は、半導体集積回路の設計制約条件を満たす電源電圧降下量である。   The allowable power supply voltage drop amount calculating means calculates the allowable power supply voltage drop amount based on the relationship between the power supply voltage drop amount, the ground voltage drop amount and the delay change amount stored in the storage means, and the given delay change amount. Ask. As a given delay variation, a delay variation that satisfies the design constraint conditions of the semiconductor integrated circuit is generally used. For this reason, the obtained allowable power supply voltage drop amount is a power supply voltage drop amount that satisfies the design constraint conditions of the semiconductor integrated circuit.

判定手段は、半導体集積回路が有する回路素子に係る電源電圧降下量が、許容電源電圧降下量超過であるか否かを判定する。ここで、許容電源電圧降下量は判定基準であり、回路素子に係る電源電圧降下量は判定対象である。回路素子に係る電源電圧降下量は、例えば、回路動作検証装置が備えるメモリ、ハードディスク等の記憶部に予め記憶してあるか、又は、自動配置配線装置が生成したマスクレイアウトデータに基づいて回路動作検証装置で算出する。   The determination unit determines whether or not the power supply voltage drop amount related to the circuit element included in the semiconductor integrated circuit exceeds the allowable power supply voltage drop amount. Here, the allowable power supply voltage drop amount is a determination criterion, and the power supply voltage drop amount related to the circuit element is a determination target. The power supply voltage drop amount related to the circuit element is stored in advance in a storage unit such as a memory or a hard disk included in the circuit operation verification device, or based on the mask layout data generated by the automatic placement and routing device, for example. Calculate with a verification device.

回路素子に係る電源電圧降下量が、許容電源電圧降下量超過であると判定された場合、回路素子に係る遅延変化量が半導体集積回路の設計制約条件を満たす遅延変化量を超過するため、回路素子が誤作動すると判定される。   When it is determined that the power supply voltage drop amount related to the circuit element exceeds the allowable power supply voltage drop amount, the delay change amount related to the circuit element exceeds the delay change amount satisfying the design constraint conditions of the semiconductor integrated circuit. It is determined that the element malfunctions.

以上のようにして、回路動作検証装置は、半導体集積回路が有する回路素子が誤作動するか否かを、電源電圧降下量及び接地電圧降下量に基づいて検証する。   As described above, the circuit operation verification device verifies whether or not a circuit element included in the semiconductor integrated circuit malfunctions based on the power supply voltage drop amount and the ground voltage drop amount.

本発明にあっては、半導体集積回路の設計制約条件を満たす許容接地電圧降下量を、半導体集積回路が有する回路素子が誤作動するか否かの判定基準とする。許容接地電圧降下量は、例えば、回路素子の種類に係る電源電圧降下量及び接地電圧降下量、並びに回路素子の種類に係る遅延変化量の関係と、所与の遅延変化量とに基づいて求められる。   In the present invention, the allowable ground voltage drop that satisfies the design constraint conditions of the semiconductor integrated circuit is used as a criterion for determining whether or not a circuit element included in the semiconductor integrated circuit malfunctions. The allowable ground voltage drop amount is obtained based on, for example, the relationship between the power supply voltage drop amount and ground voltage drop amount related to the type of circuit element, the delay change amount related to the type of circuit element, and the given delay change amount. It is done.

許容接地電圧降下量算出手段は、記憶手段に記憶してある電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係と、所与の遅延変化量とに基づいて、許容接地電圧降下量を求める。このため、求められた許容接地電圧降下量は、半導体集積回路の設計制約条件を満たす接地電圧降下量である。   The allowable ground voltage drop amount calculation means calculates the allowable ground voltage drop amount based on the relationship between the power supply voltage drop amount, the ground voltage drop amount and the delay change amount stored in the storage means, and the given delay change amount. Ask. Therefore, the obtained allowable ground voltage drop amount is the ground voltage drop amount that satisfies the design constraint conditions of the semiconductor integrated circuit.

超過判定手段は、半導体集積回路が有する回路素子に係る接地電圧降下量が、許容接地電圧降下量超過であるか否かを判定する。ここで、許容接地電圧降下量は判定基準であり、回路素子に係る接地電圧降下量は判定対象である。回路素子に係る接地電圧降下量は、例えば、回路動作検証装置が備える記憶部に予め記憶してあるか、又は、自動配置配線装置が生成したマスクレイアウトデータに基づいて回路動作検証装置で算出する。   The excess determination means determines whether or not the ground voltage drop amount related to the circuit element included in the semiconductor integrated circuit exceeds the allowable ground voltage drop amount. Here, the allowable ground voltage drop amount is a determination criterion, and the ground voltage drop amount related to the circuit element is a determination target. For example, the ground voltage drop amount related to the circuit element is stored in advance in a storage unit included in the circuit operation verification apparatus, or is calculated by the circuit operation verification apparatus based on the mask layout data generated by the automatic placement and routing apparatus. .

回路素子に係る接地電圧降下量が、許容接地電圧降下量超過であると判定された場合、回路素子に係る遅延変化量が半導体集積回路の設計制約条件を満たす遅延変化量を超過するため、回路素子が誤作動すると判定される。   When it is determined that the ground voltage drop amount related to the circuit element exceeds the allowable ground voltage drop amount, the delay change amount related to the circuit element exceeds the delay change amount satisfying the design constraint condition of the semiconductor integrated circuit. It is determined that the element malfunctions.

判定手段によって、回路素子に係る電源電圧降下量が許容電源電圧降下量以下であると判定され、更に、超過判定手段によって、回路素子に係る接地電圧降下量が、許容接地電圧降下量以下であると判定された場合、回路素子は誤作動しないと判定される。   The determination means determines that the power supply voltage drop amount related to the circuit element is less than or equal to the allowable power supply voltage drop amount. Further, the excess determination means determines that the ground voltage drop amount related to the circuit element is less than or equal to the allowable ground voltage drop amount. Is determined, the circuit element is determined not to malfunction.

以上のようにして、回路動作検証装置は、半導体集積回路が有する回路素子が誤作動するか否かを、電源電圧降下量及び接地電圧降下量に基づいて検証する。   As described above, the circuit operation verification device verifies whether or not a circuit element included in the semiconductor integrated circuit malfunctions based on the power supply voltage drop amount and the ground voltage drop amount.

本発明にあっては、判定手段が判定に用いる電源電圧降下量を、電源電圧降下量算出手段が、回路素子の消費電流及び電源配線の抵抗に基づいて求め、超過判定手段が判定に用いる接地電圧降下量を、接地電圧降下量算出手段が、回路素子の消費電流及び接地配線の抵抗に基づいて求める。このような電源電圧降下量及び接地電圧降下量夫々は、例えば、公知の配線寄生素子抽出ツール、消費電力解析ツール、DC解析ツール等を用いることによって算出される。   In the present invention, the power supply voltage drop amount used for the judgment by the judging means is obtained based on the current consumption of the circuit element and the resistance of the power supply wiring, and the ground used for the judgment by the excess judging means. The voltage drop amount is calculated by the ground voltage drop amount calculation means based on the current consumption of the circuit element and the resistance of the ground wiring. Each of such power supply voltage drop amount and ground voltage drop amount is calculated by using, for example, a known wiring parasitic element extraction tool, power consumption analysis tool, DC analysis tool, or the like.

本発明にあっては、回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係を記憶手段に記憶させるために、遅延変化量を、遅延変化量算出手段が求める。遅延変化量算出手段は、半導体集積回路が有する回路素子の種類と同じ種類の回路素子に対する入力信号及び出力信号に基づいて、この回路素子に対して入出力される信号の遅延時間の電圧降下による変化を示す遅延変化量を求める。   In the present invention, the delay change amount calculating means obtains the delay change amount in order to store the relationship among the power supply voltage drop amount, the ground voltage drop amount and the delay change amount according to the type of circuit element in the storage means. The delay variation calculation means is based on a voltage drop of a delay time of a signal input / output to / from this circuit element based on an input signal and an output signal to the same type of circuit element as the type of the circuit element included in the semiconductor integrated circuit. A delay change amount indicating a change is obtained.

例えば、入力信号は予め与えられ、出力信号は公知の回路シミュレータを用いることによって算出される。また、記憶手段に記憶される電源電圧降下量及び接地電圧降下量は、例えば、電源電圧降下量と接地電圧降下量とが等しいという条件の下、電源電圧降下量と接地電圧降下量との和として、予め複数与えられるか、適宜に複数生成される。   For example, the input signal is given in advance, and the output signal is calculated by using a known circuit simulator. The power supply voltage drop amount and the ground voltage drop amount stored in the storage means are, for example, the sum of the power supply voltage drop amount and the ground voltage drop amount under the condition that the power supply voltage drop amount and the ground voltage drop amount are equal. Is given in advance, or a plurality is appropriately generated.

本発明の回路動作検証方法及び回路動作検証装置によれば、電源電圧降下量及び接地電圧降下量に基づいて、半導体集積回路の設計制約条件を満たす許容電源電圧降下量を求め、求められた許容電源電圧降下量を、回路素子が誤作動するか否かの判定基準として用いる。このため、電源電圧降下及び接地電圧降下を考慮しつつ、正確に誤作動を検証することができる。   According to the circuit operation verification method and the circuit operation verification apparatus of the present invention, the allowable power supply voltage drop amount satisfying the design constraint conditions of the semiconductor integrated circuit is obtained based on the power supply voltage drop amount and the ground voltage drop amount, and the obtained allowable voltage is obtained. The amount of power supply voltage drop is used as a criterion for determining whether or not a circuit element malfunctions. For this reason, it is possible to accurately verify the malfunction while considering the power supply voltage drop and the ground voltage drop.

また、許容電源電圧降下量は、例えば、回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係と、半導体集積回路の設計制約条件を満たす遅延変化量とに基づいて求められる。半導体集積回路の設計制約条件を満たす遅延変化量は所与であり、回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係は、例えば公知のCADツールを用いて求めることができるため、煩雑な計算を行なう必要がない。   The allowable power supply voltage drop amount is based on, for example, the relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of circuit element, and the delay change amount that satisfies the design constraint conditions of the semiconductor integrated circuit. Desired. The amount of delay change that satisfies the design constraint conditions of the semiconductor integrated circuit is given, and the relationship among the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of circuit element is obtained using, for example, a known CAD tool. This eliminates the need for complicated calculations.

更に、回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係を記憶手段に記憶しておき、記憶手段に記憶してある関係に基づいて許容電源電圧降下量を求めるため、電源電圧降下及び接地電圧降下を考慮しつつ、簡易かつ高速に誤作動を検証することができる。   Further, the relationship between the power supply voltage drop amount, the ground voltage drop amount and the delay change amount related to the type of circuit element is stored in the storage means, and the allowable power supply voltage drop amount is obtained based on the relationship stored in the storage means. Therefore, it is possible to verify the malfunction simply and at high speed while considering the power supply voltage drop and the ground voltage drop.

更にまた、回路素子が誤作動するか否かの判定の際に、例えば論理シミュレーションが不要であるため、簡易かつ高速に誤作動を検証することができる。   Furthermore, when determining whether or not a circuit element malfunctions, for example, a logic simulation is unnecessary, so that malfunction can be verified simply and at high speed.

また、回路素子が誤作動すると判定された場合、マスクレイアウトデータを修正して再び回路動作検証を行なうとき、マスクレイアウトデータの修正に応じて、判定対象、即ち回路素子に係る電源電圧降下量を再計算すれば良く、記憶手段に記憶してある電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係は、マスクレイアウトデータの修正に応じて変更することなしに再利用することができる。つまり、判定基準である許容電源電圧降下量は再計算が不要であるか、簡易かつ高速に再計算することができる。このため、半導体集積回路の動作検証に要する工程を減少させることができる。   Further, when it is determined that the circuit element malfunctions, when the mask layout data is corrected and the circuit operation verification is performed again, the power supply voltage drop amount related to the determination target, that is, the circuit element is determined according to the correction of the mask layout data. The relationship among the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount stored in the storage means can be reused without being changed in accordance with the correction of the mask layout data. That is, the allowable power supply voltage drop amount that is the criterion is not required to be recalculated or can be recalculated easily and at high speed. For this reason, the process required for the operation verification of the semiconductor integrated circuit can be reduced.

本発明の回路動作検証装置によれば、例えば、回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係と、半導体集積回路の設計制約条件を満たす所与の遅延変化量とに基づいて、半導体集積回路の設計制約条件を満たす許容接地電圧降下量を求め、求められた許容接地電圧降下量を、回路素子が誤作動するか否かの判定基準として用いる。このため、電源電圧降下及び接地電圧降下を考慮しつつ、更に正確に誤作動を検証することができる。   According to the circuit operation verification device of the present invention, for example, the relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of circuit element, and a given delay change that satisfies the design constraint conditions of the semiconductor integrated circuit. The allowable ground voltage drop amount that satisfies the design constraint condition of the semiconductor integrated circuit is obtained based on the amount, and the obtained allowable ground voltage drop amount is used as a criterion for determining whether or not the circuit element malfunctions. For this reason, it is possible to verify the malfunction more accurately while considering the power supply voltage drop and the ground voltage drop.

また、回路素子の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係を記憶手段に記憶しておき、記憶手段に記憶してある関係に基づいて許容接地電圧降下量を求めるため、電源電圧降下及び接地電圧降下を考慮しつつ、簡易かつ高速に誤作動を検証することができる。   Further, the relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount related to the type of circuit element is stored in the storage means, and the allowable ground voltage drop amount is obtained based on the relationship stored in the storage means. Therefore, it is possible to verify the malfunction simply and at high speed while considering the power supply voltage drop and the ground voltage drop.

更に、回路素子が誤作動するか否かの判定の際に、例えば論理シミュレーションが不要であるため、簡易かつ高速に誤作動を検証することができる。   Further, when determining whether or not a circuit element malfunctions, for example, logic simulation is unnecessary, and therefore malfunction can be verified easily and at high speed.

更にまた、回路素子が誤作動すると判定された場合、マスクレイアウトデータを修正して再び回路動作検証を行なうとき、マスクレイアウトデータの修正に応じて、判定対象、即ち回路素子に係る接地電圧降下量を再計算すれば良く、記憶手段に記憶してある電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係は、マスクレイアウトデータの修正に応じて変更することなしに再利用することができる。つまり、判定基準である許容接地電圧降下量は再計算が不要であるか、簡易かつ高速に再計算することができる。このため、半導体集積回路の動作検証に要する工程を減少させることができる。   Furthermore, when it is determined that the circuit element malfunctions, when the mask layout data is corrected and the circuit operation verification is performed again, according to the correction of the mask layout data, the determination target, that is, the ground voltage drop amount related to the circuit element The relationship among the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount stored in the storage means can be reused without being changed in accordance with the correction of the mask layout data. . That is, it is not necessary to recalculate the allowable ground voltage drop amount that is a criterion, or it can be recalculated simply and at high speed. For this reason, the process required for the operation verification of the semiconductor integrated circuit can be reduced.

本発明の回路動作検証装置によれば、許容電源電圧降下量及び許容接地電圧降下量夫々と比較すべき判定対象である電源電圧降下量及び接地電圧降下量夫々を、例えば公知のCADツールを用いて求めることができるため、煩雑な計算を行なうことなく電源電圧降下及び接地電圧降下を考慮することができる。   According to the circuit operation verification apparatus of the present invention, the power supply voltage drop amount and the ground voltage drop amount to be compared with the allowable power supply voltage drop amount and the allowable ground voltage drop amount are respectively determined using, for example, a known CAD tool. Therefore, the power supply voltage drop and the ground voltage drop can be taken into consideration without performing complicated calculations.

本発明の回路動作検証装置によれば、電源電圧降下量及び接地電圧降下量、並びに遅延変化量の関係を記憶手段に記憶させるために、遅延変化量を、例えば公知のCADツールを用いて求めることができる。この結果、煩雑な計算を行なうことなく電源電圧降下及び接地電圧降下を考慮することができる。   According to the circuit operation verification apparatus of the present invention, in order to store the relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount in the storage means, the delay change amount is obtained using, for example, a known CAD tool. be able to. As a result, the power supply voltage drop and the ground voltage drop can be taken into consideration without performing complicated calculations.

また、回路素子が誤作動すると判定された場合、マスクレイアウトデータを修正して再び回路動作検証を行なうとき、遅延変化量を再び算出する必要がない。このため、半導体集積回路の動作検証に要する工程を減少させることができる。   Further, when it is determined that the circuit element malfunctions, it is not necessary to calculate the delay variation again when correcting the mask layout data and performing the circuit operation verification again. For this reason, the process required for the operation verification of the semiconductor integrated circuit can be reduced.

本発明のコンピュータプログラムによれば、回路動作検証装置の許容電源電圧降下量算出手段、判定手段等を、コンピュータのハードウェア要素を用いてソフトウェア的に実現し、コンピュータを、本発明のデータ出力装置として機能させることができる。   According to the computer program of the present invention, the allowable power supply voltage drop amount calculating means, the determining means, etc. of the circuit operation verification device are realized by software using computer hardware elements, and the computer is converted into the data output device of the present invention. Can function as.

また、コンピュータプログラムは、可搬性を有する記録媒体に記憶されて配布することができ、又は、通信回線を介して配信することができ、あるいは、コンピュータが備える記憶部(例えばROM)に予め記憶しておくことができる。このようなコンピュータプログラムは、揮発性又は不揮発性の記憶部(RAM又はハードディスク等)にインストールされてから実行されても良く、記録媒体又は配信元から読み取られて直接的に実行されても良い。   Further, the computer program can be stored and distributed in a portable recording medium, or can be distributed via a communication line, or can be stored in advance in a storage unit (for example, ROM) included in the computer. I can keep it. Such a computer program may be executed after being installed in a volatile or nonvolatile storage unit (such as a RAM or a hard disk), or may be read from a recording medium or a distribution source and executed directly.

以下、本発明を、その実施の形態を示す図面に基づいて詳述する。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.

図1は、本発明に係る回路動作検証装置1の構成を示すブロック図である。回路動作検証装置1は、例えばパーソナルコンピュータのようなコンピュータを用いてなり、回路動作検証装置1の制御中枢であるCPU10、ROM11、及びRAM12を備える。また、回路動作検証装置1は、CRTディスプレイ、液晶ディスプレイ等を用いてなる表示部13、キーボード、マウス等を用いてなる操作部14、CD−ROMドライブを用いてなる外部記憶部15、及びハードディスクを用いてなる補助記憶部16を備える。   FIG. 1 is a block diagram showing a configuration of a circuit operation verification apparatus 1 according to the present invention. The circuit operation verification apparatus 1 uses a computer such as a personal computer, for example, and includes a CPU 10, a ROM 11, and a RAM 12 that are control centers of the circuit operation verification apparatus 1. The circuit operation verification apparatus 1 includes a display unit 13 using a CRT display, a liquid crystal display, etc., an operation unit 14 using a keyboard, a mouse, etc., an external storage unit 15 using a CD-ROM drive, and a hard disk An auxiliary storage unit 16 is provided.

図中2はCD−ROMのような可搬性を有する記録媒体であり、記録媒体2には本発明のコンピュータプログラム及びデータが記録してある。記録媒体2に記録してあるコンピュータプログラム及びデータをコンピュータにインストールする場合、コンピュータが備える外部記憶部15は、CPU10に制御されて、記録媒体2からコンピュータプログラム及びデータを読み出す。読み出されたコンピュータプログラム及びデータは、補助記憶部16に記憶される。記録媒体2に記憶してあるコンピュータプログラム及びデータをインストールすることによって、コンピュータは、回路動作検証装置1として機能する。   In the figure, reference numeral 2 denotes a portable recording medium such as a CD-ROM, in which the computer program and data of the present invention are recorded. When installing the computer program and data recorded in the recording medium 2 into the computer, the external storage unit 15 included in the computer is controlled by the CPU 10 to read out the computer program and data from the recording medium 2. The read computer program and data are stored in the auxiliary storage unit 16. By installing the computer program and data stored in the recording medium 2, the computer functions as the circuit operation verification device 1.

コンピュータが備えるCPU10は、バス、信号線等を介して装置各部と接続されており、ROM11に予め記憶してあるか補助記憶部16に記憶されたコンピュータプログラム及びデータに従い、RAM12を作業領域として用いて、装置各部を制御し、各種処理を実行する。   The CPU 10 provided in the computer is connected to each part of the apparatus via a bus, a signal line, etc., and uses the RAM 12 as a work area according to the computer program and data stored in advance in the ROM 11 or stored in the auxiliary storage unit 16. Then, each part of the apparatus is controlled and various processes are executed.

条件記憶部161、関係記憶部162、判定対象記憶部163、判定基準記憶部164、及び判定結果記憶部165は、夫々補助記憶部16の記憶領域の互いに異なる一部である。条件記憶部161には、例えば、外部記憶部15によって記録媒体2又は記録媒体2以外の記録媒体から読み取られたデータ、操作部14を介して入力されたデータ、図示しない通信回線を介して受信したデータ等、回路動作検証装置1の外部から与えられたデータが記憶される。本実施の形態においては、関係記憶部162〜判定結果記憶部165には、回路動作検証装置1にて算出されたデータが記憶される。   The condition storage unit 161, the relationship storage unit 162, the determination target storage unit 163, the determination reference storage unit 164, and the determination result storage unit 165 are different parts of the storage area of the auxiliary storage unit 16, respectively. In the condition storage unit 161, for example, data read from the recording medium 2 or a recording medium other than the recording medium 2 by the external storage unit 15, data input via the operation unit 14, and reception via a communication line (not shown) The data given from the outside of the circuit operation verification device 1 such as the data thus obtained is stored. In the present embodiment, the relationship storage unit 162 to the determination result storage unit 165 store data calculated by the circuit operation verification device 1.

図2は、回路動作検証装置1を用いて動作検証を行なうべき半導体集積回路3の構成を示すレイアウト図である。半導体集積回路3は、図示しない基板上に複数の回路素子31,31,…と、電源配線32,32,…と、接地配線33,33,…と、絶縁部34,34,…とを形成してなる。半導体集積回路3は、インバータ素子、ダイオード素子等、互いに異なる種類の回路素子31,31,…を、夫々所定の個数ずつ備える。回路素子31は、電源配線32及び接地配線33に接続してあり、電源配線32,32,…と接地配線33,33,…とは、絶縁部34,34,…によって互いに絶縁されている。   FIG. 2 is a layout diagram showing the configuration of the semiconductor integrated circuit 3 to be verified using the circuit operation verification apparatus 1. The semiconductor integrated circuit 3 forms a plurality of circuit elements 31, 31,..., Power wirings 32, 32,..., Ground wirings 33, 33,. Do it. The semiconductor integrated circuit 3 includes a predetermined number of circuit elements 31, 31,..., Such as inverter elements and diode elements. The circuit element 31 is connected to a power supply wiring 32 and a ground wiring 33, and the power supply wirings 32, 32,... And the ground wirings 33, 33,.

半導体集積回路3の動作検証を行なう場合、半導体集積回路3が有する各回路素子31,31,…が誤作動するか否かを、回路動作検証装置1で検証する。このとき、回路動作検証装置1のCPU10が、後述する図10に示す動作検証処理を実行する。動作検証処理においては、回路素子31,31,…毎に、回路素子31に係る電源電圧降下量ΔVDDDCが、半導体集積回路3の設計制約条件を満たす許容電源電圧降下量ΔVDDY を超過するか否かが判定される。また、回路素子31,31,…毎に、回路素子31に係る接地電圧降下量ΔVSSDCが、半導体集積回路3の設計制約条件を満たす許容接地電圧降下量ΔVSSY を超過するか否かが判定される。 When the operation verification of the semiconductor integrated circuit 3 is performed, the circuit operation verification device 1 verifies whether or not each circuit element 31, 31,... At this time, the CPU 10 of the circuit operation verification apparatus 1 executes an operation verification process shown in FIG. In the operation verification process, for each circuit element 31, 31,..., Whether the power supply voltage drop amount ΔV DDDC related to the circuit element 31 exceeds the allowable power supply voltage drop amount ΔV DDY that satisfies the design constraint conditions of the semiconductor integrated circuit 3 It is determined whether or not. Further, for each circuit element 31, 31,..., It is determined whether or not the ground voltage drop amount ΔV SSDC related to the circuit element 31 exceeds the allowable ground voltage drop amount ΔV SSY that satisfies the design constraint conditions of the semiconductor integrated circuit 3. Is done.

ここで、回路素子31に係る電源電圧降下量ΔVDDDC及び接地電圧降下量ΔVSSDCは、公知の静的な解析手法を用いて、後述する図9に示す判定対象算出処理で求められる。この場合に必要とされる半導体集積回路3のマスクレイアウトデータは、例えば、図示しない自動配置配線装置によって予め生成されて記録媒体に記憶され、この記録媒体から読み出されて補助記憶部16に記憶される。また、マスクレイアウトデータと共に、後述する遅延変化量PY 、測定電圧Vc 等のシミュレーション条件も、例えば記録媒体から読み出されるか操作部14を介して入力されることによって、条件記憶部161に記憶される。つまり、マスクレイアウトデータ及びシミュレーション条件は、回路動作検証装置1の外部から与えられる。許容電源電圧降下量ΔVDDY 及び許容接地電圧降下量ΔVSSY は、回路動作検証装置1で求められる(後述)。 Here, the power supply voltage drop amount ΔV DDDC and the ground voltage drop amount ΔV SSDC related to the circuit element 31 are obtained by a determination target calculation process shown in FIG. 9 to be described later using a known static analysis method. The mask layout data of the semiconductor integrated circuit 3 required in this case is generated in advance by, for example, an automatic placement and routing apparatus (not shown), stored in a recording medium, read from the recording medium, and stored in the auxiliary storage unit 16. Is done. In addition to the mask layout data, simulation conditions such as a delay change amount P Y and a measurement voltage Vc, which will be described later, are also stored in the condition storage unit 161 by being read from the recording medium or input via the operation unit 14, for example. The That is, the mask layout data and simulation conditions are given from the outside of the circuit operation verification apparatus 1. The allowable power supply voltage drop amount ΔV DDY and the allowable ground voltage drop amount ΔV SSY are obtained by the circuit operation verification device 1 (described later).

電源電圧降下量ΔVDDDCが許容電源電圧降下量ΔVDDY を超過する場合、又は、接地電圧降下量ΔVSSDCが許容接地電圧降下量ΔVSSY を超過する場合、回路素子31、ひいては半導体集積回路3が誤作動すると判定される。一方、電源電圧降下量ΔVDDDCが許容電源電圧降下量ΔVDDY 以下であり、しかも、接地電圧降下量ΔVSSDCが許容接地電圧降下量ΔVSSY 以下である場合、回路素子31は誤作動しないと判定され、全ての回路素子31,31,…が誤作動しないと判定された場合、半導体集積回路3が誤作動しないと判定される。 When the power supply voltage drop amount ΔV DDDC exceeds the allowable power supply voltage drop amount ΔV DDY or when the ground voltage drop amount ΔV SSDC exceeds the allowable ground voltage drop amount ΔV SSY , the circuit element 31, and consequently the semiconductor integrated circuit 3, Determined to malfunction. On the other hand, if the power supply voltage drop amount ΔV DDDC is less than or equal to the allowable power supply voltage drop amount ΔV DDY and the ground voltage drop amount ΔV SSDC is less than or equal to the allowable ground voltage drop amount ΔV SSY, it is determined that the circuit element 31 will not malfunction. When it is determined that all the circuit elements 31, 31,... Do not malfunction, it is determined that the semiconductor integrated circuit 3 does not malfunction.

各回路素子31が誤作動するか否かの判定結果は、各回路素子31に関連付けて、判定結果記憶部165に記憶される。   The determination result of whether each circuit element 31 malfunctions is stored in the determination result storage unit 165 in association with each circuit element 31.

図3に示す回路は、半導体集積回路3の電圧降下解析用の等価回路300である。電源配線32,32,…に係る等価回路300は、半導体集積回路3の回路素子31,31,…を電流源310,310,…に置き換え、電源配線32,32,…を、電源配線32,32,…の配線抵抗に対応する抵抗素子321,321,…と配線容量に対応する容量素子322,322,…とに置き換えてなる。また、図示はしないが、接地配線33,33,…に係る等価回路は、半導体集積回路3の回路素子31,31,…を電流源に置き換え、接地配線33,33,…を、接地配線33,33,…の配線抵抗に対応する抵抗素子と配線容量に対応する容量素子とに置き換えてなる。   The circuit shown in FIG. 3 is an equivalent circuit 300 for voltage drop analysis of the semiconductor integrated circuit 3. In the equivalent circuit 300 related to the power supply wirings 32, 32,..., The circuit elements 31, 31,... Of the semiconductor integrated circuit 3 are replaced with current sources 310, 310,. Are replaced with resistance elements 321, 321,... Corresponding to the wiring resistances 32,. Further, although not shown, the equivalent circuit related to the ground wirings 33, 33,... Replaces the circuit elements 31, 31,... Of the semiconductor integrated circuit 3 with current sources, and replaces the ground wirings 33, 33,. , 33,... Are replaced with a resistance element corresponding to the wiring resistance and a capacitance element corresponding to the wiring capacitance.

CPU10は、電源配線32,32,…に係る等価回路300に関し、公知の配線寄生素子抽出ツールを用い、マスクレイアウトデータに基づいて、電源配線32,32,…の抵抗成分RD を抽出する(電源配線抵抗網の抽出)。同様に、CPU10は、接地配線33,33,…に係る等価回路に関し、配線寄生素子抽出ツールを用い、マスクレイアウトデータに基づいて、接地配線33,33,…の抵抗成分RS を抽出する(配線配線抵抗網の抽出)。 The CPU 10 extracts a resistance component R D of the power supply wirings 32, 32,... With respect to the equivalent circuit 300 related to the power supply wirings 32, 32,. Extraction of power wiring resistance network). Similarly, the CPU 10 extracts a resistance component R S of the ground wirings 33, 33,... Based on the mask layout data using the wiring parasitic element extraction tool for the equivalent circuit related to the ground wirings 33, 33,. Extraction of wiring resistance network).

また、CPU10は、電源配線32,32,…に係る等価回路300の各電流源310に与える消費電流IDavgを算出し、同様に、接地配線33,33,…に係る等価回路の各電流源に与える消費電流ISavgを算出する(静的な平均消費電流の算出)。消費電流IDavg,ISavgは、公知の消費電力解析ツールを用い、平均的な信号変化回数Nに基づいて算出する。平均的な信号変化回数Nは、活性化率又はクロック信号の遷移に対する信号遷移確率に基づいて求められ、シミュレーション条件として、予め条件記憶部161に記憶してある。 Further, the CPU 10 calculates a consumption current I Davg applied to each current source 310 of the equivalent circuit 300 related to the power supply wirings 32, 32,..., And similarly each current source of the equivalent circuit related to the ground wirings 33, 33 ,. Current consumption I Savg applied to the current is calculated (calculation of static average current consumption). Current consumption I Davg, I savg is a known power analysis tool is calculated based on an average number of signal changes N. The average signal change count N is obtained based on the activation rate or the signal transition probability with respect to the clock signal transition, and is stored in advance in the condition storage unit 161 as a simulation condition.

更に、CPU10は、抽出された電源配線抵抗網及び配線配線抵抗網夫々に電流源を付加してDC解析を行なうことによって、電源電圧降下及び接地電圧降下夫々を求める。具体的には、CPU10は、DC解析ツールを用い、電源配線32,32,…の抵抗成分RD 、及び電流源310,310,…の消費電流IDavgに基づいて、各回路素子31に係る電源電圧降下量ΔVDDDCを算出する。ここで、
ΔVDDDC=IDavg×RD (8)
という関係が成り立つ。
Further, the CPU 10 obtains the power supply voltage drop and the ground voltage drop by performing DC analysis by adding a current source to each of the extracted power supply wiring resistance network and wiring wiring resistance network. Specifically, the CPU 10 uses the DC analysis tool to relate each circuit element 31 based on the resistance component R D of the power supply wirings 32, 32,... And the current consumption I Davg of the current sources 310, 310,. Calculate the power supply voltage drop ΔV DDDC . here,
ΔV DDDC = I Davg × R D (8)
This relationship holds.

また、CPU10は、DC解析ツールを用い、接地配線33,33,…の抵抗成分RS 、及び消費電流ISavgに基づいて、各回路素子31に係る接地電圧降下量ΔVSSDCを算出する。ここで、
ΔVSSDC=ISavg×RS (9)
という関係が成り立つ。
Further, the CPU 10 calculates a ground voltage drop amount ΔV SSDC related to each circuit element 31 based on the resistance component R S of the ground wirings 33, 33,... And the consumption current I Savg using a DC analysis tool. here,
ΔV SSDC = I Savg × R S (9)
This relationship holds.

算出された電源電圧降下量ΔVDDDC及び接地電圧降下量ΔVSSDCは、各回路素子31に関連付けて、判定対象記憶部163に記憶される。 The calculated power supply voltage drop amount ΔV DDDC and ground voltage drop amount ΔV SSDC are stored in the determination target storage unit 163 in association with each circuit element 31.

以上で用いた配線寄生素子抽出ツール、消費電力解析ツール、及びDC解析ツールのソフトウェアは、例えば、夫々記録媒体2から読み出されて補助記憶部16に記憶される。   The wiring parasitic element extraction tool, power consumption analysis tool, and DC analysis tool software used above are read from the recording medium 2 and stored in the auxiliary storage unit 16, for example.

半導体集積回路3の設計制約条件を満たす許容電源電圧降下量ΔVDDY 及び許容接地電圧降下量ΔVSSY は、半導体集積回路3の設計制約条件を満たす遅延変化量PY (遅延変化量の制約値)と、回路素子31の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係とに基づいて、動作検証処理で算出される。回路素子31の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係は、後述する図7及び図8に示す判定基準算出処理で求められ、具体的には、後述する表2に示す関数ΔV(P)である。また、遅延変化量PY は、シミュレーション条件として、予め条件記憶部161に記憶してある。 The allowable power supply voltage drop amount ΔV DDY and the allowable ground voltage drop amount ΔV SSY that satisfy the design constraint conditions of the semiconductor integrated circuit 3 are the delay change amount P Y (the constraint value of the delay change amount) that satisfies the design constraint conditions of the semiconductor integrated circuit 3. And the relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of the circuit element 31 are calculated in the operation verification process. The relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of the circuit element 31 is obtained by a determination criterion calculation process shown in FIGS. 7 and 8 to be described later. The function ΔV (P) shown in FIG. The delay change amount P Y is stored in advance in the condition storage unit 161 as a simulation condition.

許容電源電圧降下量ΔVDDY 及び許容接地電圧降下量ΔVSSY は、
ΔVDDY =ΔVSSY =ΔV(PY )/2 (10)
とする。算出された許容電源電圧降下量ΔVDDY 及び許容接地電圧降下量ΔVSSY は、判定基準記憶部164に記憶される。
The allowable power supply voltage drop ΔV DDY and the allowable ground voltage drop ΔV SSY are
ΔV DDY = ΔV SSY = ΔV (P Y ) / 2 (10)
And The calculated allowable power supply voltage drop amount ΔV DDY and allowable ground voltage drop amount ΔV SSY are stored in the determination criterion storage unit 164.

図4は、半導体集積回路3の回路素子31の構成を示す回路図であり、図5は、回路素子31に係る遅延変化を示す説明図である。以下では、回路素子31として、インバータ素子を例示する。インバータ素子である回路素子31は、入力信号が入力される端子INと出力信号を出力する端子OUTとを備え、電源配線32及び接地配線33に接続してある。   FIG. 4 is a circuit diagram showing a configuration of the circuit element 31 of the semiconductor integrated circuit 3, and FIG. 5 is an explanatory diagram showing a delay change related to the circuit element 31. Hereinafter, as the circuit element 31, an inverter element is illustrated. The circuit element 31, which is an inverter element, includes a terminal IN that receives an input signal and a terminal OUT that outputs an output signal, and is connected to a power supply wiring 32 and a ground wiring 33.

電源配線32による電源電圧降下及び接地配線33による接地電圧降下が生じない理想的な状態においては、回路素子31の電源配線32側に電源電圧VVDD が印加され、接地配線33側に接地電圧VVSS が印加される。しかしながら、現実には電源電圧降下及び接地電圧降下が生じるため、回路素子31の電源配線32側に電源電圧VDDが印加され、接地配線33側に接地電圧VSSが印加される。この場合、電源電圧降下量(電源電圧の振り幅)ΔVDD及び接地電圧降下量(接地電圧の振り幅)ΔVSSは、
ΔVDD=VVDD −VDD>0 (11)
ΔVSS=VSS−VVSS >0 (12)
である。
In an ideal state where a power supply voltage drop due to the power supply wiring 32 and a ground voltage drop due to the ground wiring 33 do not occur, the power supply voltage VVDD is applied to the power supply wiring 32 side of the circuit element 31 and the ground voltage V is applied to the ground wiring 33 side. VSS is applied. However, since a power supply voltage drop and a ground voltage drop actually occur, the power supply voltage V DD is applied to the circuit element 31 on the power supply wiring 32 side, and the ground voltage V SS is applied to the ground wiring 33 side. In this case, power supply voltage drop amount (power supply voltage swing) ΔV DD and ground voltage drop amount (ground voltage swing) ΔV SS are
ΔV DD = V VDD −V DD > 0 (11)
ΔV SS = V SS −V VSS > 0 (12)
It is.

つまり、電源配線32側に関し、電源配線32に接続してある電源の電圧がVVDD であり、VVDD からΔVDDの電圧降下が生じて回路素子31の電源配線32側に電源電圧VVDD が印加される。接地配線33側も同様であって、接地配線33に接続してあるグランドの電圧がVVSS であり、VVSS に対し−ΔVSSの電圧降下が生じて回路素子31の接地配線33側に接地電圧VSSが印加される。 That relates to a power supply line 32 side, the voltage of the power supply is connected to the power supply line 32 is the V VDD, the power supply voltage V VDD to the power supply line 32 side of the circuit element 31 the voltage drop [Delta] V DD occurs from V VDD is Applied. A similarly ground line 33 side, the voltage of the ground is connected to the ground line 33 is the V VSS, V VSS with respect to the ground to the ground wiring 33 side of the circuit element 31 occurs a voltage drop of - [Delta] V SS The voltage V SS is applied.

また、本実施の形態においては、
ΔVDD=ΔVSS>0 (13)
とし、以下では、電源電圧降下量ΔVDDと接地電圧降下量ΔVSSの和ΔVを総合電圧降下量という。
ΔV=ΔVDD+ΔVSS (14)
In the present embodiment,
ΔV DD = ΔV SS > 0 (13)
Hereinafter, the sum ΔV of the power supply voltage drop amount ΔV DD and the ground voltage drop amount ΔV SS is referred to as the total voltage drop amount.
ΔV = ΔV DD + ΔV SS (14)

図5の横軸は時間T[ps]、縦軸は電圧V[V]であり、電源配線32による電源電圧降下及び接地配線33による接地電圧降下が生じない理想的な状態における入力信号51及び出力信号52夫々の波形と、電源電圧降下及び接地電圧降下が生じた状態における入力信号53及び出力信号54夫々の波形とが示されている。   The horizontal axis in FIG. 5 is time T [ps], and the vertical axis is voltage V [V]. The input signal 51 in an ideal state in which the power supply voltage drop by the power supply wiring 32 and the ground voltage drop by the ground wiring 33 do not occur. The waveforms of the output signal 52 and the waveforms of the input signal 53 and the output signal 54 in a state where a power supply voltage drop and a ground voltage drop occur are shown.

また、本実施の形態においては、遅延時間を測定する測定電圧Vc を、
Vc =VVDD /2 (15)
とする。この場合、入力信号51に対する出力信号52の遅延時間T12、及び入力信号53に対する出力信号54の遅延時間T34は、図5に示すように、
T12=T2 −T1 (16)
T34=T3 −T1 (17)
である。
In this embodiment, the measurement voltage Vc for measuring the delay time is
Vc = V VDD / 2 (15)
And In this case, the delay time T12 of the output signal 52 with respect to the input signal 51 and the delay time T34 of the output signal 54 with respect to the input signal 53 are as shown in FIG.
T12 = T2-T1 (16)
T34 = T3-T1 (17)
It is.

測定電圧Vc 、電源電圧VVDD 、及び接地電圧VVSS は、シミュレーション条件として、予め条件記憶部161に記憶してある。また、総合電圧降下量ΔVとして、K個(Kは自然数の定数。以下ではK=5)の異なる総合電圧降下量ΔVk(kはk≦Kの自然数。ΔVk-1 <ΔVk )が予め与えられる。具体的には、総合電圧降下量ΔVk と総合電圧降下量ΔVk-1 との差Dが、シミュレーション条件として予め条件記憶部161に記憶してあり、
ΔVk =ΔV0 +k×D (18)
で求められる。ただし、ΔV0 は、電源電圧降下及び接地電圧降下が生じない理想的な状態における総合電圧降下量であり、
ΔV0 =0 (19)
である。
The measurement voltage Vc, the power supply voltage V VDD , and the ground voltage V VSS are stored in advance in the condition storage unit 161 as simulation conditions. Further, as the total voltage drop amount ΔV, there are K different total voltage drop amounts ΔV k (K is a natural number where k ≦ K. ΔV k −1 <ΔV k ) (K is a constant of a natural number, hereinafter K = 5). Pre-given. Specifically, a difference D between the total voltage drop amount ΔV k and the total voltage drop amount ΔV k−1 is stored in the condition storage unit 161 in advance as a simulation condition.
ΔV k = ΔV 0 + k × D (18)
Is required. However, ΔV 0 is a total voltage drop amount in an ideal state in which a power supply voltage drop and a ground voltage drop do not occur.
ΔV 0 = 0 (19)
It is.

総合電圧降下量ΔVk は、電源電圧降下量ΔVDDk 及び接地電圧降下量ΔVSSk の和である。
ΔVk =ΔVDDk +ΔVSSk (20)
The total voltage drop amount ΔV k is the sum of the power supply voltage drop amount ΔV DDk and the ground voltage drop amount ΔV SSk .
ΔV k = ΔV DDk + ΔV SSk (20)

また、数式(11)〜(13)に基づいて、電源電圧VDDk 及び接地電圧VSSk 、並びに電源電圧降下量ΔVDDk 及び接地電圧降下量ΔVSSk に関し、以下の数式(21)〜(23)が成立する。
ΔVDDk =VVDD −VDDk >0 (21)
ΔVSSk =VSSk −VVSS >0 (22)
ΔVDDk =ΔVSSk >0 (23)
Further, based on the formulas (11) to (13), the following formulas (21) to (23) regarding the power supply voltage V DDk and the ground voltage V SSk , and the power supply voltage drop amount ΔV DDk and the ground voltage drop amount ΔV SSk. Is established.
ΔV DDk = V VDD −V DDk > 0 (21)
ΔV SSk = V SSk −V VSS > 0 (22)
ΔV DDk = ΔV SSk > 0 (23)

本実施の形態においては、説明の簡略化のために、ΔVk とΔVk-1 との差Dの値は一定としたが、これに限るものではない。 In the present embodiment, for the sake of simplification of explanation, the value of the difference D between ΔV k and ΔV k−1 is constant, but the present invention is not limited to this.

数式(18)〜(23)より、電源電圧VDDk 及び接地電圧VSSk 夫々は、
DDk =VVDD −ΔVDDk =VVDD −ΔVk /2 (24)
SSk =VVSS +ΔVSSk =VVSS +ΔVk /2 (25)
である。
From Equations (18) to (23), the power supply voltage V DDk and the ground voltage V SSk are
V DDk = V VDD −ΔV DDk = V VDD −ΔV k / 2 (24)
V SSk = V VSS + ΔV SSk = V VSS + ΔV k / 2 (25)
It is.

以上のことから、電圧降下が生じない理想的な状態における入力信号51及び出力信号52夫々は、最大電圧Vlaが電源電圧VVDD であり、最小電圧Vsmが接地電圧VVSS である。また、電圧降下が生じた状態における入力信号及び出力信号(例えば入力信号53及び出力信号54)夫々は、最大電圧が電源電圧VDDk であり、最小電圧が接地電圧VSSk である。 From the above, in the input signal 51 and the output signal 52 in an ideal state where no voltage drop occurs, the maximum voltage V la is the power supply voltage V VDD and the minimum voltage V sm is the ground voltage V VSS . Further, in the input signal and the output signal (for example, the input signal 53 and the output signal 54) in a state where the voltage drop has occurred, the maximum voltage is the power supply voltage V DDk and the minimum voltage is the ground voltage V SSk .

また、電圧降下が生じた状態における入力波形に対する出力波形の遅延時間をTdk(Tdk-1<Tdk)とする。入力波形53に対する出力波形54の遅延時間Tdk=T34である。また、電圧降下が生じない理想的な状態における入力波形51に対する出力波形52の遅延時間をTd0とする(Td0=T12)。 Further, the delay time of the output waveform with respect to the input waveform in a state where the voltage drop has occurred is assumed to be T dk (T dk−1 <T dk ). The delay time T dk of the output waveform 54 with respect to the input waveform 53 is T 34. The delay time of the output waveform 52 with respect to the input waveform 51 in an ideal state where no voltage drop occurs is T d0 (T d0 = T12).

回路素子31に入力する最大電圧Vla、最小電圧Vsmの入力信号に対する回路素子31からの出力信号は、回路シミュレータを用いて求める。ただし、入力信号の入力波形鈍りは、遅延変化に対する感度が最も厳しくなるように選んでおく。このようにすることで、半導体集積回路3での検証を行なう際に、電源電圧降下及び接地電圧降下に対する遅延時間の変化の傾き、即ち、感度が最も厳しくなり、遅延変化量に対する最悪の条件をカバーした漏れのない検出を行なうことができる。回路シミュレータのソフトウェアは、例えば、記録媒体2から読み出されて補助記憶部16に記憶される。 An output signal from the circuit element 31 with respect to an input signal of the maximum voltage V la and the minimum voltage V sm input to the circuit element 31 is obtained using a circuit simulator. However, the input signal dullness of the input signal is selected so that the sensitivity to the delay change is the most severe. By doing so, when the verification in the semiconductor integrated circuit 3 is performed, the slope of the change of the delay time with respect to the power supply voltage drop and the ground voltage drop, that is, the sensitivity becomes the most severe, and the worst condition for the delay change amount is set. Covered leak-free detection can be performed. The circuit simulator software is read from, for example, the recording medium 2 and stored in the auxiliary storage unit 16.

本実施の形態においては、総合電圧降下量ΔVが、総合電圧降下量ΔV0 から総合電圧降下量ΔVk へ変化した場合の遅延変化量Pk を、
k =(Tdk−Td0)/Td0×100 (26)
とする。また、電源電圧降下及び接地電圧降下が生じない理想的な状態における遅延変化量P0 は、
0 =0 (27)
である。
In the present embodiment, the delay variation P k when the total voltage drop ΔV changes from the total voltage drop ΔV 0 to the total voltage drop ΔV k is expressed as follows:
P k = (T dk −T d0 ) / T d0 × 100 (26)
And Further, the delay change amount P 0 in an ideal state where the power supply voltage drop and the ground voltage drop do not occur is
P 0 = 0 (27)
It is.

総合電圧降下量ΔVk が増加する場合、即ち電源電圧降下量ΔVDDk 及び接地電圧降下量ΔVSSk が増加する場合、遅延時間Tdk、ひいては遅延変化量Pk が増加する。 When the total voltage drop amount ΔV k increases, that is, when the power supply voltage drop amount ΔV DDk and the ground voltage drop amount ΔV SSk increase, the delay time T dk and thus the delay change amount P k increases.

Figure 2006195754
Figure 2006195754

表1には、総合電圧降下量ΔV0 [V]、遅延時間Td0[ps]、及び遅延変化量P0[%]の関係を含む総合電圧降下量ΔVk [V]、遅延時間Tdk[ps]、及び遅延変化量Pk [%]の関係が示されている。関係記憶部162には、総合電圧降下量ΔV0 ,ΔVk 、遅延時間Td0,Tdk、及び遅延変化量P0 ,Pk が、表1に示されるように関連付けて記憶される。つまり、関係記憶部162は、回路素子31の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係を記憶する記憶手段として機能する。 Table 1 shows the total voltage drop amount ΔV k [V] including the relationship between the total voltage drop amount ΔV 0 [V], the delay time T d0 [ps], and the delay change amount P 0 [%], and the delay time T dk. The relationship between [ps] and delay variation P k [%] is shown. In the relation storage unit 162, the total voltage drop amounts ΔV 0 and ΔV k , the delay times T d0 and T dk , and the delay change amounts P 0 and P k are stored in association with each other as shown in Table 1. That is, the relationship storage unit 162 functions as a storage unit that stores the relationship between the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of the circuit element 31.

図6は、回路素子31に係る遅延変化量と総合電圧降下量との関係を示す特性図である。図6の横軸は遅延変化量P[%]であり、縦軸は総合電圧降下量ΔV[V]である。図6に示すように、遅延変化量Pと総合電圧降下量ΔVとの関係は略線形であるため、点(Pk-1 ,ΔVk-1 )と点(Pk ,ΔVk )との間を線形補完してなる関数ΔV(P)が求められる。 FIG. 6 is a characteristic diagram showing the relationship between the delay variation amount and the total voltage drop amount related to the circuit element 31. The horizontal axis of FIG. 6 is the delay change amount P [%], and the vertical axis is the total voltage drop amount ΔV [V]. As shown in FIG. 6, since the relationship between the delay change amount P and the total voltage drop amount ΔV is substantially linear, the point (P k−1 , ΔV k−1 ) and the point (P k , ΔV k ) A function ΔV (P) obtained by linearly interpolating the gap is obtained.

Figure 2006195754
Figure 2006195754

表2には、遅延変化量の範囲Pk ≦P≦Pk-1 (表2中ではPk-1 〜Pk と表記)と関数ΔV(P)の対応が示されている。Pk ≦P≦Pk-1 の範囲内では、
ΔV(P)=(ΔVk −ΔVk-1 )/(Pk −Pk-1 )×P
+(ΔVk-1 ×Pk −ΔVk ×Pk-1 )/(Pk −Pk-1 ) (28)
である。
Table 2 shows the correspondence between the delay variation range P k ≦ P ≦ P k-1 (indicated as P k-1 to P k in Table 2) and the function ΔV (P). Within the range of P k ≦ P ≦ P k−1 ,
ΔV (P) = (ΔV k −ΔV k−1 ) / (P k −P k−1 ) × P
+ (ΔV k-1 × P k -ΔV k × P k-1) / (P k -P k-1) (28)
It is.

以下では、
A=(ΔVk −ΔVk-1 )/(Pk −Pk-1 ) (29)
B=(ΔVk-1 ×Pk −ΔVk ×Pk-1 )/(Pk −Pk-1 ) (30)
とする。Aは関数ΔV(P)におけるPの係数、Bは定数である。つまり、数式(28)は、
ΔV(P)=A×P+B (31)
である。
Below,
A = (ΔV k −ΔV k−1 ) / (P k −P k−1 ) (29)
B = (ΔV k−1 × P k −ΔV k × P k−1 ) / (P k −P k−1 ) (30)
And A is a coefficient of P in the function ΔV (P), and B is a constant. That is, Equation (28) is
ΔV (P) = A × P + B (31)
It is.

また、表2には、範囲P≧PK (表2中ではP5 〜と表記)と関数ΔV(P)の対応が示されている。P≧PK の範囲内では、
ΔV(P)=(ΔVK −ΔVK-1 )/(PK −PK-1 )×P
+(ΔVK-1 ×PK −ΔVK ×PK-1 )/(PK −PK-1 ) (32)
である。
Table 2 shows the correspondence between the range P ≧ P K (indicated by P 5 in Table 2) and the function ΔV (P). Within the range of P ≧ P K
ΔV (P) = (ΔV K −ΔV K−1 ) / (P K −P K−1 ) × P
+ (ΔV K-1 × P K −ΔV K × P K-1 ) / (P K −P K-1 ) (32)
It is.

関係記憶部162には、遅延変化量の範囲Pk ≦P≦Pk-1 及び関数ΔV(P)が、表2に示されるように関連付けて記憶される。つまり、関係記憶部162は、回路素子31の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係である関数ΔV(P)を記憶する記憶手段として機能する。遅延変化量Pの値が決定された場合、関数ΔV(P)を用いることによって、総合電圧降下量ΔVの値が算出される。つまり、半導体集積回路3の設計制約条件を満たす遅延変化量PY に基づいて、関数ΔV(P)にP=PY を代入してなる総合最大電圧降下量ΔVY =ΔV(PY )が算出され、更に、数式(10)に基づいて、許容電源電圧降下量ΔVDDY 及び許容接地電圧降下量ΔVSSY が算出される。 The relationship storage unit 162 stores the delay variation range P k ≦ P ≦ P k−1 and the function ΔV (P) in association with each other as shown in Table 2. That is, the relationship storage unit 162 functions as a storage unit that stores a function ΔV (P) that is a relationship among the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount according to the type of the circuit element 31. When the value of the delay change amount P is determined, the value of the total voltage drop amount ΔV is calculated by using the function ΔV (P). That is, the total maximum voltage drop amount ΔV Y = ΔV (P Y ) obtained by substituting P = P Y into the function ΔV (P) based on the delay change amount P Y that satisfies the design constraint conditions of the semiconductor integrated circuit 3. Further, the allowable power supply voltage drop amount ΔV DDY and the allowable ground voltage drop amount ΔV SSY are calculated based on Expression (10).

電源電圧降下量ΔVDDDCが許容電源電圧降下量ΔVDDY を超過する場合、又は、接地電圧降下量ΔVSSDCが許容接地電圧降下量ΔVSSY を超過する場合は、半導体集積回路3の遅延変化量Pが半導体集積回路3の設計制約条件を満たす遅延変化量PY を超過する。このため、回路素子31、ひいては半導体集積回路3が誤作動すると判定される。一方、電源電圧降下量ΔVDDDCが許容電源電圧降下量ΔVDDY 以下であり、しかも、接地電圧降下量ΔVSSDCが許容接地電圧降下量ΔVSSY 以下である場合、半導体集積回路3の遅延変化量Pが半導体集積回路3の設計制約条件を満たす遅延変化量PY 以下である。このため、回路素子31は誤作動しないと判定される。 When the power supply voltage drop amount ΔV DDDC exceeds the allowable power supply voltage drop amount ΔV DDY or when the ground voltage drop amount ΔV SSDC exceeds the allowable ground voltage drop amount ΔV SSY , the delay change amount P of the semiconductor integrated circuit 3 Exceeds the delay variation P Y that satisfies the design constraint conditions of the semiconductor integrated circuit 3. For this reason, it is determined that the circuit element 31 and thus the semiconductor integrated circuit 3 malfunctions. On the other hand, when the power supply voltage drop amount ΔV DDDC is less than or equal to the allowable power supply voltage drop amount ΔV DDY and the ground voltage drop amount ΔV SSDC is less than or equal to the allowable ground voltage drop amount ΔV SSY , the delay change amount P of the semiconductor integrated circuit 3 Is less than or equal to the delay variation P Y that satisfies the design constraint conditions of the semiconductor integrated circuit 3. For this reason, it is determined that the circuit element 31 does not malfunction.

以下では、一の回路素子31に関してCPU10が実行する判定基準算出処理、判定対象算出処理及び動作検証処理を説明する。他の回路素子31,31,…に関しては、一の回路素子31に関する判定基準算出処理、判定対象算出処理及び動作検証処理の実行と同様に、各処理を実行すれば良い。このために、判定基準算出処理、判定対象算出処理及び動作検証処理にて関係記憶部162〜判定結果記憶部165に夫々記憶されるデータは、対応する回路素子31に関連付けて記憶される。   Hereinafter, a determination criterion calculation process, a determination target calculation process, and an operation verification process executed by the CPU 10 with respect to one circuit element 31 will be described. As for the other circuit elements 31, 31,..., Each process may be executed in the same manner as the determination criterion calculation process, the determination target calculation process, and the operation verification process related to one circuit element 31. Therefore, data stored in the relationship storage unit 162 to the determination result storage unit 165 in the determination criterion calculation process, the determination target calculation process, and the operation verification process are stored in association with the corresponding circuit elements 31.

図7及び図8は、回路動作検証装置1のCPU10が実行する判定基準算出処理の手順を示すフローチャートである。判定基準算出処理は、例えば、回路動作検証装置1のオペレータが回路動作検証装置1の操作部14を介して回路動作検証命令を回路動作検証装置1に入力した場合に実行される。   FIG. 7 and FIG. 8 are flowcharts showing the procedure of the determination criterion calculation process executed by the CPU 10 of the circuit operation verification apparatus 1. The determination criterion calculation process is executed, for example, when an operator of the circuit operation verification apparatus 1 inputs a circuit operation verification command to the circuit operation verification apparatus 1 via the operation unit 14 of the circuit operation verification apparatus 1.

CPU10は、総合電圧降下量ΔV0 に“0”を代入し(S11)、電源電圧VVDD 及び接地電圧VVSS を条件記憶部161から読み出して、最大電圧Vla=VVDD 、最小電圧Vsm=VVSS の入力信号51を生成して(S12)、回路シミュレータを用い、出力信号52を算出する(S13)。 The CPU 10 substitutes “0” for the total voltage drop amount ΔV 0 (S11), reads the power supply voltage V VDD and the ground voltage V VSS from the condition storage unit 161, and sets the maximum voltage V la = V VDD and the minimum voltage V sm. = V VSS input signal 51 is generated (S12), and an output signal 52 is calculated using a circuit simulator (S13).

更にCPU10は、測定電圧Vc を条件記憶部161から読み出して、S12で生成した入力信号51、S13で算出された出力信号52、及び測定電圧Vc に基づき、遅延時間Td0を算出する(S14)。また、CPU10は、遅延変化量P0 に“0”を代入する(S15)。更にまた、CPU10は、総合電圧降下量ΔV0 、遅延時間Td0、及び遅延変化量P0 を回路素子31に関連付けて関係記憶部162に記憶させる(S16)。 Further, the CPU 10 reads the measured voltage Vc from the condition storage unit 161, and calculates the delay time Td0 based on the input signal 51 generated in S12, the output signal 52 calculated in S13, and the measured voltage Vc (S14). . Further, the CPU 10 substitutes “0” for the delay variation P 0 (S15). Furthermore, the CPU 10 stores the total voltage drop amount ΔV 0 , the delay time T d0 , and the delay change amount P 0 in the relationship storage unit 162 in association with the circuit element 31 (S16).

CPU10は、変数kに“1”を代入する(S17)。   The CPU 10 substitutes “1” for the variable k (S17).

CPU10は、差Dを条件記憶部161から読み出して、読み出した差DとS11の総合電圧降下量ΔV0 と数式(18)とに基づき、総合電圧降下量ΔVk を算出する(S18)。次にCPU10は、条件記憶部161から読み出した電源電圧VVDD 及び接地電圧VVSS とS18で算出した総合電圧降下量ΔVk と数式(24)及び数式(25)とに基づいて、電源電圧VDDk 及び接地電圧VVSS を算出し、最大電圧Vla=VDDk 、最小電圧Vsm=VVSS の入力信号を生成して(S19)、回路シミュレータを用い、出力信号を算出する(S20)。 The CPU 10 reads the difference D from the condition storage unit 161, and calculates the total voltage drop amount ΔV k based on the read difference D, the total voltage drop amount ΔV 0 of S11, and the equation (18) (S18). Then CPU10 is total amount of voltage drop [Delta] V k and formulas (24) calculated in the condition storage unit 161 the power supply voltage V VDD and the ground voltage V VSS and S18 read from and based on the equation (25), the supply voltage V DDk and ground voltage V VSS are calculated, an input signal with maximum voltage V la = V DDk and minimum voltage V sm = V VSS is generated (S19), and an output signal is calculated using a circuit simulator (S20).

更にCPU10は、条件記憶部161から読み出した測定電圧Vc と、S19で生成した入力信号と、S20で算出された出力信号とに基づき、遅延時間Tdkを算出する(S21)。また、CPU10は、S21で算出した遅延時間TdkとS14で算出した遅延時間Td0と数式(26)とに基づいて、遅延変化量Pk を算出する(S22)。更にまた、CPU10は、総合電圧降下量ΔVk 、遅延時間Tdk、及び遅延変化量Pk を回路素子31に関連付けて関係記憶部162に記憶させる(S23)。 Further, the CPU 10 calculates the delay time T dk based on the measured voltage Vc read from the condition storage unit 161, the input signal generated in S19, and the output signal calculated in S20 (S21). Further, the CPU 10 calculates the delay change amount P k based on the delay time T dk calculated in S21, the delay time T d0 calculated in S14, and Equation (26) (S22). Furthermore, the CPU 10 stores the total voltage drop amount ΔV k , the delay time T dk , and the delay change amount P k in the relationship storage unit 162 in association with the circuit element 31 (S23).

更にCPU10は、関係記憶部162から総合電圧降下量ΔVk ,ΔVk-1 及び遅延変化量Pk ,Pk-1 を読み出し、数式(28)に基づいて関数ΔV(P)を生成し、範囲Pk ≦P≦Pk-1と関数ΔV(P)とを回路素子31に関連付けて関係記憶部162に記憶させる(S24)。更に詳細には、S24において、数式(29)及び数式(30)に基づいて、範囲Pk ≦P≦Pk-1 と係数A及び定数Bとを関係記憶部162に記憶させる。 Further, the CPU 10 reads the total voltage drop amounts ΔV k , ΔV k−1 and the delay variation amounts P k , P k−1 from the relationship storage unit 162, generates a function ΔV (P) based on the equation (28), The range P k ≦ P ≦ P k−1 and the function ΔV (P) are associated with the circuit element 31 and stored in the relationship storage unit 162 (S24). More specifically, in S24, the range P k ≦ P ≦ P k−1 , the coefficient A, and the constant B are stored in the relationship storage unit 162 based on the mathematical expressions (29) and (30).

CPU10は、変数kが定数K以上であるか否かを判定し(S25)、k<Kである場合(S25でNO)、変数kをインクリメントして(S26)、処理をS18に戻す。   The CPU 10 determines whether or not the variable k is equal to or greater than the constant K (S25). If k <K (NO in S25), the CPU increments the variable k (S26) and returns the process to S18.

CPU10は、変数kが定数K以上である場合(S25でYES)、数式(32)に基づいて関数ΔV(P)を生成し、範囲P≧PK と関数ΔV(P)とを回路素子31に関連付けて関係記憶部162に記憶させ(S27)、判定基準算出処理を終了する。 When the variable k is equal to or greater than the constant K (YES in S25), the CPU 10 generates the function ΔV (P) based on the equation (32), and sets the range P ≧ P K and the function ΔV (P) to the circuit element 31. In the relation storage unit 162 (S27), and the determination criterion calculation process is terminated.

図9は、回路動作検証装置1のCPU10が実行する判定対象算出処理の手順を示すフローチャートである。判定対象算出処理は、判定基準算出処理の終了後に実行される。   FIG. 9 is a flowchart illustrating a determination target calculation process performed by the CPU 10 of the circuit operation verification apparatus 1. The determination target calculation process is executed after the determination criterion calculation process ends.

CPU10は、補助記憶部16からマスクレイアウトデータを読み出し(S31)、読み出したマスクレイアウトデータに基づき、配線寄生素子抽出ツールを用いて抵抗成分RD を抽出し(S32)、更に、条件記憶部161から信号変化回数Nを読み出し(S33)、読み出した信号変化回数Nに基づき、消費電力解析ツールを用いて消費電流IDavgを算出する(S34)。次いで、CPU10は、抵抗成分RD 及び消費電流IDavgに基づき、DC解析ツールを用いて電源電圧降下量ΔVDDDCを算出し、回路素子31に関連付けて判定対象記憶部163に記憶させる(S35)。 The CPU 10 reads the mask layout data from the auxiliary storage unit 16 (S31), extracts the resistance component RD using the wiring parasitic element extraction tool based on the read mask layout data (S32), and further the condition storage unit 161. The number N of signal changes is read out from (S33), and the current consumption I Davg is calculated using the power consumption analysis tool based on the read number N of signal changes (S34). Next, the CPU 10 calculates the power supply voltage drop amount ΔV DDDC using the DC analysis tool based on the resistance component R D and the consumption current I Davg and stores it in the determination target storage unit 163 in association with the circuit element 31 (S35). .

更にまた、CPU10は、S31にて条件記憶部161から読み出したマスクレイアウトデータに基づき、配線寄生素子抽出ツールを用いて抵抗成分RS を抽出し(S36)、更に、S33にて条件記憶部161から読み出した信号変化回数Nに基づき、消費電力解析ツールを用いて消費電流ISavgを算出する(S37)。次いで、CPU10は、抵抗成分RS 及び消費電流ISavgに基づき、DC解析ツールを用いて接地電圧降下量ΔVSSDCを算出し、回路素子31に関連付けて判定対象記憶部163に記憶させる(S38)。 Furthermore, the CPU 10 extracts the resistance component R S using the wiring parasitic element extraction tool based on the mask layout data read from the condition storage unit 161 in S31 (S36), and further, the condition storage unit 161 in S33. Based on the signal change count N read out from, the current consumption I Savg is calculated using the power consumption analysis tool (S37). Next, the CPU 10 calculates a ground voltage drop amount ΔV SSDC using a DC analysis tool based on the resistance component R S and the consumption current I Savg and stores it in the determination target storage unit 163 in association with the circuit element 31 (S38). .

S38の完了後、CPU10は、判定対象算出処理を終了する。   After completion of S38, the CPU 10 ends the determination target calculation process.

図10は、回路動作検証装置1のCPU10が実行する動作検証処理の手順を示すフローチャートである。動作検証処理は、判定対象算出処理の終了後に実行される。   FIG. 10 is a flowchart showing the procedure of the operation verification process executed by the CPU 10 of the circuit operation verification apparatus 1. The operation verification process is executed after the determination target calculation process ends.

CPU10は、条件記憶部161から遅延変化量PY を読み出し(S51)、読み出した遅延変化量PY を関係記憶部162に記憶してある関数ΔV(P)に代入して、総合最大電圧降下量ΔVY を求める(S52)。更に詳細には、CPU10は、S51にて読み出した遅延変化量PY に関連付けて関係記憶部162に記憶してある係数A及び定数Bを読み出し、Pk-1 ≦PY ≦Pk と数式(31)とに基づいてΔVY を求める。ただし、P=PY ≧PK である場合は、CPU10は、P=PY と数式(32)とに基づいて総合最大電圧降下量ΔVY を求める。 The CPU 10 reads the delay change amount P Y from the condition storage unit 161 (S51), substitutes the read delay change amount P Y into the function ΔV (P) stored in the relationship storage unit 162, and determines the total maximum voltage drop. The amount ΔV Y is obtained (S52). More specifically, the CPU 10 reads the coefficient A and the constant B stored in the relationship storage unit 162 in association with the delay variation P Y read in S51, and formulas P k−1 ≦ P Y ≦ P k. ΔV Y is obtained based on (31). However, when P = P Y ≧ P K , the CPU 10 obtains the total maximum voltage drop amount ΔV Y based on P = P Y and Expression (32).

更にCPU10は、S52で求めた総合最大電圧降下量ΔVY =ΔV(PY )と数式(10)とに基づいて、許容電源電圧降下量ΔVDDY を求め、回路素子31に関連付けて判定基準記憶部164に記憶させ(S53)、同様に、S52で求めた総合最大電圧降下量ΔVY =ΔV(PY )と数式(10)とに基づいて、許容接地電圧降下量ΔVSSY を求め、回路素子31に関連付けて判定基準記憶部164に記憶させる(S54)。 Further, the CPU 10 obtains the allowable power supply voltage drop amount ΔV DDY based on the total maximum voltage drop amount ΔV Y = ΔV (P Y ) obtained in S52 and the equation (10), and stores the determination reference in association with the circuit element 31. 164 (S53). Similarly, based on the total maximum voltage drop amount ΔV Y = ΔV (P Y ) obtained in S52 and the equation (10), the allowable ground voltage drop amount ΔV SSY is obtained, The determination reference storage unit 164 stores the information in association with the element 31 (S54).

CPU10は、判定対象記憶部163から電源電圧降下量ΔVDDDCを読み出し、更に判定基準記憶部164から許容電源電圧降下量ΔVDDY を読み出し(S55)、読み出した電源電圧降下量ΔVDDDCが許容電源電圧降下量ΔVDDY を超過しているか否かを判定する(S56)。電源電圧降下量ΔVDDDC>許容電源電圧降下量ΔVDDY である場合(S56でYES)、CPU10は回路素子31は誤作動すると判定し(S57)、誤作動するという判定結果を回路素子31に関連付けて判定結果記憶部165に記憶する(S58)。 The CPU 10 reads the power supply voltage drop amount ΔV DDDC from the determination target storage unit 163, further reads the allowable power supply voltage drop amount ΔV DDY from the determination reference storage unit 164 (S55), and the read power supply voltage drop amount ΔV DDDC is the allowable power supply voltage. It is determined whether or not the drop amount ΔV DDY is exceeded (S56). When power supply voltage drop amount ΔV DDDC > allowable power supply voltage drop amount ΔV DDY (YES in S56), the CPU 10 determines that the circuit element 31 malfunctions (S57), and associates the determination result that malfunction occurs with the circuit element 31. And stored in the determination result storage unit 165 (S58).

電源電圧降下量ΔVDDDC≦許容電源電圧降下量ΔVDDY である場合(S56でNO)、CPU10は、判定対象記憶部163から接地電圧降下量ΔVSSDCを読み出し、更に判定基準記憶部164から許容接地電圧降下量ΔVSSY を読み出し(S59)、読み出した接地電圧降下量ΔVSSDCが許容接地電圧降下量ΔVSSY を超過しているか否かを判定する(S60)。接地電圧降下量ΔVSSDC>許容接地電圧降下量ΔVSSY である場合(S60でYES)、CPU10は、S57にて、回路素子31は誤作動すると判定し、S58にて、誤作動するという判定結果を回路素子31に関連付けて判定結果記憶部165に記憶する。 When power supply voltage drop amount ΔV DDDC ≦ allowable power supply voltage drop amount ΔV DDY (NO in S56), CPU 10 reads ground voltage drop amount ΔV SSDC from determination target storage unit 163, and further permits allowable grounding from determination reference storage unit 164. The voltage drop amount ΔV SSY is read (S59), and it is determined whether or not the read ground voltage drop amount ΔV SSDC exceeds the allowable ground voltage drop amount ΔV SSY (S60). When ground voltage drop ΔV SSDC > allowable ground voltage drop ΔV SSY (YES in S60), CPU 10 determines in S57 that the circuit element 31 malfunctions, and in S58, the determination result that malfunction occurs. Is stored in the determination result storage unit 165 in association with the circuit element 31.

接地電圧降下量ΔVSSDC≦許容接地電圧降下量ΔVSSY である場合(S60でNO)、CPU10は、回路素子31は誤作動しない正常な回路素子であると判定し(S61)、S58にて、正常であるという判定結果を回路素子31に関連付けて判定結果記憶部165に記憶する。 When the ground voltage drop amount ΔV SSDC ≦ allowable ground voltage drop amount ΔV SSY (NO in S60), the CPU 10 determines that the circuit element 31 is a normal circuit element that does not malfunction (S61), and in S58. The determination result that is normal is associated with the circuit element 31 and stored in the determination result storage unit 165.

S58の処理の完了後、CPU10は、動作検証処理を終了する。なお、動作検証処理の終了前に、S58にて判定結果記憶部165に記憶された判定結果を、表示部13に表示させる構成でも良い。   After completing the process of S58, the CPU 10 ends the operation verification process. Note that the determination result stored in the determination result storage unit 165 in S58 may be displayed on the display unit 13 before the operation verification process ends.

半導体集積回路3の設計制約条件が変更された場合、変更された設計制約条件に応じて遅延変化量PY の値が変更される。CPU10は、変更された遅延変化量PY に基づき、動作検証処理を実行する。この場合、判定基準算出処理及び判定対象算出処理は実行する必要がない。 When the design constraint condition of the semiconductor integrated circuit 3 is changed, the value of the delay variation P Y is changed according to the changed design constraint condition. The CPU 10 executes an operation verification process based on the changed delay change amount P Y. In this case, it is not necessary to execute the determination criterion calculation process and the determination target calculation process.

また、回路素子31が誤作動すると判定された場合、マスクレイアウトデータが修正される。CPU10は、修正されたマスクレイアウトデータに基づき、判定対象算出処理を実行し、更に、判定対象算出処理の実行結果に基づいて、動作検証処理を実行する。この場合、判定基準算出処理は実行する必要がない。   If it is determined that the circuit element 31 malfunctions, the mask layout data is corrected. The CPU 10 executes a determination target calculation process based on the corrected mask layout data, and further executes an operation verification process based on the execution result of the determination target calculation process. In this case, it is not necessary to execute the determination criterion calculation process.

ところで、全ての回路素子31,31,…に対して動作検証する場合、一の回路素子31に対して判定基準算出処理、判定対象算出処理及び動作検証処理を順次実行してから他の回路素子31に対して判定基準算出処理、判定対象算出処理及び動作検証処理を順次実行する。なお、回路素子31,31,…夫々に対して判定基準算出処理を順次実行してから、判定対象算出処理を順次実行し、更に動作検証処理を順次実行しても良い。   By the way, when the operation verification is performed on all the circuit elements 31, 31,..., The determination reference calculation process, the determination target calculation process, and the operation verification process are sequentially performed on one circuit element 31, and then the other circuit elements. The determination reference calculation process, the determination target calculation process, and the operation verification process are sequentially executed on the control unit 31. It should be noted that the determination criterion calculation process may be sequentially executed on each of the circuit elements 31, 31,..., The determination target calculation process may be sequentially executed, and the operation verification process may be sequentially executed.

以上のような判定基準算出処理、判定対象算出処理及び動作検証処理に関し、S53におけるCPU10は、記憶手段に記憶してある関係、及び所与の遅延変化量に基づいて、許容電源電圧降下量を求める許容電源電圧降下量算出手段として機能する。また、S56におけるCPU10は、回路素子31に係る電源電圧降下量が、許容電源電圧降下量算出手段が求めた許容電源電圧降下量超過であるか否かを判定する判定手段として機能する。   Regarding the determination criterion calculation process, the determination target calculation process, and the operation verification process as described above, the CPU 10 in S53 determines the allowable power supply voltage drop amount based on the relationship stored in the storage unit and the given delay change amount. It functions as a permissible power supply voltage drop amount calculation means. The CPU 10 in S56 functions as a determination unit that determines whether or not the power supply voltage drop amount related to the circuit element 31 exceeds the allowable power supply voltage drop amount obtained by the allowable power supply voltage drop amount calculation unit.

更に、S54におけるCPU10は、記憶手段に記憶してある関係、及び所与の遅延変化量に基づいて、許容接地電圧降下量を求める許容接地電圧降下量算出手段として機能する。更にまた、S60におけるCPU10は、回路素子31に係る接地電圧降下量が、許容接地電圧降下量算出手段が求めた許容接地電圧降下量超過であるか否かを判定する超過判定手段として機能する。   Further, the CPU 10 in S54 functions as an allowable ground voltage drop amount calculation means for obtaining an allowable ground voltage drop amount based on the relationship stored in the storage means and a given delay change amount. Furthermore, the CPU 10 in S60 functions as an excess determination unit that determines whether or not the ground voltage drop amount related to the circuit element 31 exceeds the allowable ground voltage drop amount obtained by the allowable ground voltage drop amount calculation unit.

S35におけるCPU10は、回路素子31の消費電流、及び電源配線32の抵抗に基づいて、回路素子31に係る電源電圧降下量を求める電源電圧降下量算出手段として機能し、S38におけるCPU10は、回路素子31の消費電流、及び接地配線33の抵抗に基づいて、回路素子31に係る接地電圧降下量を求める接地電圧降下量算出手段として機能する。また、判定手段は、電源電圧降下量算出手段が求めた電源電圧降下量が、許容電源電圧降下量超過であるか否かを判定するようにしてあり、超過判定手段は、接地電圧降下量算出手段が求めた接地電圧降下量が、許容接地電圧降下量超過であるか否かを判定するようにしてある。   The CPU 10 in S35 functions as power supply voltage drop amount calculation means for obtaining the power supply voltage drop amount related to the circuit element 31 based on the current consumption of the circuit element 31 and the resistance of the power supply wiring 32. The CPU 10 in S38 It functions as a ground voltage drop amount calculation means for obtaining a ground voltage drop amount related to the circuit element 31 based on the current consumption of 31 and the resistance of the ground wiring 33. The determining means determines whether or not the power supply voltage drop amount obtained by the power supply voltage drop amount calculating means exceeds the allowable power supply voltage drop amount. The excess determining means calculates the ground voltage drop amount. It is determined whether the ground voltage drop amount obtained by the means exceeds the allowable ground voltage drop amount.

S22におけるCPU10は、回路素子31に対する入力信号及び出力信号に基づいて、回路素子31に対して入出力される信号の遅延時間の電圧降下による変化を示す遅延変化量を求める遅延変化量算出手段として機能する。また、記憶手段は、回路素子31の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量算出手段が算出した遅延変化量の関係を記憶するようにしてある。   The CPU 10 in S22 serves as delay change amount calculation means for obtaining a delay change amount indicating a change due to a voltage drop in a delay time of a signal input to and output from the circuit element 31 based on an input signal and an output signal to the circuit element 31. Function. The storage means stores the relationship between the power supply voltage drop amount and the ground voltage drop amount related to the type of the circuit element 31 and the delay change amount calculated by the delay change amount calculation means.

以上のような回路動作検証装置1は、電源電圧降下及び接地電圧降下を考慮しつつ、正確に誤作動を検証することができる。また、回路素子31の種類に係る電源電圧降下量及び接地電圧降下量並びに遅延変化量の関係である関数ΔV(P)を関係記憶部162に記憶しておき、関係記憶部162に記憶してある関数ΔV(P)に基づいて許容電源電圧降下量ΔVDDY 及び許容接地電圧降下量ΔVSSY を求めるため、電源電圧降下及び接地電圧降下を考慮しつつ、簡易かつ高速に誤作動を検証することができる。 The circuit operation verification device 1 as described above can accurately verify malfunction while considering the power supply voltage drop and the ground voltage drop. Further, a function ΔV (P) that is a relationship among the power supply voltage drop amount, the ground voltage drop amount, and the delay change amount related to the type of the circuit element 31 is stored in the relationship storage unit 162 and stored in the relationship storage unit 162. In order to obtain the allowable power supply voltage drop amount ΔV DDY and the allowable ground voltage drop amount ΔV SSY based on a certain function ΔV (P), the malfunction should be verified simply and at high speed while considering the power supply voltage drop and the ground voltage drop. Can do.

更に、回路素子が誤作動するか否かの判定の際に、例えばタイミング検証のために論理シミュレーションが不要であるため、簡易かつ高速に誤作動を検証することができる。   Furthermore, when determining whether or not a circuit element malfunctions, a logic simulation is not required for timing verification, for example, so that malfunction can be verified easily and at high speed.

更にまた、回路素子が誤作動すると判定された場合、マスクレイアウトデータを修正して再び回路動作検証を行なうとき、又は、半導体集積回路3の設計制約条件が変更された場合、少なくとも判定基準算出処理は実行する必要がない。つまり、関係記憶部162に記憶してある関数ΔV(P)は、変更することなしに再利用することができる。このため、半導体集積回路3の動作検証に要する工程を減少させることができる。また、レイアウトが異なる複数の半導体集積回路3,3,…に対する動作検証を実行する場合、各半導体集積回路3を構成する回路素子31,31,…の種類が同一であるとき、関係記憶部162に記憶してある関数ΔV(P)を利用することができる。   Furthermore, when it is determined that the circuit element malfunctions, when the mask layout data is corrected and the circuit operation verification is performed again, or when the design constraint condition of the semiconductor integrated circuit 3 is changed, at least the determination criterion calculation process Does not need to be executed. That is, the function ΔV (P) stored in the relationship storage unit 162 can be reused without being changed. For this reason, the process required for the operation verification of the semiconductor integrated circuit 3 can be reduced. When performing operation verification on a plurality of semiconductor integrated circuits 3, 3,... With different layouts, when the types of circuit elements 31, 31,... Constituting each semiconductor integrated circuit 3 are the same, the relationship storage unit 162. The function ΔV (P) stored in can be used.

なお、条件記憶部161及び関係記憶部162に、外部から与えられたデータが記憶される構成でも良い。つまり、関数ΔV(P)も所与であって良い。   The condition storage unit 161 and the relationship storage unit 162 may be configured to store data given from the outside. That is, the function ΔV (P) may be given.

本発明に係る回路動作検証装置の構成を示すブロック図である。It is a block diagram which shows the structure of the circuit operation verification apparatus which concerns on this invention. 本発明に係る回路動作検証装置を用いて動作検証を行なうべき半導体集積回路の構成を示すレイアウト図である。1 is a layout diagram showing a configuration of a semiconductor integrated circuit whose operation is to be verified using a circuit operation verification apparatus according to the present invention. 本発明に係る回路動作検証装置を用いて動作検証を行なうべき半導体集積回路の電圧降下解析用の等価回路の構成を示す回路図である。FIG. 3 is a circuit diagram showing a configuration of an equivalent circuit for voltage drop analysis of a semiconductor integrated circuit whose operation should be verified using the circuit operation verification apparatus according to the present invention. 本発明に係る回路動作検証装置を用いて動作検証を行なうべき半導体集積回路の回路素子の構成を示す回路図である。1 is a circuit diagram showing a configuration of circuit elements of a semiconductor integrated circuit whose operation should be verified using a circuit operation verification apparatus according to the present invention. 本発明に係る回路動作検証装置を用いて動作検証を行なうべき半導体集積回路の回路素子に係る遅延変化を示す説明図である。It is explanatory drawing which shows the delay change which concerns on the circuit element of the semiconductor integrated circuit which should perform operation verification using the circuit operation verification apparatus which concerns on this invention. 本発明に係る回路動作検証装置を用いて動作検証を行なうべき半導体集積回路の回路素子に係る遅延変化量と総合電圧降下量との関係を示す特性図である。It is a characteristic view which shows the relationship between the delay variation | change_quantity and the total voltage drop amount which concern on the circuit element of the semiconductor integrated circuit which should perform operation verification using the circuit operation verification apparatus based on this invention. 本発明に係る回路動作検証装置の判定基準算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the criteria calculation process of the circuit operation verification apparatus which concerns on this invention. 本発明に係る回路動作検証装置の判定基準算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the criteria calculation process of the circuit operation verification apparatus which concerns on this invention. 本発明に係る回路動作検証装置の判定対象算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination target calculation process of the circuit operation verification apparatus which concerns on this invention. 本発明に係る回路動作検証装置の動作検証処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the operation verification process of the circuit operation verification apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 回路動作検証装置
10 CPU
162 関係記憶部(記憶手段)
2 記録媒体
3 半導体集積回路
31 回路素子
32 電源配線
33 接地配線
1 Circuit operation verification device 10 CPU
162 Relationship storage unit (storage means)
2 Recording medium 3 Semiconductor integrated circuit 31 Circuit element 32 Power supply wiring 33 Ground wiring

Claims (7)

半導体集積回路が有する回路素子が誤作動するか否かを、回路動作検証装置で検証する回路動作検証方法において、
前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて、前記半導体集積回路の設計制約条件を満たす許容電源電圧降下量を求め、
前記半導体集積回路が有する回路素子に接続される電源配線による電圧降下を示す電源電圧降下量が、求められた許容電源電圧降下量超過であるか否かを判定し、
前記電源電圧降下量が前記許容電源電圧降下量超過であると判定した場合、前記回路素子が誤作動すると判定することを特徴とする回路動作検証方法。
In a circuit operation verification method for verifying whether a circuit element included in a semiconductor integrated circuit malfunctions with a circuit operation verification apparatus,
Based on the power supply voltage drop amount and the ground voltage drop amount indicating the voltage drop due to each of the power supply wiring and the ground wiring of the semiconductor integrated circuit, an allowable power supply voltage drop amount satisfying the design constraint condition of the semiconductor integrated circuit is obtained,
Determining whether or not a power supply voltage drop amount indicating a voltage drop due to a power supply wiring connected to a circuit element included in the semiconductor integrated circuit exceeds an obtained allowable power supply voltage drop amount;
A circuit operation verification method, comprising: determining that the circuit element malfunctions when it is determined that the power supply voltage drop amount exceeds the allowable power supply voltage drop amount.
半導体集積回路が有する回路素子が誤作動するか否かを、前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて、記憶手段を備える回路動作検証装置で検証する回路動作検証方法であって、
前記半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量の関係を前記記憶手段に記憶しておき、
前記記憶手段に記憶してある前記関係と、所与の遅延変化量とに基づいて、許容電源電圧降下量を求め、
前記半導体集積回路が有する回路素子に係る前記電源電圧降下量が、求められた許容電源電圧降下量超過であるか否かを判定することを特徴とする回路動作検証方法。
Whether or not a circuit element included in the semiconductor integrated circuit malfunctions is provided based on a power supply voltage drop amount and a ground voltage drop amount indicating a voltage drop caused by the power supply wiring and the ground wiring respectively included in the semiconductor integrated circuit. A circuit operation verification method for verifying with a circuit operation verification device,
The power supply voltage drop amount and the ground voltage drop amount related to the same type of circuit element as the type of the circuit element included in the semiconductor integrated circuit, and the voltage of the delay time of the signal input to and output from the type of circuit element The relationship of the delay change amount indicating the change due to the descent is stored in the storage means,
Based on the relationship stored in the storage means and a given delay change amount, an allowable power supply voltage drop amount is obtained,
A circuit operation verification method, comprising: determining whether or not the power supply voltage drop amount relating to a circuit element included in the semiconductor integrated circuit exceeds the obtained allowable power supply voltage drop amount.
半導体集積回路が有する回路素子が誤作動するか否かを、前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて検証する回路動作検証装置であって、
前記半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量の関係を記憶する記憶手段と、
該記憶手段に記憶してある前記関係、及び所与の遅延変化量に基づいて、許容電源電圧降下量を求める許容電源電圧降下量算出手段と、
前記半導体集積回路が有する回路素子に係る前記電源電圧降下量が、前記許容電源電圧降下量算出手段が求めた許容電源電圧降下量超過であるか否かを判定する判定手段と
を備えることを特徴とする回路動作検証装置。
Circuit operation verification for verifying whether or not a circuit element included in the semiconductor integrated circuit malfunctions based on a power supply voltage drop amount and a ground voltage drop amount indicating a voltage drop caused by the power supply wiring and the ground wiring respectively included in the semiconductor integrated circuit. A device,
The power supply voltage drop amount and the ground voltage drop amount related to the same type of circuit element as the type of the circuit element included in the semiconductor integrated circuit, and the voltage of the delay time of the signal input to and output from the type of circuit element Storage means for storing a relationship of a delay change amount indicating a change due to descent;
An allowable power supply voltage drop amount calculating means for obtaining an allowable power supply voltage drop amount based on the relationship stored in the storage means and a given delay change amount;
Determination means for determining whether or not the power supply voltage drop amount related to the circuit element included in the semiconductor integrated circuit is greater than the allowable power supply voltage drop amount obtained by the allowable power supply voltage drop amount calculation means. A circuit operation verification device.
前記記憶手段に記憶してある前記関係、及び前記所与の遅延変化量に基づいて、許容接地電圧降下量を求める許容接地電圧降下量算出手段と、
前記回路素子に係る前記接地電圧降下量が、前記許容接地電圧降下量算出手段が求めた許容接地電圧降下量超過であるか否かを判定する超過判定手段と
を備えることを特徴とする請求項3に記載の回路動作検証装置。
An allowable ground voltage drop amount calculating means for obtaining an allowable ground voltage drop amount based on the relationship stored in the storage means and the given delay variation;
The excess determination unit for determining whether or not the ground voltage drop amount related to the circuit element exceeds the allowable ground voltage drop amount obtained by the allowable ground voltage drop amount calculation unit. 4. The circuit operation verification device according to 3.
前記回路素子の消費電流、及び前記電源配線の抵抗に基づいて、前記回路素子に係る前記電源電圧降下量を求める電源電圧降下量算出手段と、
前記消費電流、及び前記接地配線の抵抗に基づいて、前記回路素子に係る前記接地電圧降下量を求める接地電圧降下量算出手段と
を備え、
前記判定手段は、前記電源電圧降下量算出手段が求めた電源電圧降下量が、前記許容電源電圧降下量超過であるか否かを判定するようにしてあり、
前記超過判定手段は、前記接地電圧降下量算出手段が求めた接地電圧降下量が、前記許容接地電圧降下量超過であるか否かを判定するようにしてある
ことを特徴とする請求項4に記載の回路動作検証装置。
Power supply voltage drop amount calculating means for obtaining the power supply voltage drop amount related to the circuit element based on the current consumption of the circuit element and the resistance of the power supply wiring;
Ground voltage drop amount calculating means for obtaining the ground voltage drop amount related to the circuit element based on the current consumption and the resistance of the ground wiring, and
The determination means determines whether or not the power supply voltage drop amount obtained by the power supply voltage drop amount calculation means exceeds the allowable power supply voltage drop amount,
5. The excess determination unit determines whether or not the ground voltage drop amount obtained by the ground voltage drop amount calculation unit exceeds the allowable ground voltage drop amount. The circuit operation verification device described.
前記種類の回路素子に対する入力信号及び出力信号に基づいて、前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量を求める遅延変化量算出手段を備え、
前記種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記遅延変化量算出手段が算出した遅延変化量の関係を前記記憶手段に記憶するようにしてある
ことを特徴とする請求項3乃至5の何れかひとつに記載の回路動作検証装置。
A delay change amount calculating means for obtaining a delay change amount indicating a change due to the voltage drop in a delay time of a signal input to and output from the type of circuit element based on an input signal and an output signal to the type of circuit element; Prepared,
The storage means stores the relationship between the power supply voltage drop amount and the ground voltage drop amount related to the circuit element of the type, and the delay change amount calculated by the delay change amount calculation means. The circuit operation verification apparatus according to claim 3.
コンピュータに、半導体集積回路が有する回路素子が誤作動するか否かを、前記半導体集積回路が有する電源配線及び接地配線夫々による電圧降下を示す電源電圧降下量及び接地電圧降下量に基づいて検証させるためのコンピュータプログラムであって、
コンピュータに、前記半導体集積回路が有する回路素子の種類と同じ種類の回路素子に係る前記電源電圧降下量及び前記接地電圧降下量、並びに前記種類の回路素子に対して入出力される信号の遅延時間の前記電圧降下による変化を示す遅延変化量の関係と、所与の遅延変化量とに基づいて、許容電源電圧降下量を求めさせるステップと、
コンピュータに、前記半導体集積回路が有する回路素子に係る前記電源電圧降下量が、求められた許容電源電圧降下量超過であるか否かを判定させるステップと
を実行させることを特徴とするコンピュータプログラム。
Let the computer verify whether or not a circuit element included in the semiconductor integrated circuit malfunctions based on a power supply voltage drop amount and a ground voltage drop amount indicating a voltage drop caused by the power supply wiring and the ground wiring of the semiconductor integrated circuit, respectively. A computer program for
The power supply voltage drop amount and the ground voltage drop amount relating to the same type of circuit element as the type of the circuit element included in the semiconductor integrated circuit, and a delay time of a signal input / output to / from the type of circuit element A step of obtaining an allowable power supply voltage drop amount based on a relationship of a delay change amount indicating a change due to the voltage drop and a given delay change amount;
And causing the computer to determine whether or not the power supply voltage drop amount relating to the circuit element included in the semiconductor integrated circuit exceeds the obtained allowable power supply voltage drop amount.
JP2005006895A 2005-01-13 2005-01-13 Circuit operation verification method, circuit operation verification device, and computer program Pending JP2006195754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005006895A JP2006195754A (en) 2005-01-13 2005-01-13 Circuit operation verification method, circuit operation verification device, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005006895A JP2006195754A (en) 2005-01-13 2005-01-13 Circuit operation verification method, circuit operation verification device, and computer program

Publications (1)

Publication Number Publication Date
JP2006195754A true JP2006195754A (en) 2006-07-27

Family

ID=36801800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006895A Pending JP2006195754A (en) 2005-01-13 2005-01-13 Circuit operation verification method, circuit operation verification device, and computer program

Country Status (1)

Country Link
JP (1) JP2006195754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287666A (en) * 2007-05-21 2008-11-27 Sharp Corp Circuit operation verification device, method for manufacturing semiconductor integrated circuit, circuit operation verification method, control program and readable storage medium
CN102298111A (en) * 2010-06-23 2011-12-28 英业达股份有限公司 Method for checking power circuit of circuit board
CN113222779A (en) * 2021-05-10 2021-08-06 合肥工业大学 Power distribution network voltage fluctuation suppression method based on improved goblet sea squirt group algorithm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287666A (en) * 2007-05-21 2008-11-27 Sharp Corp Circuit operation verification device, method for manufacturing semiconductor integrated circuit, circuit operation verification method, control program and readable storage medium
CN102298111A (en) * 2010-06-23 2011-12-28 英业达股份有限公司 Method for checking power circuit of circuit board
CN113222779A (en) * 2021-05-10 2021-08-06 合肥工业大学 Power distribution network voltage fluctuation suppression method based on improved goblet sea squirt group algorithm

Similar Documents

Publication Publication Date Title
US8056033B2 (en) Apparatus and method for integrated circuit design with improved delay variation calculation based on power supply variations
US9690889B2 (en) Method for adjusting a timing derate for static timing analysis
US9424379B2 (en) Simulation system and method for testing a simulation of a device against one or more violation rules
TW201602819A (en) Method for adjusting a timing derate for static timing analysis
US20040054974A1 (en) Method and system for power node current waveform modeling
JP2006195754A (en) Circuit operation verification method, circuit operation verification device, and computer program
JP2006215987A (en) Voltage drop amount calculating method and device, circuit verification method and device, and circuit design method and device
US8079012B2 (en) Method for acquiring basic characteristic of simultaneous switching noise in method for estimating simultaneous switching noise on semiconductor device
JP4526596B2 (en) Signal delay evaluation program, signal delay evaluation method, and signal delay evaluation apparatus
US6704680B2 (en) Method for decoupling capacitor optimization for a temperature sensor design
JP4871194B2 (en) Parameter extraction method and computer-readable storage medium having program for executing parameter extraction method
JP2008287666A (en) Circuit operation verification device, method for manufacturing semiconductor integrated circuit, circuit operation verification method, control program and readable storage medium
JP5103321B2 (en) Crosstalk noise determination method and program
JPWO2012014597A1 (en) Power supply design system, power supply design method, and power supply design program
JP2005196265A (en) Method and system for producing delay library
JP5098852B2 (en) Electronic circuit analyzer
US7366648B2 (en) Electronic circuit analyzing apparatus, electronic circuit analyzing method, and electronic circuit analyzing program
JP2000194732A (en) Device and method for simulating semiconductor integrated circuit
US20140337812A1 (en) Circuit verification method and circuit verification apparatus
JP5056650B2 (en) Voltage fluctuation amount estimation method, apparatus, semiconductor device operation verification apparatus, semiconductor device design method, printed board design method, and program
CN110991130A (en) Method for checking standard unit time sequence library by circuit simulation
US7043707B2 (en) Simulation result verification method and simulation result verification device
US8495541B2 (en) Characterization device and computer program thereof
WO2021121240A1 (en) System and method for identifying design faults or semiconductor modeling errors by analyzing failed transient simulation of integrated circuit
JP2001265847A (en) Device and method for predicting power consumption