JP2006195427A - Photonic crystal directional coupler - Google Patents

Photonic crystal directional coupler Download PDF

Info

Publication number
JP2006195427A
JP2006195427A JP2005328479A JP2005328479A JP2006195427A JP 2006195427 A JP2006195427 A JP 2006195427A JP 2005328479 A JP2005328479 A JP 2005328479A JP 2005328479 A JP2005328479 A JP 2005328479A JP 2006195427 A JP2006195427 A JP 2006195427A
Authority
JP
Japan
Prior art keywords
directional coupler
mode
odd
waveguide
extinction ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
JP2005328479A
Other languages
Japanese (ja)
Other versions
JP2006195427A6 (en
Inventor
Munetsugu Yamamoto
宗継 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005328479A priority Critical patent/JP2006195427A/en
Publication of JP2006195427A publication Critical patent/JP2006195427A/en
Publication of JP2006195427A6 publication Critical patent/JP2006195427A6/en
Revoked legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make the coupling length and the high extinction ratio coexist by breaking through the relation of trade off between the coupling ratio and the extinction ratio. <P>SOLUTION: The photonic crystal directional coupler is composed of three directional coupler waveguides of A, B, and C, and each of them is provided with a common reflective symmetry plane. The A and C are the directional couplers of small energy distribution difference between odd/even modes, and the B is the directional coupler of large energy distribution difference between the odd/even modes. Because, the A, B, and C are provided with a common reflective symmetry plane, in the connection between A and B and the connection between B and C, the excitation is performed at only from the odd mode to the odd mode, and from the even mode to the even mode, and neither performed from the even mode to the odd mode nor from the odd mode to the even mode. The serially connected three directional coupler wave guides are constituted of photonic crystal. Boundaries between the central directional coupler wave guide and its both sided two directional coupler wave guides are directly connected or provided with connection regions of prescribed lengths while keeping the reflection symmetry. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高消光比と短結合長を両立したフォトニック結晶方向性結合器に関する。   The present invention relates to a photonic crystal directional coupler that achieves both a high extinction ratio and a short bond length.

方向性結合器とは、2本の対称な導波路が平行に並んで(以下、対称並行導波路)、ある一定の光学的結合を有する光デバイスのことである。通常、方向性結合器には図1に示すように4つの端子がある。端子1から入射した光は、エネルギーを導波路2-4側に移しつつ対称平行導波路を伝搬し、最終的にある一定の比率で端子3, 4から出力される。出力の比率は、方向性結合器の長さと、導波路間の光結合強度により決定される。光結合強度は光の周波数により変動する。   A directional coupler is an optical device in which two symmetric waveguides are arranged in parallel (hereinafter referred to as symmetric parallel waveguides) and have a certain optical coupling. A directional coupler typically has four terminals as shown in FIG. The light incident from the terminal 1 propagates through the symmetric parallel waveguide while transferring energy to the waveguide 2-4 side, and is finally output from the terminals 3 and 4 at a certain fixed ratio. The output ratio is determined by the length of the directional coupler and the optical coupling strength between the waveguides. The optical coupling strength varies depending on the frequency of light.

端子3, 4の出力比率は、光の周波数(それにより決まる結合強度)を一定にする場合、方向性結合器の長さに対して周期的に変動する。端子3, 4に均等に光が出力される状態を50%結合状態、端子4の出力が最大となる状態を完全結合状態という。完全結合状態の方向性結合器の長さを結合長という。完全結合状態のとき、理想的には端子4, 3の出力比は100%:0%であるが、実際にはある程度の光が端子3からも出力される。この完全結合状態における端子3, 4の出力比を消光比と呼ぶ。消光比は、(3の出力)/(4の出力)をデシベル表示したものが良く用いられ、その絶対値が大きい、すなわち3の出力が4の出力に比較して小さい場合を、消光比が高いという。   The output ratio of the terminals 3 and 4 periodically varies with respect to the length of the directional coupler when the frequency of light (coupling strength determined thereby) is constant. A state in which light is evenly output to the terminals 3 and 4 is referred to as a 50% coupled state, and a state in which the output from the terminal 4 is maximum is referred to as a fully coupled state. The length of a directional coupler in a completely coupled state is called a coupling length. In the fully coupled state, the output ratio of the terminals 4 and 3 is ideally 100%: 0%, but in practice, a certain amount of light is also output from the terminal 3. The output ratio of the terminals 3 and 4 in this completely coupled state is called the extinction ratio. The extinction ratio is often expressed in decibels (output of 3) / (output of 4), and its absolute value is large, i.e., when the output of 3 is small compared to the output of 4, the extinction ratio is It's expensive.

一般に、単純な対称平行導波路からなる方向性結合器においては、結合長は、結合率が大きくなれば短くなる。逆に、消光比は悪化し、端子3からの出力が増大する([トレードオフ関係]の項参照)。
なお、上の説明では端子1からの入力に関する説明を述べたが、対称な構造であるので、端子1からの入力が完全結合状態にあるときは、端子2, 3, 4からの入力も完全結合状態にあり、それぞれ端子3, 2, 1への出力が極大になる。
In general, in a directional coupler composed of a simple symmetric parallel waveguide, the coupling length decreases as the coupling rate increases. On the contrary, the extinction ratio deteriorates and the output from the terminal 3 increases (see [Trade-off relationship] section).
In the above description, the input from terminal 1 was described. However, since the structure is symmetric, when the input from terminal 1 is in a fully coupled state, the input from terminals 2, 3, and 4 are also complete. In the coupled state, the outputs to terminals 3, 2, and 1 are maximized.

従来の平行導波路方向性結合器では、導波路間の光結合が強い場合は、結合長が短縮されるが、消光比が悪くなる。逆に、導波路間の結合が弱い場合は、消光比が良くなるが、結合長が長くなる。このように、結合長と消光比はトレードオフの関係にあった。方向性結合器を光回路の一部として取り込むには、方向性結合器の長さ、即ち結合長が短いほうがよい。しかしながら、単純な構造の方向性結合器では結合長を短くすると消光比が悪化する。   In the conventional parallel waveguide directional coupler, when the optical coupling between the waveguides is strong, the coupling length is shortened, but the extinction ratio is deteriorated. Conversely, when the coupling between the waveguides is weak, the extinction ratio is improved, but the coupling length is increased. Thus, the bond length and the extinction ratio were in a trade-off relationship. In order to incorporate the directional coupler as a part of the optical circuit, it is preferable that the length of the directional coupler, that is, the coupling length is short. However, in a directional coupler having a simple structure, the extinction ratio deteriorates when the coupling length is shortened.

本発明は、係る問題点を解決して、結合長と消光比のトレードオフ関係を打開し、高い消光比と短い結合長を両立させることを目的としている。   An object of the present invention is to solve such problems and to overcome the trade-off relationship between the coupling length and the extinction ratio and to achieve both a high extinction ratio and a short coupling length.

本発明の方向性結合器は、同じ鏡映対称面を持つ3つの縦続に接続された方向性結合器導波路を有している。両側に位置する2つの方向性結合器導波路は、いずれも偶モードと奇モードのエネルギー分布の差が小さい方向性結合器導波路であり、かつ、中央に位置する方向性結合器導波路は偶モードと奇モードのエネルギー分布の差が大きい方向性結合器導波路である。中央に位置する方向性結合器導波路と、その両側に位置する2つの方向性結合器導波路との間の接続においてはそれぞれ、偶モードは偶モード、奇モードは奇モードのみを励振し、偶モードから奇モード、奇モードから偶モードへの励振は生じ得ないように構成される。3つの縦続に接続された方向性結合器導波路は、フォトニック結晶により構成される。また、中央に位置する方向性結合器導波路と、その両側に位置する2つの方向性結合器導波路との間の境界は、直接接続されているか、或いは、鏡映対称を保ったまま所定の長さの接続領域を有している。   The directional coupler of the present invention has three directional coupler waveguides connected in cascade with the same mirror symmetry plane. The two directional coupler waveguides located on both sides are directional coupler waveguides having a small difference in energy distribution between the even mode and the odd mode, and the directional coupler waveguide located in the center is The directional coupler waveguide has a large difference in energy distribution between the even mode and the odd mode. In the connection between the directional coupler waveguide located in the center and the two directional coupler waveguides located on both sides of the directional coupler waveguide, the even mode excites only the even mode and the odd mode excites only the odd mode, Excitation from the even mode to the odd mode and from the odd mode to the even mode cannot be generated. The three directional coupler waveguides connected in cascade are constituted by a photonic crystal. In addition, the boundary between the directional coupler waveguide located in the center and the two directional coupler waveguides located on both sides of the directional coupler waveguide is directly connected or predetermined while maintaining mirror symmetry. It has a connection area of the length.

本発明によれば、結合長と消光比のトレードオフ関係を打開し、高い消光比と短い結合長を両立させることが可能となる。   According to the present invention, it is possible to overcome the trade-off relationship between the bond length and the extinction ratio and to achieve both a high extinction ratio and a short bond length.

以下、例示に基づき、本発明を説明する。図4は、トレードオフ関係解消のために、本発明を具体化した方向性結合器構造を例示する図である。A, B, Cの3つの方向性結合器導波路からなり、それぞれ、同じ鏡映対称面を持つ。A, Cは偶モードと奇モードのエネルギー分布の差が小さい方向性結合器であり、Bは偶・奇モードのエネルギー分布の差が大きい方向性結合器である。A, B, Cは同じ鏡映対称を有するので、AB間、BC間の接続においては、偶モードは偶モード、奇モードは奇モードのみを励振し、偶モードから奇モード、奇モードから偶モードへの励振は生じ得ない。   Hereinafter, the present invention will be described based on examples. FIG. 4 is a diagram illustrating a directional coupler structure that embodies the present invention for eliminating the trade-off relationship. It consists of three directional coupler waveguides, A, B, and C, each with the same mirror symmetry plane. A and C are directional couplers with a small difference in energy distribution between even and odd modes, and B is a directional coupler with a large difference in energy distribution between even and odd modes. Since A, B, and C have the same mirror symmetry, even mode between AB and BC, even mode only excites even mode, odd mode only odd mode, even mode to odd mode, and even mode to odd mode. There can be no excitation to the mode.

このように、本発明は、所望の消光比を持つ対称平行導波路で構成される方向性結合器構造を二つ用意する(A, C)。その方向性結合器A, Cに比較して短い結合長を持つ対称平行導波路で構成される方向性結合器Bを用意する。(従来技術の項で述べたように、Bの消光比はA, Cに比較して悪化している。)
方向性結合器A, B, Cの順に鏡映対称性を保持したまま従属接続を行うことにより、A, Cの消光比を持ち、Bの結合長を持つ方向性結合器ができる。
方向性結合器A, B, Cの縦続接続の際、AからB, BからCへの境界面で、各対称平行導波路の同一対称性を有する固有モード間の透過率が等しくなるようにする必要がある。
Thus, the present invention prepares two directional coupler structures composed of symmetric parallel waveguides having a desired extinction ratio (A, C). A directional coupler B composed of a symmetric parallel waveguide having a shorter coupling length than the directional couplers A and C is prepared. (As mentioned in the prior art section, the extinction ratio of B is worse than that of A and C.)
By performing the cascade connection while maintaining the mirror symmetry in the order of the directional couplers A, B, and C, a directional coupler having an extinction ratio of A and C and a coupling length of B can be obtained.
When cascading directional couplers A, B, and C, the transmittance between eigenmodes with the same symmetry of each symmetric parallel waveguide is equalized at the interface from A to B and from B to C. There is a need to.

固有モードとは、導波路構造を伝搬する光の状態を表す単位となる伝播モードのことで、対称平行導波路の場合、各導波路に対称に光が分布する状態(偶モード)と反対称に光が分布する状態(奇モード)が存在する(図2)。並行対称導波路を伝搬する光は全てこの固有モードの重ねあわせで表すことができる。言い換えると、並行対称導波路に入った光は、固有モードに分解されて伝搬する。上記文章中の各モード間の透過率とは、対称並行導波路Aの偶モードが対称平行導波路Bの偶モードへと透過する透過率と、Aの奇モードがBの奇モードへと透過する透過率が等しいという意味である(B, C間の接続に関しても同様)。ちなみに、接続する導波路間の対称性が保持されるならば、偶モードと奇モードは重なり、積分が0になるため偶モードから奇モードへ、逆に奇モードから偶モードへの透過は生じ得ない。
A, B, Cの縦続接続の際、固有モード間の透過率が等しくなることを補償するための接続領域を設置することも可能である。接続領域の構造としては、偶モード・奇モード間の混合を避けるために対称平行導波路A, B, Cと同じ鏡映対称面を有することが必要である。
An eigenmode is a propagation mode that is a unit that represents the state of light propagating through a waveguide structure. In the case of a symmetric parallel waveguide, light is distributed symmetrically in each waveguide (even mode) and antisymmetric. There is a state in which light is distributed (odd mode) (FIG. 2). All of the light propagating through the parallel symmetric waveguide can be represented by the superposition of this eigenmode. In other words, light entering the parallel symmetric waveguide is decomposed into eigenmodes and propagates. The transmissivity between modes in the above text is the transmissivity through which the even mode of symmetric parallel waveguide A is transmitted to the even mode of symmetric parallel waveguide B, and the odd mode of A is transmitted to the odd mode of B. This means that the transmittance is equal (the same applies to the connection between B and C). By the way, if the symmetry between the connected waveguides is maintained, the even mode and the odd mode overlap, and the integral becomes 0, so transmission from the even mode to the odd mode, and conversely, transmission from the odd mode to the even mode occurs. I don't get it.
When cascading A, B, and C, it is possible to install a connection area to compensate for the equal transmission between eigenmodes. As a structure of the connection region, it is necessary to have the same mirror symmetry plane as that of the symmetric parallel waveguides A, B, and C in order to avoid mixing between even mode and odd mode.

[トレードオフ関係]
2本平行導波路から構成される方向性結合器を伝播する光は、二つの固有モードの線形結合で表される。二つの固有モードは以下のようになる。

Figure 2006195427
ここで、+,‐は偶モード、奇モードを意味している(以後全て複合同順)。
Figure 2006195427
は偶・奇モードの振幅を表す関数で、次の対称性をもつ。
Figure 2006195427
また、k±は偶・奇モードの伝播定数を表す。
(フォトニック結晶の場合は、さらに並進対称性が加わるので、
Figure 2006195427
が成り立つ。Tは導波路進行方向の周期)
なお、座標軸は図3に示すようにとっている。 [Trade-off relationship]
Light propagating through a directional coupler composed of two parallel waveguides is represented by a linear combination of two eigenmodes. The two eigenmodes are as follows:
Figure 2006195427
Here, + and-mean even mode and odd mode (all in the same composite order).
Figure 2006195427
Is a function representing the amplitude of the even / odd mode and has the following symmetry.
Figure 2006195427
K ± represents the propagation constant of the even / odd mode.
(In the case of photonic crystals, translational symmetry is added.
Figure 2006195427
Holds. T is the period of the waveguide travel direction)
The coordinate axes are as shown in FIG.

方向性結合器とは、平行導波路において、片方の導波路に集中して存在している光をある一定距離(結合長)だけ伝播させることにより、残る片方の導波路に光を乗り移らせるデバイスのことである。方向性結合器において消光比が高い状態というのは、平行導波路の片側にのみ光の分布がある状態を意味する。消光比が低い方向性結合器では、光を平行導波路の反対側に乗り移らせるという目的を完全には果たせないことになるため、消光比は方向性結合器の性能を表す重要な値である。   A directional coupler is a parallel waveguide in which light that is concentrated in one waveguide is propagated by a certain distance (coupling length), and light is transferred to the remaining waveguide. It is a device. A state where the extinction ratio is high in the directional coupler means a state where light is distributed only on one side of the parallel waveguide. A directional coupler with a low extinction ratio cannot completely fulfill the purpose of transferring light to the opposite side of the parallel waveguide, so the extinction ratio is an important value that represents the performance of the directional coupler. is there.

高い消光比を得るためには、導波路の片側、つまり図3においてx>0、またはx<0にのみ光が集中する状態が存在することが必要となる。平行導波路中の光は、先に述べたように固有モードの線形和で表現できる。よって、ある位置z=zでの線形和でx<0にのみ値が存在する形式が得られる条件が高消光比の得られる条件となる。つまり、

Figure 2006195427
を満たせばよい。ここで、
Figure 2006195427
であれば、式(2)の対称性から
Figure 2006195427
が成立する。
そこで、
Figure 2006195427
を満たす係数を用いて線形和をとれば、
Figure 2006195427
となり、x<0のみに光が存在し、高消光比が獲られることがわかる。
ここで、式(5)と式(2)をあわせて考えると、
Figure 2006195427
となる。これは、
Figure 2006195427
が等しくなることが高消光比を得る条件であることを意味する。 In order to obtain a high extinction ratio, it is necessary that the light is concentrated only on one side of the waveguide, that is, x> 0 or x <0 in FIG. The light in the parallel waveguide can be expressed by a linear sum of eigenmodes as described above. Therefore, a condition for obtaining a form in which a value exists only at x <0 as a linear sum at a certain position z = z 0 is a condition for obtaining a high extinction ratio. That means
Figure 2006195427
Should be satisfied. here,
Figure 2006195427
Then, from the symmetry of equation (2)
Figure 2006195427
Is established.
Therefore,
Figure 2006195427
If we take a linear sum using coefficients that satisfy
Figure 2006195427
It can be seen that light exists only at x <0 and a high extinction ratio is obtained.
Here, when combining Equation (5) and Equation (2),
Figure 2006195427
It becomes. this is,
Figure 2006195427
Means that it is a condition for obtaining a high extinction ratio.

次に、もう一つの重要な性能指標である結合長に付いて述べる。結合長(L)とは、初期位置z=zでx<0に局在している光が、結合長だけ伝播した位置z=z+Lにおいてはx>0にのみ局在するようになる長さのことを言う。もし、

Figure 2006195427
であれば、偶モードと奇モードの和は
Figure 2006195427
となるため、式(10)を満たすようなLが結合長ということになる。式(10)をLに付いて解くと
Figure 2006195427
となる(nは整数)。ここで、結合長を短くする(Lを小さくする)条件に付いて述べる。式(12)より、|k−k|が大きくなればLが小さくなることがわかる。伝播定数kは、
Figure 2006195427
とすると、以下の関係式が成り立つ
Figure 2006195427
フォトニック結晶導波路に於いては、一般にブリルアンゾーンでの折り返しを受けるために適当な逆格子ベクトルGと、伝播方向の単位ベクトルiを用いて
Figure 2006195427
で表すことができる。いずれの場合も、同じ周波数の光については、伝播定数は平均屈折率に比例することがわかる。すなわち、偶モード・奇モードの伝播定数差を大きくするためには、各モードの平均屈折率の差を大きくすればよいといえる。平均屈折率は、伝播光の屈折率が高い部分と低い部分に広がる比率で決定される。このため、平均屈折率の差を広げるということは、各モードのエネルギー分布の差を広げるということを意味する。 Next, the bond length, which is another important performance index, will be described. The bond length (L) is such that light localized at x < 0 at the initial position z = z 0 is localized only at x> 0 at the position z = z 0 + L propagated by the bond length. Say that length. if,
Figure 2006195427
Then, the sum of even mode and odd mode is
Figure 2006195427
Therefore, L satisfying equation (10) is the bond length. Solving equation (10) with L
Figure 2006195427
Where n is an integer. Here, the condition for shortening the coupling length (decreasing L) will be described. From equation (12), it can be seen that L decreases as | k + −k | increases. The propagation constant k is
Figure 2006195427
Then, the following relational expression holds:
Figure 2006195427
In a photonic crystal waveguide, generally, an appropriate reciprocal lattice vector G and a unit vector i in the propagation direction are used to receive folding in the Brillouin zone.
Figure 2006195427
It can be expressed as In either case, it can be seen that for light of the same frequency, the propagation constant is proportional to the average refractive index. That is, it can be said that in order to increase the propagation constant difference between the even mode and the odd mode, the difference in the average refractive index of each mode should be increased. The average refractive index is determined by the ratio of spreading to a portion where the refractive index of propagating light is high and a portion where it is low. For this reason, widening the difference in average refractive index means widening the difference in energy distribution in each mode.

上記をまとめると、消光比を高くするためには、偶・奇モードのエネルギー分布が一致するほうがよいし、結合長を短くするためには偶・奇モードのエネルギー分布に差があるほうがよいということである。つまり、消光比と結合長はトレードオフの関係にある。   In summary, in order to increase the extinction ratio, the even / odd mode energy distributions should match, and in order to shorten the coupling length, there should be a difference in the even / odd mode energy distributions. That is. That is, the extinction ratio and the coupling length are in a trade-off relationship.

[両立させるための技術]
偶・奇モードのエネルギー分布差が大きな方向性結合器は消光比が悪い。これは、偶・奇モードの線形結合で片側の導波路に局在する光を上手く表現できないために生じるものである。しかしながら、偶モード、奇モード間の位相差は光が方向性結合器中を伝播するに従い0〜2πの間を連続的に変化している。よって、この位相差を光の局在の形に変換することが出来れば、短い結合長と高い消光比の両立が可能となる。
[Technology to achieve both]
A directional coupler with a large difference in energy distribution between the even and odd modes has a poor extinction ratio. This occurs because light that is localized in the waveguide on one side cannot be expressed well by linear combination of even / odd modes. However, the phase difference between the even mode and the odd mode continuously changes between 0 and 2π as light propagates through the directional coupler. Therefore, if this phase difference can be converted into a localized form of light, both a short coupling length and a high extinction ratio can be achieved.

図4を参照して前述した方向性結合器構造は、A, B, Cの3つの方向性結合器導波路からなり、それぞれ、同じ鏡映対称面を持つ。A, Cは偶モードと奇モードのエネルギー分布の差が小さい方向性結合器であり、Bは偶・奇モードのエネルギー分布の差が大きい方向性結合器である。A, B, Cは同じ鏡映対称を有するので、AB間、BC間の接続においては、偶モードは偶モード、奇モードは奇モードのみを励振し、偶モードから奇モード、奇モードから偶モードへの励振は生じ得ない。領域A, B, Cの固有モードをそれぞれ

Figure 2006195427
とする。各振幅関数の対称性は以下のようになる。 The directional coupler structure described above with reference to FIG. 4 includes three directional coupler waveguides A, B, and C, each having the same mirror symmetry plane. A and C are directional couplers with a small difference in energy distribution between even and odd modes, and B is a directional coupler with a large difference in energy distribution between even and odd modes. Since A, B, and C have the same mirror symmetry, even mode between AB and BC, even mode only excites even mode, odd mode only odd mode, even mode to odd mode, and even mode to odd mode. There can be no excitation to the mode. The eigenmodes of regions A, B, and C
Figure 2006195427
And The symmetry of each amplitude function is as follows.

Figure 2006195427
AB間、BC間の各モードの透過率を
Figure 2006195427
境界を通過することによる振幅関数の絶対値の変動割合と、各モードの位相の変動割合が含まれる複素数であり、振幅関数間には次の関係が成り立つ。
Figure 2006195427
A, Cは高消光比の得られる方向性結合器であるので、
Figure 2006195427
の関係が成り立つ。
Figure 2006195427
The transmittance of each mode between AB and BC
Figure 2006195427
It is a complex number that includes the variation rate of the absolute value of the amplitude function due to passing through the boundary and the variation rate of the phase of each mode, and the following relationship is established between the amplitude functions.
Figure 2006195427
A and C are directional couplers with high extinction ratios.
Figure 2006195427
The relationship holds.

ここで

Figure 2006195427
の関係が成り立つように、方向性結合器を作製する。このとき、AB界面のA側に光がx<0の範囲に分布するように入力した場合、つまり
Figure 2006195427
で線形結合された光
Figure 2006195427
を入力すると、AB間の界面、B、BC間の界面を通った光は次のようになる。
Figure 2006195427
とし、方向性結合器Bの長さをLとしている。このとき、位相項が
Figure 2006195427
すなわち、
Figure 2006195427
(nは整数)の条件を満たす場合、伝播してきた光は
Figure 2006195427
となる。これは最初x<0にあった光がx>0側に完全に乗り移っていることを意味し、高消光比の方向性結合器が実現できることを意味している。このときの結合長は式(23)で表される。式の分子は位相角を表しているので、適当な整数nを考えることにより−πからπの範囲に納めることができる。そのため、結合長は主に分母の項で決まるが、最初に構造として、B領域においては偶・奇モードのエネルギー分布差が大きく、伝播定数差が大きいものを取り上げているので、必然的に結合長は短くなる。 here
Figure 2006195427
A directional coupler is manufactured so that At this time, if light is input to the A side of the AB interface so that the light is distributed in the range of x <0, that is,
Figure 2006195427
Light linearly combined with
Figure 2006195427
Is input, the light passing through the interface between AB and the interface between B and BC is as follows.
Figure 2006195427
And the length of the directional coupler B is L. At this time, the phase term is
Figure 2006195427
That is,
Figure 2006195427
When the condition of (n is an integer) is satisfied, the transmitted light is
Figure 2006195427
It becomes. This means that the light that was initially at x <0 has completely shifted to the x> 0 side, which means that a directional coupler with a high extinction ratio can be realized. The bond length at this time is expressed by equation (23). Since the numerator of the formula represents a phase angle, it can be set in the range of −π to π by considering an appropriate integer n. For this reason, the bond length is mainly determined by the denominator term. First, as the structure, in the B region, the energy distribution difference between the even and odd modes is large and the propagation constant difference is large. The length is shortened.

ここまでは、AB間、BC間が直接つながっているような状況について述べたが、AB間、BC間の境界領域が、鏡映対称を保ったままある程度の長さの接続領域を有してもよい(図5)。この場合、上式中の透過率は領域Aから接続領域を超えて領域Bに到達する各モードの透過率、領域Bから接続領域を超えて領域Cに到達する各モードの透過率を当てはめて考えればよく、接続領域がない場合と同様に高消光比と短結合長の両立した方向性結合器の設計が可能である。   Up to this point, we have described the situation where AB and BC are directly connected. However, the boundary area between AB and BC has a certain length of connection area while maintaining mirror symmetry. (Fig. 5). In this case, the transmittance in the above equation is the transmittance of each mode that reaches the region B from the region A beyond the connection region, and the transmittance of each mode that reaches the region C from the region B beyond the connection region. Just as in the case where there is no connection region, a directional coupler having both a high extinction ratio and a short coupling length can be designed.

以上まとめると、図4,5に示すように、鏡映対称性を保持したまま、高消光比の方向性結合器で、短結合長の方向性結合器を挟み込む。そのときに、各境界での偶モード・奇モードの透過率の絶対値が等しくなるように設計をすれば、短結合長と高消光比の両立した方向性結合器が得られる。   In summary, as shown in FIGS. 4 and 5, a directional coupler having a short coupling length is sandwiched between directional couplers having a high extinction ratio while maintaining mirror symmetry. At that time, if the absolute values of the even mode and odd mode transmittances at each boundary are designed to be equal, a directional coupler having both a short coupling length and a high extinction ratio can be obtained.

図6は、GaAs2次元スラブ型空気円孔三角格子配列フォトニック結晶により構成した方向性結合器構造を示している。2次元シミュレーションを行うために、GaAs領域の実行屈折率を2.76としている。三角格子配列の格子定数はa、半径をrとする。   FIG. 6 shows a directional coupler structure composed of a GaAs two-dimensional slab type air circular triangular lattice array photonic crystal. In order to perform a two-dimensional simulation, the effective refractive index of the GaAs region is 2.76. The lattice constant of the triangular lattice arrangement is a, and the radius is r.

図7は、分散関係計算に用いた単純平行導波路の模式図を示している。上下方向に周期的にこの構造が繰り返された構造に対して計算している。
図7に示す単純な対称平行導波路の、円孔半径がr=0.3a,0.33aの場合について計算した導波モード分散関係を図8に示す。規格化周波数0.274について見てみると、r=0.3aの対称平行導波路(グラフ中では○)では、偶モードと奇モードが0.274となる波数がほぼ重なっている。一方、r=0.33aの対称並行導波路(グラフ中で●)は偶モードは規格化周波数0.274となるためには、波数が約0.42, 奇モードの場合、約0.35と大きく異なっている。つまり、規格化周波数0.274の光に対して、r=0.3aは消光比が良いが結合長が長い方向性結合器、r=0.33aは結合長が短いが消光比が悪い方向性結合器になることが予想される。そこで、この実施例としてはA, C領域にはr=0.3aの対称平行導波路、B領域にはr=0.33aの対称平行導波路を用いた。また、接続領域としては、円孔半径を5aかけて連続的に変化させ、断熱的にAからB、BからCへと伝搬させることにより、偶モードの透過率と奇モードの透過率が等しくなるようにした。
FIG. 7 shows a schematic diagram of a simple parallel waveguide used for dispersion relation calculation. Calculation is performed for a structure in which this structure is periodically repeated in the vertical direction.
FIG. 8 shows the waveguide mode dispersion relationship calculated for the simple symmetric parallel waveguide shown in FIG. 7 when the circular hole radii are r = 0.3a and 0.33a. Looking at the normalized frequency of 0.274, in the symmetric parallel waveguide of r = 0.3a (◯ in the graph), the wave numbers at which the even mode and the odd mode are 0.274 almost overlap. On the other hand, the symmetrical parallel waveguide of r = 0.33a (● in the graph) differs greatly from about 0.35 when the wave number is about 0.42 and the odd mode because the even mode has a normalized frequency of 0.274. That is, for light with a normalized frequency of 0.274, a directional coupler with a good extinction ratio but a long coupling length at r = 0.3a, and a directional coupler with a short coupling length but a poor extinction ratio at r = 0.33a. It is expected to become a vessel. Therefore, in this embodiment, a symmetric parallel waveguide with r = 0.3a is used in the A and C regions, and a symmetric parallel waveguide with r = 0.33a is used in the B region. In addition, as the connection region, by changing the circular hole radius continuously over 5a and propagating from A to B and B to C adiabatically, the even mode transmittance and the odd mode transmittance are equal. It was made to become.

有限差分時間領域(FDTD: Finite Differential Time Domain)法により求めた、周波数に対する消光比の関係を図9に示す。0.274で完全結合になるように設計している。比較のために、r=0.3aの単純平行導波路からなる方向性結合器と、r=0.33aの単純平行導波路からなる方向性結合器の特性も併せて示している。ここでは消光比として、導波路2と導波路3から出てくる光の強度の和に対する導波路3に出てくる光の強度を意味しており、数値が小さいほど消光比が高いことを意味している。本発明に基づく構造設計を行ったものについては、結合長18a, 消光比-24.4dBである。従来の、単純な平行導波路による方向性結合器の場合、r=0.3a円孔のフォトニック結晶方向性結合器では、結合長91a、消光比-23.2dBで、消光比は良いが、結合長が長い。一方、r=0.33a円孔のフォトニック結晶方向性結合器では、結合長11a, 消光比-10.9dBであり、結合長は短いが、消光比が悪い。結合領域のために若干、実施例はr=0.33aのものより結合長が長いが、当初もくろみどおり、領域A, C(r=0.3a)の消光比と領域B(r=0.33a)の結合長を持つ方向性結合器が設計できており、本発明の有効性を示している。   FIG. 9 shows the relationship of the extinction ratio with respect to the frequency obtained by the finite differential time domain (FDTD) method. It is designed to be completely connected at 0.274. For comparison, the characteristics of a directional coupler composed of a simple parallel waveguide with r = 0.33a and a directional coupler composed of a simple parallel waveguide with r = 0.33a are also shown. Here, the extinction ratio means the intensity of light exiting the waveguide 3 relative to the sum of the intensity of light exiting the waveguide 2 and waveguide 3, and the smaller the value, the higher the extinction ratio. is doing. In the case of the structural design based on the present invention, the coupling length is 18a and the extinction ratio is -24.4 dB. In the case of a conventional directional coupler using a simple parallel waveguide, a photonic crystal directional coupler with an r = 0.3a hole has a coupling length of 91a and an extinction ratio of -23.2 dB, and the extinction ratio is good. Long bond length. On the other hand, in the photonic crystal directional coupler with r = 0.33a circular hole, the coupling length is 11a, the extinction ratio is -10.9 dB, and the coupling length is short, but the extinction ratio is poor. Although the coupling length is slightly longer than that of r = 0.33a due to the coupling region, the extinction ratio of the regions A and C (r = 0.3a) and the region B (r = 0. A directional coupler having a coupling length of 33a) has been designed, indicating the effectiveness of the present invention.

図10は、規格化周波数0.274で完全結合になる方向性結合器設計例を示している。(a)にr=0.3aからなる構造、(b)に本発明に基づく構造、(c)にr=0.33aからなる構造を、対比して示している。   FIG. 10 shows an example of a directional coupler design that is completely coupled at a normalized frequency of 0.274. (a) shows a structure consisting of r = 0.3a, (b) shows a structure based on the present invention, and (c) shows a structure consisting of r = 0.33a.

各領域が鏡映対称面からずれた場合の特性に付いて述べる。図11は図6の構造の領域Bが接続境界面に対して平行にずれた構造の模式図である。図12は図11の構造のずれ量を0a (aは格子定数)から0.03aまで変化させた場合の消光比を示している。ずれ量が0.02247317a以下であれば、-20dB(10-2)までの消光比を得られることがわかる。 The characteristics when each region deviates from the mirror symmetry plane will be described. FIG. 11 is a schematic diagram of a structure in which the region B of the structure of FIG. 6 is shifted in parallel to the connection boundary surface. FIG. 12 shows the extinction ratio when the shift amount of the structure of FIG. 11 is changed from 0a (a is a lattice constant) to 0.03a. It can be seen that when the deviation is 0.02247317a or less, an extinction ratio of up to -20 dB (10 -2 ) can be obtained.

一般的な方向性結合器の模式図である。It is a schematic diagram of a general directional coupler. 固有モードを説明するための図である。It is a figure for demonstrating a natural mode. 座標軸のとり方を説明するための図である。It is a figure for demonstrating how to take a coordinate axis. 方向性結合器構造を例示する図である。It is a figure which illustrates a directional coupler structure. 接続領域のある方向性結合器構造を例示する図である。It is a figure which illustrates the directional coupler structure with a connection area | region. フォトニック結晶による構成例を示す図である。It is a figure which shows the structural example by a photonic crystal. 単純平行導波路を説明する図である。It is a figure explaining a simple parallel waveguide. 円孔半径がr=0.3aおよびr=0.33aの場合のフォトニック結晶並行導波路(図7)の分散関係を示す図である。FIG. 7 is a diagram showing a dispersion relation of a photonic crystal parallel waveguide (FIG. 7) when the circular hole radii are r = 0.3a and r = 0.33a. 周波数に対する消光比の関係を示す図である。It is a figure which shows the relationship of the extinction ratio with respect to a frequency. 方向性結合器設計例を示す図である。It is a figure which shows the example of a directional coupler design. 鏡映対称性をずらした方向性結合器の例を示す図である。It is a figure which shows the example of the directional coupler which shifted the mirror symmetry. 鏡映対称性をずらした方向性結合器において、ずれ量に対する消光比の値を示した図である。It is the figure which showed the value of the extinction ratio with respect to deviation | shift amount in the directional coupler which shifted the mirror symmetry.

Claims (3)

実質上同じ鏡映対称面を持つ3つの縦続に接続された方向性結合器導波路を有し、
両側に位置する2つの方向性結合器導波路は、いずれも偶モードと奇モードのエネルギー分布の差が小さい方向性結合器導波路であり、かつ、中央に位置する方向性結合器導波路は偶モードと奇モードのエネルギー分布の差が大きい方向性結合器導波路であり、
中央に位置する方向性結合器導波路と、その両側に位置する2つの方向性結合器導波路との間の接続においてはそれぞれ、偶モードは偶モード、奇モードは奇モードのみを励振し、偶モードから奇モード、奇モードから偶モードへの励振が実質上生じないように構成したことから成る方向性結合器。
Having three cascaded directional coupler waveguides having substantially the same mirror symmetry plane;
The two directional coupler waveguides located on both sides are directional coupler waveguides having a small difference in energy distribution between the even mode and the odd mode, and the directional coupler waveguide located in the center is A directional coupler waveguide with a large difference in energy distribution between the even mode and the odd mode,
In the connection between the directional coupler waveguide located in the center and the two directional coupler waveguides located on both sides of the directional coupler waveguide, the even mode excites only the even mode and the odd mode excites only the odd mode, A directional coupler configured so that excitation from the even mode to the odd mode or from the odd mode to the even mode does not occur substantially.
前記中央に位置する方向性結合器導波路と、その両側に位置する2つの方向性結合器導波路との間の境界は、直接接続されているか、或いは、実質上鏡映対称を保ったまま所定の長さの接続領域を有している請求項1に記載の方向性結合器。   The boundary between the directional coupler waveguide located in the center and the two directional coupler waveguides located on both sides of the directional coupler waveguide is directly connected or remains substantially mirror-symmetric. The directional coupler according to claim 1, comprising a connection region having a predetermined length. 前記3つの縦続に接続された方向性結合器導波路は、フォトニック結晶により構成した請求項1、請求項2に記載の方向性結合器。
3. The directional coupler according to claim 1, wherein the three directional coupler waveguides connected in cascade are configured by a photonic crystal. 4.
JP2005328479A 2004-12-14 2005-11-14 Photonic crystal directional coupler Revoked JP2006195427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328479A JP2006195427A (en) 2004-12-14 2005-11-14 Photonic crystal directional coupler

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004361229 2004-12-14
JP2004361229 2004-12-14
JP2005328479A JP2006195427A (en) 2004-12-14 2005-11-14 Photonic crystal directional coupler

Publications (2)

Publication Number Publication Date
JP2006195427A true JP2006195427A (en) 2006-07-27
JP2006195427A6 JP2006195427A6 (en) 2011-08-18

Family

ID=36801527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328479A Revoked JP2006195427A (en) 2004-12-14 2005-11-14 Photonic crystal directional coupler

Country Status (1)

Country Link
JP (1) JP2006195427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010038861A1 (en) * 2008-10-03 2012-03-01 国立大学法人横浜国立大学 Coupling multicore fiber, coupling mode multiplexer / demultiplexer, multicore fiber transmission system, and multicore fiber transmission method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010055680, 山本宗継、外2名, "フォトニック結晶方向性結合器の結合長短縮と消光比の改善", 信学技報, 20040625, LQE 104(162), p.67−p.70 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010038861A1 (en) * 2008-10-03 2012-03-01 国立大学法人横浜国立大学 Coupling multicore fiber, coupling mode multiplexer / demultiplexer, multicore fiber transmission system, and multicore fiber transmission method

Similar Documents

Publication Publication Date Title
US7272279B2 (en) Waveguide type optical branching device
CA2673455C (en) Method for designing wave propagation circuits and computer program therefor
EP1460458A1 (en) Curved ridge optical waveguide, optical device, and method of manufacturing optical waveguide
JP2017504830A (en) Waveguide polarization splitter and polarization rotator
JP5363218B2 (en) Polarization-dependent hollow optical fiber
WO2008020475A1 (en) Waveguide type polarizer and optical waveguide device
CN110720065B (en) Optical splitter/mixer for planar lightwave circuit
US11048042B2 (en) Curved waveguide configuration to suppress mode conversion
JP2017129834A (en) Optical waveguide element and optical modulator using the same
EP3314320A1 (en) Bent taper and polarization rotator
JP2011039383A (en) Polarization independent type optical wavelength filter, optical multiplexing/demultiplexing element and mach-zehnder interferometer
JP5561305B2 (en) Optical element
JP6369147B2 (en) Optical waveguide device and optical modulator using the same
US20200363584A1 (en) Isolator, light source device, optical transmitter, and optical amplifier
JP2006284791A (en) Multimode interference optical coupler
WO2014017154A1 (en) Multimode interference coupler
WO2014030576A1 (en) Optical waveguide element
CN111025470B (en) Ultra-compact silicon-based waveguide cross structure based on parabolic MMI
WO2017169922A1 (en) Polarization beam splitter
JPH11248957A (en) Field distribution converting optical fiber and laser diode module using field distribution converting optical fiber
JP2006195427A (en) Photonic crystal directional coupler
JP2006195427A6 (en) Photonic crystal directional coupler
JP2008268898A (en) Plc type variable dispersion compensator
JP2012255987A (en) Polarization-selective multimode interference waveguide device
JP4795289B2 (en) Optical device apparatus having coupled optical waveguide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101013

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20101130

A59 Written plea

Free format text: JAPANESE INTERMEDIATE CODE: A59

Effective date: 20101228

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403