JP2006194621A - Radioactive waste liquid treating method and apparatus - Google Patents

Radioactive waste liquid treating method and apparatus Download PDF

Info

Publication number
JP2006194621A
JP2006194621A JP2005004053A JP2005004053A JP2006194621A JP 2006194621 A JP2006194621 A JP 2006194621A JP 2005004053 A JP2005004053 A JP 2005004053A JP 2005004053 A JP2005004053 A JP 2005004053A JP 2006194621 A JP2006194621 A JP 2006194621A
Authority
JP
Japan
Prior art keywords
waste liquid
chamber
radioactive
liquid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005004053A
Other languages
Japanese (ja)
Other versions
JP4370470B2 (en
Inventor
Mamoru Kamoshita
守 鴨志田
Tetsuo Iwamoto
哲夫 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005004053A priority Critical patent/JP4370470B2/en
Publication of JP2006194621A publication Critical patent/JP2006194621A/en
Application granted granted Critical
Publication of JP4370470B2 publication Critical patent/JP4370470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an increase of secondary waste, to avoid clogging of a circulation system of an electrodialysis vessel generated by sediment caused by metal ions, and to improve a recovery rate of an acid in decontamination waste liquid. <P>SOLUTION: Radioactive waste liquid including a radioactive material, metal ions and an acid is supplied to a treated waste liquid chamber 3b of the electrodialysis vessel 3 having the treated waste liquid chamber 3b and a recovery liquid chamber 3c separated by a dialysis membrane 12, and the acid dialyzed into the other chamber through the dialysis membrane is recovered, and a suspended matter in the radioactive waste liquid discharged from the treated waste liquid chamber is removed by a suspended matter removal means 4, and then, the radioactive waste liquid is circulated and supplied into the treated waste liquid chamber. Hereby, since sedimentation of the metal ions can be prevented from being accumulated in the circulation system of the treated waste liquid, even if pH in the treated waste liquid chamber of the electrodialysis vessel becomes high, the recovery rate of sulfuric acid can be heightened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放射性廃液処理方法及び処理装置に係り、具体的には、放射性物質が付着した金属廃棄物を硫酸などの酸で除染処理して発生する放射性廃液、特に、ウランで汚染した金属廃棄物を硫酸で除染した酸廃液から硫酸を分離する技術に関する。   The present invention relates to a radioactive liquid waste treatment method and a processing apparatus, and more specifically, a radioactive liquid waste generated by decontaminating a metal waste to which a radioactive substance is attached with an acid such as sulfuric acid, particularly a metal contaminated with uranium. The present invention relates to a technique for separating sulfuric acid from an acid waste liquid obtained by decontaminating waste with sulfuric acid.

ウランなどの核燃料物質や放射性物質が付着した金属廃棄物は、硫酸を含んだ除染液により除染することができ、その除染廃液は最終的にセメントなどで固化した後に埋設処分される。その除染廃液中の硫酸は、セメントで固化処理する場合、硫酸イオンとセメントの成分が反応して、ひび割れの原因になることから、廃液中の酸を中和処理する必要がある。この中和試薬として水酸化バリウムを用い、硫酸イオンを溶解度の低い硫酸バリウムに固定化することが有効である。この場合、硫酸バリウムの沈殿を含んだ廃液とセメントを混合することになるが、硫酸バリウムの沈殿が多くなると混練の作業性が悪くなる。そのため、硫酸バリウムの沈殿濃度に上限があり、却って中和後の除染廃液量が増加して、二次廃棄物である固化体の発生本数が増える可能性がある。   Metal waste with nuclear fuel materials and radioactive materials such as uranium attached can be decontaminated with a decontamination solution containing sulfuric acid, and the decontamination waste solution is finally disposed of after being solidified with cement or the like. When the sulfuric acid in the decontamination waste liquid is solidified with cement, the sulfate ions react with the components of the cement and cause cracks. Therefore, it is necessary to neutralize the acid in the waste liquid. It is effective to use barium hydroxide as the neutralizing reagent and to fix sulfate ions to barium sulfate having low solubility. In this case, the waste liquid containing the barium sulfate precipitate and the cement are mixed. However, if the amount of barium sulfate precipitate increases, the workability of the kneading deteriorates. Therefore, there is an upper limit to the precipitation concentration of barium sulfate, and on the contrary, the amount of decontamination waste liquid after neutralization increases, which may increase the number of solidified bodies that are secondary waste.

一方、特許文献1に、放射性金属廃棄物を硝酸、塩酸、弗酸等の混合酸を用いて除染して発生する除染廃液を、アルカリにより中和して除染廃液に含まれる金属イオン及び大部分の放射性物質を沈殿除去した後、バイポーラ膜を用いた電気透析により温合酸とアルカリと脱塩水とに分離して回収することが提案されている。   On the other hand, in Patent Document 1, a decontamination waste liquid generated by decontaminating radioactive metal waste using a mixed acid such as nitric acid, hydrochloric acid, and hydrofluoric acid is neutralized with alkali, and metal ions contained in the decontamination waste liquid In addition, it has been proposed to precipitate and remove most of the radioactive material, and then separate and recover it into warm acid, alkali, and demineralized water by electrodialysis using a bipolar membrane.

また、放射性物質の除染液中の酸を除去する技術ではないが、廃液中の酸を除去する技術として、例えば、特許文献2に、鉄イオンを含む硝弗酸洗浄廃液を電気透析処理して硝弗酸を効率よく回収する技術が記載されている。   In addition, although it is not a technique for removing acid in a radioactive substance decontamination liquid, as a technique for removing acid in waste liquid, for example, Patent Document 2 discloses an electrodialysis treatment of a nitric hydrofluoric acid washing waste liquid containing iron ions. A technique for efficiently recovering nitric hydrofluoric acid is described.

特開平8−240695号公報JP-A-8-240695 特開平8−24586号公報JP-A-8-24586

ところで、放射性物質、金属イオン及び硫酸などの酸を含む放射性廃液を電気透析により処理すると、酸が分離除去されるにつれて放射性廃液のpHが上昇し、廃液中に溶存している鉄などの金属イオンが加水分解されて沈殿を生ずる。通常、電気透析処理は、電気透析槽の放射性廃液を循環して繰り返し透析処理することにより、酸の回収率を高めるようにしている。したがって、金属イオンが加水分解して生成された沈殿物が、電気透析槽の循環系内を循環するうちに、局所的に沈殿物が蓄積して閉塞などの問題を起こすおそれがある。   By the way, when radioactive waste liquid containing radioactive substances, metal ions and acids such as sulfuric acid is treated by electrodialysis, the pH of the radioactive waste liquid rises as the acid is separated and removed, and metal ions such as iron dissolved in the waste liquid. Is hydrolyzed to form a precipitate. Usually, in the electrodialysis treatment, the acid recovery rate is increased by circulating the radioactive waste liquid in the electrodialysis tank and repeatedly performing dialysis treatment. Therefore, the precipitate generated by hydrolysis of metal ions may circulate in the circulation system of the electrodialysis tank, causing the precipitate to accumulate locally and causing problems such as blockage.

この点、特許文献1に記載のように、電気透析処理の前に、除染廃液をアルカリにより中和して金属イオンを沈殿除去すれば、電気透析槽の循環系内に沈殿物が蓄積するのを防止できる。しかし、この方法によれば、アルカリによる前処理が必要になるばかりでなく、アルカリ処理により金属イオンの他に大部分の放射性物質が沈殿されるから、固体化処理しなければならない二次廃棄物が増えるという問題がある。   In this regard, as described in Patent Document 1, if the metal ion is precipitated and removed by neutralizing the decontamination waste liquid with alkali before electrodialysis treatment, the precipitate accumulates in the circulation system of the electrodialysis tank. Can be prevented. However, according to this method, not only pretreatment with alkali is required, but also most of radioactive materials are precipitated in addition to metal ions by alkali treatment, so secondary waste that must be solidified. There is a problem that increases.

一方、特許文献2によれば、廃液室から鉄イオンを透析により一旦別の中間室に回収し、この中間室の液のpHを適切に設定して、鉄の沈殿を生成して除去するようにしていることから、電気透析槽の構成及び処理が煩雑になるという問題がある。
なお、金属イオンが加水分解して沈殿物が生成されても、除染廃液ととともに電気透析槽を循環させながら硫酸を回収し、硫酸の回収が終わった時点で系内を洗浄して沈殿物を除去することも考えられる。しかし、洗浄廃液が二次廃棄物となるので、結局、廃棄物固化体の発生量が増加するという問題がある。
On the other hand, according to Patent Document 2, iron ions are once recovered from a waste liquid chamber into another intermediate chamber by dialysis, and the pH of the liquid in the intermediate chamber is appropriately set to generate and remove iron precipitates. Therefore, there is a problem that the configuration and processing of the electrodialysis tank becomes complicated.
Even if metal ions are hydrolyzed and precipitates are generated, sulfuric acid is recovered while circulating the electrodialysis tank together with the decontamination waste liquid, and when the recovery of sulfuric acid is completed, the system is washed to obtain precipitates. It is conceivable to remove. However, since the cleaning waste liquid becomes secondary waste, there is a problem in that the amount of waste solidified material is increased.

本発明は、二次廃棄物の増加を抑えることができ、金属イオンに起因する沈殿物による電気透析槽の循環系の閉塞を回避でき、除染廃液中の酸の回収率を向上させることを課題とする。   The present invention can suppress the increase in secondary waste, can prevent clogging of the circulation system of the electrodialysis tank due to precipitates caused by metal ions, and improve the recovery rate of acid in the decontamination waste liquid. Let it be an issue.

上記課題を解決するため、本発明の放射性廃液処理方法又は処理装置は、透析膜によって隔てられた二室を有する電気透析槽の一方の室に放射性物質、金属イオン及び酸を含む放射性廃液を供給し、前記透析膜を介して他方の室に透析される前記酸を含む液を回収すると共に、前記一方の室から排出される前記放射性廃液中の懸濁物を除去した後、該放射性廃液を前記一方の室に循環供給するようにすることを特徴とする。   In order to solve the above problems, the radioactive waste liquid treatment method or treatment apparatus of the present invention supplies a radioactive waste liquid containing a radioactive substance, metal ions and an acid to one chamber of an electrodialysis tank having two chambers separated by a dialysis membrane. And recovering the acid-containing liquid dialyzed into the other chamber through the dialysis membrane and removing the suspended matter in the radioactive liquid waste discharged from the one chamber. The one chamber is circulated and supplied.

これによれば、電気透析槽の一方の室に循環される放射性廃液のpHが上昇して溶存している金属イオンが加水分解して沈殿しても、その室から排出される放射性廃液中の懸濁物を除去してから、その室に戻されるので、循環される放射性廃液中の沈殿物が循環系に蓄積して、閉塞するのを防止できる。その結果、放射性廃液を電気透析槽に繰り返し十分に循環させることができるので、酸の回収率を向上できる。また、中和処理や、洗浄などを行わないことから、二次廃棄物の増加を抑えることができる。   According to this, even when the pH of the radioactive liquid waste circulating in one chamber of the electrodialysis tank rises and the dissolved metal ions are hydrolyzed and precipitated, Since the suspended matter is removed and then returned to the chamber, it is possible to prevent the sediment in the circulating radioactive liquid waste from accumulating in the circulating system and clogging. As a result, the radioactive liquid waste can be repeatedly and sufficiently circulated in the electrodialysis tank, so that the acid recovery rate can be improved. In addition, since no neutralization or cleaning is performed, an increase in secondary waste can be suppressed.

この場合において、懸濁物の除去は、電気透析槽から排出される処理廃液を沈殿槽に導き、金属イオンが加水分解して生成される沈殿物を沈殿除去した後、例えば、処理廃液の循環供給槽を介して循環ポンプによって電気透析槽に戻すようにすることができる。また、懸濁物を除去する沈殿槽に代えて、循環供給槽の処理廃液の流入口と循環ポンプに接続される流出口との間に設けられた堰板によって形成された沈殿室により、処理廃液の循環供給槽において沈殿させるようにすることもできる。   In this case, in order to remove the suspension, the treatment waste liquid discharged from the electrodialysis tank is guided to the precipitation tank, and after the precipitate formed by hydrolysis of metal ions is removed, for example, the treatment waste liquid is circulated. It can return to an electrodialysis tank by a circulation pump through a supply tank. Further, instead of the sedimentation tank for removing the suspended solids, the treatment is performed by a sedimentation chamber formed by a weir plate provided between the treatment liquid waste inlet of the circulation supply tank and the outlet connected to the circulation pump. It can also be made to precipitate in a circulating supply tank of waste liquid.

また、透析膜は、陰イオン交換膜を用い、放射性廃液が循環される一方の室は、陰極とイオン交換膜との間に設けられた水素イオン選択透過膜とにより形成することができる。また、酸を回収する他方の室は、陽極とイオン交換膜との間に設けられた水素イオン選択透過膜とにより形成することができる。   Moreover, an anion exchange membrane is used for the dialysis membrane, and one chamber in which the radioactive waste liquid is circulated can be formed by a hydrogen ion selective permeable membrane provided between the cathode and the ion exchange membrane. The other chamber for collecting the acid can be formed by a hydrogen ion selective permeable membrane provided between the anode and the ion exchange membrane.

また、上記の場合において、金属イオンは鉄イオンを含み、酸は硫酸を用いることができる。   Moreover, in said case, a metal ion contains an iron ion and an acid can use a sulfuric acid.

以下、本発明を実施形態に基づいて説明する。
(実施形態1)
図1に、本発明の放射性廃液処理方法の一実施形態を適用してなる放射性廃液処理装置の系統構成図を示し、図2に、電気透析槽の詳細構成図を示す。
Hereinafter, the present invention will be described based on embodiments.
(Embodiment 1)
FIG. 1 shows a system configuration diagram of a radioactive waste liquid treatment apparatus to which an embodiment of the radioactive waste liquid treatment method of the present invention is applied, and FIG. 2 shows a detailed configuration diagram of an electrodialysis tank.

図1は、ウランで汚染した金属廃棄物を硫酸で除染して発生する除染廃液に適用した実施形態の系統構成図である。図1に示すように、放射性廃液処理装置は、除染廃液受槽1と、処理廃液の循環供給槽2、電気透析槽3と、懸濁物除去手段4と、回収液の循環供給槽5と、極液回収槽6と、循環ポンプ7a、7b、7cと、ウラン吸着塔8とを有して構成されている。   FIG. 1 is a system configuration diagram of an embodiment in which a metal waste contaminated with uranium is applied to a decontamination waste liquid generated by decontamination with sulfuric acid. As shown in FIG. 1, the radioactive waste liquid treatment apparatus includes a decontamination waste liquid receiving tank 1, a treatment waste liquid circulation supply tank 2, an electrodialysis tank 3, a suspension removal means 4, and a recovered liquid circulation supply tank 5. The polar liquid recovery tank 6, the circulation pumps 7a, 7b and 7c, and the uranium adsorption tower 8 are configured.

除染廃液受槽1は、図示していない除染装置から、ウランが付着した金属廃棄物を硫酸で除染した放射性の除染廃液を受け入れるようになっている。除染廃液受槽1の除染廃液は、バッチ処理によって循環供給槽2に所定量供給するように構成されている。また、図示していないが、除染廃液に不溶性の成分が懸濁している場合は、除染廃液受槽1中の廃液を沈降槽に移して沈降処理を行った後、上澄み液を循環供給槽2に移送するように構成することができる。この場合、沈降槽で沈降した懸濁物は、沈降槽の下部から抜き出してセメント固化装置に送って固化処理することができる。なお、除染廃液に懸濁物が含まれていない場合は、図1のように、沈降処理を省略して、除染廃液受槽1から循環供給槽2に直接送ることができる。   The decontamination waste liquid receiving tank 1 is adapted to receive a radioactive decontamination waste liquid obtained by decontaminating metal waste with uranium attached thereto with sulfuric acid from a decontamination apparatus (not shown). The decontamination waste liquid in the decontamination waste liquid receiving tank 1 is configured to be supplied to the circulation supply tank 2 by a batch process. Although not shown, when insoluble components are suspended in the decontamination waste liquid, the waste liquid in the decontamination waste liquid receiving tank 1 is transferred to the sedimentation tank and subjected to sedimentation treatment, and then the supernatant liquid is circulated and supplied. 2 can be configured to be transported. In this case, the suspended matter settled in the settling tank can be extracted from the lower part of the settling tank and sent to a cement solidifying device to be solidified. When the decontamination waste liquid does not contain a suspended matter, as shown in FIG. 1, the sedimentation process can be omitted and the decontamination waste liquid can be directly sent from the decontamination waste liquid receiving tank 1 to the circulation supply tank 2.

ここで、除染廃液には、未反応の硫酸と金属廃棄物から溶出した鉄などの成分、及び除染されたウランがイオン形態で溶解している。除染廃液の組成の一例として、おおよそ0.5wt%の硫酸と、数1000ppmの遷移金属イオンを含んでいるとする。遷移金属としては、鉄が典型的な例であるが、要は除染廃液が酸性から中性に向かうにつれて懸濁物が生成されやすい金属である。さらに、数10ppmのウランを含んでいるものとする。   Here, unreacted sulfuric acid, components such as iron eluted from metal waste, and decontaminated uranium are dissolved in an ionic form in the decontamination waste liquid. As an example of the composition of the decontamination waste liquid, it is assumed that approximately 0.5 wt% sulfuric acid and several thousand ppm of transition metal ions are included. As a transition metal, iron is a typical example, but in summary, a suspension is likely to be generated as the decontamination waste liquid moves from acidic to neutral. Furthermore, it is assumed that several tens ppm of uranium is contained.

電気透析槽3は、図2に示すように、陰イオン交換膜12を挟んで両側に水素イオン選択透過膜11a、11bが配設されている。水素イオン選択透過膜11aを挟んで陰イオン交換膜12の反対側に陰極9が配設されて、陰極室3aが形成されている。また、水素イオン選択透過膜11bを挟んで陰イオン交換膜12の反対側に陽極10が配設されて、陽極室3dが形成されている。また、陰イオン交換膜12と水素イオン選択透過膜11aにより仕切られた処理廃液室3bと、陰イオン交換膜12と水素イオン選択透過膜11bにより仕切られた回収液室3cが形成されている。陰極室3aと陽極室3dには、図1に示すように、極液回収槽6から循環ポンプ7aにより、極液(例えば、0.1%〜5%の硫酸)が循環供給されるようになっている。この極液は、陰極室3aと陽極室3dにおける電荷のバランスを取るために供給する。   As shown in FIG. 2, the electrodialysis tank 3 is provided with hydrogen ion selective permeable membranes 11 a and 11 b on both sides of the anion exchange membrane 12. A cathode 9 is disposed on the opposite side of the anion exchange membrane 12 with the hydrogen ion selective permeable membrane 11a interposed therebetween, and a cathode chamber 3a is formed. In addition, an anode 10 is disposed on the opposite side of the anion exchange membrane 12 across the hydrogen ion selective permeable membrane 11b, thereby forming an anode chamber 3d. Further, a treatment waste liquid chamber 3b partitioned by the anion exchange membrane 12 and the hydrogen ion selective permeable membrane 11a and a recovery liquid chamber 3c partitioned by the anion exchange membrane 12 and the hydrogen ion selective permeable membrane 11b are formed. As shown in FIG. 1, polar liquid (for example, 0.1% to 5% sulfuric acid) is circulated and supplied from the polar liquid recovery tank 6 to the cathode chamber 3a and the anode chamber 3d by the circulation pump 7a. It has become. This polar liquid is supplied to balance the charges in the cathode chamber 3a and the anode chamber 3d.

このように構成される実施形態の除染廃液処理の動作について説明する。循環供給槽2に貯留されている除染廃液である処理廃液は、循環ポンプ7bによって電気透析槽3の処理廃液室3bに供給される。除染廃液中において、硫酸(HSO)は水素イオン(H)と硫酸イオン(SO 2−)に解離している。陰極9と陽極10との間に電流を流すと、処理廃液中の水素イオン(H+)を陰極に吸引するようにして、水素イオン選択透過膜11aを透過する水素イオン(H+)を陰極室3a内を流下する極液中に取り込む。また、処理廃液中の硫酸イオン(SO4−)を陽極10に吸引するようにして、陰イオン交換膜12を透過する硫酸イオン(SO4−)を回収液室3c内を流下する回収液中に取り込む。このようにして、処理廃液室3bに供給された処理液中の硫酸は回収液に移行する。また、処理廃液中に溶存している遷移金属やウランは、大部分が陽イオンとして存在しているため、陰極側の回収液室3cに移行しようとするが、処理廃液と回収液を陰イオン交換膜12で隔てている(訂正しましたので、確認ください)ため、回収液への移行は抑制される。 The operation of the decontamination waste liquid treatment of the embodiment configured as described above will be described. The treatment waste liquid that is the decontamination waste liquid stored in the circulation supply tank 2 is supplied to the treatment waste liquid chamber 3b of the electrodialysis tank 3 by the circulation pump 7b. In the decontamination waste liquid, sulfuric acid (H 2 SO 4 ) is dissociated into hydrogen ions (H + ) and sulfate ions (SO 4 2− ). When an electric current is passed between the cathode 9 and the anode 10, hydrogen ions (H +) in the treatment waste liquid are attracted to the cathode, and hydrogen ions (H +) that permeate the hydrogen ion selective permeable membrane 11a are allowed to flow into the cathode chamber 3a. Take in the polar liquid flowing down. In addition, sulfate ions (SO4−) in the treatment waste liquid are sucked into the anode 10, and sulfate ions (SO4−) that permeate the anion exchange membrane 12 are taken into the recovery liquid flowing down in the recovery liquid chamber 3c. . In this way, the sulfuric acid in the processing liquid supplied to the processing waste liquid chamber 3b is transferred to the recovered liquid. Further, since most of transition metals and uranium dissolved in the treatment waste liquid exist as cations, the transition metal and uranium try to move to the recovery liquid chamber 3c on the cathode side. Since it is separated by the exchange membrane 12 (corrected, please confirm), the transfer to the recovered liquid is suppressed.

このようにして、電気透析槽3の処理廃液室3bを通る間に、処理廃液中の硫酸は回収液側に移行する。処理廃液室3bを通った処理廃液は、懸濁物除去手段4を介して循環供給槽2に戻される。循環供給槽2に戻された処理廃液は、循環ポンプ7bによって再び処理廃液室3bに供給されて、循環供給槽2と処理廃液室3bとの間を循環されることにより所定割合の硫酸が回収される。硫酸が回収されて処理廃液中の硫酸濃度が低下するに従って、pHが中性側になるため、溶存している金属イオンが加水分解して、不溶性の水酸化物を生じる。この水酸化物は処理廃液中に懸濁し、硫酸の回収が進むに従って懸濁物の量は多くなる。例えば、0.5%の硫酸と3000ppmのFe(III)を含む除染廃液から硫酸を回収したときに、溶存していたFe(III)濃度がどのように低下するかを試算した結果を図3に示す。図3において、横軸は硫酸の回収率(wt%)を示し、縦軸はFeに沈殿率(wt%)を示す。図示のように、硫酸を95wt%回収すると、その間にFe(III )イオンのほとんどが不溶性の水酸化物になることが分かる。   Thus, while passing through the treatment waste liquid chamber 3b of the electrodialysis tank 3, the sulfuric acid in the treatment waste liquid moves to the recovered liquid side. The treatment waste liquid that has passed through the treatment waste liquid chamber 3 b is returned to the circulation supply tank 2 via the suspension removal means 4. The treatment waste liquid returned to the circulation supply tank 2 is supplied again to the treatment waste liquid chamber 3b by the circulation pump 7b, and is circulated between the circulation supply tank 2 and the treatment waste liquid chamber 3b, thereby recovering a predetermined ratio of sulfuric acid. Is done. As the sulfuric acid is recovered and the sulfuric acid concentration in the treatment waste liquid is lowered, the pH becomes neutral, so the dissolved metal ions are hydrolyzed to produce insoluble hydroxides. This hydroxide is suspended in the treatment waste liquid, and the amount of suspension increases as the recovery of sulfuric acid proceeds. For example, when the sulfuric acid is recovered from the decontamination waste liquid containing 0.5% sulfuric acid and 3000ppm Fe (III), the result of the trial calculation of how the dissolved Fe (III) concentration decreases is shown in the figure. 3 shows. In FIG. 3, the horizontal axis indicates the recovery rate (wt%) of sulfuric acid, and the vertical axis indicates the precipitation rate (wt%) in Fe. As shown in the figure, it can be seen that when 95 wt% sulfuric acid is recovered, most of the Fe (III) ions become insoluble hydroxides during that time.

この水酸化物が懸濁した状態で処理廃液を循環させると、膜間や配管に局所的に沈殿が蓄積して閉塞を引き起こす可能性がある。そこで、本実施形態では、電気透析槽3の処理廃液室3bを出た処理廃液を懸濁物除去手段4を通して懸濁物を除去した後、循環供給槽2に戻すようにしている。ここで、懸濁物除去手段4としては、例えば、沈殿除去槽を適用して沈降により懸濁物を分離し、上澄み液を循環供給槽2に送ることにより、処理廃液室3bで生成された沈殿物を除去して電気透析槽3に循環するようにしている。これにより、処理液の循環系内に懸濁物が蓄積することなく、除染廃液から硫酸を高効率で除去することができる。   If the treatment waste liquid is circulated in a state where the hydroxide is suspended, precipitation may locally accumulate between the membranes or in the pipes, which may cause clogging. Therefore, in the present embodiment, the processing waste liquid exiting the processing waste liquid chamber 3b of the electrodialysis tank 3 is removed through the suspension removing means 4 and then returned to the circulation supply tank 2. Here, as the suspension removal means 4, for example, a precipitate removal tank is applied, the suspension is separated by sedimentation, and the supernatant liquid is sent to the circulation supply tank 2, thereby being generated in the treatment waste liquid chamber 3 b. The precipitate is removed and circulated to the electrodialysis tank 3. Thereby, sulfuric acid can be removed from the decontamination waste liquid with high efficiency without accumulation of suspension in the circulation system of the treatment liquid.

一方、ウランを含む硫酸系の除染廃液から硫酸を電気透析で除去する場合、遷移金属の沈殿生成に加えて、ウランの一部が硫酸の回収液に同伴することから、硫酸の回収液からウランを除去する必要がある。この硫酸水溶液中のウランは、ウラニルイオンの一部が陰イオン錯体として存在している。陰イオン錯体として存在する割合は、ウラニルイオンの硫酸錯体の安定度定数から図4のように予測することができる。図4において、横軸はSO 2−濃度(mol/L)を表し、縦軸は各イオン錯体の割合(%)を示している。図示のように、5%の硫酸水溶液中ではおおよそ20%が陰イオン錯体として存在する。このウランは、陰イオン交換膜12を通して陽極側の回収液に移行する。発明者らの試験結果では、5%の硫酸を含む除染廃液から90%の硫酸を回収したときに、ウランの約20%が硫酸に同伴して回収液側に移行した。
回収液側にウランが移行すると、回収硫酸を使ってウランが付着した廃棄物を除染するときに、クロスコンタミネーションを引き起こす可能性が高くなる。この場合、除染処理後に十分な洗浄処理を行う必要がある。そのため、除染廃液の体積が増加する。これを避けるためには、回収液中のウラン濃度を低くする必要がある。そこで、図1の実施形態では、回収硫酸を循環する配管の途中にウラン吸着塔8を設けてウランを吸着分離している。ここで、硫酸中のウランを効率的に分離する方法としては、陰イオン交換樹脂による吸着法が有効である。
On the other hand, when removing sulfuric acid from sulfuric acid-based decontamination waste liquid containing uranium by electrodialysis, in addition to the precipitation of transition metals, part of uranium is accompanied by the sulfuric acid recovery liquid. Uranium needs to be removed. In the uranium in this sulfuric acid aqueous solution, a part of uranyl ion exists as an anion complex. The proportion existing as an anion complex can be predicted from the stability constant of the uranyl ion sulfate complex as shown in FIG. In FIG. 4, the horizontal axis represents SO 4 2− concentration (mol / L), and the vertical axis represents the ratio (%) of each ion complex. As shown, approximately 20% is present as an anion complex in a 5% sulfuric acid aqueous solution. This uranium moves to the collection liquid on the anode side through the anion exchange membrane 12. According to the test results of the inventors, when 90% sulfuric acid was recovered from the decontamination waste liquid containing 5% sulfuric acid, about 20% of uranium was transferred to the recovery liquid side along with the sulfuric acid.
When uranium migrates to the recovered liquid side, there is a high possibility of causing cross contamination when decontaminating waste with uranium attached using recovered sulfuric acid. In this case, it is necessary to perform a sufficient cleaning process after the decontamination process. Therefore, the volume of decontamination waste liquid increases. In order to avoid this, it is necessary to lower the uranium concentration in the recovered liquid. Therefore, in the embodiment of FIG. 1, uranium is adsorbed and separated by providing a uranium adsorption tower 8 in the middle of a pipe for circulating the recovered sulfuric acid. Here, an adsorption method using an anion exchange resin is effective as a method for efficiently separating uranium in sulfuric acid.

所定の硫酸を回収された後、循環供給槽2内の処理廃液は、図示していないセメント固化装置に送られて固化処理される。また、懸濁物除去手段4の例えば沈殿除去槽に沈殿された遷移金属の水酸化物も抜き出され、セメント固化装置に送られ固化処理される。また、処理廃液には少量の硫酸が残っているので、水酸化バリウム等により中和した後、遷移金属の水酸化物とともにセメントと混練して固化体される。一方、回収した硫酸は、濃度を調整した後、除染装置において再利用される。   After the predetermined sulfuric acid is collected, the processing waste liquid in the circulation supply tank 2 is sent to a cement solidifying device (not shown) and solidified. Further, the transition metal hydroxide precipitated in, for example, the sediment removal tank of the suspension removing means 4 is also extracted and sent to a cement solidifying apparatus for solidification. Further, since a small amount of sulfuric acid remains in the treatment waste liquid, it is neutralized with barium hydroxide or the like and then kneaded with cement together with a transition metal hydroxide to be solidified. On the other hand, the collected sulfuric acid is reused in the decontamination apparatus after the concentration is adjusted.

上述したように、本実施形態の放射性廃液処理装置によれば、金属イオンの沈殿が処理廃液の循環系内に蓄積することがないから、電気透析槽3の処理廃液室3bのpHが高くなるのを抑制する必要がないので硫酸の回収率を高くすることができる。その結果、処理廃液中の硫酸を低減できるから、処理廃液及び遷移金属の水酸化物をセメントにより固化する際の不具合を解消できるとともに、充填率を高めることができる。
(実施形態2)
図5及び図6に、本発明の放射性廃液処理装置の他の実施形態の系統構成図を示す。本実施形態が、図1の実施形態と相違する点は、電気透析槽3と処理廃液の循環供給槽2との間に懸濁物除去手段4を設ける代わりに、処理廃液の循環供給槽13に懸濁物除去手段を設けたことにある。図6に示すように、本実施形態の循環供給槽13は、底部から起立して設けられた堰板14によりA室とB室に区画されている。また、B室の上部の堰板14の上端位置に、間隔を空けて邪魔板15が傾斜させて設けられている。A室の底部に、除染廃液受槽1又は電気透析槽3の処理廃液室3bから処理廃液が供給される入口ノズル16が設けられている。また、B室の邪魔板15の上部Cに循環ポンプ7bに連結される出口ノズル17が設けられている。また、A室の底部に沈殿物の排出ノズル18が設けられている。
As described above, according to the radioactive liquid waste treatment apparatus of this embodiment, the precipitation of the metal ions does not accumulate in the circulation system of the liquid treatment waste, so that the pH of the liquid treatment chamber 3b of the electrodialysis tank 3 is increased. Therefore, the sulfuric acid recovery rate can be increased. As a result, since the sulfuric acid in the treatment waste liquid can be reduced, it is possible to eliminate a problem when the treatment waste liquid and the transition metal hydroxide are solidified with cement, and to increase the filling rate.
(Embodiment 2)
5 and 6 show system configuration diagrams of another embodiment of the radioactive liquid waste treatment apparatus of the present invention. The present embodiment differs from the embodiment of FIG. 1 in that instead of providing the suspension removal means 4 between the electrodialysis tank 3 and the treatment waste liquid circulation supply tank 2, the treatment waste liquid circulation supply tank 13 is provided. Is provided with a suspension removing means. As shown in FIG. 6, the circulation supply tank 13 of the present embodiment is partitioned into a chamber A and a chamber B by a dam plate 14 provided upright from the bottom. In addition, a baffle plate 15 is provided at an upper end position of the weir plate 14 in the upper part of the B chamber with an interval. At the bottom of the A chamber, there is provided an inlet nozzle 16 to which processing waste liquid is supplied from the processing waste liquid chamber 3b of the decontamination waste liquid receiving tank 1 or the electrodialysis tank 3. Further, an outlet nozzle 17 connected to the circulation pump 7b is provided at the upper part C of the baffle plate 15 of the B chamber. A sediment discharge nozzle 18 is provided at the bottom of the A chamber.

このように構成されることから、循環供給槽13のA室に供給される処理廃液中の懸濁物である水酸化物はA室内で沈降し、上澄み液が堰板14を超えてB室に入る。B室に入った処理廃液は出口ノズル17に向かって上昇するが、その流れは邪魔板15によりC部への流れが抑制される。その結果、出口ノズル17の付近では水酸化物の沈殿の少ない処理廃液の上澄みが得られるので、循環ポンプ7bにより電気透析槽3に戻される処理廃液中の沈殿を低減できる。   Since it is configured in this way, the hydroxide which is a suspension in the processing waste liquid supplied to the A chamber of the circulation supply tank 13 settles in the A chamber, and the supernatant liquid passes over the weir plate 14 and the B chamber. to go into. The processing waste liquid entering the B chamber rises toward the outlet nozzle 17, but the flow to the C section is suppressed by the baffle plate 15. As a result, since the supernatant of the treatment waste liquid with little hydroxide precipitation is obtained in the vicinity of the outlet nozzle 17, precipitation in the treatment waste liquid returned to the electrodialysis tank 3 by the circulation pump 7b can be reduced.

一方、A室に蓄積した沈殿は、排出ノズル18から適宜抜き出されてセメント固化装置に送られ、中和処理の後にセメント固化される。   On the other hand, the sediment accumulated in the A chamber is appropriately extracted from the discharge nozzle 18 and sent to a cement solidifying device, and is solidified after neutralization.

本実施形態によれば、図1の実施形態よりも簡易な懸濁物除去手段により、電気透析槽3で生成された金属イオンの水酸化物の沈殿を除去することができ、処理廃液の循環供給系の閉塞などの不具合を解消して、除染廃液の酸成分を回収することができる。   According to the present embodiment, metal ion hydroxide precipitates generated in the electrodialysis tank 3 can be removed by a simple suspension removal means than in the embodiment of FIG. It is possible to recover the acid component of the decontamination waste liquid by solving problems such as blockage of the supply system.

また、懸濁物除去手段として、図1及び図6実施形態では、懸濁物の沈殿により除去する例を説明したが、本発明はこれに限らず、フィルタを用いたろ過装置により金属イオンの水酸化物の沈殿を除去するようにすることができる。   Moreover, although the example which removes by suspension sedimentation was demonstrated as embodiment of FIG.1 and FIG.6 as a suspension removal means, this invention is not limited to this, Metal filtration of a metal ion is carried out by the filtration apparatus using a filter. Hydroxide precipitation can be removed.

本発明の放射性廃液処理装置の一実施の形態の系統構成図を示す。The system configuration | structure figure of one Embodiment of the radioactive waste liquid processing apparatus of this invention is shown. 本発明に適用される一実施の形態の電気透析槽の構造図を示す。1 is a structural diagram of an electrodialysis tank according to an embodiment applied to the present invention. 硫酸濃度の低下に伴う鉄(III)イオン濃度の減少を説明する図である。It is a figure explaining the reduction | decrease of an iron (III) ion concentration accompanying the fall of a sulfuric acid concentration. 硫酸中のウランの存在形態を説明する図である。It is a figure explaining the existence form of uranium in sulfuric acid. 本発明の放射性廃液処理装置の他の実施の形態の系統構成図を示す。The system block diagram of other embodiment of the radioactive waste liquid processing apparatus of this invention is shown. 図5の実施形態の処理廃液の循環供給槽の詳細構成を示す図である。It is a figure which shows the detailed structure of the circulation supply tank of the process waste liquid of embodiment of FIG.

符号の説明Explanation of symbols

1 除染廃液受槽
2 循環供給槽
3 電気透析槽
4 懸濁物除去手段
5 循環供給槽
6 極液回収槽
7a、7b、7c 循環ポンプ
8 ウラン吸着塔
DESCRIPTION OF SYMBOLS 1 Decontamination waste liquid receiving tank 2 Circulation supply tank 3 Electrodialysis tank 4 Suspension removal means 5 Circulation supply tank 6 Polar liquid collection tank 7a, 7b, 7c Circulation pump 8 Uranium adsorption tower

Claims (9)

透析膜によって隔てられた二室を有する電気透析槽の一方の室に放射性物質、金属イオン及び酸を含む放射性廃液を供給し、前記透析膜を介して他方の室に透析される酸を回収すると共に、前記一方の室から排出される前記放射性廃液中の懸濁物を除去した後、該放射性廃液を前記一方の室に循環供給するようにしてなる放射性廃液処理方法。   A radioactive waste solution containing radioactive substances, metal ions and acid is supplied to one chamber of an electrodialysis tank having two chambers separated by a dialysis membrane, and the acid dialyzed into the other chamber is recovered through the dialysis membrane. At the same time, the radioactive waste liquid treatment method comprising removing the suspended matter in the radioactive waste liquid discharged from the one chamber and then circulatingly supplying the radioactive waste liquid to the one chamber. 前記透析膜は、陰イオン交換膜であり、
前記一方の室は、陰極と前記イオン交換膜との間に設けられた水素イオン選択透過膜とにより形成され、
前記他方の室は、陽極と前記イオン交換膜との間に設けられた水素イオン選択透過膜とにより形成されてなることを特徴とする請求項1に記載の放射性廃液処理方法。
The dialysis membrane is an anion exchange membrane,
The one chamber is formed by a hydrogen ion selective permeable membrane provided between a cathode and the ion exchange membrane,
2. The radioactive waste liquid treatment method according to claim 1, wherein the other chamber is formed by a hydrogen ion selective permeation membrane provided between an anode and the ion exchange membrane.
前記金属イオンは鉄イオンを含んでなり、前記酸は硫酸であることを特徴とする請求項1又は2に記載の放射性廃液処理方法。   The radioactive liquid waste treatment method according to claim 1 or 2, wherein the metal ions include iron ions, and the acid is sulfuric acid. 前記他方の室から排出される回収液中の放射性物質を吸着除去した後、前記他方の室に循環供給することを特徴とする請求項1乃至3のいずれか1項に記載の放射性廃液処理方法。   The radioactive waste liquid treatment method according to any one of claims 1 to 3, wherein the radioactive substance in the recovered liquid discharged from the other chamber is adsorbed and removed and then circulated and supplied to the other chamber. . 透析膜によって隔てられた二室を有し、一方の室に放射性物質、金属イオン及び酸を含む放射性廃液が供給される電気透析槽と、前記電気透析槽の他方の室から排出される前記透析膜で透析された酸を含む回収液を受ける回収液槽と、前記一方の室から排出される前記電気透析槽により処理された処理廃液を該一方の室に循環供給する廃液循環手段と、該廃液循環手段により循環される前記放射性廃液中の懸濁物を除去する懸濁物除去手段とを備えてなる放射性廃液処理装置。   An electrodialysis tank having two chambers separated by a dialysis membrane, to which a radioactive waste liquid containing a radioactive substance, metal ions and an acid is supplied in one chamber, and the dialysis discharged from the other chamber of the electrodialysis tank A recovery liquid tank for receiving a recovery liquid containing an acid dialyzed by a membrane; waste liquid circulation means for circulating and supplying the treatment waste liquid treated by the electrodialysis tank discharged from the one chamber to the one chamber; A radioactive waste liquid treatment apparatus comprising: a suspension removal means for removing a suspension in the radioactive waste liquid circulated by the waste liquid circulation means. 前記透析膜は、陰イオン交換膜であり、
前記一方の室は、陰極と前記イオン交換膜との間に設けられた水素イオン選択透過膜とにより形成され、
前記他方の室は、陽極と前記イオン交換膜との間に設けられた水素イオン選択透過膜とにより形成されてなることを特徴とする請求項5に記載の放射性廃液処理装置。
The dialysis membrane is an anion exchange membrane,
The one chamber is formed by a hydrogen ion selective permeable membrane provided between a cathode and the ion exchange membrane,
6. The radioactive waste liquid treatment apparatus according to claim 5, wherein the other chamber is formed by a hydrogen ion selective permeable membrane provided between an anode and the ion exchange membrane.
前記廃液循環手段は、前記電気透析槽により処理された処理廃液を受ける処理廃液の循環供給槽と、該循環供給槽の処理廃液を前記一方の室に供給する循環ポンプとを備え、
前記懸濁物除去手段は、前記電気透析槽と前記循環供給槽との間に設けられた沈殿槽であることを特徴とする請求項5又は6に記載の放射性廃液処理装置。
The waste liquid circulation means comprises a circulation supply tank of treatment waste liquid that receives the treatment waste liquid treated by the electrodialysis tank, and a circulation pump that supplies the treatment waste liquid of the circulation supply tank to the one chamber,
The radioactive waste liquid treatment apparatus according to claim 5 or 6, wherein the suspension removing means is a sedimentation tank provided between the electrodialysis tank and the circulation supply tank.
前記廃液循環手段は、前記電気透析槽により処理された処理廃液を受ける処理廃液の循環供給槽と、該循環供給槽の処理廃液を前記一方の室に供給する循環ポンプとを備え、
前記懸濁物除去手段は、前記循環供給槽の処理廃液の流入口と前記循環ポンプに接続される流出口との間に設けられた堰板によって形成された沈殿室であることを特徴とする請求項5又は6に記載の放射性廃液処理装置。
The waste liquid circulation means comprises a circulation supply tank of treatment waste liquid that receives the treatment waste liquid treated by the electrodialysis tank, and a circulation pump that supplies the treatment waste liquid of the circulation supply tank to the one chamber,
The suspension removing means is a sedimentation chamber formed by a weir plate provided between an inlet of the treatment waste liquid in the circulation supply tank and an outlet connected to the circulation pump. The radioactive liquid waste processing apparatus of Claim 5 or 6.
前記回収液槽の回収液を該回収液中の放射性物質を吸着除去して前記他方の室に循環供給する回収液循環手段を備えてなることを特徴とする請求項5乃至8のいずれか1項に記載の放射性廃液処理装置。   9. The recovery liquid circulating means for adsorbing and removing the radioactive substance in the recovery liquid from the recovery liquid tank and circulatingly supplying the recovered liquid to the other chamber is provided. The radioactive waste liquid processing apparatus as described in the paragraph.
JP2005004053A 2005-01-11 2005-01-11 Method and apparatus for treating radioactive liquid waste Expired - Fee Related JP4370470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004053A JP4370470B2 (en) 2005-01-11 2005-01-11 Method and apparatus for treating radioactive liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004053A JP4370470B2 (en) 2005-01-11 2005-01-11 Method and apparatus for treating radioactive liquid waste

Publications (2)

Publication Number Publication Date
JP2006194621A true JP2006194621A (en) 2006-07-27
JP4370470B2 JP4370470B2 (en) 2009-11-25

Family

ID=36800835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004053A Expired - Fee Related JP4370470B2 (en) 2005-01-11 2005-01-11 Method and apparatus for treating radioactive liquid waste

Country Status (1)

Country Link
JP (1) JP4370470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104427A (en) * 2012-11-28 2014-06-09 Hitachi-Ge Nuclear Energy Ltd Waste liquid agitating device
KR20180040777A (en) * 2016-10-12 2018-04-23 한국원자력연구원 Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104427A (en) * 2012-11-28 2014-06-09 Hitachi-Ge Nuclear Energy Ltd Waste liquid agitating device
KR20180040777A (en) * 2016-10-12 2018-04-23 한국원자력연구원 Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably
KR101883895B1 (en) * 2016-10-12 2018-08-02 한국원자력연구원 Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably

Also Published As

Publication number Publication date
JP4370470B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
CN104507873B (en) The operation method of desalting processing device and desalting processing device
CN101857321B (en) Method and equipment for treating and recycling reverse osmosis concentrated water and complex wastewater with high salt content
JP4385407B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP2014163843A (en) Cleaning acid recycling method and recycling facility
JP4438988B2 (en) Electrochemical method, system and apparatus for removing contamination by radioactive material.
JP5044178B2 (en) Radionuclide-containing waste liquid treatment method and apparatus
JP4370470B2 (en) Method and apparatus for treating radioactive liquid waste
JP2018086619A (en) Ultrapure water production system and ultrapure water production method
CN110379532B (en) Method and device for treating radioactive waste liquid
CN207567053U (en) A kind of packaged type fluorine-containing waste water processing apparatus
JP5845478B2 (en) Method and apparatus for treating radioactive material-containing wastewater
JP3620577B2 (en) Cleaning method for ultrapure water production system
TWI423836B (en) Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same
JPH11253968A (en) Water recovering apparatus
TWI399360B (en) Recovery equipment for tetramethylammonium hydroxide and its method
JP2006212540A (en) Treatment method of chemical-washing waste liquid
JPH10192718A (en) Resin regenerator for condensate desalter
CN209797625U (en) Desulfurization and denitrification wastewater treatment device
JP6692385B2 (en) Radioactive waste liquid treatment system
CN206408003U (en) A kind of processing system of Ni-containing Plating Wastewater
JP6783155B2 (en) Waste resin treatment method and waste resin treatment system
JP6137972B2 (en) Method and apparatus for inhibiting corrosion of nuclear reactor structure
KR100790370B1 (en) Recycling method and apparatus of waste etching solution
JP6329916B2 (en) Method for treating acidic waste liquid containing metal ions and treatment apparatus for acidic waste liquid containing metal ions
JP2014161801A (en) Method for regenerating amphoteric ion exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A711 Notification of change in applicant

Effective date: 20071206

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Effective date: 20090127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees