JP2006194619A - Real-time earthquake response waveform estimation method utilizing real-time earthquake information - Google Patents

Real-time earthquake response waveform estimation method utilizing real-time earthquake information Download PDF

Info

Publication number
JP2006194619A
JP2006194619A JP2005003964A JP2005003964A JP2006194619A JP 2006194619 A JP2006194619 A JP 2006194619A JP 2005003964 A JP2005003964 A JP 2005003964A JP 2005003964 A JP2005003964 A JP 2005003964A JP 2006194619 A JP2006194619 A JP 2006194619A
Authority
JP
Japan
Prior art keywords
earthquake
time
real
point
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005003964A
Other languages
Japanese (ja)
Other versions
JP4385948B2 (en
Inventor
Ichiro Nagashima
一郎 長島
Tatsuhiro Ranki
龍大 欄木
Masami Takagi
政美 高木
Tomoaki Yoshimura
智昭 吉村
Yasuo Uchiyama
泰生 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2005003964A priority Critical patent/JP4385948B2/en
Publication of JP2006194619A publication Critical patent/JP2006194619A/en
Application granted granted Critical
Publication of JP4385948B2 publication Critical patent/JP4385948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a real-time earthquake response waveform estimation method utilizing real-time earthquake information capable of estimating earthquake response waveform at an assumed point in real time before the motion of an earthquake reaches a specific assumed point when an earthquake occurs and hence predicting the occurrence of an earthquake disaster more precisely. <P>SOLUTION: The transfer function of the earthquake motion between an earthquake observation point between a predicted region and the assumed point for a plurality of earthquake occurrence predicted regions, and the assumed point is obtained in advance. The transfer function to an earthquake occurrence prediction region closest to an epicenter position is extracted from real-time earthquake information related to the epicenter position sensed at the time of the occurrence of an earthquake. Then, an earthquake motion waveform obtained at an observation point at the time of the occurrence of an earthquake is acquired in real time, and an earthquake response waveform at the assumed point is estimated in real time before the motion of the earthquake reaches the assumed point from the transfer function. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地震が発生した際に、その地震動が特定の想定点に到達する前に、当該想定点における地震応答波形をリアルタイムに推定することができるリアルタイム地震情報を利用したリアルタイム地震応答波形推定方法に関するものである。   The present invention provides real-time earthquake response waveform estimation using real-time earthquake information that enables real-time estimation of an earthquake response waveform at an assumed point before the earthquake motion reaches a specific assumed point when an earthquake occurs. It is about the method.

周知のように、地震波には伝播速度が速いP波(初期微動)と、伝播速度は遅いが大きな揺れを起こす振幅の大きいS波(主要動)がある。そして近年においては、気象庁の緊急地震速報(ナウキャスト)や、防災科学技術研究所のリアルタイム地震情報活用システム(REIS)等の、地震発生時に震源の近くで検知された上記P波によって当該地震に関するリアルタイム地震情報を即時的に得る各種のシステムが開発されている。   As is well known, seismic waves include P-waves (initial tremors) with a fast propagation speed and S-waves (major movements) with a large amplitude that cause a large vibration but slow propagation speed. In recent years, the P wave detected near the epicenter at the time of the earthquake, such as the Earthquake Early Warning (Nowcast) of the Japan Meteorological Agency and the Real-time Earthquake Information Utilization System (REIS) of the National Research Institute for Earth Science and Disaster Prevention, Various systems have been developed to obtain real-time earthquake information immediately.

加えて、当該システムによって得られたリアルタイム地震情報を、インターネットや衛星通信によって配信するネットワークシステムも実用化しつつあり、上記リアルタイム地震情報を用いることにより、地震発生後数秒程度で、発生した地震のマグニチュードや震源位置等に関する情報を受け取ることができるようになっている。   In addition, a network system that distributes real-time earthquake information obtained by the system via the Internet or satellite communication is also being put into practical use. By using the real-time earthquake information, the magnitude of the earthquake that occurred within a few seconds after the earthquake occurred. And information on the location of the epicenter.

一方、震源から数Km以上離れた地点においては、S波に起因する地震動の主要動が到達するまでに数秒から数十秒の余裕がある。このため、上記余裕時間を利用して、上記リアルタイム地震情報により、地震被害の発生を防止する、いわゆるリアルタイム地震防災の研究が活発に行われている。
特開平2003−114281号公報
On the other hand, at a point that is several kilometers away from the epicenter, there is a margin of several seconds to several tens of seconds before the main motion of the ground motion caused by the S wave arrives. For this reason, research on so-called real-time earthquake disaster prevention that uses the margin time to prevent occurrence of earthquake damage using the real-time earthquake information has been actively conducted.
JP-A-2003-114281

しかしながら、現在、上記リアルタイム地震情報は、発生した地震のマグニチュード、震源位置および震源深さ等の情報に限られているため、地震規模のリアルタイム推定は可能になったものの、発生した地震により、特定の想定地点において、地震動の変化、ピークの到来時期、あるいは継続時間といった、具体的にどのような地震動が発生するのかを地震到達前に知ることができないという問題点があった。   However, currently, the real-time earthquake information is limited to information such as the magnitude of the earthquake that occurred, the location of the epicenter, and the depth of the seismic source. However, there is a problem that it is impossible to know what kind of ground motion will occur before the earthquake reaches, such as the change of ground motion, the arrival time of the peak, or the duration.

本発明は、かかる事情に鑑みてなされたもので、地震発生時に、その地震動が特定の想定点に到達する前に、当該想定点における地震応答波形をリアルタイムに推定することができ、よって地震被害の発生をより一層高い精度で予測することができるリアルタイム地震情報を利用したリアルタイム地震応答波形推定方法を提供することを課題とするものである。   The present invention has been made in view of such circumstances, and when an earthquake occurs, the earthquake response waveform at the assumed point can be estimated in real time before the earthquake motion reaches a specific assumed point. It is an object of the present invention to provide a real-time earthquake response waveform estimation method using real-time earthquake information that can predict the occurrence of the earthquake with higher accuracy.

上記課題を解決するために、請求項1に記載の発明は、地震が発生した際に、その地震動が特定の想定点に到達する前に、当該想定点における地震応答波形をリアルタイムに推定する方法であって、予め、複数の地震発生予測地域に対する当該予測地域と上記想定点との間の地震観測点と、上記想定点との間の地震動の伝達関数を求めておき、地震発生時に検知された震源位置に係るリアルタイム地震情報から上記当該震源位置に最も近い上記震動発生予測地域に対する上記伝達関数を抽出し、次いで上記観測点で得られた地震動波形の情報をリアルタイムに取得して、上記伝達関数に基づいて上記想定点における地震応答波形をリアルタイムに推定することを特徴とするものである。   In order to solve the above-described problem, the invention according to claim 1 is a method for estimating an earthquake response waveform at an assumed point in real time before the earthquake motion reaches a specific assumed point when an earthquake occurs. In advance, a seismic observation point between the prediction area and the assumption point for a plurality of earthquake occurrence prediction areas and a transfer function of the ground motion between the assumption point are obtained in advance and detected when an earthquake occurs. The transfer function for the predicted earthquake occurrence area closest to the source location is extracted from the real-time earthquake information related to the source location, and the information on the seismic motion waveform obtained at the observation point is obtained in real time, and the transmission is performed. An earthquake response waveform at the assumed point is estimated in real time based on a function.

この際に、請求項2に記載の発明は、上記伝達関数が、過去の地震観測記録および/または理論シミュレーションにより得られた上記地震発生予測地域に対する上記地震観測点における地震動波形x(t)(tは時間(秒)、以下同じ)および上記想定点における地震動波形y(t)から周波数伝達関数F(f)=Y(f)/X(f)、(X(f)、Y(f)はそれぞれx(t)、y(t)のフーリエ変換であり、fは振動数(Hz)、以下同じ)、を求め、上記周波数伝達関数F(f)の近似関数W(f)を求めて、これを逆ラプラス変換によって時間の微分方程式に変換し、さらに当該微分方程式を時間間隔Δtで離散化することによって得られた漸化式であり、かつ上記観測点で得られた地震動波形の経時的な情報を上記漸化式に入力することにより、リアルタイムで上記想定点における地震応答波形を算出することを特徴とするものである。   In this case, the invention according to claim 2 is characterized in that the transfer function is a seismic motion waveform x (t) (at the earthquake observation point with respect to the earthquake occurrence prediction area obtained by past earthquake observation records and / or theoretical simulations. t is time (seconds), and the same applies hereinafter) and the seismic wave waveform y (t) at the above assumed point. Are Fourier transforms of x (t) and y (t), f is the frequency (Hz), and so on), and an approximate function W (f) of the frequency transfer function F (f) is obtained. This is a recurrence formula obtained by converting this into a differential equation of time by inverse Laplace transform, and further discretizing the differential equation at a time interval Δt, and the seismic motion waveform obtained at the observation point over time Information into the recurrence formula The Rukoto, is characterized in that calculating the seismic response waveform at the assumed point in real time.

なお、上記想定点とは、地震基盤面(Vs=3km/s程度)あるいは工学的基礎面(Vs=700m/s程度)等の地中内、地表面上の任意の位置、地盤上に構築された構造物の任意の位置(杭、基礎、床等)、上記構造物内に設置された設備機器の任意の位置(設備機器の設置架台や免震床等を含む。)を採ることが可能である。
また、上記地震発生予測地域とは、特定の地震発生予測地点あるいは複数の当該地点を含む一定の広さを有する地震発生予測エリアを指すものである。
In addition, the above assumption points are built on the ground, at any position on the ground, such as in the ground such as the earthquake base (Vs = 3 km / s) or engineering base (Vs = 700 m / s). It is possible to take any position of the constructed structure (pile, foundation, floor, etc.) and any position of the equipment installed in the structure (including installation stand of the equipment, seismic isolation floor, etc.). Is possible.
The earthquake occurrence prediction area refers to a specific earthquake occurrence prediction point or an earthquake occurrence prediction area having a certain area including a plurality of points concerned.

請求項1または2に記載の発明によれば、地震が発生した際に、先ず、例えば地震発生時に検知された初期微動を示すP波によって得られたリアルタイム地震情報の震源位置に関する情報から、予め準備しておいた多数の上記伝達関数の内の上記震源位置に最も近い上記震動発生予測地域に対する伝達関数を抽出し、次いでこの伝達関数の算出に用いた地震観測点で得られた地震動波形をリアルタイムに取得することにより、上記地震の地震動が上記想定点に到達する前に、当該想定点における地震応答波形をリアルタイムに推定することができる。   According to the first or second aspect of the present invention, when an earthquake occurs, first, for example, from information related to the epicenter position of real-time earthquake information obtained by a P wave indicating initial tremor detected at the time of the earthquake, Of the many transfer functions prepared above, transfer functions for the predicted earthquake occurrence area closest to the epicenter location are extracted, and then the seismic motion waveforms obtained at the seismic observation point used to calculate this transfer function are extracted. By acquiring in real time, the seismic response waveform at the assumed point can be estimated in real time before the ground motion of the earthquake reaches the assumed point.

この結果、地震到達の数十秒前に、上記想定点における地震動の変化、ピークの到来時期、あるいは継続時間といった、具体的な地震応答波形を得ることができるために、当該想定点における地震被害の発生をより一層高い精度で抑制することができる。   As a result, a specific seismic response waveform such as the change in ground motion, peak arrival time, or duration at the above assumption point can be obtained tens of seconds before the arrival of the earthquake. Can be suppressed with higher accuracy.

図1〜図7は、本発明に係るリアルタイム地震情報を利用したリアルタイム地震応答波形推定方法の一実施形態を説明するためのものである。
このリアルタイム地震応答波形推定方法においては、予め図2に示すように、地震の応答波形を推定する特定の想定点Yに対して、複数の地震発生予測地点P1、P2、P3または、これらの地点P1、P2、P3が含まれる地震発生予測エリアA1、A2、A3を設定する。さらに、予測エリアA1、A2、A3と想定点Yとの間の地震観測点B1、B2を選択する。
FIGS. 1-7 is for demonstrating one Embodiment of the real-time earthquake response waveform estimation method using the real-time earthquake information based on this invention.
In this real-time earthquake response waveform estimation method, as shown in FIG. 2 in advance, a plurality of earthquake occurrence prediction points P 1 , P 2 , P 3 or a specific assumption point Y for estimating the earthquake response waveform, An earthquake occurrence prediction area A 1 , A 2 , A 3 including these points P 1 , P 2 , P 3 is set. Further, seismic observation points B 1 and B 2 between the prediction areas A 1 , A 2 and A 3 and the assumed point Y are selected.

そして、これらの地震発生予測エリアA1、A2、A3に対する地震観測点B1、B2と想定点Yとの間の地震動の周波数伝達関数F(f)を求めておく(図3のSTEP1)。なお、fは振動数(Hz)である。
ここで、想定点Yが、図1に示すように、建物の地表面Y1である場合に、周波数伝達関数F1(f)は,現在日本全域に展開されている地震観測網で観測された地震観測記録や,シミュレーションによる理論地震動により作成された地震動波形を使用して作成することができる。
Then, the frequency transfer function F (f) of the ground motion between the earthquake observation points B 1 and B 2 and the assumed point Y with respect to these earthquake occurrence prediction areas A 1 , A 2 and A 3 is obtained (FIG. 3). STEP1). Note that f is the frequency (Hz).
Here, when the assumed point Y is the ground surface Y 1 of the building as shown in FIG. 1, the frequency transfer function F 1 (f) is observed in the seismic observation network currently deployed throughout Japan. It can be created using seismic observation records and seismic motion waveforms created by theoretical ground motions by simulation.

例えば,エリアA1で発生したある地震の観測点B1と想定点Y1と地震動波形をそれぞれ時間tの関数としてx(t)、y(t)であるとすると、周波数伝達関数はF1(f)は、下記の式1によって求めることができる。

Figure 2006194619
For example, assuming that an observation point B 1 , an assumed point Y 1 and a ground motion waveform of an earthquake occurring in area A 1 are x (t) and y (t) as functions of time t, the frequency transfer function is F 1. (F) can be obtained by the following Equation 1.
Figure 2006194619

ここで、Y(f)は、上記地震動波形y(t)のフーリエ変換であり、X(f)は、上記地震動波形x(t)のフーリエ変換である。そして、実際の地震動波形はサンプリング時間(Δt秒)毎の離散値xn、yn(xn=n・Δt、yn=n・Δt:n=0、1、2、・・・、N−1)であるため、下記式2による離散フーリエ変換を行って周波数伝達関数F1(f)を求める。 Here, Y (f) is the Fourier transform of the earthquake motion waveform y (t), and X (f) is the Fourier transform of the earthquake motion waveform x (t). The actual seismic motion waveform is a discrete value x n , y n (x n = n · Δt, y n = n · Δt: n = 0, 1, 2,..., N for each sampling time (Δt seconds). −1), the frequency transfer function F 1 (f) is obtained by performing a discrete Fourier transform according to the following equation (2).

Figure 2006194619
Figure 2006194619

なお、地震動は、断層の破壊メカニズムや伝搬経路となる深部地下構造や表層地盤等の様々な影響を受けるため、震源位置や規模が同様の地震であっても、観測される地震動波形はある程度異なるものとなる。そのため、一つの地震動に対して求めた周波数伝達関数F1(f)を用いる場合よりも、多くの地震動に対して求めた周波数伝達関数を平均化したものを用いたほうが、汎用性が高くなって好適である。 In addition, since seismic motion is affected by various mechanisms such as the failure mechanism of the fault, the deep underground structure that is the propagation path, the surface ground, etc., the observed seismic motion waveform differs to some extent even in the case of earthquakes of the same epicenter location and scale. It will be a thing. Therefore, it is more versatile to use an averaged frequency transfer function obtained for many earthquake motions than to use the frequency transfer function F 1 (f) obtained for one earthquake motion. It is preferable.

次いで、図3のSTEP2に示すように、得られた周波数伝達関数F1(f)の近似関数Y(2πf・j)/X(2πf・j)=W(s)を求める。なお、s=j・ωである。
この際に、近似関数W(s)における次数n、mは、周波数伝達関数F1(f)を近似するに十分な次数であって、かつなるべく低い次数を選択する。
Next, as shown in STEP 2 of FIG. 3, an approximate function Y (2πf · j) / X (2πf · j) = W (s) of the obtained frequency transfer function F 1 (f) is obtained. Note that s = j · ω.
At this time, the orders n and m in the approximate function W (s) are orders sufficient to approximate the frequency transfer function F 1 (f) and are selected as low as possible.

そして、上記近似関数W(s)を逆ラプラス変換することにより、STEP3に示すように、時間の微分方程式を得る。
これにより、想定点Y1における変数をy、および観測点B1における変数をxとする、下記微分方程式が得られる。ここで、上添え字の(n)は、n階微分を表すものである。
(n)(t)+a1(n-1)(t)+…+an-1(1)(t)+any(t)
=b1(m-1)(t)+…+bm-1(1)(t)+bmx(t)
Then, by performing inverse Laplace transform on the approximate function W (s), a differential equation of time is obtained as shown in STEP 3.
As a result, the following differential equation is obtained in which the variable at the assumed point Y 1 is y and the variable at the observation point B 1 is x. Here, the superscript (n) represents the nth order differentiation.
y (n) (t) + a 1 y (n-1) (t) + ... + a n-1 y (1) (t) + a n y (t)
= B 1 x (m-1) (t) + ... + b m-1 x (1) (t) + b m x (t)

そしてさらに、図3にSTEP4に示すように、上記微分方程式を、地震観測点B1におけるデータサンプリングの時間間隔Δtで離散化することにより、地震観測点B1の地震動波形を入力データとし、想定点Y1における地震動応答波形を出力データとする下記漸化式を誘導することができる。 And further, as shown in STEP4 in FIG. 3, the differential equation, by discretizing the time intervals Δt of data sampling in seismic stations B 1, and the ground motion waveforms of seismic stations B 1 and the input data, assuming The following recurrence formula using the seismic motion response waveform at the point Y 1 as output data can be derived.

y(k)=c1y(k−1)+…+cny(k−n)
+d1x(k−1)+…+dmx(k−m)
ここで、k・Δt=tである。ちなみに、現在多くの地震観測点Bにおいては、200Hz(200回/秒)によって地震動のサンプリングが行われている。
y (k) = c 1 y (k−1) +... + c n y (k−n)
+ D 1 x (k−1) +... + D m x (k−m)
Here, k · Δt = t. Incidentally, at many seismic observation points B, the seismic motion is sampled at 200 Hz (200 times / second).

このようにして得られた漸化式を利用することにより、地震観測点B1における地震観測波形に対して、離散化した時間ステップ(Δt秒)の遅れで、想定点Y1における地震応答波形をリアルタイムで推定することができることになる。 By using the recurrence formula obtained in this way, the seismic response waveform at the assumed point Y 1 is delayed from the seismic observation waveform at the seismic observation point B 1 by a discrete time step (Δt seconds). Can be estimated in real time.

次いで、他の地震発生予測エリアA2、A3についても、地震観測点B2と上記想定点Y1との間の地震動の周波数伝達関数F´(f)、F″(f)等を求め、図3のSTEP2、3、4によって、同様に時間間隔Δtで離散化することによる漸化式を準備しておく。 Next, for other earthquake occurrence prediction areas A 2 and A 3 , frequency transfer functions F ′ (f), F ″ (f), etc. of the earthquake motion between the earthquake observation point B 2 and the assumed point Y 1 are obtained. 3, a recurrence formula is prepared in the same manner by discretizing at the time interval Δt.

また、想定点Yとしては、上述した地表上の点Y1に限らず、図1に示すように、地盤上に構築された構造物1の任意の点Y2や構造物1内に設置された設備機器2の任意の点Y3に設定することもできる。
このような想定点Y2、Y3を選択した場合に、各々の周波数伝達関数F2(f)、F3(f)についても、同様に観測点B1、B2と構造物1内や設備機器2に設置した地震計の観測記録やシミュレーションによる構造物の理論伝達関数を使用して作成することができる。
Further, the assumed point Y is not limited to the above-mentioned point Y 1 on the ground surface, but is installed in an arbitrary point Y 2 of the structure 1 constructed on the ground or in the structure 1 as shown in FIG. It can also be set to an arbitrary point Y 3 of the installed equipment 2.
When such assumed points Y 2 and Y 3 are selected, the frequency transfer functions F 2 (f) and F 3 (f) are similarly observed in the observation points B 1 and B 2 and the structure 1. It can be created using observation records of seismometers installed in the equipment 2 and a theoretical transfer function of the structure by simulation.

例えば、観測点B1と想定点Y2、Y3の地震観測記録から、式2のフーリエ変換によって,周波数伝達関数F2(f)、F3(f)を直接求めても良い。あるいは、図7に示すように、地表上の想定点Y1について得られた前記周波数伝達関数F1(f)に、別途計算した地表上から想定点までの構造物単独の理論伝達関数D2(f)、D3(f)を掛け合わせて求めることもできる。 For example, the frequency transfer functions F 2 (f) and F 3 (f) may be directly obtained from the earthquake observation records of the observation point B 1 and the assumed points Y 2 and Y 3 by the Fourier transform of Equation 2. Alternatively, as shown in FIG. 7, the theoretical transfer function D 2 of the structure alone from the ground surface to the assumed point calculated separately is added to the frequency transfer function F 1 (f) obtained for the assumed point Y 1 on the ground surface. It can also be obtained by multiplying (f) and D 3 (f).

次いで、以上のSTEP1〜4により予め準備された多数の上記漸化式によって、地震発生時に、想定点Y1等における地震応答波形をリアルタイムに推定する方法について説明する。
図4に示すように、先ず地震発生時に検知された初期微動を示すP波によって得られたリアルタイム地震情報の震源位置に関する情報から、震動発生予測エリア地域A1、A2、A3のうちの震源位置が含まれる、あるいは最も近傍の予測エリア(例えば、エリアA1)が判明するために、当該予測エリアA1について作成しておいた漸化式を抽出して初期化する。
Next, a method for estimating the earthquake response waveform at the assumed point Y 1 or the like in real time at the time of the occurrence of an earthquake will be described using the many recurrence formulas prepared in advance in STEPs 1 to 4 above.
As shown in FIG. 4, first, from the information on hypocenter of real-time seismic information obtained by the P-wave indicating the initial tremor is detected when the earthquake occurred, among the vibration generating predictive area regions A 1, A 2, A 3 In order to determine the nearest prediction area (for example, area A 1 ) including the epicenter position, the recurrence formula created for the prediction area A 1 is extracted and initialized.

次いで、観測点(この場合は、観測点B1)において得られた地震動波形を、Δtの時間間隔でリアルタイムに取得し、順次上記漸化式に入力する。すると、ある時刻kにおける想定点Y1での地震動の値y(k)は、それ以前に得られた観測点B1における地震動波形の値x(k−1)、x(k−2)…x(k−m)およびそれ以前に得られている想定点Y1における地震動波形の値y(k−1)…y(k−n)から順次算出される。 Next, the seismic motion waveform obtained at the observation point (in this case, observation point B 1 ) is acquired in real time at a time interval of Δt, and sequentially input to the above recurrence formula. Then, the value y (k) of the ground motion at the assumed point Y 1 at a certain time k is the value of the ground motion waveform x (k−1), x (k−2) at the observation point B 1 obtained before that time. sequentially calculated from x (k-m) and its value of previously obtained seismic motion waveform of supposition point Y 1 is y (k-1) ... y (k-n).

この結果、図5および図6に示すように、上記地震の地震動が想定点Y1に到達する前に、想定点Y1における地震応答波形をリアルタイムに推定することができる。
したがって、上記地震到達の数十秒前に、想定点Y1における地震動の変化、ピークの到来時期、あるいは継続時間といった、具体的な地震応答波形を得ることができるために、当該想定点Y1における地震被害の発生をより一層高い精度で抑制することができる。
As a result, as shown in FIGS. 5 and 6, before the ground motion of the earthquake reaches the assumed point Y 1, it is possible to estimate the seismic response waveform at the envisaged point Y 1 in real time.
Accordingly, since a specific earthquake response waveform such as a change in ground motion at the assumed point Y 1 , the arrival time of the peak, or the duration time can be obtained tens of seconds before the arrival of the earthquake, the assumed point Y 1 The occurrence of earthquake damage can be suppressed with higher accuracy.

次に、本発明の有用性を検証するために行った解析事例について、以下に説明する。
図8(a)は、観測記録から得られた観測点B、想定点Y間の加速度の伝達関数と、これから得られた近似関数を示すものである。本解析事例においては、この伝達関数の近似関数からリアルタイム予測のための漸化式を作成し,実際の地震動波形を使ってリアルタイム予測システムによる想定点Yの予測波形と観測波形を比較した。
Next, analysis examples performed for verifying the usefulness of the present invention will be described below.
FIG. 8A shows an acceleration transfer function between the observation point B and the assumed point Y obtained from the observation record, and an approximation function obtained therefrom. In this analysis example, a recurrence formula for real-time prediction was created from the approximate function of this transfer function, and the predicted waveform of the assumed point Y by the real-time prediction system and the observed waveform were compared using the actual seismic motion waveform.

先ず、図8(b)は、観測点Bにおける地震観測波形を示すものである。また、図9(a)、(b)は、上記リアルタイム予測システムの漸化式を使ってステップ・バイ・ステップで求めた予測地震応答波形と実際の観測波形を比較して示したものである。
これらの結果から明らかなように、両者は良く対応しており、本発明に係る推定方法の妥当性を確認することができた。
First, FIG. 8B shows the seismic observation waveform at observation point B. FIG. FIGS. 9A and 9B show a comparison between the predicted earthquake response waveform obtained step by step using the recurrence formula of the real-time prediction system and the actual observed waveform. .
As is clear from these results, both correspond well, and the validity of the estimation method according to the present invention could be confirmed.

なお、上記方法は、一般的には、他入力多出力(観測点が複数、想定点が複数)系を扱うことが多く、その場合は、各観測点と各想定点との間の伝達特性を求め(p入力、q出力であれば伝達関数は、p×q個になる。)、それらを状態方程式(微分方程式)に変換して、上記状態方程式を時間ステップ(Δt秒)で離散化すればよい。   Note that the above method generally deals with other input multiple output (multiple observation points, multiple assumption points) systems, and in that case, transfer characteristics between each observation point and each assumption point. (If p inputs and q outputs, the transfer function is p × q), convert them into a state equation (differential equation), and discretize the state equation in time steps (Δt seconds) do it.

本発明の一実施形態において選択可能な想定点の位置を示す概略構成図である。It is a schematic block diagram which shows the position of the assumption point which can be selected in one Embodiment of this invention. 伝達関数を求める際の複数の地震発生予測地域、地震観測点および想定点の位置関係を示す平面図である。It is a top view which shows the positional relationship of the several earthquake occurrence prediction area at the time of calculating | requiring a transfer function, an earthquake observation point, and an assumption point. 周波数伝達関数から離散化した漸化式を得るまでのフロー図である。It is a flowchart until it obtains the recurrence formula discretized from the frequency transfer function. 上記漸化式による地震発生時の想定点における地震応答波形を算出するためのフロー図である。It is a flow figure for calculating an earthquake response waveform in an assumption point at the time of the occurrence of an earthquake by the above recurrence formula. 観測点の波形から本方法を用いて想定点における地震応答波形を得ることを表す模式図である。It is a schematic diagram showing obtaining the seismic response waveform at an assumed point from the waveform of an observation point using this method. 地震動の到達前に想定点における地震応答波形をリアルタイムに推定することを表す模式図である。It is a schematic diagram showing estimating the earthquake response waveform in an assumption point in real time before the arrival of earthquake motion. 構造物内または構造物内の設備機器を想定点とした際の伝達関数の算出方法を表す模式図である。It is a schematic diagram showing the calculation method of the transfer function at the time of setting the equipment in the structure or the equipment in a structure as an assumption point. 本発明に係る解析事例を示すもので、(a)は、観測記録から得られた観測点、想定点間の加速度の伝達関数とこれから得られた近似関数を示すものであり、図8(b)は、観測点における地震観測波形を示すものである。FIG. 8A shows an analysis example according to the present invention, and FIG. 8A shows an acceleration transfer function between observation points obtained from observation records and assumed points, and an approximate function obtained therefrom. ) Shows the seismic waveform at the observation point. 上記解析の結果を示すもので、(a)は観測点における実際の観測波形であり、(b)はリアルタイム予測システムの漸化式を使ってステップ・バイ・ステップで求めた予測地震応答波形と観測値とを比較して示したものである。The results of the above analysis are shown. (A) is the actual observed waveform at the observation point, (b) is the predicted earthquake response waveform obtained step by step using the recurrence formula of the real-time prediction system, and This is a comparison with the observed values.

符号の説明Explanation of symbols

1 構造物
2 設備機器
1、A2、A3 地震発生予測エリア
1、B2 地震観測点
1、P2、P3 地震発生予測地点
Y、Y1、Y2、Y3 想定点
1 Structure 2 Equipment A 1 , A 2 , A 3 Earthquake Prediction Area B 1 , B 2 Earthquake Observation P 1 , P 2 , P 3 Earthquake Prediction Y, Y 1 , Y 2 , Y 3 Assumption

Claims (2)

地震が発生した際に、その地震動が特定の想定点に到達する前に、当該想定点における地震応答波形をリアルタイムに推定する方法であって、
予め、複数の地震発生予測地域に対する当該予測地域と上記想定点との間の地震観測点と、上記想定点との間の地震動の伝達関数を求めておき、地震発生時に検知された震源位置に係るリアルタイム地震情報から上記当該震源位置に最も近い上記震動発生予測地域に対する上記伝達関数を抽出し、次いで上記観測点で得られた地震動波形の情報をリアルタイムに取得して、上記伝達関数に基づいて上記想定点における地震応答波形をリアルタイムに推定することを特徴とするリアルタイム地震情報を利用したリアルタイム地震応答波形推定方法。
When an earthquake occurs, before the seismic motion reaches a specific assumption point, a method for estimating the earthquake response waveform at the assumption point in real time,
The seismic motion transfer function between the predicted area and the estimated point for the predicted area and the estimated point for a plurality of predicted earthquake occurrence areas is obtained in advance, and the seismic position detected at the time of the earthquake is calculated. From the real-time earthquake information, extract the transfer function for the predicted earthquake occurrence area closest to the source location, then acquire the information of the seismic waveform obtained at the observation point in real time, and based on the transfer function A real-time earthquake response waveform estimation method using real-time earthquake information, characterized in that an earthquake response waveform at the assumed point is estimated in real time.
上記伝達関数は、過去の地震観測記録および/または理論シミュレーションにより得られた上記地震発生予測地域に対する上記地震観測点における地震動波形x(t)(tは時間(秒)、以下同じ)および上記想定点における地震動波形y(t)から周波数伝達関数F(f)=Y(f)/X(f)(X(f)、Y(f)はそれぞれx(t)、y(t)のフーリエ変換であり、fは振動数(Hz)、以下同じ)を求め、上記周波数伝達関数F(f)の近似関数W(f)を求めて、これを逆ラプラス変換によって時間の微分方程式に変換し、さらに当該微分方程式を時間間隔Δtで離散化することによって得られた漸化式であり、
かつ上記観測点で得られた地震動波形の経時的な情報を上記漸化式に入力することにより、リアルタイムで上記想定点における地震応答波形を算出することを特徴とする請求項1に記載のリアルタイム地震情報を利用したリアルタイム地震応答波形推定方法。
The transfer function is the seismic motion waveform x (t) (t is time (seconds), the same applies hereinafter) at the seismic observation point with respect to the earthquake occurrence prediction region obtained by past earthquake observation records and / or theoretical simulations, and the above assumption. Frequency transfer function F (f) = Y (f) / X (f) (X (f) and Y (f) are Fourier transforms of x (t) and y (t), respectively, from the ground motion waveform y (t) at the point Where f is the frequency (Hz), and so on), an approximate function W (f) of the frequency transfer function F (f) is obtained, and this is converted into a differential equation of time by inverse Laplace transform, Furthermore, a recurrence formula obtained by discretizing the differential equation at a time interval Δt,
The real-time earthquake response waveform at the assumed point is calculated in real time by inputting the temporal information of the seismic motion waveform obtained at the observation point into the recurrence formula. Real-time earthquake response waveform estimation method using earthquake information.
JP2005003964A 2005-01-11 2005-01-11 Real-time earthquake response waveform estimation method using real-time earthquake information Expired - Fee Related JP4385948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003964A JP4385948B2 (en) 2005-01-11 2005-01-11 Real-time earthquake response waveform estimation method using real-time earthquake information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003964A JP4385948B2 (en) 2005-01-11 2005-01-11 Real-time earthquake response waveform estimation method using real-time earthquake information

Publications (2)

Publication Number Publication Date
JP2006194619A true JP2006194619A (en) 2006-07-27
JP4385948B2 JP4385948B2 (en) 2009-12-16

Family

ID=36800834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003964A Expired - Fee Related JP4385948B2 (en) 2005-01-11 2005-01-11 Real-time earthquake response waveform estimation method using real-time earthquake information

Country Status (1)

Country Link
JP (1) JP4385948B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175274A (en) * 2009-01-27 2010-08-12 Taisei Corp Method for estimating waveform of earthquake motion
CN103376465A (en) * 2012-04-25 2013-10-30 林沛旸 System and method for earthquake real-time analysis of building floor and storage medium
JP2015045616A (en) * 2013-08-29 2015-03-12 公益財団法人鉄道総合技術研究所 Real-time earthquake motion prediction method utilizing underground earthquake motion
CN110618446A (en) * 2018-06-19 2019-12-27 三联科技股份有限公司 Earthquake instant warning method
CN112069569A (en) * 2020-08-07 2020-12-11 华中科技大学 Multipoint earthquake motion synthesis method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676286B (en) * 2016-01-25 2017-11-14 西南交通大学 A kind of Real-time Seismic Estimation of Seismetic Magnitude method for earthquake early-warning system
JP7422103B2 (en) 2021-03-23 2024-01-25 大成建設株式会社 Earthquake waveform estimation method, earthquake motion prediction system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175274A (en) * 2009-01-27 2010-08-12 Taisei Corp Method for estimating waveform of earthquake motion
CN103376465A (en) * 2012-04-25 2013-10-30 林沛旸 System and method for earthquake real-time analysis of building floor and storage medium
JP2015045616A (en) * 2013-08-29 2015-03-12 公益財団法人鉄道総合技術研究所 Real-time earthquake motion prediction method utilizing underground earthquake motion
CN110618446A (en) * 2018-06-19 2019-12-27 三联科技股份有限公司 Earthquake instant warning method
CN110618446B (en) * 2018-06-19 2021-03-23 三联科技股份有限公司 Earthquake instant warning method
CN112069569A (en) * 2020-08-07 2020-12-11 华中科技大学 Multipoint earthquake motion synthesis method and system

Also Published As

Publication number Publication date
JP4385948B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
Böse et al. Real-time finite fault rupture detector (FinDer) for large earthquakes
Crowell et al. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks
JP4385948B2 (en) Real-time earthquake response waveform estimation method using real-time earthquake information
Dixit et al. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-SHAKE strong-motion network
Wei et al. Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS data: application to the Tohoku 2011 tsunami
Baba et al. Near-field tsunami amplification factors in the Kii Peninsula, Japan for Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET)
Grapenthin et al. The 2014 Mw 6.0 Napa earthquake, California: Observations from real‐time GPS‐enhanced earthquake early warning
Wu et al. A test of earthquake early warning system using low cost accelerometer in Hualien, Taiwan
KR102209749B1 (en) Method and system for generating earthquake acceleration time history
Chen et al. A possible mechanism of earthquake-induced landslides focusing on pulse-like ground motions
Michel et al. The potential of high‐rate GPS for strong ground motion assessment
JP4506625B2 (en) Earthquake motion prediction system using real-time earthquake information
Rodriguez-Peces et al. Regional hazard assessment of earthquake-triggered slope instabilities considering site effects and seismic scenarios in Lorca Basin (Spain)
Keivan et al. Adaptive causal realization of rate-independent linear damping
Liu et al. Visualized localization and tracking of debris flow movement based on infrasound monitoring
Kanamori Earthquake hazard mitigation and real-time warnings of tsunamis and earthquakes
Xu et al. Combining the all-source Green's functions and the GPS-derived source functions for fast tsunami predictions—Illustrated by the March 2011 Japan tsunami
Singh et al. Identification of modal parameters of a multistoried RC building using ambient vibration and strong vibration records of Bhuj earthquake, 2001
Siringoringo et al. Implementation of Wireless sensor Network for continuous seismic monitoring of isolated cable-Stayed bridge
JP6891001B2 (en) Seismic intensity distribution estimation method and estimation system
Raghu Kanth et al. Stochastic finite fault modeling of subduction Zone Earthquakes in Northeastern India
Nishikawa et al. Mars’ background free oscillations
Tanırcan et al. Large stress release during normal-faulting earthquakes in western Turkey supported by broadband ground motion simulations
Ansal et al. Microzonation for earthquake scenarios
Ebrahimian et al. Prediction of building response at any level from recorded roof response: The Kanai–Yoshizawa formula revisited

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151009

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees