JP2006193813A - Roll for hot dip metal plating bath - Google Patents

Roll for hot dip metal plating bath Download PDF

Info

Publication number
JP2006193813A
JP2006193813A JP2005009179A JP2005009179A JP2006193813A JP 2006193813 A JP2006193813 A JP 2006193813A JP 2005009179 A JP2005009179 A JP 2005009179A JP 2005009179 A JP2005009179 A JP 2005009179A JP 2006193813 A JP2006193813 A JP 2006193813A
Authority
JP
Japan
Prior art keywords
roll
diameter
shaft
metal plating
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005009179A
Other languages
Japanese (ja)
Other versions
JP4678580B2 (en
Inventor
Eisuke Ogawa
衛介 小川
Shigeyuki Hamayoshi
繁幸 濱吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005009179A priority Critical patent/JP4678580B2/en
Publication of JP2006193813A publication Critical patent/JP2006193813A/en
Application granted granted Critical
Publication of JP4678580B2 publication Critical patent/JP4678580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic roll for a hot dip metal plating bath which has high heat-impact resistance so as to prevent breakage due to the heat impact during the use, and is reliably rotated following a steel plate without breakage of a shaft part even when stresses associated with the conveyance of the steel plate are exerted in the shaft part. <P>SOLUTION: The roll for the hot dip metal plating bath comprises a hollow barrel part in contact with a steel plate and a shaft part joined with the barrel part. The barrel part and the shaft part are formed of ceramics, respectively. An inner surface of the barrel part consists of large diameter areas Sa on both end sides, and a small diameter area Sb in the center. The shaft part 20 has a small diameter part 20a, a flange part 20b and a large diameter part 20c. The large diameter part 21c of the shaft part is joined with the large diameter area 10a of the barrel part, and the ratio (Sout/DS) of the outside diameter Sout of the barrel part to the outside diameter DS of the small diameter part of the shaft part is 2-10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼板に亜鉛めっき等の金属めっきを施す浴中に浸漬して用いるシンクロールやサポートロール等のロールに関する。   The present invention relates to a roll such as a sink roll or a support roll that is used by being immersed in a bath in which a steel plate is subjected to metal plating such as zinc plating.

連続溶融亜鉛めっき装置は典型的には図7に示すような構造を有する。この連続溶融亜鉛めっき装置は、溶融亜鉛浴3を入れた浴槽4と、溶融亜鉛浴3の表層部分に浸漬されて、溶融亜鉛浴3内に導入される鋼板1の酸化を防止するためのスナウト2と、溶融亜鉛浴3中に配置されたシンクロール5と、溶融亜鉛浴3内でシンクロール5の上方に位置する一対のサポートロール6,6と、溶融亜鉛浴3の表面より僅か上方に位置するガスワイピングノズル7とを具備する。シンクロール5自体には外部駆動力が付与されず、移動する鋼板1との接触により駆動される。またサポートロール6,6は一方が外部のモーター(図示せず)に連結された駆動ロールであり、他方が非駆動ロールである。なおサポートロールには外部駆動力が付与されない無駆動タイプもある。シンクロール5及び一対のサポートロール6,6はフレーム(図示せず)に取り付けられており、常に一体として溶融亜鉛浴3内に浸漬される。   A continuous hot dip galvanizing apparatus typically has a structure as shown in FIG. This continuous hot dip galvanizing apparatus includes a bath 4 containing a hot dip zinc bath 3, and a snout for preventing oxidation of the steel sheet 1 immersed in the hot dip zinc bath 3 and being introduced into the hot dip zinc bath 3. 2, a sink roll 5 disposed in the molten zinc bath 3, a pair of support rolls 6, 6 positioned above the sink roll 5 in the molten zinc bath 3, and slightly above the surface of the molten zinc bath 3 And a gas wiping nozzle 7 located therein. The sink roll 5 itself is not applied with an external driving force, and is driven by contact with the moving steel plate 1. One of the support rolls 6 and 6 is a drive roll connected to an external motor (not shown), and the other is a non-drive roll. There is also a non-driving type in which no external driving force is applied to the support roll. The sink roll 5 and the pair of support rolls 6 and 6 are attached to a frame (not shown) and are always immersed in the molten zinc bath 3 as a unit.

鋼板1はスナウト2を経て溶融亜鉛浴3内に進入し、シンクロール5を経由して進行方向を変えられる。溶融亜鉛浴3中を上昇する鋼板1は一対のサポートロール6,6に挟まれ、パスラインが保たれるとともに、反りや振動が防止される。ガスワイピングノズル7は、溶融亜鉛浴3から出てきた鋼板1に高速ガスを吹き付ける。高速ガスのガス圧及び吹き付け角度により、鋼板1に付着した溶融亜鉛の厚さを均一に調整する。このようにして、溶融亜鉛めっきが施された鋼板1’が得られる。   The steel plate 1 enters the molten zinc bath 3 via the snout 2 and can change the traveling direction via the sink roll 5. The steel plate 1 rising in the molten zinc bath 3 is sandwiched between a pair of support rolls 6 and 6 to maintain a pass line and prevent warping and vibration. The gas wiping nozzle 7 sprays high-speed gas onto the steel plate 1 coming out of the molten zinc bath 3. The thickness of the molten zinc adhering to the steel plate 1 is uniformly adjusted by the gas pressure and spray angle of the high-speed gas. In this manner, a steel plate 1 'subjected to hot dip galvanization is obtained.

溶融金属めっき浴内で使用されるシンクロールやサポートロールは、溶融金属による著しい腐食環境下に曝されるので、従来から耐食性に優れたステンレス鋼やクロム系耐熱鋼等の鉄系材料により形成されてきた。しかしながら、これらのロールには、長時間の溶融金属浴中への浸漬により表面が侵食され、摩耗しやすくなるという欠点があった。そこで、耐食性、耐熱性及び耐摩耗性に優れたセラミックスにより、鋼板が接触するロール胴部を構成した溶融金属めっき浴用ロールが提案された。   Sink rolls and support rolls used in molten metal plating baths are exposed to a severely corrosive environment caused by molten metal, so they have traditionally been made of ferrous materials such as stainless steel and chromium-based heat-resistant steel, which have excellent corrosion resistance. I came. However, these rolls have a drawback that their surfaces are eroded by being immersed in a molten metal bath for a long period of time and are easily worn. Then, the roll for hot metal plating bath which comprised the roll trunk | drum part which a steel plate contacts with the ceramics excellent in corrosion resistance, heat resistance, and abrasion resistance was proposed.

特許文献1は、溶融金属めっき浴中で鋼帯と接触して回転するサポートロールであって、鋼製中空ロールと、前記鋼製中空ロールの表面に溶射した酸化物又は炭化物を主成分とするセラミック皮膜とからなり、前記セラミック皮膜の表面に表面粗さRaが1.0〜30μmのダルを形成したサポートロールを開示している。溶射セラミック皮膜を1.0〜30μmの表面粗さRaとすると、ロールと鋼板との間の摩擦力が増大し、ロールの回転不良と、これに起因する鋼板の疵の発生を防止できる。しかしながら、鉄系材料製ロール母材の表面に、セラミックスを溶射しているため、母材とセラミック皮膜との熱膨張率の差によりセラミック皮膜にクラックが生じ、そこからロールは侵食され、著しく摩耗するという欠点があった。   Patent Document 1 is a support roll that rotates in contact with a steel strip in a molten metal plating bath, and is mainly composed of a steel hollow roll and an oxide or carbide sprayed on the surface of the steel hollow roll. A support roll comprising a ceramic film and having a surface roughness Ra of 1.0 to 30 μm formed on the surface of the ceramic film is disclosed. When the thermal sprayed ceramic coating has a surface roughness Ra of 1.0 to 30 μm, the frictional force between the roll and the steel sheet increases, and the roll rotation failure and the occurrence of wrinkles of the steel sheet due to this can be prevented. However, because ceramics are sprayed on the surface of the roll base material made of iron-based material, cracks occur in the ceramic film due to the difference in the coefficient of thermal expansion between the base material and the ceramic film, and the roll is eroded from there, and wears significantly. There was a drawback of doing.

摩耗が著しくなるとロールの真円度が維持できなくなり、ロール及び鋼板に振動が起こるために、均一なめっき厚の鋼板が得られなくなる。このため、従来は1〜2週間の連続使用の後にめっき作業を中止し、摩耗したロールを交換する必要があった。これは、溶融金属めっきの生産性を著しく低下させるだけでなく、めっきコストの上昇を招く。   If the wear becomes significant, the roundness of the roll cannot be maintained, and vibration occurs in the roll and the steel plate, so that a steel plate having a uniform plating thickness cannot be obtained. For this reason, conventionally, after continuous use for 1 to 2 weeks, it was necessary to stop the plating operation and replace the worn roll. This not only significantly reduces the productivity of molten metal plating, but also increases the plating cost.

特許文献2は、中空状のロール胴部及び軸部をそれぞれ窒化珪素系セラミックスで形成し、ロール胴部の両端部に軸部を嵌合又は螺合により接合した溶融金属めっき浴用ロールを開示している。このロールは全体がセラミックスにより形成されているため、耐食性、耐熱性及び耐摩耗性に優れている。   Patent Document 2 discloses a roll for a molten metal plating bath in which a hollow roll body portion and a shaft portion are each formed of silicon nitride ceramics, and the shaft portions are fitted or screwed to both ends of the roll body portion. ing. Since this roll is entirely formed of ceramics, it is excellent in corrosion resistance, heat resistance and wear resistance.

また特許文献3は、中空状のロール胴部及び軸部をそれぞれ窒化珪素系セラミックスで形成し、ロール胴部の両端部に軸部を嵌合又は螺合により接合し、軸部の外周に溶融金属を排出するための孔を形成した連続溶融金属めっき用ロールを開示している。   In Patent Document 3, the hollow roll body and the shaft are formed of silicon nitride ceramics, the shaft is fitted or screwed to both ends of the roll body, and is melted to the outer periphery of the shaft. A roll for continuous molten metal plating in which holes for discharging metal are formed is disclosed.

さらに特許文献4は、中空状のロール胴部、軸部及び駆動クラッチ部をそれぞれセラミックスにより形成し、ロール胴部の内面と軸部の外面との間に隙間を有するようにロール胴部の両端部に軸部を嵌合し、さらに駆動側の軸部の外面と駆動クラッチ部の内面との間に隙間を有するように駆動側の軸部に駆動クラッチ部を嵌合するとともに、それぞれの嵌合部をボルトやピン等の部材により固定した連続溶融金属めっき用ロールを開示している。   Further, in Patent Document 4, the hollow roll body part, the shaft part, and the drive clutch part are each formed of ceramics, and both ends of the roll body part have a gap between the inner surface of the roll body part and the outer surface of the shaft part. The drive clutch portion is fitted to the drive-side shaft portion so that there is a gap between the outer surface of the drive-side shaft portion and the inner surface of the drive clutch portion. A roll for continuous molten metal plating in which a joint portion is fixed by a member such as a bolt or a pin is disclosed.

しかしながら、特許文献2〜4の公知例で使用された窒化珪素系セラミックスはいずれも、例えば87重量%のα-Si3N4と、5重量%のAl2O3と、3重量%のAlNと、5重量%のY2O3とからなるサイアロンであり、その熱伝導率は高々17
W/(m・K)程度で、耐熱衝撃性が不十分であった。そのため、溶融金属浴に浸漬すると熱衝撃により破壊するおそれがあった。
However, all of the silicon nitride ceramics used in the known examples of Patent Documents 2 to 4 are, for example, 87 wt% α-Si 3 N 4 , 5 wt% Al 2 O 3 , and 3 wt% AlN. And 5% by weight Y 2 O 3 sialon, and its thermal conductivity is at most 17
Thermal shock resistance was insufficient at about W / (m · K). Therefore, when immersed in a molten metal bath, there is a risk of destruction due to thermal shock.

特開平5-195178号公報Japanese Unexamined Patent Publication No. 5-195178 特開2001-89836号公報JP 2001-89836 A 特開2001-89837号公報Japanese Patent Laid-Open No. 2001-89837 特開2003-306752号公報JP2003-306752 特開2001-335368号公報JP 2001-335368 A

従って本発明の目的は、使用時に熱衝撃による破壊が防止されるように高耐熱衝撃性を有するとともに、鋼板の搬送に伴う応力が軸部にかかっても、軸部が破損することなくロールは鋼板に追随して確実に回転できる溶融金属めっき浴用のセラミックスロールを提供することである。   Therefore, the object of the present invention is to have a high thermal shock resistance so as to prevent the thermal shock during use, and even if the stress due to the conveyance of the steel plate is applied to the shaft, the roll is not damaged. It is to provide a ceramic roll for a molten metal plating bath that can reliably rotate following a steel plate.

すなわち、本発明の溶融金属めっき浴用ロールは、鋼板と接触する中空状胴部と、前記胴部に接合された軸部とからなる溶融金属めっき浴用ロールであって、前記胴部及び軸部をそれぞれセラミックスで形成してなり、前記胴部の内面は両端側の大径域と中央の小径域とからなり、前記軸部は小径部とフランジ部と大径部とを有し、前記胴部の大径域に前記軸部の大径部が接合されており、かつ、前記胴部の外径Soutと前記軸部の小径部の外径DSとの比Sout/DSが2〜10であることを特徴とする。   That is, the roll for a molten metal plating bath of the present invention is a roll for a molten metal plating bath comprising a hollow body portion that comes into contact with a steel plate and a shaft portion joined to the body portion, and the body portion and the shaft portion are connected to each other. Each of the body portions is formed of ceramics, and the inner surface of the body portion is composed of a large diameter region at both ends and a small diameter region at the center, and the shaft portion has a small diameter portion, a flange portion, and a large diameter portion, The large diameter portion of the shaft portion is joined to the large diameter region, and the ratio Sout / DS between the outer diameter Sout of the trunk portion and the outer diameter DS of the small diameter portion of the shaft portion is 2 to 10. It is characterized by that.

本発明の溶融金属めっき浴用ロールにおいて、前記胴部の大径域に前記軸部の大径部が焼嵌めにより接合されていることが好ましい。   In the roll for a molten metal plating bath of the present invention, it is preferable that the large-diameter portion of the shaft portion is joined to the large-diameter region of the barrel portion by shrink fitting.

本発明の溶融金属めっき浴用ロールにおいて、ロール軸線方向に、前記胴部の大径域は前記軸部の大径部より長く、もって前記胴部の小径域の端部と前記軸部の内端との間に隙間があるのが好ましい。この隙間は前記胴部の小径域と前記軸部の大径部の先端部との接触を避ける逃がし部として機能する。   In the roll for a molten metal plating bath according to the present invention, in the roll axis direction, the large diameter region of the body portion is longer than the large diameter portion of the shaft portion, and thus the end portion of the small diameter region of the body portion and the inner end of the shaft portion. It is preferable that there is a gap between them. This gap functions as an escape portion that avoids contact between the small diameter region of the body portion and the tip portion of the large diameter portion of the shaft portion.

前記胴部及び軸部のうち少なくとも前記胴部が常温における熱伝導率が50 W/(m・K)以上の窒化珪素を主成分とする焼結体である窒化珪素系セラミックスからなるのが好ましい。   It is preferable that at least the barrel portion of the barrel portion and the shaft portion is made of a silicon nitride ceramic that is a sintered body mainly composed of silicon nitride having a thermal conductivity at room temperature of 50 W / (m · K) or more. .

本発明の溶融金属めっき浴用ロールは、胴部の外径Soutと各軸部の小径部の外径DSとの比は2〜10であるのが好ましい。Sout/DSが2〜10の範囲内であると、鋼板の搬送に伴う応力が軸部にかかっても、軸部が破損するこなくロールは鋼板に追随して確実に安定して回転できる。   In the roll for a molten metal plating bath of the present invention, the ratio of the outer diameter Sout of the body portion to the outer diameter DS of the small diameter portion of each shaft portion is preferably 2 to 10. When Sout / DS is in the range of 2 to 10, even if the stress accompanying the conveyance of the steel plate is applied to the shaft portion, the roll can follow the steel plate and rotate reliably and stably without damaging the shaft portion.

本発明の溶融金属めっき浴用ロールは、胴部の大径域と軸部の大径部とが焼嵌めにより接合されているので、溶融金属めっき浴中に長時間浸漬されていても、胴部から軸部が脱離することがなく、長時間の連続溶融金属めっきを行うことができる。また、胴部と軸部を螺合する場合のような煩雑な螺子加工も不要となり組立てが容易となり、製作コストも低減できる。   In the roll for a molten metal plating bath of the present invention, since the large diameter region of the trunk portion and the large diameter portion of the shaft portion are joined by shrink fitting, the trunk portion can be immersed in the molten metal plating bath for a long time. Thus, the shaft portion is not detached from the metal plate, and continuous molten metal plating can be performed for a long time. Further, complicated screw processing as in the case of screwing the body portion and the shaft portion becomes unnecessary, and assembling becomes easy, and the manufacturing cost can be reduced.

本発明の溶融金属めっき浴用ロールは、セラミックスにより形成されているので、耐食性、耐熱性及び耐摩耗性に優れている。特に高熱伝導率の窒化珪素系セラミックスにより形成することにより、実際の連続溶融金属めっきラインでロール表面と内部との伝熱が速く、熱応力によるクラックや破壊が起こりにくい。すなわち、本発明のロールは優れた耐熱衝撃性を有する。   Since the roll for hot metal plating bath of the present invention is formed of ceramics, it is excellent in corrosion resistance, heat resistance and wear resistance. In particular, by forming the silicon nitride ceramics with high thermal conductivity, heat transfer between the roll surface and the inside is fast in an actual continuous molten metal plating line, and cracks and breakage due to thermal stress are unlikely to occur. That is, the roll of the present invention has excellent thermal shock resistance.

鋼板と接触して耐熱衝撃性が最も要求される胴部が少なくとも高熱伝導率の窒化珪素系セラミックスからなることが必要である。熱膨張率を完全に同じにするという目的で、胴部及び軸部の両者がともに高熱伝導率の窒化珪素系セラミックスからなるのが好ましい、使用条件等に応じて軸部は高熱伝導率の窒化珪素系セラミックス以外のセラミックスで形成してもよい。これに対して、前記公知例に記載されているような従来の窒化珪素系セラミックスはいずれも常温における熱伝導率が高々17 W/(m・K)程度であり、連続溶融金属めっきラインでの使用では耐熱衝撃性が不十分である。本発明に使用する窒化珪素系セラミックスが常温で50
W/(m・K)以上の熱伝導率を有するのは、不純物として存在するアルミニウム及び酸素の含有量を低減したためである。
It is necessary that the body part that is most required to have thermal shock resistance in contact with the steel plate is made of at least a silicon nitride ceramic having high thermal conductivity. For the purpose of making the coefficient of thermal expansion completely the same, it is preferable that both the body and the shaft are made of silicon nitride ceramics with high thermal conductivity. The shaft is nitrided with high thermal conductivity depending on usage conditions. You may form with ceramics other than a silicon-type ceramic. On the other hand, the conventional silicon nitride ceramics as described in the above-mentioned known examples all have a thermal conductivity of about 17 W / (m · K) at room temperature at the most, in a continuous molten metal plating line. In use, the thermal shock resistance is insufficient. The silicon nitride ceramic used in the present invention is 50 at room temperature.
The reason why it has a thermal conductivity of W / (m · K) or more is that the contents of aluminum and oxygen present as impurities are reduced.

[1] 窒化珪素系セラミックス
本発明のロールの少なくとも胴部は高熱伝導率の窒化珪素系セラミックスにより形成するのが最良である。窒化珪素系セラミックス自体は特許文献5に記載のものと同じでよい。
[1] Silicon Nitride Ceramics At least the body of the roll of the present invention is best formed of silicon nitride ceramics with high thermal conductivity. The silicon nitride ceramic itself may be the same as that described in Patent Document 5.

窒化珪素系セラミックス中に存在するアルミニウム及び酸素はフォノン散乱源となり、熱伝導率を低減させる。窒化珪素系セラミックスは、窒化珪素粒子とその周囲の粒界相とから構成され、アルミニウム及び酸素はこれらの相に含有される。アルミニウムは珪素に近いイオン半径を有するため、窒化珪素粒子内に容易に固溶する。アルミニウムの固溶により窒化珪素粒子自身の熱伝導率が低下し、窒化珪素系セラミックスの熱伝導率は著しく低下する。従って、窒化珪素系セラミックス中におけるアルミニウムの含有量はできるだけ少なくしなければならない。   Aluminum and oxygen present in the silicon nitride ceramic serve as a phonon scattering source and reduce the thermal conductivity. Silicon nitride ceramics are composed of silicon nitride particles and surrounding grain boundary phases, and aluminum and oxygen are contained in these phases. Since aluminum has an ionic radius close to that of silicon, it easily dissolves in silicon nitride particles. Due to the solid solution of aluminum, the thermal conductivity of the silicon nitride particles themselves is lowered, and the thermal conductivity of the silicon nitride ceramics is significantly lowered. Therefore, the aluminum content in the silicon nitride ceramics must be minimized.

本発明の窒化珪素系セラミックスは窒化珪素を主成分とする焼結体であり、その焼結体中のアルミニウム含有量が0.2重量%以下であり、酸素含有量が5重量%以下であるのが好ましい。また前記窒化珪素系セラミックスは相対密度が98%以上であり、常温における4点曲げ強度が700
MPa以上であるのが好ましい。
The silicon nitride ceramic of the present invention is a sintered body mainly composed of silicon nitride, and the aluminum content in the sintered body is 0.2% by weight or less and the oxygen content is 5% by weight or less. preferable. The silicon nitride ceramic has a relative density of 98% or more and a four-point bending strength at room temperature of 700%.
It is preferable that it is more than MPa.

焼結助剤として添加する酸化物中の酸素の多くは粒界相に存在する。窒化珪素系セラミックスの高熱伝導率化を達成するには、窒化珪素粒子に比べて熱伝導率が低い粒界相の量を低減することが必要である。焼結助剤の添加量の下限は、85%以上の相対密度を有する焼結体が得られる量である。焼結助剤の添加量をこの範囲内でできるだけ少なくすることにより、粒界相中の酸素量を低減させる必要がある。   Most of the oxygen in the oxide added as a sintering aid is present in the grain boundary phase. In order to achieve high thermal conductivity of silicon nitride ceramics, it is necessary to reduce the amount of grain boundary phase having lower thermal conductivity than silicon nitride particles. The lower limit of the addition amount of the sintering aid is such an amount that a sintered body having a relative density of 85% or more can be obtained. It is necessary to reduce the amount of oxygen in the grain boundary phase by making the addition amount of the sintering aid as small as possible within this range.

酸素量の少ない窒化珪素粉末を原料とすると、粒界相中の酸素量が低減できるために粒界相の量自体を低減でき、焼結体の高熱伝導率化が達成されるが、焼結過程で生成するSiO2の量の減少により難焼結性となる。ところが、他の酸化物より焼結性に優れたMgOを焼結助剤として用いると、焼結助剤の添加量を少なくして、緻密な焼結体を得ることができる。その結果、焼結体の熱伝導率は飛躍的に高くなる。 When silicon nitride powder with a small amount of oxygen is used as a raw material, the amount of oxygen in the grain boundary phase can be reduced, so the amount of grain boundary phase itself can be reduced, and high thermal conductivity of the sintered body can be achieved. It becomes difficult to sinter due to a decrease in the amount of SiO 2 produced in the process. However, when MgO, which is superior in sinterability to other oxides, is used as a sintering aid, a dense sintered body can be obtained by reducing the amount of the sintering aid added. As a result, the thermal conductivity of the sintered body is dramatically increased.

マグネシウムとともに添加し得る焼結助剤としては、Y、La、Ce、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu等の周期律表第3a族元素(IIIA)が挙げられる。なかでも、焼結温度及び圧力が高くなり過ぎないという点で、Y、La、Ce、Gd、Dy、Ybが好ましい。   As sintering aids that can be added together with magnesium, Group 3a elements of the periodic table such as Y, La, Ce, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu (IIIA) ). Of these, Y, La, Ce, Gd, Dy, and Yb are preferred in that the sintering temperature and pressure do not become too high.

本発明に使用する窒化珪素系セラミックスの常温における熱伝導率は50 W/(m・K)以上であり、より好ましくは60 W/(m・K)以上である。従って、窒化珪素系セラミックス中の酸素含有量は、50
W/(m・K)以上の熱伝導率を得るには5重量%以下であり、60 W/(m・K)以上の熱伝導率を得るには3重量%以下である。また窒化珪素粒子中の酸素含有量は、50
W/(m・K)以上の熱伝導率を得るには2.5重量%以下であり、60 W/(m・K)以上の熱伝導率を得るには1.5重量%以下である。さらに窒化珪素系セラミックス中のアルミニウムの含有量は、50
W/(m・K)以上の熱伝導率を得るには0.2重量%以下であり、60 W/(m・K)以上の熱伝導率を得るには0.1重量%以下である。
The thermal conductivity at normal temperature of the silicon nitride ceramic used in the present invention is 50 W / (m · K) or more, more preferably 60 W / (m · K) or more. Therefore, the oxygen content in silicon nitride ceramics is 50
In order to obtain a thermal conductivity of W / (m · K) or more, it is 5% by weight or less, and in order to obtain a thermal conductivity of 60 W / (m · K) or more, it is 3% by weight or less. The oxygen content in the silicon nitride particles is 50
To obtain a thermal conductivity of W / (m · K) or more, it is 2.5% by weight or less, and to obtain a thermal conductivity of 60 W / (m · K) or more, it is 1.5% by weight or less. Furthermore, the content of aluminum in the silicon nitride ceramics is 50
In order to obtain a thermal conductivity of W / (m · K) or more, it is 0.2% by weight or less, and in order to obtain a thermal conductivity of 60 W / (m · K) or more, it is 0.1% by weight or less.

窒化珪素系セラミックス中のマグネシウム(MgO換算)と周期律表第3a族元素(IIIA)(酸化物(IIIA2O3)換算)の合計量は0.6〜7重量%であるのが好ましい。その合計量が0.6重量%未満では、焼結体の相対密度が95%未満と不十分である。一方7重量%を超えると、熱伝導率の低い粒界相の量が過剰となり、焼結体の熱伝導率が50
W/(m・K)未満となる。MgO+IIIA2O3は0.6〜4重量%であるのがより好ましい。
The total amount of magnesium (converted to MgO) and Group 3a element (IIIA) (converted to oxide (IIIA 2 O 3 )) in the silicon nitride ceramic is preferably 0.6 to 7% by weight. When the total amount is less than 0.6% by weight, the relative density of the sintered body is less than 95%, which is insufficient. On the other hand, if it exceeds 7% by weight, the amount of the grain boundary phase having low thermal conductivity becomes excessive, and the thermal conductivity of the sintered body becomes 50%.
Less than W / (m · K). MgO + IIIA 2 O 3 is more preferably 0.6 to 4% by weight.

MgO/IIIA2O3の重量比は1〜70が好ましく、1〜10がより好ましく、1〜5が最も好ましい。MgO/IIIA2O3が1未満では、粒界相中の希土類酸化物の割合が多すぎるため、難焼結性となり緻密な焼結体が得られない。またMgO/IIIA2O3が70を超えると焼結時におけるMgの拡散を抑制できず、焼結体表面に色むらが生じる。MgO/IIIA2O3が1〜70の範囲にあると、1650〜1850℃での焼結により高熱伝導率化が著しい。焼結体を1800〜2000℃で熱処理すると、さらに高熱伝導率化される。熱処理による高熱伝導率化は、窒化珪素粒子の成長と蒸気圧の高いMgOの揮発による。 The weight ratio of MgO / IIIA 2 O 3 is preferably 1 to 70, more preferably 1 to 10, and most preferably 1 to 5. If MgO / IIIA 2 O 3 is less than 1, the ratio of the rare earth oxide in the grain boundary phase is too large, and it becomes difficult to sinter and a dense sintered body cannot be obtained. On the other hand, if MgO / IIIA 2 O 3 exceeds 70, the diffusion of Mg during sintering cannot be suppressed, and color unevenness occurs on the surface of the sintered body. When MgO / IIIA 2 O 3 is in the range of 1 to 70, high thermal conductivity is remarkable due to sintering at 1650 to 1850 ° C. When the sintered body is heat-treated at 1800 to 2000 ° C., the thermal conductivity is further increased. High thermal conductivity by heat treatment is due to growth of silicon nitride particles and volatilization of MgO with a high vapor pressure.

窒化珪素粒子中のアルミニウム、マグネシウム及び周期律表第3a族元素(IIIA)の合計量は1.0重量%以下であるのが好ましい。   The total amount of aluminum, magnesium and Group 3a element (IIIA) in the silicon nitride particles is preferably 1.0% by weight or less.

窒化珪素系焼結体中のβ型窒化珪素粒子のうち、短軸径が5μm以上のβ型窒化珪素粒子の割合が10体積%超では、焼結体の熱伝導率は向上するが、組織中に導入された粗大粒子が破壊の起点として作用するため破壊強度が著しく低下し、700
MPa以上の曲げ強度が得られない。従って、窒化珪素系焼結体中のβ型窒化珪素粒子のうち、短軸径が5μm以上のβ型窒化珪素粒子の割合は10体積%以下であるのが好ましい。同様に、組織中に導入された粗大粒子が破壊の起点として作用することを抑えるために、β型窒化珪素粒子のアスペクト比は15以下であるのが好ましい。
Among β-type silicon nitride particles in a silicon nitride-based sintered body, if the proportion of β-type silicon nitride particles having a minor axis diameter of 5 μm or more exceeds 10% by volume, the thermal conductivity of the sintered body is improved. The coarse particles introduced inside act as the starting point of the fracture, so the fracture strength is significantly reduced.
Bending strength higher than MPa cannot be obtained. Accordingly, the ratio of β-type silicon nitride particles having a minor axis diameter of 5 μm or more in the β-type silicon nitride particles in the silicon nitride-based sintered body is preferably 10% by volume or less. Similarly, the β-type silicon nitride particles preferably have an aspect ratio of 15 or less in order to prevent the coarse particles introduced into the structure from acting as a starting point of fracture.

少なくともロール胴部を形成する窒化珪素系セラミックスは、急激な温度変化に対して十分な抵抗力を有する必要がある。急激な温度変化に対する抵抗力は下記式(1):
R = σc(1-ν)/Eα・・・(1)
(但し、σc:常温における4点曲げ強度(MPa)、ν:常温におけるポアソン比、E:常温におけるヤング率(GPa)、α:常温から800℃までの平均熱膨張係数)
により表される係数で表される。係数Rは600以上であるのが好ましく、700以上であるのがより好ましい。係数Rが600未満であるとロールが破壊するおそれがある。係数Rは、ロールから切り出した試験片に対して測定した常温における4点曲げ強度σc(MPa)、常温におけるポアソン比ν、常温におけるヤング率E(GPa)及び常温から800℃までの平均熱膨張係数αから求める。常温における4点曲げ強度は破壊強度と言うこともできる。
At least the silicon nitride ceramic that forms the roll body portion needs to have sufficient resistance to a rapid temperature change. The resistance to sudden temperature changes is the following formula (1):
R = σc (1-ν) / Eα ... (1)
(However, σc: Four-point bending strength at normal temperature (MPa), ν: Poisson's ratio at normal temperature, E: Young's modulus at normal temperature (GPa), α: Average thermal expansion coefficient from normal temperature to 800 ° C)
It is represented by a coefficient represented by The coefficient R is preferably 600 or more, and more preferably 700 or more. If the coefficient R is less than 600, the roll may break. Coefficient R is the four-point bending strength σc (MPa) measured at normal temperature on the specimen cut from the roll, Poisson's ratio ν at normal temperature, Young's modulus E (GPa) at normal temperature, and average thermal expansion from normal temperature to 800 ° C Obtained from the coefficient α. The four-point bending strength at room temperature can also be called the fracture strength.

[2] ロール
(1) 構造
図1(a) は本発明の一実施態様による溶融金属めっき浴用ロールの断面形状を示し、図1(b)
は一方の軸部が胴部から抜けた状態のロールを示す。このロールは図7に示す溶融金属めっき浴中でサポートロール6として使用される。ロール6は、中空円筒状の胴部10、胴部10の各端部に焼嵌めにより接合される軸部20,21、及び各軸部20,21の蓋状スラスト受け部材22,23から構成される。スラスト受け部材22,23は、サポートロール6の回転中に軸受(図示せず)と接触してスラスト力を受けるので、それらの先端部はスラスト力を緩和するために緩やかな曲面である。
[2] Role
(1) Structure FIG. 1 (a) shows a cross-sectional shape of a roll for a hot metal plating bath according to one embodiment of the present invention, and FIG.
Indicates a roll in a state where one shaft portion is removed from the body portion. This roll is used as the support roll 6 in the molten metal plating bath shown in FIG. The roll 6 includes a hollow cylindrical body 10, shafts 20 and 21 joined to each end of the body 10 by shrink fitting, and lid-like thrust receiving members 22 and 23 of the shafts 20 and 21. Is done. Since the thrust receiving members 22 and 23 come into contact with a bearing (not shown) during the rotation of the support roll 6 and receive a thrust force, their tip portions are gently curved surfaces to alleviate the thrust force.

胴部10は、両端側の大径域10a,10aと、それより肉厚の中央の小径域10bとからなる内面を有する一体的な中空円筒体である。また軸部20は、小径部20aと、緩やかに拡径するフランジ部20bと、大径部20cとを有する一体的な中空円筒体である。小径部20aの開口端には蓋状スラスト受け部材22が嵌合している。軸部21も同じ構造を有する。   The body portion 10 is an integral hollow cylindrical body having an inner surface made up of large-diameter regions 10a, 10a on both end sides and a central small-diameter region 10b that is thicker than the large-diameter regions 10a, 10a. The shaft portion 20 is an integral hollow cylindrical body having a small diameter portion 20a, a flange portion 20b that gradually increases in diameter, and a large diameter portion 20c. A lid-shaped thrust receiving member 22 is fitted to the open end of the small diameter portion 20a. The shaft portion 21 also has the same structure.

サポートロール6を溶融金属浴中に浸漬するとき溶融金属がロール6内に進入して、ロール6内外の温度差が速やかになくなるとともに、溶融金属浴から取り出すときも溶融金属がロール6から速やかに排出されるために、胴部10と軸部20,21との間にはそれぞれ隙間がなくてはならない。そのため、各軸部20,21には長さ方向溝部25,26が形成されており、各溝部25,26は軸部20,21が胴部10に接合されると孔25a,26aとなる。   When the support roll 6 is immersed in the molten metal bath, the molten metal enters the roll 6, and the temperature difference between the inside and outside of the roll 6 disappears quickly. In order to be discharged, there must be a gap between the body part 10 and the shaft parts 20, 21 respectively. Therefore, longitudinal grooves 25 and 26 are formed in the shaft portions 20 and 21, and the groove portions 25 and 26 become holes 25 a and 26 a when the shaft portions 20 and 21 are joined to the body portion 10.

軸部20,21は同じ溝部25,26を有するので、軸部20の溝部25についてのみ説明する。図1(a)、図1(b)及び図4に示すように、軸部20のフランジ部20b及び大径部20cの外周面には、6本の長さ方向溝部25が円周方向に均等な間隔で形成されている。溝部25の本数は限定的ではなく、例えば4本でも8本でも良い。溝部25の断面形状(幅、深さ等)は、焼嵌め時の大径部20cの強度、溶融金属の流通のし易さ等を考慮して決定する。   Since the shaft portions 20 and 21 have the same groove portions 25 and 26, only the groove portion 25 of the shaft portion 20 will be described. As shown in FIG. 1 (a), FIG. 1 (b) and FIG. 4, six longitudinal grooves 25 are provided in the circumferential direction on the outer peripheral surfaces of the flange portion 20b and the large diameter portion 20c of the shaft portion 20. It is formed at equal intervals. The number of the groove portions 25 is not limited, and may be four or eight, for example. The cross-sectional shape (width, depth, etc.) of the groove 25 is determined in consideration of the strength of the large-diameter portion 20c at the time of shrink fitting, the ease of circulation of the molten metal, and the like.

図4は左右のフランジ部20b,21bにおける溝部25,26の配置関係を示す。溝部25と溝部26とは30°ずれた円周方向位置にある。すなわち溝部25,26は軸線方向に見たとき千鳥状の配置にある。そのため、サポートロール6を浴槽の外から溶融亜鉛浴内に浸漬させると、サポートロール6がいかなる回転位置にあっても、溶融金属は孔25a,26aのいずれか1つに素早く入ることができる。またサポートロール6の回転中も、溶融金属は孔25a,26aのいずれか1つに素早く入ることができる。サポートロール6を溶融亜鉛浴内から浴槽の外へ取り出す際にも、サポートロール6がいかなる回転位置にあっても、溶融金属は孔25a,26aのいずれか1つから素早く排出できる。   FIG. 4 shows an arrangement relationship of the groove portions 25 and 26 in the left and right flange portions 20b and 21b. The groove part 25 and the groove part 26 are located at circumferential positions shifted by 30 °. That is, the grooves 25 and 26 are in a staggered arrangement when viewed in the axial direction. Therefore, when the support roll 6 is immersed in the molten zinc bath from the outside of the bathtub, the molten metal can quickly enter any one of the holes 25a and 26a regardless of the rotational position of the support roll 6. Also, the molten metal can quickly enter one of the holes 25a and 26a while the support roll 6 is rotating. When the support roll 6 is taken out of the molten zinc bath out of the bathtub, the molten metal can be quickly discharged from any one of the holes 25a and 26a regardless of the rotational position of the support roll 6.

図5は胴部10と軸部20との焼嵌め部を拡大して示す。軸部20,21の大径部20c,21cの内端が胴部10の小径域10bの端部に接触することにより破損することがないように、胴部10の大径域10a(長さLB)を各軸部20,21の大径部20c,21c(長さLS)より長くする。これにより、胴部10の小径域10bの内端と各軸部20,21の内端との間に隙間Gが形成される。隙間Gにより、加工公差があっても、大径部20c,21cの内端が小径域10bの内端に接触することはない。小径域10bと大径域10aをスムーズに連結するために、隙間Gに面する小径域10bの両端部には緩やかな曲率面又はテーパー面10b’が形成されている。隙間Gの長さTは焼嵌め長さLSの5%以上であるのが好ましく、5〜20%であるのがより好ましい。セラミックス製の胴部及び軸部のうち接触部の角部は、破損を防止するために、緩やかな曲率面又はテーパー面を有するのが望ましい。   FIG. 5 shows an enlarged shrink-fitted portion between the body portion 10 and the shaft portion 20. The large-diameter region 10a (length) of the trunk portion 10 is not damaged so that the inner ends of the large-diameter portions 20c, 21c of the shaft portions 20, 21 are not damaged by contacting the end portions of the small-diameter region 10b of the trunk portion 10. LB) is made longer than the large diameter portions 20c, 21c (length LS) of the shaft portions 20, 21. As a result, a gap G is formed between the inner end of the small diameter region 10b of the body portion 10 and the inner ends of the shaft portions 20 and 21. Due to the gap G, even if there is a processing tolerance, the inner ends of the large diameter portions 20c and 21c do not contact the inner ends of the small diameter region 10b. In order to smoothly connect the small-diameter region 10b and the large-diameter region 10a, gentle curvature surfaces or tapered surfaces 10b 'are formed at both ends of the small-diameter region 10b facing the gap G. The length T of the gap G is preferably 5% or more of the shrink-fit length LS, and more preferably 5 to 20%. Of the ceramic body portion and the shaft portion, the corner portion of the contact portion preferably has a gentle curvature surface or a tapered surface in order to prevent breakage.

胴部10と軸部20,21との焼嵌め率は0.01/1000〜0.5/1000の範囲内であるのが好ましい。焼嵌め率が0.01/1000未満であると、胴部10による軸部20,21への締付け力が不十分であり、軸部20,21が胴部10から抜けたり滑ったりするおそれがある。また焼嵌め率が0.5/1000を超えると、焼嵌めによる締付け力が大きくなりすぎ、胴部10又は軸部20,21が破損するおそれがある。より好ましい焼嵌め率は0.2/1000〜0.3/1000である。   It is preferable that the shrinkage-fitting rate between the body portion 10 and the shaft portions 20 and 21 is in a range of 0.01 / 1000 to 0.5 / 1000. If the shrinkage fit rate is less than 0.01 / 1000, the tightening force of the barrel portion 10 to the shaft portions 20 and 21 is insufficient, and the shaft portions 20 and 21 may come off or slip from the barrel portion 10. On the other hand, if the shrinkage-fit rate exceeds 0.5 / 1000, the tightening force due to the shrink-fit becomes too large, and the body part 10 or the shaft parts 20, 21 may be damaged. A more preferable shrink fitting rate is 0.2 / 1000 to 0.3 / 1000.

焼嵌め部の破損を防止するために、各軸部20,21の大径部20c,21cの実効長さ(焼嵌め長さ)LSと外径DLとの比は0.5〜2.0であるのが好ましい。LS/DLが0.5未満では、焼嵌めによる締付け力が不十分であり、軸部20,21が抜けやすい。またLS/DLが2.0を超えると、各軸部20,21の円筒精度が出にくく、焼嵌め作業が困難になるとともに、ロールの使用時に胴部10と軸部20,21の焼嵌め部にかかる曲げモーメントが大きくなり、焼嵌め部が破損しやすくなる。より好ましいLS/DLは0.8〜1.3である。   In order to prevent breakage of the shrink-fitted part, the ratio of the effective length (shrink-fitted length) LS and the outer diameter DL of the large-diameter part 20c, 21c of each shaft part 20, 21 is 0.5 to 2.0. preferable. When LS / DL is less than 0.5, the tightening force due to shrink fitting is insufficient, and the shaft portions 20 and 21 are likely to come off. If the LS / DL exceeds 2.0, the cylindrical accuracy of the shafts 20 and 21 is difficult to achieve, making shrink fitting difficult, and when using the roll, the shrinkage of the barrel 10 and the shafts 20 and 21 can be reduced. Such bending moment is increased, and the shrink-fitted portion is easily damaged. A more preferable LS / DL is 0.8 to 1.3.

胴部10の外径Soutと各軸部20,21の小径部20a,21aの外径DSとの比は2〜10であるのが好ましい。Sout/DSが2〜10の範囲内であると、鋼板1の搬送に伴う応力が軸部20,21にかかっても、軸部20,21が破損するこなくロールは鋼板1に追随して回転できる。Sout/DSが2未満では、軸部20,21と軸受との摩擦抵抗が大きくなり、回転し難くなる。一方、Sout/DSが10を超えると、ロール軸部20,21のネック部に過大な曲げ応力がかかり、折損しやすくなる。サポートロールの場合、Sout/DSは2〜4が望ましい。シンクロールの場合、Sout/DSは6〜10が望ましい。   The ratio between the outer diameter Sout of the body portion 10 and the outer diameter DS of the small diameter portions 20a and 21a of the shaft portions 20 and 21 is preferably 2 to 10. When Sout / DS is in the range of 2 to 10, even if the stress accompanying the conveyance of the steel sheet 1 is applied to the shaft parts 20, 21, the roll follows the steel sheet 1 without damaging the shaft parts 20, 21. Can rotate. When Sout / DS is less than 2, the frictional resistance between the shaft portions 20 and 21 and the bearing increases, and it becomes difficult to rotate. On the other hand, if Sout / DS exceeds 10, an excessive bending stress is applied to the neck portions of the roll shaft portions 20 and 21, and breakage easily occurs. For support rolls, Sout / DS is preferably 2-4. In the case of a sink roll, Sout / DS is preferably 6-10.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

参考例1
平均粒径0.5μmの窒化珪素粉末94.0重量%に、焼結助剤として、平均粒径0.2μmの酸化マグネシウム粉末を3.0重量%、平均粒径2.0μmの酸化イットリウム粉末を3.0重量%添加し、適量の分散剤を加えてエタノール中で粉砕、混合した。得られた粉末混合物を造粒した後、ゴム型に充填して冷間静水圧プレス(CIP)し、得られた成形体を1950℃、60気圧の窒素ガス雰囲気中で5時間焼結した。
Reference example 1
To 94.0% by weight of silicon nitride powder having an average particle size of 0.5 μm, 3.0% by weight of magnesium oxide powder having an average particle size of 0.2 μm and 3.0% by weight of yttrium oxide powder having an average particle size of 2.0 μm are added as sintering aids. An appropriate amount of a dispersant was added, and the mixture was pulverized and mixed in ethanol. After granulating the obtained powder mixture, it was filled in a rubber mold and subjected to cold isostatic pressing (CIP), and the obtained molded body was sintered in a nitrogen gas atmosphere at 1950 ° C. and 60 atm for 5 hours.

得られた窒化珪素系焼結体中の酸素含有量は赤外線吸収法により測定した。また窒化珪素系焼結体中のアルミニウム含有量は誘導プラズマ発光分析法(ICP法)により測定した。   The oxygen content in the obtained silicon nitride-based sintered body was measured by an infrared absorption method. The aluminum content in the silicon nitride sintered body was measured by induction plasma emission analysis (ICP method).

窒化珪素系焼結体中の窒化珪素粒子の割合(体積%)は、フッ化水素酸で粒界相をエッチング除去した後の窒化珪素系焼結体のSEM写真を撮り、SEM写真中の窒化珪素粒子の面積割合(体積%に相当)を測定することにより求めた。また窒化珪素粒子中の酸素含有量は赤外線吸収法により測定した。さらにβ型窒化珪素粒子のうち、短軸径が5μm以上のβ型窒化珪素粒子の割合を画像解析装置により測定した。   The ratio (volume%) of silicon nitride particles in the silicon nitride sintered body is determined by taking a SEM photograph of the silicon nitride sintered body after removing the grain boundary phase with hydrofluoric acid, and nitriding in the SEM photograph. It calculated | required by measuring the area ratio (equivalent to volume%) of a silicon particle. The oxygen content in the silicon nitride particles was measured by an infrared absorption method. Furthermore, among β-type silicon nitride particles, the proportion of β-type silicon nitride particles having a minor axis diameter of 5 μm or more was measured by an image analyzer.

得られた焼結体から、直径10 mm×厚さ3 mmの熱伝導率及び密度測定用の試験片、及び縦3 mm×横4 mm×長さ40 mmの4点曲げ試験用の試験片を切り出した。熱伝導率は、レーザーフラッシュ法JIS
R1611に準拠して常温で測定した比熱及び熱拡散率から算出した。相対密度は、JIS R2205に準拠したアルキメデス法により実測した密度を理論密度で割ることにより求めた。4点曲げ強度は常温でJIS
R1601に準拠して測定した。
From the obtained sintered body, a test piece for measuring the thermal conductivity and density having a diameter of 10 mm × thickness of 3 mm, and a test piece for a four-point bending test having a length of 3 mm × width of 4 mm × length of 40 mm. Was cut out. Thermal conductivity is JIS laser flash method
It calculated from the specific heat and thermal diffusivity measured at normal temperature according to R1611. The relative density was determined by dividing the density measured by the Archimedes method in accordance with JIS R2205 by the theoretical density. 4-point bending strength is JIS at room temperature
Measured according to R1601.

さらに焼結体から試験片を切り出し、常温から800℃までの平均熱膨張係数、常温におけるポアソン比、及びヤング率の測定を行った。以上の測定の結果を表1に示す。   Further, a test piece was cut out from the sintered body, and an average coefficient of thermal expansion from normal temperature to 800 ° C., a Poisson's ratio at normal temperature, and Young's modulus were measured. The results of the above measurements are shown in Table 1.

比較参考例1
平均粒径1.0μmの窒化珪素粉末88.0重量%に、焼結助剤として、平均粒径0.5μmのアルミナ粉末を5.0重量%、平均粒径0.8μmの酸化イットリウム粉末を7.0重量%添加し、適量の分散剤を加えてエタノール中で粉砕、混合した。得られた粉末混合物を造粒した後、ゴム型に充填して冷間静水圧プレス(CIP)し、得られた成形体を1800℃、1気圧の窒素ガス雰囲気中で5時間焼結した。得られた窒化珪素系焼結体に対して、参考例1と同じ測定を行った。測定結果を表1に示す。
Comparative Reference Example 1
An appropriate amount of 88.0% by weight of silicon nitride powder with an average particle size of 1.0μm and 5.0% by weight of alumina powder with an average particle size of 0.5μm and 7.0% by weight of yttrium oxide powder with an average particle size of 0.8μm as a sintering aid The dispersant was added and ground and mixed in ethanol. After granulating the obtained powder mixture, it was filled in a rubber mold and subjected to cold isostatic pressing (CIP), and the obtained molded body was sintered in a nitrogen gas atmosphere at 1800 ° C. and 1 atm for 5 hours. The same measurement as in Reference Example 1 was performed on the obtained silicon nitride-based sintered body. Table 1 shows the measurement results.

実施例1
参考例1と同じ窒化珪素系セラミックスを用いて、図1(a)に示す形状のサポートロール6の胴部10及び軸部20,21を以下の手順で作製した。胴部10は、外径250
mm、内径200 mm(小径域10bの内径に相当する)及び長さ1800 mmの中空円筒状焼結体からなり、胴部10の内面に各端面から奥行き250 mmの範囲に焼嵌め部となる大径域10a(内径210
mm)を機械加工により形成した。胴部10の小径域10bの端部10b’を曲面状とした。
Example 1
Using the same silicon nitride-based ceramic as in Reference Example 1, the body 10 and the shafts 20 and 21 of the support roll 6 having the shape shown in FIG. The body 10 has an outer diameter of 250
mm, an inner diameter of 200 mm (corresponding to the inner diameter of the small-diameter region 10b) and a length of 1800 mm, a hollow cylindrical sintered body. Large diameter area 10a (Inner diameter 210
mm) was formed by machining. The end portion 10b ′ of the small-diameter region 10b of the body portion 10 is curved.

軸部20,21を作製した。各軸部20,21の小径部20a,21aは外径90
mm、内径50 mm及び長さ200 mmであり、フランジ部20b,21bは外径230 mm及び長さ50 mmであり、大径部20c,21cは外径210 mm、内径160
mm及び長さ250 mmであった。ただし、胴部10の大径域10aの内径より軸部20,21の大径部20c,21cの外径を僅かに(約40μm)大きくした。軸部20の全長は500
mmであった。大径部20c,21cの外周には円周方向に均等に6本の半円筒状の長さ方向溝部25(幅20 mm、深さ10 mm)を形成した。従って、フランジ部20b,21bにおける溝部25の深さは20
mmであった。スラスト受け部材22,23をそれぞれロール軸部20,21の外端部に嵌め込んだ。
Shaft parts 20 and 21 were produced. The small diameter portions 20a and 21a of the shaft portions 20 and 21 have an outer diameter of 90.
mm, inner diameter 50 mm and length 200 mm, flanges 20b and 21b have outer diameter 230 mm and length 50 mm, large diameter parts 20c and 21c have outer diameter 210 mm, inner diameter 160
mm and length 250 mm. However, the outer diameters of the large diameter portions 20c and 21c of the shaft portions 20 and 21 were slightly larger (about 40 μm) than the inner diameter of the large diameter region 10a of the body portion 10. The total length of the shaft part 20 is 500
mm. Six semi-cylindrical longitudinal grooves 25 (width 20 mm, depth 10 mm) were formed on the outer circumference of the large diameter portions 20c and 21c evenly in the circumferential direction. Therefore, the depth of the groove 25 in the flanges 20b and 21b is 20
mm. Thrust receiving members 22 and 23 were fitted into the outer ends of the roll shafts 20 and 21, respectively.

胴部10の両端部の大径域10aに軸部20,21の大径部20c,21cをそれぞれ焼嵌めにより接合した。焼嵌め率は0.2/1000であった。図5に示すように、小径域10bの端部と各軸部20,21の内端との間の隙間Gの長さTは25
mmであった。
The large diameter portions 20c and 21c of the shaft portions 20 and 21 were joined to the large diameter regions 10a at both ends of the trunk portion 10 by shrink fitting. The shrinkage fit rate was 0.2 / 1000. As shown in FIG. 5, the length T of the gap G between the end of the small diameter region 10b and the inner ends of the shafts 20, 21 is 25.
mm.

このロールを図7に示す連続溶融亜鉛めっき装置にサポートロール6として使用し、板厚が2
mm、板幅が1300 mmのSUS300系ステンレス鋼板の亜鉛めっき処理を行った。約1ヶ月の連続使用後でも、このサポートロール6には侵食及び摩耗がほとんど見られなかった。またロールに亀裂は全く見られず、耐熱衝撃性に優れていることが確認できた。これは、ロールを形成する窒化珪素系セラミックスが50
W/(m・K)以上の高熱伝導率を有するためであると考えられる。また、胴部の大径域と軸部の大径部とが焼嵌めにより接合されているので、溶融金属めっき浴中に長時間浸漬されていても、胴部から軸部が脱離することがなく、胴部及び軸部は破損も全くなかった。本発明のサポートロール6により、めっき表面に疵がない高品質な亜鉛めっき鋼板が得られた。
This roll is used as a support roll 6 in the continuous galvanizing apparatus shown in FIG.
A SUS300 stainless steel plate with a mm and a plate width of 1300 mm was galvanized. Even after continuous use for about one month, the support roll 6 showed almost no erosion and wear. Further, no cracks were observed on the roll, and it was confirmed that the roll was excellent in thermal shock resistance. This is because the silicon nitride ceramics forming the roll are 50
This is considered to be because of having a high thermal conductivity of W / (m · K) or more. In addition, since the large diameter region of the barrel portion and the large diameter portion of the shaft portion are joined by shrink fitting, the shaft portion is detached from the trunk portion even if immersed in the molten metal plating bath for a long time. There was no damage to the body and shaft. With the support roll 6 of the present invention, a high-quality galvanized steel sheet having no defects on the plated surface was obtained.

比較例1
比較参考例1と同じ窒化珪素系セラミックスを用いて、図1(a)
に示す形状のサポートロール6の胴部10及び軸部20,21を同じ手順で作製した。このサポートロール6を用いて、実施例1と同様に亜鉛めっき処理を行った。その結果、このサポートロール6は、耐食性及び耐摩耗性は良好であったが、係数Rが600未満で、熱伝導率が50
W/(m・K)未満であるために、使用を開始してまもなくロール表面に亀裂が発生した。
Comparative Example 1
Using the same silicon nitride ceramics as Comparative Reference Example 1, Fig. 1 (a)
The body 10 and the shafts 20 and 21 of the support roll 6 having the shape shown in FIG. Using this support roll 6, galvanizing treatment was performed in the same manner as in Example 1. As a result, the support roll 6 had good corrosion resistance and wear resistance, but the coefficient R was less than 600 and the thermal conductivity was 50.
Since it was less than W / (m · K), cracks occurred on the roll surface shortly after the start of use.

実施例2
胴部10と軸部20,21との焼嵌め部がロール6の回転曲げにより破損したり抜けたりするかを調べるために、JIS
Z 2273に準拠した回転曲げ疲労試験を行った。回転曲げ疲労試験では、図6に示すようにロール胴部10を模した長さ50 mm、外径25 mmのスリーブ31に、ロール軸部20,21を模した長さ95
mm、外径15 mmの円柱体32,33を0.2/1000の焼嵌め率で焼嵌めた回転曲げ疲労試験用スリーブ組立体30を使用し、スリーブ組立体30に曲げ応力を付与しながら回転させ、圧縮応力と引張り応力を交互に付与した。
Example 2
In order to investigate whether the shrink-fitted part between the body part 10 and the shaft parts 20 and 21 is damaged or removed by the rotational bending of the roll 6, JIS
A rotating bending fatigue test according to Z 2273 was performed. In the rotating bending fatigue test, as shown in FIG. 6, a sleeve 31 having a length of 50 mm imitating the roll body 10 and an outer diameter of 25 mm and a length 95 imitating the roll shafts 20 and 21 are shown.
Using a sleeve assembly 30 for rotational bending fatigue testing, in which cylindrical bodies 32 and 33 having an outer diameter of 15 mm and an outer diameter of 15 mm are shrink-fitted with a shrinkage fitting rate of 0.2 / 1000, the sleeve assembly 30 is rotated while applying bending stress. Compressive stress and tensile stress were alternately applied.

荷重付加条件は、全ての荷重がスリーブ31と円柱体32,33との焼嵌め部にかかるように調整した。実機の荷重条件と合わせるため、焼嵌め部が受ける面圧を2 kgf/mm2とした。この条件で、室温の大気中で3400
rpmでスリーブ組立体30を回転させ、スリーブ31及び円柱体32,33の破損や、スリーブ31からの円柱体32,33の抜け具合を評価した。
The load application conditions were adjusted so that all loads were applied to the shrink-fitted portions of the sleeve 31 and the cylindrical bodies 32 and 33. In order to match the load conditions of the actual machine, the surface pressure received by the shrink-fit part was 2 kgf / mm 2 . Under these conditions, 3400 in room temperature atmosphere
The sleeve assembly 30 was rotated at rpm, and the breakage of the sleeve 31 and the cylindrical bodies 32 and 33 and the degree of removal of the cylindrical bodies 32 and 33 from the sleeve 31 were evaluated.

その結果、ロール胴部とロール軸部の焼嵌め部の破損や、ロール胴部からロール軸部の抜けが起こらない条件として、焼嵌め長さ/焼嵌め直径(ロール軸部の大径部の実効長さLS/ロール軸部の大径部の外径DL)が0.5〜2.0であるのが好ましいことが分かった。   As a result, the shrinkage-fitting length / shrink-fitting diameter (the diameter of the large-diameter portion of the roll shaft part) is determined as a condition that the roll drum part and the roll shaft part are not damaged and the roll shaft part is not detached from the roll drum part. It has been found that the effective length LS / the outer diameter DL of the large diameter portion of the roll shaft portion is preferably 0.5 to 2.0.

実施例3
溶融金属めっき浴用ロールは鋼板と接して鋼板と同一速度で回転する必要があるので、鋼板の走行速度の変化に追従できるようにできるだけ回転し易いことが望まれる。そこで、回転運動の変化を妨げる働きをもつ物理量である慣性モーメントGD2(Gは重量、D2は回転直径の2乗)に着目した。その結果、図1(a) に示す胴部10の外径Soutと軸部20,21の小径部20a,21aの外径DSとの比(Sout/DS)が2〜10の範囲内であると、GD2が小さく、ロールは回転し易いことが分かった。
Example 3
Since the roll for hot metal plating bath needs to rotate in contact with the steel plate at the same speed as that of the steel plate, it is desired that the roll for the molten metal plating be as easy to rotate as possible so as to follow the change in the traveling speed of the steel plate. Therefore, we focused on the moment of inertia GD 2 (G is the weight, D 2 is the square of the rotating diameter), which is a physical quantity that has the function of hindering the change in rotational motion. As a result, the ratio (Sout / DS) of the outer diameter Sout of the trunk portion 10 and the outer diameter DS of the small diameter portions 20a, 21a of the shaft portions 20, 21 shown in FIG. 1 (a) is in the range of 2-10. It was found that GD 2 was small and the roll was easy to rotate.

以上サポートロールについて述べたが、本発明はシンクロール等の各種の溶融金属めっき浴用ロールにも適用できることは言うまでもない。   Although the support roll has been described above, it goes without saying that the present invention can also be applied to various hot metal plating bath rolls such as a sink roll.

本発明の溶融金属めっき浴用ロールは、高い熱伝導率を有する窒化珪素系セラミックスにより形成されているので、溶融金属めっき浴への出し入れの際にかかる熱応力が小さく、優れた耐熱衝撃性を発揮する。また鋼板の搬送に伴う応力が軸部にかかっても、軸部が破損することなくロールは鋼板に追随して確実に回転できる。このような特徴を有する本発明の溶融金属めっき浴用ロールを使用すると、高品質なめっき鋼板を安定して生産できる。   Since the roll for molten metal plating bath of the present invention is formed of a silicon nitride ceramic having high thermal conductivity, the thermal stress applied to the molten metal plating bath is small and exhibits excellent thermal shock resistance. To do. Moreover, even if the stress accompanying conveyance of a steel plate is applied to the shaft portion, the roll can follow the steel plate and rotate reliably without damaging the shaft portion. When the roll for hot metal plating bath of the present invention having such characteristics is used, a high-quality plated steel sheet can be stably produced.

本発明の一実施態様による溶融金属めっき浴用ロールを示す断面図である。It is sectional drawing which shows the roll for hot metal plating baths by one embodiment of this invention. 図1(a)のロールの左半分を示す部分断面分解図である。FIG. 2 is a partial cross-sectional exploded view showing a left half of the roll of FIG. 図1(a)におけるA-A端面図である。FIG. 2 is an AA end view in FIG. 1 (a). 図1(a)に示すロールの右側面図である。FIG. 2 is a right side view of the roll shown in FIG. 1 (a). 図1(a)に示すロールの左右の軸部に形成された複数の溝部の位置関係を示す図である。FIG. 2 is a diagram showing a positional relationship between a plurality of groove portions formed on left and right shaft portions of the roll shown in FIG. 1 (a). 図1(a)に示すロールにおける焼嵌め部を示す部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view showing a shrink-fitted portion in the roll shown in FIG. 1 (a). 回転曲げ疲労試験用スリーブ組立体を示す断面図である。It is sectional drawing which shows the sleeve assembly for a rotation bending fatigue test. 連続溶融亜鉛めっき装置を示す概略図である。It is the schematic which shows a continuous hot dip galvanizing apparatus.

符号の説明Explanation of symbols

1 鋼板、 2 スナウト、 3 溶融金属浴、 4 浴槽、 5 シンクロール、
6 サポートロール、 7 ガスワイピングノズル、
10 胴部、 10a 胴部の大径域、 10b 胴部の小径域、
20 軸部、 20a 軸部の小径部、 20b 軸部のフランジ部、 20c 軸部の大径部、
21 軸部、 21a 軸部の小径部、 21b 軸部のフランジ部、 21c 軸部の大径部、
22 スラスト受け部材、 23 スラスト受け部材、
25 溝部、 25a 孔、 26 溝部、 26a 孔、
LB 胴部の大径域の長さ、 LS 軸部の大径部の長さ、 DL 軸部の大径部の外径、
G 隙間、 T 隙間の長さ、 Sa 胴部の大径域の内径、 Sb 胴部の小径域の内径、
30 スリーブ組立体、 31 スリーブ、 32 円柱体、 33 円柱体
1 steel plate, 2 snout, 3 molten metal bath, 4 bathtub, 5 sink roll,
6 support rolls, 7 gas wiping nozzles,
10 torso, 10a torso large diameter region, 10b torso small diameter region,
20 shaft part, 20a shaft part small diameter part, 20b shaft part flange part, 20c shaft part large diameter part,
21 shaft part, 21a shaft part small diameter part, 21b shaft part flange part, 21c shaft part large diameter part,
22 Thrust receiving member, 23 Thrust receiving member,
25 groove, 25a hole, 26 groove, 26a hole,
The length of the large diameter region of the LB body, the length of the large diameter portion of the LS shaft, the outer diameter of the large diameter portion of the DL shaft,
G gap, T gap length, Sa inner diameter of the large diameter area of the trunk, Sb inner diameter of the small diameter area of the trunk,
30 sleeve assembly, 31 sleeve, 32 cylinder, 33 cylinder

Claims (4)

鋼板と接触する中空状胴部と、前記胴部に接合された軸部とからなる溶融金属めっき浴用ロールであって、前記胴部及び軸部をそれぞれセラミックスで形成してなり、前記胴部の内面は両端側の大径域と中央の小径域とからなり、前記軸部は小径部とフランジ部と大径部とを有し、前記胴部の大径域に前記軸部の大径部が接合されており、かつ、前記胴部の外径Soutと前記軸部の小径部の外径DSとの比Sout/DSが2〜10であることを特徴とする溶融金属めっき浴用ロール。 A roll for a molten metal plating bath comprising a hollow body portion that comes into contact with a steel plate and a shaft portion joined to the body portion, wherein the body portion and the shaft portion are each formed of ceramics, The inner surface is composed of a large-diameter region at both ends and a small-diameter region at the center, the shaft portion has a small-diameter portion, a flange portion, and a large-diameter portion, and the large-diameter portion of the shaft portion in the large-diameter region of the trunk portion And a ratio Sout / DS of the outer diameter Sout of the body portion and the outer diameter DS of the small diameter portion of the shaft portion is 2 to 10, wherein the roll is for a molten metal plating bath. 前記胴部の大径域に前記軸部の大径部が焼嵌めにより接合されていることを特徴とする請求項1に記載の溶融金属めっき浴用ロール。 The roll for hot metal plating bath according to claim 1, wherein the large diameter portion of the shaft portion is joined to the large diameter region of the trunk portion by shrink fitting. 前記胴部の大径域は前記軸部の大径部より長く、もって前記胴部の小径域の端部と前記軸部の内端との間に隙間があることを特徴とする請求項1又は2に記載の溶融金属めっき浴用ロール。 2. The large diameter region of the trunk portion is longer than the large diameter portion of the shaft portion, and therefore there is a gap between the end portion of the small diameter region of the trunk portion and the inner end of the shaft portion. Or a roll for a molten metal plating bath described in 2. 前記胴部が常温における熱伝導率が50 W/(m・K)以上の窒化珪素系セラミックスからなることを特徴とする請求項1〜3のいずれかに記載の溶融金属めっき浴用ロール。 The roll for a molten metal plating bath according to any one of claims 1 to 3, wherein the body is made of a silicon nitride ceramic having a thermal conductivity of 50 W / (m · K) or more at room temperature.
JP2005009179A 2005-01-17 2005-01-17 Roll for hot metal plating bath Expired - Fee Related JP4678580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009179A JP4678580B2 (en) 2005-01-17 2005-01-17 Roll for hot metal plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009179A JP4678580B2 (en) 2005-01-17 2005-01-17 Roll for hot metal plating bath

Publications (2)

Publication Number Publication Date
JP2006193813A true JP2006193813A (en) 2006-07-27
JP4678580B2 JP4678580B2 (en) 2011-04-27

Family

ID=36800116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009179A Expired - Fee Related JP4678580B2 (en) 2005-01-17 2005-01-17 Roll for hot metal plating bath

Country Status (1)

Country Link
JP (1) JP4678580B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255043A (en) * 2009-04-24 2010-11-11 Kyocera Corp Roll for hot dip metal coating
JP2011047031A (en) * 2009-07-29 2011-03-10 Kyocera Corp Roll for hot dip metal plating
KR101449142B1 (en) 2012-11-07 2014-10-10 주식회사 포스코 Sink roller

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089837A (en) * 1999-09-21 2001-04-03 Hitachi Metals Ltd Roll for continuous hot dip metal plating
JP2001153115A (en) * 1999-11-29 2001-06-08 Ushio Kogyo Kk Steel pipe connecting structure
JP2002161346A (en) * 2000-11-17 2002-06-04 Hitachi Metals Ltd Roll for continuous hot-dip metal plating
JP2004182486A (en) * 2002-11-29 2004-07-02 Hitachi Metals Ltd Roll for continuous molten metal plating
JP2004183011A (en) * 2002-11-29 2004-07-02 Hitachi Metals Ltd Roll for continuous hot dip metal plating
JP2004244657A (en) * 2003-02-12 2004-09-02 Hitachi Metals Ltd Roll for continuous hot dip metal plating
WO2005056862A1 (en) * 2003-12-11 2005-06-23 Hitachi Metals, Ltd. Roll for molten metal plating bath

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089837A (en) * 1999-09-21 2001-04-03 Hitachi Metals Ltd Roll for continuous hot dip metal plating
JP2001153115A (en) * 1999-11-29 2001-06-08 Ushio Kogyo Kk Steel pipe connecting structure
JP2002161346A (en) * 2000-11-17 2002-06-04 Hitachi Metals Ltd Roll for continuous hot-dip metal plating
JP2004182486A (en) * 2002-11-29 2004-07-02 Hitachi Metals Ltd Roll for continuous molten metal plating
JP2004183011A (en) * 2002-11-29 2004-07-02 Hitachi Metals Ltd Roll for continuous hot dip metal plating
JP2004244657A (en) * 2003-02-12 2004-09-02 Hitachi Metals Ltd Roll for continuous hot dip metal plating
WO2005056862A1 (en) * 2003-12-11 2005-06-23 Hitachi Metals, Ltd. Roll for molten metal plating bath

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255043A (en) * 2009-04-24 2010-11-11 Kyocera Corp Roll for hot dip metal coating
JP2011047031A (en) * 2009-07-29 2011-03-10 Kyocera Corp Roll for hot dip metal plating
KR101449142B1 (en) 2012-11-07 2014-10-10 주식회사 포스코 Sink roller

Also Published As

Publication number Publication date
JP4678580B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4683217B2 (en) Roll for hot metal plating bath
JP4678581B2 (en) Roll for hot metal plating bath
JP4678580B2 (en) Roll for hot metal plating bath
JP4873284B2 (en) Roll for hot metal plating bath
JP5672749B2 (en) Roll for hot metal plating bath
JP2005298839A (en) Roll for continuous hot-dip metal plating
JP2006274302A (en) Roll for hot dip metal coating bath
JP2004182486A (en) Roll for continuous molten metal plating
JP4707432B2 (en) Rotating member and metal processing apparatus using the same
JP2004183011A (en) Roll for continuous hot dip metal plating
JP4088885B2 (en) Roll for continuous molten metal plating
JP4147515B2 (en) Roll for continuous molten metal plating
JP4383112B2 (en) roll
JP4305822B2 (en) Roll for continuous molten metal plating
JP4453073B2 (en) Roll for continuous molten metal plating
JPH049424A (en) Hearth roll for steel heat-treating furnace
JP5979613B2 (en) Rotating body
JP5892642B2 (en) Rotating body
JP2004244657A (en) Roll for continuous hot dip metal plating
JP2001089837A (en) Roll for continuous hot dip metal plating
JP2005060804A (en) Roll for continuous hot dip metal plating
JP2002294419A (en) Roller bearing used in continuous hot-dip metal plating bath
JP2005264237A (en) Roll for continuous hot dip metal plating
JP5822705B2 (en) Ceramic composite and sliding member for molten metal plating bath using the same
JP2003004029A (en) Ceramic roller having composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4678580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees