JP2006193529A - Intermediate for intermediate producing vinblastines by coupling reaction with vindoline - Google Patents

Intermediate for intermediate producing vinblastines by coupling reaction with vindoline Download PDF

Info

Publication number
JP2006193529A
JP2006193529A JP2006046111A JP2006046111A JP2006193529A JP 2006193529 A JP2006193529 A JP 2006193529A JP 2006046111 A JP2006046111 A JP 2006046111A JP 2006046111 A JP2006046111 A JP 2006046111A JP 2006193529 A JP2006193529 A JP 2006193529A
Authority
JP
Japan
Prior art keywords
group
compound
mmol
solution
cdcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006046111A
Other languages
Japanese (ja)
Other versions
JP4406406B2 (en
Inventor
Toru Fukuyama
透 福山
Hidetoshi Tokuyama
英利 徳山
Satoshi Yokoshima
聡 横島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006046111A priority Critical patent/JP4406406B2/en
Publication of JP2006193529A publication Critical patent/JP2006193529A/en
Application granted granted Critical
Publication of JP4406406B2 publication Critical patent/JP4406406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate useful for synthesis of indole derivatives which is the one component in synthesis of (+)-vinblastines. <P>SOLUTION: The compound represented by general formula C is useful for synthesis of the intermediate which enables synthesis of an eleven membered ring useful for synthesis of the indole derivatives by using radical cyclization of a thioanilide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ビンブラスチンの全合成に有用な、一方のインドール環誘導体を構成するカルボメトキシベルバナミン部位を形成するのに有用な中間体に関する。 The present invention relates to an intermediate useful for forming a carbomethoxybervanamine site constituting one indole ring derivative, which is useful for the total synthesis of vinblastine.

キョウチクトウ科の植物(Catharanthus roseus)から抽出されるアルカロイドである天然物ビンブラスチン(1)は、強い制癌効果があることが見出され、現在、悪性リンパ腫、絨毛性腫瘍の治療薬として使用されている(非特許文献1)。また、新規医薬品の創製を目的として、ビンブラスチンをリード化合物とした多くの誘導体が探索、合成されている(非特許文献2)。しかしながら、これらの誘導体のほとんどは、天然から得られるビンブラスチンまたはその類縁体からの半合成に頼っているのが現状である。天然物の化学変換には限界があり、幅広い系統的な構造活性相関を調べることはできない。より効率的かつ系統的に誘導体を合成するためには、原料のビンブラスチンを天然に頼ることなく容易に入手できるようにする必要があり、そのためには、効率的なビンブラスチンの全合成を確立することが必要不可欠である。ビンブラスチン(X)は、ビンドリンとカルボメトキシベルバナミン(Y)の2つのインドール部分が結合したビスインドール化合物と見ることができる。   The natural product vinblastine (1), an alkaloid extracted from the oleander plant (Catharanthus roseus), has been found to have a strong anti-cancer effect and is currently used as a treatment for malignant lymphoma and choriocarcinoma (Non-Patent Document 1). In addition, many derivatives using vinblastine as a lead compound have been searched and synthesized for the purpose of creating a new pharmaceutical (Non-patent Document 2). However, most of these derivatives currently rely on semisynthesis from vinblastine derived from nature or its analogs. There is a limit to the chemical conversion of natural products, and a broad systematic structure-activity relationship cannot be investigated. In order to synthesize derivatives more efficiently and systematically, it is necessary to make the raw material vinblastine readily available without depending on nature, and for that purpose, to establish an efficient total synthesis of vinblastine. Is indispensable. Vinblastine (X) can be viewed as a bisindole compound in which two indole moieties, vindrin and carbomethoxybervanamine (Y), are bound.

Figure 2006193529
Figure 2006193529

そこで、それぞれのインドール誘導体の完全合成法を確立することが重要であるが、前記一方の化合物であるビンドリン部位を構成する化合物の合成においても前記ビンブラスチンを効率的に合成できる程度に充分に供給できるようにはなっていなかった。このような状況の中で、本発明者らは、(−)−ビンドリンの効率的な合成方法をすでに提案している(特許文献1(特願2000−335349、平成12年11月7日))。また、別の問題点として、もう一方のインドール誘導体(上部ユニットと言う。)を導くものとして化合物(Y)を用い、これにビンドリンを導入しても立体選択性が逆の反応が進行してしまうというということがある(非特許文献3)。 Therefore, it is important to establish a complete synthesis method for each indole derivative. However, the vinblastine can be supplied enough to efficiently synthesize vinblastine even in the synthesis of the compound constituting the Bindrin site, which is the one compound. It was not like that. Under such circumstances, the present inventors have already proposed an efficient synthesis method of (−)-bindrin (Patent Document 1 (Japanese Patent Application No. 2000-335349, November 7, 2000)). ). Another problem is that the compound (Y) is used as a derivative of the other indole derivative (referred to as the upper unit), and the reaction with the opposite stereoselectivity proceeds even if vindrin is introduced into the compound (Y). (Non-patent Document 3).

Figure 2006193529
Figure 2006193529

したがって、立体選択性が望む状態でビンドリンを導入できる上部ユニットを構成するインドール誘導体を設計し、その誘導体を全合成する手法を確立することができなければ、ビンブラスチン誘導体類を効率的に合成するという前記所望の課題を解決することはできない。 Therefore, if an indole derivative that constitutes the upper unit capable of introducing vindoline is designed in a state where stereoselectivity is desired, and if a method for total synthesis of the derivative cannot be established, vinblastine derivatives are efficiently synthesized. The desired problem cannot be solved.

前記上部ユニットを構成するインドール誘導体の設計に関して、Schillらはピペリジン環を開いた11員環を持つ化合物(Z)を用いると、ビンドリンが所望の立体選択性で導入できることを報告している(非特許文献4)。 Regarding the design of the indole derivative constituting the upper unit, Schill et al. Have reported that vindrin can be introduced with a desired stereoselectivity when a compound (Z) having an 11-membered ring with an open piperidine ring is used (non-selective). Patent Document 4).

Figure 2006193529
Figure 2006193529

かしながら、前記11員環の化合物の合成に至るまでの工程は煩雑であり、化合物(Z)を用いたビンブラスチンの合成は収率の面から効率的な合成法とは程遠いといわざるを得ない。 However, the process up to the synthesis of the 11-membered ring compound is complicated, and the synthesis of vinblastine using the compound (Z) is far from an efficient synthesis method in terms of yield. I don't get it.

Noble, R. L.; Beer, C. T.; Cutts, J. H. Ann. N. Y. Acad. Sci. 1958, 76, 882.Noble, R.A. L. Beer, C .; T.A. Cuts, J .; H. Ann. N. Y. Acad. Sci. 1958, 76, 882. Blasko, G.; Cordell, G. A.; Kuehne, M. E.; Marko, I.; Borman, L. S.; Pearce, H. L.; McCormack, J. J.; Neuss, N.; Neuss, M. N. The Alkaloids; Brossi, A.; Suffness, M., Ed.; Academic Press: New York, 1990; Vol 37.Blasko, G.M. Cordell, G .; A. Kuehne, M .; E. Marko, I .; Borman, L .; S. Pearce, H .; L. McCorack, J .; J. et al. Neuss, N .; Neuss, M .; N. The Alkaloids; Brossi, A .; Suffness, M .; Ed. Academic Press: New York, 1990; Vol 37. Kutney, J. P.; Beck, J.; Bylsma, F.; Cook, J.; Cretney, W. J.; Fuji, K.; Imhof, R.; Treasurywala, A. M. Helv. Chim. Acta 1975, 58, 1690.Kutney, J.M. P. Beck, J .; Bylsma, F .; Cook, J .; Cretney, W .; J. et al. Fuji, K .; Imhof, R .; Treasurywala, A .; M.M. Helv. Chim. Acta 1975, 58, 1690. Schill, G.; Priester, C. U.; Windhovel, U. F.; Fritz, H. Helv. Chim. Acta 1986, 69, 438.Schill, G.M. Priester, C .; U. Windhovel, U .; F. Fritz, H .; Helv. Chim. Acta 1986, 69, 438. Tokuyama, H.; Yamashita, T.; Reding, M. T.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 3791.Tokuyama, H .; Yamashita, T .; Reding, M .; T.A. Kaburagi, Y .; Fukuyama, T .; J. et al. Am. Chem. Soc. 1999, 121, 3791. Fujiwara, A.; Kan, T.; Fukuyama, T. Synlett 2000, 1667.Fujiwara, A.A. Kan, T .; Fukuyama, T .; Synlett 2000, 1667. Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447.Martinelli, M.M. J. et al. Nayar, N .; K. Moher, E .; D. Dhokte, U .; P. Pawlak, J .; M.M. Vaidyanathan, R .; Org. Lett. 1999, 1, 447. Yoshida, Y.; Shimonishi, K.; Sakakura, Y.; Okada, S.; Aso, N.; Tanabe, Y. Synthesis 1999, 1633.Yoshida, Y. et al. Shimonishi, K .; Sakakura, Y .; Okada, S .; Aso, N .; Tanabbe, Y .; Synthesis 1999, 1633. a)Kuehne,M.E.; Matson,P.A.; Bornmann,W.G.J.Org.Chem.1991,56,513. b)Magnus,P.; Mendoza,j.S.; Stamford,A.; Ladlow,M.;Willis,P.J.Am.Chem.Soc.1992,114,10232.a) Kuehne, M .; E. Matton, P .; A. Bornmann, W .; G. J. et al. Org. Chem. 1991, 56, 513. b) Magnus, P .; Mendoza, j. S. Stamford, A .; Ladlow, M .; Willis, P .; J. et al. Am. Chem. Soc. 1992, 114, 10232. Men,J.L.;Taylor,W.I.Experientia 1965、21、508.Men, J. et al. L. Taylor, W .; I. Expertia 1965, 21, 508. 特願2000−335349(平成12年11月7日)(特許第3446176号)Japanese Patent Application No. 2000-335349 (November 7, 2000) (Japanese Patent No. 3446176)

本発明の課題は、前記一般式Aの効率的なビンブラスチン類の合成用の中間体を製造する工程において重要な中間体となる一般式Cの化合物に関する。この課題は前記一般式Aの化合物の課題を解決すること、すなわち、前記Schillらの知見に基にして、(1)上部ユニットの効率的で、かつ高立体選択的な合成方法を確立すること、その際、(2)種々のビンブラスチン類縁体を合成できる高い汎用性を持ち、かつ、(3)ビンドリン導入における立体化学の制御が改善された上部ユニット誘導体を合成できる方法を提供することである。前記課題を解決するために、本発明者らは、本発明者らが開発したチオアニリドのラジカル環化反応を用いるインドール合成法(非特許文献5)および2−ニトロベンゼンスルホンアミドの分子内アルキル化を用いた中大員環合成法(非特許文献6)を組み合わせることを検討した。その検討の中で、前記反応を組み合わせて用いると前記上部ユニットを形成する化合物を比較的穏和な条件で合成可能であることが分かった。従って、これら反応を組み合わせて用いるとそれぞれの反応成分に種々の官能基共存させることが可能であるから、これにより前記(1)および(2)の基本的な課題を解決すること、の説明の中で理解できるであろう。 The subject of the present invention relates to a compound of the general formula C, which is an important intermediate in the process of producing an intermediate for the efficient synthesis of vinblastine of the general formula A. This problem is to solve the problem of the compound of the general formula A, that is, based on the knowledge of the above-mentioned Schill et al. (1) Establish an efficient and highly stereoselective synthesis method of the upper unit. In this case, (2) to provide a method capable of synthesizing an upper unit derivative having high versatility capable of synthesizing various vinblastine analogs and (3) improved stereochemistry control in vindoline introduction. . In order to solve the above-mentioned problems, the present inventors conducted an indole synthesis method using a radical cyclization reaction of thioanilide developed by the present inventors (Non-patent Document 5) and intramolecular alkylation of 2-nitrobenzenesulfonamide. The combination of the medium and large ring synthesis methods used (Non-patent Document 6) was studied. During the study, it was found that when the above reactions were used in combination, the compound forming the upper unit could be synthesized under relatively mild conditions. Accordingly, when these reactions are used in combination, various functional groups can coexist in each reaction component, and therefore, the explanation of solving the basic problems (1) and (2) above will be explained. You will understand it.

本発明は、前記一般式Cからなる前記一般式Aの製造に有用な中間体である。   The present invention is an intermediate useful for the production of the general formula A consisting of the general formula C.

本発明の一般式Cの化合物は、化合物Bの化合物を出発原料とし、化合物1との反応で前記一般式Cのチオアニリドの合成を得て、一般式Dの化合物の合成、チオアニリド類のラジカル環化反応を利用して前記一般式Aの化合物を合成する方法である。好ましくは、前記一般式Dの中員環形成反応を利用して一般式Aを合成することを特徴とする前記一般式Aの化合物を合成する方法に有用な化合物である。すなわち、本発明者らが開発した、チオアニリドのラジカル環化反応を用いるインドール合成法および置換または非置換アリールスルホンアミド、例えば2−ニトロベンゼンスルホンアミドの分子内アルキル化を用いた中大員環合成法を基本とした2つの反応の組み合わせを含むことを特徴とする前記一般式Aの化合物を合成する方法に有用な化合物である。 The compound of the general formula C of the present invention is obtained by synthesizing the thioanilide of the general formula C by reacting with the compound 1 using the compound of the compound B as a starting material, and synthesizing the compound of the general formula D, radical ring of thioanilides This is a method of synthesizing the compound of the general formula A by using a chemical reaction. Preferably, it is a compound useful for the method of synthesizing the compound of the general formula A, which comprises synthesizing the general formula A using a medium ring formation reaction of the general formula D. That is, the indole synthesis method using radical cyclization reaction of thioanilide and the medium macrocycle synthesis method using intramolecular alkylation of substituted or unsubstituted arylsulfonamides such as 2-nitrobenzenesulfonamide developed by the present inventors It is a compound useful for the method of synthesizing the compound of the general formula A, which comprises a combination of two reactions based on the above formula.

前記一般式Aのインドール誘導体は、一般式Aのインドール誘導体をt−ブチルハイポクロライトによるインドールの3位の塩素化、得られた塩素化物をビンドリン類の存在下でトリフルオロ酢酸で処理してビンドリン類を立体選択的にカップリングして一般式Eの化合物を得、続いてトリフルオロアセチル基および置換または非置換アリールスルホニル基、例えば2−ニトロベンゼンスルホニル基を除去し、更にピペリジン環を構築して前記一般式Fで表される(+)−ビンブラスチン類を合成する方法に有用な化合物である。 The indole derivative of the general formula A is obtained by treating the indole derivative of the general formula A with tert-butyl hypochlorite at the 3-position of the indole and treating the resulting chlorinated product with trifluoroacetic acid in the presence of vindolines. Stereoselective coupling of bindrins yields compounds of general formula E, followed by removal of the trifluoroacetyl group and substituted or unsubstituted arylsulfonyl groups, such as 2-nitrobenzenesulfonyl groups, and the construction of piperidine rings. Thus, the compound is useful for the method of synthesizing (+)-vinblastine represented by the general formula F.

発明の効果として、チオアニリドのラジカル環化反応を用いるインドール合成法および置換または非置換アリールスルホンアミド、例えば2−ニトロベンゼンスルホンアミドの分子内アルキル化を用いた中大員環合成法を基本とした2つの反応の組み合わせを含むことを特徴とする前記一般式Aの化合物を合成する方法に有用な化合物を提供したことを挙げることができる。 As an effect of the invention, the indole synthesis method using radical cyclization reaction of thioanilide and the medium macrocycle synthesis method using intramolecular alkylation of substituted or unsubstituted arylsulfonamides, such as 2-nitrobenzenesulfonamide 2 It can be mentioned that a compound useful for the method of synthesizing the compound of the general formula A, characterized by comprising a combination of two reactions, was provided.

本発明をより詳細に説明する。
A.本発明の特徴を、一般式Cを含む出発原料、中間体およびビンブラスチンの製造法を順次記載することにより説明する。
1、一般式Cのチオアニリドは、一般式Bの2つの水酸基を保護した化合物とシリルエーテルと化合物1のイソチオシアナートとを反応させて合成される。合成工程は以下のとおりである。Rの好ましい基としてエチル基を、Rの好ましい基としてメチル基を、R10の好ましい基としてt−ブチル基と2つのフェニル基の組み合わせを、R11の好ましいものとしてエチル基を、R12の好ましい基としてメチル基を、またR13の好ましいものとしてテトラヒドロピラニル基を、それぞれ挙げることができる。
The present invention will be described in more detail.
A. The characteristics of the present invention will be explained by sequentially describing the starting materials containing the general formula C, intermediates and methods for producing vinblastine.
1. A thioanilide of general formula C is synthesized by reacting a compound in which two hydroxyl groups of general formula B are protected, a silyl ether, and the isothiocyanate of compound 1. The synthesis process is as follows. An ethyl group as a preferred group of R 5, a methyl group as a preferred group of R 6 , a combination of a t-butyl group and two phenyl groups as a preferred group of R 10, an ethyl group as a preferred group of R 11 , and R 12 A methyl group can be mentioned as a preferable group of R 4, and a tetrahydropyranyl group can be mentioned as a preferable group of R 13 .

Figure 2006193529
Figure 2006193529

2、一般式Cのチオアニリド化合物を、(Bu)SnHおよびEtBを存在させたTHF中で、室温においてラジカル環化反応させインドール化合物2が得られる。工程は以下のとおりである。ここでTHFに代えてトルエン、ベンゼン、アセトニトリルまたはジオキサンを用いることもできる。またEtBをTHF中、室温で用いる代わりに、AIBNをトルエンまたはベンゼン中、80℃にて用いることもできる。また(Bu)SnHおよびEtBをTHF中、室温で用いる代わりに、次亜リン酸、トリエチルアミンおよびAIBNをn−プロパノール中、90℃で用いることもできる。 2. Radical cyclization reaction of the thioanilide compound of general formula C in THF in the presence of (Bu) 3 SnH and Et 3 B at room temperature gives indole compound 2. The process is as follows. Here, toluene, benzene, acetonitrile or dioxane may be used instead of THF. Instead of using Et 3 B in THF at room temperature, AIBN can also be used in toluene or benzene at 80 ° C. Also, instead of using (Bu) 3 SnH and Et 3 B in THF at room temperature, hypophosphorous acid, triethylamine and AIBN can be used in n-propanol at 90 ° C.

Figure 2006193529
Figure 2006193529

3、次いで、化合物2を、BocO、EtNおよび4−ジメチルアミノピリジン(DMAP)が存在するCHCl中、室温で反応させ、続いて酢酸水溶液中で、80℃で処理し、保護基(Boc)の導入、脱保護により化合物3を得る。この工程は以下のとおりである。ここでCHClに代えてアセトニトリルを用いることもできる。また酢酸水溶液の濃度は任意に選べるが、特に95%が好ましい。また酢酸水溶液を80℃で用いる代わりに、低級アルコール溶媒中、カンファースルホン酸、p−トルエンスルホン酸等のプロトン酸を用いることもできる。 3, then compound 2 is reacted at room temperature in CH 2 Cl 2 in the presence of Boc 2 O, Et 3 N and 4-dimethylaminopyridine (DMAP), followed by treatment at 80 ° C. in aqueous acetic acid. , Introduction of a protecting group (Boc) and deprotection give compound 3. This process is as follows. Here, acetonitrile can be used instead of CH 2 Cl 2 . The concentration of the aqueous acetic acid solution can be selected arbitrarily, but 95% is particularly preferable. Further, instead of using an acetic acid aqueous solution at 80 ° C., a protonic acid such as camphorsulfonic acid or p-toluenesulfonic acid can be used in a lower alcohol solvent.

Figure 2006193529
Figure 2006193529

4、前記一般式Aの11員環を形成する工程を、Nsアミドのアルキル化反応を利用する中大員環の形成反応を利用できるように、化合物3の1,2−ジオールの1級水酸基を、トシルクロライド(TsCl)、BuSnO、EtNが存在するCHCl溶液中で室温において選択的にトシル化し(非特許文献7)、次いで、MHCO(MはNaまたはK)が存在するDMF中で80℃に加熱しエポキシド化合物4を得る。この工程は以下のとおりである。ここでTsClに代えて、置換または非置換のアリールスルホン酸塩化物を用いることもできる。 4. The primary hydroxyl group of the 1,2-diol of compound 3 so that the step of forming the 11-membered ring of the general formula A can utilize the formation reaction of the medium-large ring using the alkylation reaction of Ns amide Is selectively tosylated at room temperature in a CH 2 Cl 2 solution containing tosyl chloride (TsCl), Bu 2 SnO, Et 3 N (Non-Patent Document 7), and then MHCO 3 (M is Na or K). Epoxide compound 4 is obtained by heating to 80 ° C. in DMF in the presence of. This process is as follows. Here, instead of TsCl, a substituted or unsubstituted aryl sulfonic acid chloride can also be used.

Figure 2006193529
Figure 2006193529

5、次いで、化合物4をRSONH、例えばNsNH、アゾジカルボン酸誘導体、例えばジエチルアゾジカルボン酸(DEAD)、PhPが存在するトルエン中で室温下において、残った1級水酸基に対して光延反応によりスルホンアミドを導入して環化前駆体である一般式Dの化合物を得る。この工程は以下のとおりである。スルホンアミドの導入した化合物中間体は、11員環形成のキー化合物である。 5. Next, the compound 4 is converted to R 7 SO 2 NH 2 , such as NsNH 2 , an azodicarboxylic acid derivative such as diethyl azodicarboxylic acid (DEAD), and the remaining primary hydroxyl group in toluene in the presence of Ph 3 P at room temperature. On the other hand, sulfonamide is introduced by Mitsunobu reaction to obtain a compound of general formula D which is a cyclization precursor. This process is as follows. The compound intermediate into which the sulfonamide is introduced is a key compound for forming an 11-membered ring.

Figure 2006193529
Figure 2006193529

6、一般式Dの化合物をMCO(MはNa,KまたはCs)が存在するDMFまたはアセトニトリル中において90℃に加熱し、位置選択的に中員環形成反応を進行させ、11員環化合物5を得た。この工程は以下のとおりである。 6. The compound of the general formula D is heated to 90 ° C. in DMF or acetonitrile in which M 2 CO 3 (M is Na, K or Cs) is present, and the medium ring formation reaction proceeds regioselectively, Ring compound 5 was obtained. This process is as follows.

Figure 2006193529
Figure 2006193529

7、化合物5を、トリフルオロ酢酸(TFA)が存在するCHCl中で室温で処理する工程、TsClおよびMeN(CHNMeが存在するCHCN−トルエン混用液中で室温で処理する工程(非特許文献8)およびトリフルオロ酢酸無水物(TFAA)およびピリジンのCHCl溶液中で室温において処理する工程により、脱保護および保護基の導入により目的化合物Aを得る。この工程は以下のとおりである。ここでTsClに代えて、置換または非置換のアリールスルホン酸塩化物を用いることもできる。またMeN(CHNMeに代えて、ピリジン、トリエチルアミンまたはジイソプロピルエチルアミン等の3級アミンを用いることもできる。またCHCN−トルエン混用液の比率は任意に選択でき、またこれに代えてCHClを用いることもできる。 7. Treatment of compound 5 in CH 2 Cl 2 in the presence of trifluoroacetic acid (TFA) at room temperature, in CH 3 CN-toluene mixture with TsCl and Me 2 N (CH 2 ) 3 NMe 2 The compound A is treated by deprotection and introduction of a protecting group by a step of treating at room temperature (Non-Patent Document 8) and a step of treating at room temperature in a CH 2 Cl 2 solution of trifluoroacetic anhydride (TFAA) and pyridine. obtain. This process is as follows. Here, instead of TsCl, a substituted or unsubstituted aryl sulfonic acid chloride can also be used. Further, in place of Me 2 N (CH 2 ) 3 NMe 2 , a tertiary amine such as pyridine, triethylamine or diisopropylethylamine can be used. Further, the ratio of the CH 3 CN-toluene mixed solution can be arbitrarily selected, and CH 2 Cl 2 can be used instead.

Figure 2006193529
Figure 2006193529

B.本発明の原料化合物である、一般式Bの化合物の合成例を説明する。一連の反応工程をまとめると以下のとおりである。 B. A synthesis example of the compound of general formula B, which is a raw material compound of the present invention, will be described. A series of reaction steps are summarized as follows.

Figure 2006193529
Figure 2006193529

I、先ず、合成原料である一般式Bに含まれる化合物の合成。
参考例1
公知の出発原料1からカルボン酸2を製造する工程は以下のとおりである。
I. First, synthesis of a compound contained in the general formula B which is a synthetic raw material.
Reference example 1
The process for producing the carboxylic acid 2 from the known starting material 1 is as follows.

Figure 2006193529
Figure 2006193529

アルコール1(199.5g,2.316mol)のオルト酢酸トリエチル溶液(849mL)に、プロピオン酸(0.86mL,11.58mmol)を加え、135℃で撹拌した。生成したエタノールはフラスコに取り付けた滴下漏斗内に集めた。エタノールの生成が認められなくなったら、反応液を80℃以下まで冷却し、分液漏斗の内容物を反応液中に戻した。以上の操作を原料のアルコールが消失するまで続けた。原料のアルコールの消失を確認した後、反応液を室温にて水(100mL)を加えた。室温で2時間半撹拌した後、氷冷下水酸化カリウム(390g,6.95mol)水溶液を加え同温で1時間、更に室温で終夜撹拌した。反応液を濃塩酸で中和し、有機層を分離後、ジクロロメタンで抽出し、有機層を合致し無水硫酸マグネシウムで乾燥した。反応液を常圧で濃縮した後、残留物を減圧下蒸留することにより、カルボン酸2(沸点93−96℃,247.5g,83.38%)を無色液体として得た。 Propionic acid (0.86 mL, 11.58 mmol) was added to a solution of alcohol 1 (199.5 g, 2.316 mol) in triethyl orthoacetate (849 mL), and the mixture was stirred at 135 ° C. The ethanol produced was collected in a dropping funnel attached to the flask. When production of ethanol was not observed, the reaction solution was cooled to 80 ° C. or lower, and the contents of the separatory funnel were returned to the reaction solution. The above operation was continued until the starting alcohol disappeared. After confirming the disappearance of the starting alcohol, water (100 mL) was added to the reaction solution at room temperature. After stirring at room temperature for 2.5 hours, an aqueous solution of potassium hydroxide (390 g, 6.95 mol) was added under ice cooling, and the mixture was stirred at the same temperature for 1 hour and further at room temperature overnight. The reaction solution was neutralized with concentrated hydrochloric acid, and the organic layer was separated and extracted with dichloromethane. The organic layers were matched and dried over anhydrous magnesium sulfate. After concentrating the reaction solution at normal pressure, the residue was distilled under reduced pressure to obtain carboxylic acid 2 (boiling point 93-96 ° C., 247.5 g, 83.38%) as a colorless liquid.

カルボン酸2の特性;
IR(film):3083,2968,1712,1649,1438,1415,1296,892cm−1HNMR(CDCl,400MHz)11.63(brs,1H),4.78(d,J=0.4Hz,1H),4.73(d,J=0.4Hz,1H),2.52(t,J=7.7Hz,2H),2.36(t,J=7.7Hz,2H),2.05(q,J=7.2Hz,2H),1.04(t,J=7.2Hz,3H);13CNMR(CDCl,100MHz)180.2,149.4,108.3,32.6,30.7,29.0,12.3;分析;計算値(Anal.Calcdfor)C12O:C,65.60,H,9.44;分析結果(Found)C,65.50,H,9.37.
Properties of carboxylic acid 2;
IR (film): 3083, 2968, 1712, 1649, 1438, 1415, 1296, 892 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 11.63 (brs, 1H), 4.78 (d, J = 0. 4 Hz, 1H), 4.73 (d, J = 0.4 Hz, 1H), 2.52 (t, J = 7.7 Hz, 2H), 2.36 (t, J = 7.7 Hz, 2H), 2.05 (q, J = 7.2 Hz, 2H), 1.04 (t, J = 7.2 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) 180.2, 149.4, 108.3 32.6, 30.7, 29.0, 12.3; analysis; calculated value (Anal. Calcdfor) C 7 H 12 O: C, 65.60, H, 9.44; analysis result (Found) C, 65.50, H, 9.37.

カルボン酸2からイミド3を製造する工程は以下のとおりである。 The process for producing the imide 3 from the carboxylic acid 2 is as follows.

Figure 2006193529
Figure 2006193529

カルボン酸2(28.20g,220.0mmol)、トリエチルアミン(30.66ml,220.0mmol)のジエチルエーテル溶液(1L)に氷冷下ピバリン酸塩化物(26.93mL,220.0mmol)を滴下した。同温で40分撹拌した後、−78℃に冷却した(混合酸無水物ジエチルエーテル溶液)。一方、オキサゾリジノン(35.44g,200mmol)のテトラヒドロフラン溶液(500mL)に−78℃でn−ブチルリチウム(2.46Mのn−ヘキサン溶液、81.3mL,200mmol)を滴下した。この溶液を混合酸無水物ジエチルエーテル溶液にカニュラーを用いて滴下した。滴下終了後−78℃で50分撹拌し、更に0℃で30分撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え有機層を分離し、酢酸エチルで抽出した。有機層を合致し飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(2−12%酢酸エチル/n-ヘキサン)で精製することにより、イミド3(51.0g,88.7%)を無色油状物として得た。 Pivalic acid chloride (26.93 mL, 220.0 mmol) was added dropwise to a diethyl ether solution (1 L) of carboxylic acid 2 (28.20 g, 220.0 mmol) and triethylamine (30.66 ml, 220.0 mmol) under ice cooling. . After stirring at the same temperature for 40 minutes, the mixture was cooled to −78 ° C. (mixed acid anhydride diethyl ether solution). On the other hand, n-butyllithium (2.46M n-hexane solution, 81.3 mL, 200 mmol) was added dropwise to a tetrahydrofuran solution (500 mL) of oxazolidinone (35.44 g, 200 mmol) at -78 ° C. This solution was added dropwise to the mixed acid anhydride diethyl ether solution using a cannula. After completion of dropping, the mixture was stirred at -78 ° C for 50 minutes, and further stirred at 0 ° C for 30 minutes. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, the organic layer was separated, and extracted with ethyl acetate. The organic layers were matched, washed with saturated brine, and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (2-12% ethyl acetate / n-hexane) to give imide 3 (51.0 g, 88.7%) as a colorless oil. .

イミド3の物性:
〔α〕26 −52.0(c1.15,CHCl);IR(film)3029,2966,2921,1783,1701,1648,1454,1388,1353,1212,1110,892,762,743,703cm−1HNMR(CDCl,400MHz)7.33(t,J=7.0Hz,2H),7.27(t,J=7.0Hz,1H),7.20(d,J=7.0Hz,2H),4.79(d,J=1.1Hz,1H),4.77(d,J=1.1Hz,1H),4.67(ddt,J=9.8,8.3,3.2Hz,1H),4.19(dd,J=9.0,8.3Hz,1H),4.15(dd,J=9.0,3.2Hz,1H),3.29(dd,J=13.5,3.2Hz,1H),3.14(ddd,J=17.0,8.8,6.8Hz,1H),3.06(ddd,J=7.0,8.4,7.2Hz,1H),2.76(dd,J=13.5,9.8Hz,1H),2.42(m,2H),2.09(q,J=7.3Hz,2H),1.06(t,J=7.3Hz,3H);13CNMR(CDCl,100MHz)172.9,153.4,149.6,135.3,129.4,128.9,127.3,108.4,66.2,55.2,37.9,34.0,30.4,29.0,12.3.
Properties of imide 3:
[Α] 26 D- 52.0 (c1.15, CHCl 3 ); IR (film) 3029, 2966, 2921, 1783, 1701, 1648, 1454, 1388, 1353, 1212, 1110, 892, 762, 743 703 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.33 (t, J = 7.0 Hz, 2H), 7.27 (t, J = 7.0 Hz, 1H), 7.20 (d, J = 7.0 Hz, 2H), 4.79 (d, J = 1.1 Hz, 1H), 4.77 (d, J = 1.1 Hz, 1H), 4.67 (ddt, J = 9.8, 8) .3, 3.2 Hz, 1H), 4.19 (dd, J = 9.0, 8.3 Hz, 1H), 4.15 (dd, J = 9.0, 3.2 Hz, 1H), 3. 29 (dd, J = 13.5, 3.2 Hz, 1H), 3.14 (d dd, J = 17.0, 8.8, 6.8 Hz, 1H), 3.06 (dddd, J = 7.0, 8.4, 7.2 Hz, 1H), 2.76 (dd, J = 13.5, 9.8 Hz, 1H), 2.42 (m, 2H), 2.09 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) 172.9, 153.4, 149.6, 135.3, 129.4, 128.9, 127.3, 108.4, 66.2, 55.2, 37. 9, 34.0, 30.4, 29.0, 12.3.

イミド3から付加体4を製造する工程は以下のとおりである。 The process for producing the adduct 4 from the imide 3 is as follows.

Figure 2006193529
Figure 2006193529

チタンテトライソプロポキシド(14.4mL,48.5mmol)のジクロロメタン溶液(265mL)に、四塩化チタン(16.0mL,145.5mmol)を滴下した。この溶液を、イミド3(50.7g,176mmol)、ジイソプロピルエチルアミン(45.8mL,265mmol)のジクロロメタン溶液(176mL)に氷冷下滴下した。同温で40分間撹拌した後、反応液にアクリロニトリル(34.8mL,529mmol)を滴下し、同温で更に9時間半撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、有機層を分離後、酢酸エチルで抽出した。有機層合致し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(5−12%酢酸エチル/n−ヘキサン)で精製することにより、付加体4(42.3g,70.4%)を無色油状物として得た。 Titanium tetrachloride (16.0 mL, 145.5 mmol) was added dropwise to a dichloromethane solution (265 mL) of titanium tetraisopropoxide (14.4 mL, 48.5 mmol). This solution was added dropwise to a dichloromethane solution (176 mL) of imide 3 (50.7 g, 176 mmol) and diisopropylethylamine (45.8 mL, 265 mmol) under ice cooling. After stirring at the same temperature for 40 minutes, acrylonitrile (34.8 mL, 529 mmol) was added dropwise to the reaction solution, and the mixture was further stirred at the same temperature for 9 and a half hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was separated and extracted with ethyl acetate. The organic layers were matched, washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (5-12% ethyl acetate / n-hexane) to give adduct 4 (42.3 g, 70.4%) as a colorless oil. It was.

付加体4の物性;
〔α〕26 −36.4(c0.978,CHCl);IR(film)3029,2967,2935,2247,1779,1695,1646,1453,1389,1351,1291,1211,1113,1014,902,762,742,703cm−1HNMR(CDCl,400MHz)7.35(t,J=7.0Hz,2H),7.29(t,J=7.0Hz,1H),7.22(d,J=7.0Hz,2H),4.83(d,J=1.4Hz,1H),4.75(d,J=1.4Hz,1H),4.65(m,H),4.19(m,2H),4.09(ddt,J=12.0,7.3,4.4Hz,H),3.34(dd,J=13.4,3.4Hz,1H),2.78(dd,J=13.4,10.0Hz,1H),2.49(dd,J=14.0,7.0Hz,1H),2.38(m,2H),2.15(dd,J=14.0,7.6Hz,1H),2.08(m,1H),2.04(q,J=7.3Hz,2H),1.90(m,1H),1.03(t,J=7.3Hz,3H);13CNMR(CDCl,100MHz)174.7,153.1,147.6,135.2,129.4,129.0,127.4,119.1,110.9,66.4,55.6,40.5,39.0,38.1,28.3,27.1,15.1,12.2;
Physical properties of adduct 4;
[Α] 26 D- 36.4 (c 0.978, CHCl 3 ); IR (film) 3029, 2967, 2935, 2247, 1779, 1695, 1646, 1453, 1389, 1351, 1291, 1211, 1113, 1014 902, 762, 742, 703 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.35 (t, J = 7.0 Hz, 2H), 7.29 (t, J = 7.0 Hz, 1H), 7. 22 (d, J = 7.0 Hz, 2H), 4.83 (d, J = 1.4 Hz, 1H), 4.75 (d, J = 1.4 Hz, 1H), 4.65 (m, 1 H), 4.19 (m, 2H), 4.09 (ddt, J = 12.0, 7.3, 4.4 Hz, 1 H), 3.34 (dd, J = 13.4, 3. 4 Hz, 1 H), 2.78 (dd, J = 13. , 10.0 Hz, 1 H), 2.49 (dd, J = 14.0, 7.0 Hz, 1 H), 2.38 (m, 2 H), 2.15 (dd, J = 14.0, 7. 6 Hz, 1H), 2.08 (m, 1H), 2.04 (q, J = 7.3 Hz, 2H), 1.90 (m, 1H), 1.03 (t, J = 7.3 Hz, 13 C NMR (CDCl 3 , 100 MHz) 174.7, 153.1, 147.6, 135.2, 129.4, 129.0, 127.4, 119.1, 110.9, 66.4 , 55.6, 40.5, 39.0, 38.1, 28.3, 27.1, 15.1, 12.2;

付加物4からアルコール5の製造方法は以下のとおりである。 The method for producing the alcohol 5 from the adduct 4 is as follows.

Figure 2006193529
Figure 2006193529

水素化ホウ素ナトリウム(22.6g,597.4mmol)を水(150mL)に溶解し、付加体4(50.84g,149.3mmol)のテトラヒドロフラン溶液(300mL)に氷冷下、滴下した。室温に昇温し、そのまま終夜撹拌した。氷冷下反応液に塩酸を加え、pHを約5に調整した後、酢酸エチルで3回抽出した。合致した有機層を、希塩酸、飽和炭酸水素ナトリウム水溶液、続いて飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(25−35%酢酸エチル/n−ヘキサン)で精製することにより、アルコール5(22.9g,91.7%)を無色油状物として得た。 Sodium borohydride (22.6 g, 597.4 mmol) was dissolved in water (150 mL) and added dropwise to a tetrahydrofuran solution (300 mL) of adduct 4 (50.84 g, 149.3 mmol) under ice cooling. The mixture was warmed to room temperature and stirred as it was overnight. Hydrochloric acid was added to the reaction solution under ice cooling to adjust the pH to about 5, and then extracted three times with ethyl acetate. The matched organic layer was washed with dilute hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and then saturated brine, and then dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (25-35% ethyl acetate / n-hexane) to give alcohol 5 (22.9 g, 91.7%) as a colorless oil. .

〔α〕27 −1.56(c0.960,CHCl);IR(film)3449,3078,2965,2931,2249,1644,1450,1328,1037,984,895cm−1HNMR(CDCl,400MHz)4.84(d,J=1.5Hz,1H),4.77(d,J=1.5Hz,1H),3.64(dd,J=10.9,4.4Hz,1H),3.55(dd,J=10.9,5.4Hz,1H),2.46(t,J=7.3Hz,2H),2.13(dd,J=14.0,7.7Hz,1H),2.03(q,J=7.4Hz,2H),2.02(dd,J=14.0,7.8Hz,1H),1.87(m,1H),1.74(m,2H),1.05(t,J=7.4Hz,3H);13CNMR(CDCl,100MHz)148.6,120.0,110.3,64.4,38.2,37.0,28.1,27.0,15.0,12.1; [Α] 27 D -1.56 (c 0.960, CHCl 3 ); IR (film) 3449, 3078, 2965, 2931, 2249, 1644, 1450, 1328, 1037, 984, 895 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 4.84 (d, J = 1.5 Hz, 1H), 4.77 (d, J = 1.5 Hz, 1H), 3.64 (dd, J = 10.9, 4.4 Hz, 1H), 3.55 (dd, J = 10.9, 5.4 Hz, 1H), 2.46 (t, J = 7.3 Hz, 2H), 2.13 (dd, J = 14.0, 7 .7 Hz, 1H), 2.03 (q, J = 7.4 Hz, 2H), 2.02 (dd, J = 14.0, 7.8 Hz, 1H), 1.87 (m, 1H), 1 .74 (m, 2H), 1.05 (t, J = 7.4Hz, 3H); 13 NMR (CDCl 3, 100MHz) 148.6,120.0,110.3,64.4,38.2,37.0,28.1,27.0,15.0,12.1 ;

アルコール5からシリルエーテル6を製造する方法は以下のとおりである。 A method for producing silyl ether 6 from alcohol 5 is as follows.

Figure 2006193529
Figure 2006193529

アルコール5(22.8g,136.3mmol)、イミダゾール(13.92g,204.5mmol)のジメチルホルムアミド溶液(136mL)に、室温下塩化t−ブチルジフェニルシラン(39.0mL)を滴下し、室温で1時間撹拌した。反応液をジエチルエーテルで希釈後、水で洗浄した。水層をジエチルエーテルで抽出した後、合致した有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(0−2%酢酸エチル/n−ヘキサン)で精製することにより、シリルエーテル6(50.6g,91.5%)を無色油状物として得た。 To a solution of alcohol 5 (22.8 g, 136.3 mmol) and imidazole (13.92 g, 204.5 mmol) in dimethylformamide (136 mL) was added dropwise t-butyldiphenylsilane chloride (39.0 mL) at room temperature. Stir for 1 hour. The reaction mixture was diluted with diethyl ether and washed with water. The aqueous layer was extracted with diethyl ether, and the matched organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (0-2% ethyl acetate / n-hexane) to give silyl ether 6 (50.6 g, 91.5%) as a colorless oil. It was.

シリルエーテル6の物性;
〔α〕23 +6.49(c1.99,CHCl);IR(film)3071,2961,2931,2858,2246,1644,1589,1471,1428,1112,1083,894,823,741,703,614,505cm−1HNMR(CDCl3,400MHz)7.64(d,J=7.3Hz,4H),7.44(t,J=7.3Hz,2H),7.39(t,J=7.3Hz,4H),4.76(d,J=1.4Hz,1H),4.67(d,J=1.4Hz,1H),3.56(dd,J=9.4,3.4Hz,1H),3.53(dd,J=9.4,4.2Hz,1H),2.30(ddd,J=16.8,8.3,6.3Hz,1H),2.23(dd,J=16.8,7.3Hz,1H),2.15(dd,J=13.9,6.6Hz,1H),1.94(dd,J=13.9,7.6Hz,1H),1.93(q,J=7.3Hz,2H),1.79m,1H),1.74(m,2H),1.06(s,9H),0.99(t,J=7.3Hz,3H);13CNMR(CDCl3,100MHz)148.5,135.6,135.6,133.4,133.4,129.8,129.8,127.8,127.7,120.0,110.3,65.3,38.2,37.4,28.2,27.2,26.9,19.3,15.0,12.0;
Physical properties of silyl ether 6;
[Α] 23 D +6.49 (c1.99, CHCl 3 ); IR (film) 3071, 2961, 2931, 2858, 2246, 1644, 1589, 1471, 1428, 1112, 1083, 894, 823, 741, 703 , 614, 505 cm −1 ; 1 HNMR (CDCl 3, 400 MHz) 7.64 (d, J = 7.3 Hz, 4H), 7.44 (t, J = 7.3 Hz, 2H), 7.39 (t, J = 7.3 Hz, 4H), 4.76 (d, J = 1.4 Hz, 1H), 4.67 (d, J = 1.4 Hz, 1H), 3.56 (dd, J = 9.4). , 3.4 Hz, 1H), 3.53 (dd, J = 9.4, 4.2 Hz, 1H), 2.30 (ddd, J = 16.8, 8.3, 6.3 Hz, 1H), 2.23 (dd, J = 16.8, 7.3 Hz, 1 ), 2.15 (dd, J = 13.9, 6.6 Hz, 1H), 1.94 (dd, J = 13.9, 7.6 Hz, 1H), 1.93 (q, J = 7. 3 CHz (2H), 1.79 m, 1 H), 1.74 (m, 2 H), 1.06 (s, 9 H), 0.99 (t, J = 7.3 Hz, 3 H); 13 C NMR (CDCl 3 100MHz) 148.5, 135.6, 135.6, 133.4, 133.4, 129.8, 129.8, 127.8, 127.7, 120.0, 110.3, 65.3 38.2, 37.4, 28.2, 27.2, 26.9, 19.3, 15.0, 12.0;

シリルエーテル6からイソキサゾリン7を製造する方法は以下のとおりである。 A method for producing isoxazoline 7 from silyl ether 6 is as follows.

Figure 2006193529
Figure 2006193529

シリルエーテル6(32.8g,80.9mmol)のジクロロメタン溶液(90mL)に、−78℃で水素化ジイソブチルアルミニウム(DIBAL)(1.0Mのトルエン溶液、88.9mL,88.9mmol)を滴下し、20分撹拌した。反応液に酢酸(20mL)のジクロロメタン溶液を加えた後、室温まで昇温した。酢酸エチル−希塩酸で分液した後、水層を酢酸エチルで抽出した。合致した有機層を希塩酸、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下濃縮した。残留物をエタノール(120mL)に溶解し、酢酸ナトリウム(13.27g,161.7mmol)、ヒドロキシルアミン塩酸塩(8.43g,121.3mmol)を加え、室温で1時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した後、合致した有機層を飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥した後、減圧下濃縮した。残留物をジクロロメタン(404mL)に溶解し、室温下次亜塩素酸ナトリウム水溶液(約5%,190mL)を滴下し、3時間半撹拌した。氷冷下、反応液に亜硫酸ナトリウムを加え、室温でしばらく撹拌した後、有機層を分離した。水層を酢酸エチルで抽出した後、合致した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(5−8%酢酸エチル/n−ヘキサン)で精製することにより、イソキサゾリン7(20.0g,58.7%)を黄色油状物として得た。 Diisobutylaluminum hydride (DIBAL) (1.0 M toluene solution, 88.9 mL, 88.9 mmol) was added dropwise to a dichloromethane solution (90 mL) of silyl ether 6 (32.8 g, 80.9 mmol) at −78 ° C. For 20 minutes. A dichloromethane solution of acetic acid (20 mL) was added to the reaction solution, and then the temperature was raised to room temperature. After liquid separation with ethyl acetate-dilute hydrochloric acid, the aqueous layer was extracted with ethyl acetate. The matched organic layer was washed with dilute hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous magnesium sulfate. Concentrated under reduced pressure. The residue was dissolved in ethanol (120 mL), sodium acetate (13.27 g, 161.7 mmol) and hydroxylamine hydrochloride (8.43 g, 121.3 mmol) were added, and the mixture was stirred at room temperature for 1 hr. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The matched organic layer was washed with saturated brine. After drying over anhydrous sodium sulfate, the mixture was concentrated under reduced pressure. The residue was dissolved in dichloromethane (404 mL), aqueous sodium hypochlorite solution (about 5%, 190 mL) was added dropwise at room temperature, and the mixture was stirred for 3 and a half hours. Under ice-cooling, sodium sulfite was added to the reaction solution and stirred for a while at room temperature, and then the organic layer was separated. The aqueous layer was extracted with ethyl acetate, and the matched organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (5-8% ethyl acetate / n-hexane) to give isoxazoline 7 (20.0 g, 58.7%) as a yellow oil. .

イソキサゾリン7の物性;
〔α〕25 +8.5(c2.06,CHCl);IR(film)3070,2931,2858,1471,1428,1388,1112,1063,846,823,741,704,614cm−1;1HNMR(CDCl,400MHz)7.63(d,J=7.4Hz,4H),7.44(t,J=7.4Hz,2H),7.38(t,J=7.4Hz,4H),4.27(d,J=8.0Hz,1H),3.77(d,J=8.0Hz,1H),3.52(dd,J=9.3,5.4Hz,1H),3.48(dd,J=9.3,5.5Hz,1H),2.67(ddd,J=13.9,4.9,2.2Hz,1H),2.15(td,J=13.9,5.4Hz,1H),2.08(dt,J=13.0,2.4Hz,1H),2.02(m,1H),1.88(m,1H),1.67(dq,J=14.1,7.5Hz,1H),1.49(dq,J=14.1,7.5Hz,1H),1.20(t,J=13.0Hz,1H),1.18(qd,J=13.9,4.9Hz,1H),1.05(s,9H),0.89(t,J=7.5Hz,3H);13CNMR(CDCl,100MHz)162.5,135.5,135.5,133.6,133.5,129.7,129.7,127.6,127.6,79.0,68.0,55.1,39.1,35.7,29.5,26.8,26.4,22.0,19.2,8.3;
Physical properties of isoxazoline 7;
[Α] 25 D +8.5 (c2.06, CHCl 3 ); IR (film) 3070, 2931, 2858, 1471, 1428, 1388, 1112, 1063, 846, 823, 741, 704, 614 cm −1 ; 1HNMR (CDCl 3 , 400 MHz) 7.63 (d, J = 7.4 Hz, 4H), 7.44 (t, J = 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 4H) , 4.27 (d, J = 8.0 Hz, 1H), 3.77 (d, J = 8.0 Hz, 1H), 3.52 (dd, J = 9.3, 5.4 Hz, 1H), 3.48 (dd, J = 9.3, 5.5 Hz, 1H), 2.67 (ddd, J = 13.9, 4.9, 2.2 Hz, 1H), 2.15 (td, J = 13.9, 5.4 Hz, 1H), 2.08 (dt, J = 13.0, 2. Hz, 1H), 2.02 (m, 1H), 1.88 (m, 1H), 1.67 (dq, J = 14.1, 7.5 Hz, 1H), 1.49 (dq, J = 14.1, 7.5 Hz, 1H), 1.20 (t, J = 13.0 Hz, 1H), 1.18 (qd, J = 13.9, 4.9 Hz, 1H), 1.05 (s) , 9H), 0.89 (t, J = 7.5 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) 162.5, 135.5, 135.5, 133.6, 133.5, 129.7 , 129.7, 127.6, 127.6, 79.0, 68.0, 55.1, 39.1, 35.7, 29.5, 26.8, 26.4, 22.0, 19 .2, 8.3;

イソキサゾリン7からヒドロキシケトン8を製造する方法は以下のとおりである。 A method for producing hydroxyketone 8 from isoxazoline 7 is as follows.

Figure 2006193529
Figure 2006193529

イソキサゾリン7(17.4g,41.3mmol)、亜鉛粉末(27.0g,413mmol)の酢酸懸濁液(165mL)を室温下4時間撹拌した。反応液をジクロロメタンで希釈した後、亜鉛粉末をセライトカラムを用いて除去した。反応液に飽和炭酸水素ナトリウム水溶液を加えた後、固体の炭酸水素ナトリウムを加えて中和した。有機層を分離した後、水層をジクロロメタンで抽出した。合致した有機層を水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(10−15%酢酸エチル/n-ヘキサン)で精製することにより、ヒドロキシケトン8(11.6g,66.4%)を淡黄色油状物として得た。 A suspension of isoxazoline 7 (17.4 g, 41.3 mmol) and zinc powder (27.0 g, 413 mmol) in acetic acid (165 mL) was stirred at room temperature for 4 hours. After the reaction solution was diluted with dichloromethane, zinc powder was removed using a celite column. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and then neutralized by adding solid sodium hydrogen carbonate. After separating the organic layer, the aqueous layer was extracted with dichloromethane. The matched organic layer was washed with water and then dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (10-15% ethyl acetate / n-hexane) to give hydroxyketone 8 (11.6 g, 66.4%) as a pale yellow oil. Obtained.

ヒドロキシケトン8の物性;
〔α〕26 +54.4(c1.40,CHCl);IR(film)3489,3070,2931,2858,1699,1471,1427,1389,1191,1112,1056,997,823,741,703,614,506cm−1HNMR(CDCl3,400MHz)7.65(d,J=7.4Hz,4H),7.44(t,J=7.4Hz,2H),7.39(t,J=7.4Hz,4H),3.67(dd,J=11.5,7.3Hz,1H),3.55(dd,J=8.8,4.9Hz,1H),3.51(dd,J=8.8,5.2Hz,1H),3.33(dd,J=11.5,6.8Hz,1H),2.51(td,J=14.6,6.6Hz,0H),2.48(dd,J=7.3,6.8Hz,1H),2.28(ddd,J=14.6,4.6,2.4Hz,1H),2.12(m,2H),1.83(dq,J=15.4,7.6Hz,1H),1.75dq,J=15.0,3.9Hz,1H),1.52(dq,J=15.4,7.6Hz,1H),1.38t,J=15.0Hz,1H),1.32(qd,J=14.6,3.7Hz,1H),1.06(s,9H),0.84(t,J=7.6Hz,3H);13CNMR(CDCl,100MHz)218.5,135.6,135.6,133.7,133.6,129.7,129.7,127.7,127.768.1,65.9,52.6,38.3,34.8,34.4,29.5,26.9,25.4,19.3,7.7;
Physical properties of hydroxyketone 8;
[Α] 26 D +54.4 (c1.40, CHCl 3 ); IR (film) 3489, 3070, 2931, 2858, 1699, 1471, 1427, 1389, 1191, 1112, 1056, 997, 823, 741, 703 , 614, 506 cm −1 ; 1 HNMR (CDCl 3, 400 MHz) 7.65 (d, J = 7.4 Hz, 4H), 7.44 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 7.4 Hz, 4H), 3.67 (dd, J = 11.5, 7.3 Hz, 1H), 3.55 (dd, J = 8.8, 4.9 Hz, 1H), 3.51 (Dd, J = 8.8, 5.2 Hz, 1H), 3.33 (dd, J = 11.5, 6.8 Hz, 1H), 2.51 (td, J = 14.6, 6.6 Hz) , 0H), 2.48 (dd, J = 7.3, 6. Hz, 1H), 2.28 (ddd, J = 14.6, 4.6, 2.4 Hz, 1H), 2.12 (m, 2H), 1.83 (dq, J = 15.4, 7 .6 Hz, 1H), 1.75 dq, J = 15.0, 3.9 Hz, 1H), 1.52 (dq, J = 15.4, 7.6 Hz, 1H), 1.38 t, J = 15. 0 Hz, 1H), 1.32 (qd, J = 14.6, 3.7 Hz, 1H), 1.06 (s, 9H), 0.84 (t, J = 7.6 Hz, 3H); 13 CNMR (CDCl 3 , 100 MHz) 218.5, 135.6, 135.6, 133.7, 133.6, 129.7, 129.7, 127.7, 127.6768, 65.9, 52. 6, 38.3, 34.8, 34.4, 29.5, 26.9, 25.4, 19.3, 7.7;

ヒドロキシケトン8からジオール9製造する方法は以下のとおりである。 The method for producing diol 9 from hydroxyketone 8 is as follows.

Figure 2006193529
Figure 2006193529

ヒドロキシケトン8(10.66g,25.10mmol)、m−クロロ過安息香酸(mCPBA)(17.32g,75.29mmol)の酢酸溶液(62.8mL)を室温下41時間撹拌した。氷冷下反応液にジメチルスルフィド(5.53mL,75.3mmol)を加え20分間撹拌した後、反応液を減圧下濃縮した。残留物を酢酸エチルに溶解し、飽和炭酸水素ナトリウム、続いて飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をメタノール(77mL)に溶解し、炭酸カリウム(3.82g,27.6mmol)を加え、室温で45分間撹拌した。反応液をジエチルエーテルで希釈し、有機層を分離した後、水層を酢酸エチルで抽出した。合致した有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(20−40%酢酸エチル/n−ヘキサン)で精製することにより、ジオール9(9.49g,80.0%)を黄色油状物として得た。 A solution of hydroxyketone 8 (10.66 g, 25.10 mmol) and m-chloroperbenzoic acid (mCPBA) (17.32 g, 75.29 mmol) in acetic acid (62.8 mL) was stirred at room temperature for 41 hours. Dimethyl sulfide (5.53 mL, 75.3 mmol) was added to the reaction solution under ice cooling, and the mixture was stirred for 20 minutes, and then the reaction solution was concentrated under reduced pressure. The residue was dissolved in ethyl acetate, washed with saturated sodium bicarbonate and then with saturated brine, and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was dissolved in methanol (77 mL), potassium carbonate (3.82 g, 27.6 mmol) was added, and the mixture was stirred at room temperature for 45 min. The reaction solution was diluted with diethyl ether, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The matched organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (20-40% ethyl acetate / n-hexane) to give diol 9 (9.49 g, 80.0%) as a yellow oil. .

ジオール9の物性;
〔α〕27 +10.0(c1.50,CHCl);IR(film)3441,3071,2932,2859,1738,1462,1428,1362,1172,1112,1071,823,741,704,614,504cm−1HNMR(CDCl,400MHz)7.67(m,4H),7.43(t,J=6.7Hz,2H),7.40(t,J=6.7Hz,4H),3.64(s,3H),3.57(dd,J=10.0,4.6Hz,1H),3.51(s,1H),3.46(brs,2H),3.42(dd,J=10.0,7.7Hz,0H),2.23(t,J=7.4Hz,2H),2.09(m,1H),1.82(m,1H),1.63−1.48(m,9H),1.06(s,9H),0.88(t,J=7.6Hz,3H);13CNMR(CDCl,100MHz)174.4,135.7,135.6,132.9,132.9,129.9,129.9,127.8,127.8,74.0,68.4,67.5,51.6,38.5,35.2,31.4,30.2,28.1,26.8,19.1,8.1;
Physical properties of diol 9;
[Α] 27 D +10.0 (c1.50, CHCl 3 ); IR (film) 3441, 3071, 2932, 2859, 1738, 1462, 1428, 1362, 1172, 1112, 1071, 823, 741, 704, 614 , 504 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.67 (m, 4H), 7.43 (t, J = 6.7 Hz, 2H), 7.40 (t, J = 6.7 Hz, 4H) ), 3.64 (s, 3H), 3.57 (dd, J = 10.0, 4.6 Hz, 1H), 3.51 (s, 1H), 3.46 (brs, 2H), 3. 42 (dd, J = 10.0, 7.7 Hz, 0H), 2.23 (t, J = 7.4 Hz, 2H), 2.09 (m, 1H), 1.82 (m, 1H), 1.63-1.48 (m, 9H), 1.06 (s, 9 H), 0.88 (t, J = 7.6 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) 174.4, 135.7, 135.6, 132.9, 132.9, 129.9, 129.9, 127.8, 127.8, 74.0, 68.4, 67.5, 51.6, 38.5, 35.2, 31.4, 30.2, 28.1, 26. 8, 19.1, 8.1;

ジオール9から目的のシリルエーテル10を製造する方法は以下のとおりである。 A method for producing the target silyl ether 10 from the diol 9 is as follows.

Figure 2006193529
Figure 2006193529

ジオール9(5.532g,11.70mmol)、イミダゾール(2.39g,35.11mmol)のジメチルホルムアミド溶液(23.4mL)に、室温下塩化トリエチルシラン(TESCl)(2.35ml,14.0mmol)を加え、1時間撹拌した。原料の消失を確認した後、反応液に塩化トリメチルシラン(1.78ml,14.0mmol)を加え、更に40分間撹拌した。反応液をジエチルエーテル?水で分液した後、水層をジエチルエーテルで抽出した。合致した有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(0−2%酢酸エチル/n−ヘキサン)で精製することにより、シリルエーテル10(7.13g,92.4%)を無色油状物として得た。 Diethyl 9 (5.532 g, 11.70 mmol), imidazole (2.39 g, 35.11 mmol) in dimethylformamide solution (23.4 mL), and triethylsilane chloride (TESCl) (2.35 ml, 14.0 mmol) at room temperature. Was added and stirred for 1 hour. After confirming disappearance of the raw materials, trimethylsilane chloride (1.78 ml, 14.0 mmol) was added to the reaction solution, and the mixture was further stirred for 40 minutes. The reaction mixture was partitioned between diethyl ether and water, and the aqueous layer was extracted with diethyl ether. The matched organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (0-2% ethyl acetate / n-hexane) to give silyl ether 10 (7.13 g, 92.4%) as a colorless oil. It was.

シリルエーテル10の物性;
〔α〕28 −3.48(c1.04,CHCl);IR(film)2955,2878,1742,1461,1430,1249,1168,1109,1011,839,741,704,612cm−1HNMR(CDCl,400MHz)7.66(d,J=6.7Hz,4H),7.41(t,J=6.7Hz,2H),7.36(t,J=6.7Hz,4H),3.65(s,3H),3.63(dd,J=10.0,4.4Hz,1H),3.47(dd,J=10.0,6.1Hz,1H),3.41(d,J=9.8Hz,1H),3.37(d,J=9.8Hz,1H),2.27(dd,J=9.0,7.3Hz,1H),1.81(m,3H),1.55(m,2H),1.41(dq,J=13.9,7.4Hz,1H),1.25(dd,J=14.4,4.9Hz,1H),1.05(s,9H),0.95(t,J=7.9Hz,9H),0.77(t,J=7.4Hz,3H),0.59(q,J=7.9Hz,6H),0.01(s,9H);13CNMR(CDCl,100MHz)174.6,135.7,133.9,129.5,127.6,79.2,68.0,67.0,51.4,36.9,35.5,31.7,31.6,29.9,27.8,26.9,8.3,6.9,4.4,2.6;
Physical properties of silyl ether 10;
[Α] 28 D -3.48 (c1.04, CHCl 3 ); IR (film) 2955, 2878, 1742, 1461, 1430, 1249, 1168, 1109, 1011, 839, 741, 704, 612 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.66 (d, J = 6.7 Hz, 4H), 7.41 (t, J = 6.7 Hz, 2H), 7.36 (t, J = 6.7 Hz, 4H), 3.65 (s, 3H), 3.63 (dd, J = 10.0, 4.4 Hz, 1H), 3.47 (dd, J = 10.0, 6.1 Hz, 1H), 3.41 (d, J = 9.8 Hz, 1H), 3.37 (d, J = 9.8 Hz, 1H), 2.27 (dd, J = 9.0, 7.3 Hz, 1H), 1 .81 (m, 3H), 1.55 (m, 2H), 1.41 (dq, J = 1) 3.9, 7.4 Hz, 1 H), 1.25 (dd, J = 14.4, 4.9 Hz, 1 H), 1.05 (s, 9 H), 0.95 (t, J = 7.9 Hz) , 9H), 0.77 (t, J = 7.4 Hz, 3H), 0.59 (q, J = 7.9 Hz, 6H), 0.01 (s, 9H); 13 CNMR (CDCl 3 , 100 MHz) ) 174.6, 135.7, 133.9, 129.5, 127.6, 79.2, 68.0, 67.0, 51.4, 36.9, 35.5, 31.7, 31 6, 29.9, 27.8, 26.9, 8.3, 6.9, 4.4, 2.6;

II、一般式Bの化合物に含まれる前記I、で合成された化合物を原料として、一般式C、DおよびAに含まれる化合物の合成。
実施例1
a,前記シリルエーテル10と化合物1において、R〜Rの全てがHである化合物に相当するイソチオシアナート11から一般式Cに含まれるチオアニリド12の合成。合成工程は以下のとおりである。
II. Synthesis of compounds contained in general formulas C, D and A using as a raw material the compounds synthesized in I, contained in the compounds of general formula B.
Example 1
a. Synthesis of thioanilide 12 contained in general formula C from isothiocyanate 11 corresponding to a compound in which all of R 1 to R 4 are H in silyl ether 10 and compound 1. The synthesis process is as follows.

Figure 2006193529
Figure 2006193529

ジイソプロピルアミン(3.17mL,22.5mmol)のテトラヒドロフラン溶液(THF)(40.5ml)に、氷冷下n−ブチルリチウム(1.46Mのヘキサン溶液、13.5mL、19.7mmol)を滴下し、10分撹拌後−78℃に冷却した。反応液にシリルエーテル10(9.269g,14.06mmol)のテトラヒドロフラン溶液(40.5mL)を滴下し、同温で1時間撹拌した。反応液にイソチオシアナート11(3.872g,14.06mmol)のテトラヒドロフラン溶液(15mL)を滴下した。同温で50分間、0℃に昇温し15分間撹拌し、ジエチルエーテルで希釈後、飽和塩化アンモニウム水溶液を加えた。有機層を分離後、水層を酢酸エチルで抽出した。合致した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(5−10%酢酸エチル/n−ヘキサン)で精製することにより、チオアニリド12(9.95g,75.7%)を黄色油状物として得た。 To a tetrahydrofuran solution (THF) (40.5 ml) of diisopropylamine (3.17 mL, 22.5 mmol), n-butyllithium (1.46 M hexane solution, 13.5 mL, 19.7 mmol) was added dropwise under ice cooling. After stirring for 10 minutes, the mixture was cooled to -78 ° C. A tetrahydrofuran solution (40.5 mL) of silyl ether 10 (9.269 g, 14.06 mmol) was added dropwise to the reaction solution, and the mixture was stirred at the same temperature for 1 hour. A tetrahydrofuran solution (15 mL) of isothiocyanate 11 (3.872 g, 14.06 mmol) was added dropwise to the reaction solution. The temperature was raised to 0 ° C. for 50 minutes at the same temperature, the mixture was stirred for 15 minutes, diluted with diethyl ether, and saturated aqueous ammonium chloride solution was added. After separating the organic layer, the aqueous layer was extracted with ethyl acetate. The matched organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (5-10% ethyl acetate / n-hexane) to give thioanilide 12 (9.95 g, 75.7%) as a yellow oil. .

チオアニリド12の物性;
HNMR(CDCl,400MHz)9.78(s,(1/4)1H),9.74(s,(1/4)1H),9.63(s,(1/4)1H),9.60(s,(1/4)1H),7.83(d,J=7.8Hz,1H),7.67(m、5H),7.38(m,8H),6.50(d,J=11.5Hz,1H)6.00(ddd,J=11.5,6.4,3.9Hz,1H),4.60(t,J=3.4Hz,1H),3.43(ddd,J=12.7,5.8,1.9Hz,1H),4.16(m,(1/2)1H),4.09(ddd,J=12.7,7.1,1.6Hz,1H),4.03(m,(1/2)1H),3.81(m,2H),3.74(s,3H),3.57(m,1H),3.49−3.40(m,3H),2.24(m,2H),1.93(m,(1/2)1H),1.82(m,1H+(1/2)1H),1.68(m,2H),1.53(m,4H),1.44−1.20(m,3H),1.07(s,(1/2)9H),1.05(s,(1/2)9H),0.94(t,J=7.9Hz,9H),0.79(t,J=7.3Hz,(1/2)3H),0.77(t,J=7.3Hz,(1/2)3H),0.59(q,J=7.9Hz,(1/2)6H),0.58(q,J=7.9Hz,(1/2)6H),0.01(s,(1/2)9H),0.00(s,(1/2)9H);
Physical properties of thioanilide 12;
1 HNMR (CDCl 3 , 400 MHz) 9.78 (s, (1/4) 1H), 9.74 (s, (1/4) 1H), 9.63 (s, (1/4) 1H), 9.60 (s, (1/4) 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.67 (m, 5H), 7.38 (m, 8H), 6.50 (D, J = 11.5 Hz, 1H) 6.00 (ddd, J = 11.5, 6.4, 3.9 Hz, 1H), 4.60 (t, J = 3.4 Hz, 1H), 3 .43 (ddd, J = 12.7, 5.8, 1.9 Hz, 1H), 4.16 (m, (1/2) 1H), 4.09 (ddd, J = 12.7, 7. 1, 1.6 Hz, 1 H), 4.03 (m, (1/2) 1 H), 3.81 (m, 2 H), 3.74 (s, 3 H), 3.57 (m, 1 H), 3.49-3.40 (m, 3H) 2.24 (m, 2H), 1.93 (m, (1/2) 1H), 1.82 (m, 1H + (1/2) 1H), 1.68 (m, 2H), 1.53 (M, 4H), 1.44-1.20 (m, 3H), 1.07 (s, (1/2) 9H), 1.05 (s, (1/2) 9H), 0.94 (T, J = 7.9 Hz, 9H), 0.79 (t, J = 7.3 Hz, (1/2) 3H), 0.77 (t, J = 7.3 Hz, (1/2) 3H ), 0.59 (q, J = 7.9 Hz, (1/2) 6H), 0.58 (q, J = 7.9 Hz, (1/2) 6H), 0.01 (s, (1 / 2) 9H), 0.00 (s, (1/2) 9H);

チオアニリド12をラジカル環化反応させ前記化合物2に含まれるインドール化合物13を得る工程は以下のとおりである。 The step of obtaining indole compound 13 contained in compound 2 by radical cyclization reaction of thioanilide 12 is as follows.

Figure 2006193529
Figure 2006193529

チオアニリド12(8.628g,9.233mmol)、水素化トリブチルスズ(4.97ml,18.47mmol)のテトラヒドロフラン溶液(369ml)に、室温下トリエチルボラン(1.0Mのヘキサン溶液,1.85ml,1.85mmol)を滴下し、1時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで3回抽出した。合致した有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(2−8%酢酸エチル/n−ヘキサン)で精製することにより、インドール13(5.51g,66.1%)を黄色油状物として得た。 To a tetrahydrofuran solution (369 ml) of thioanilide 12 (8.628 g, 9.233 mmol) and tributyltin hydride (4.97 ml, 18.47 mmol) at room temperature, triethylborane (1.0 M hexane solution, 1.85 ml, 1. 85 mmol) was added dropwise and stirred for 1 hour. Saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The matched organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (2-8% ethyl acetate / n-hexane) to give indole 13 (5.51 g, 66.1%) as a yellow oil. .

インドール13の物性;
HNMR(CDCl,400MHz)8.68(s,(1/4)1H),8.65(s,(1/4)1H),8.39(s,(1/2)1H),7.61(m,6H),7.37(m,6H),7.12(m1H)、7.06(m,1H),4.54(m,(1/2)1H),4.51(m,(1/2)1H),4.12(m,1H),3.96(m,1H),3.83(m,1H),3.66(s,(1/2)3H),3.63(s,(1/2)3H),3.50(m,3H),3.39(m,3H),3.31(m,1H),2.96(m,2H),2.85(m,1H),2.33(m,1H),2.23(m,1H),2.13(m,1H),1.79(m,2H),1.60−1.37(m,4H),1.27(m,2H),1.06(s,(1/2)9H),1.05(s,(1/2)9H),0.99−0.81(m,9H),0.74(t,J=7.2HzH(1/2)3H),0.67(t,J=7.2Hz,(1/4)3H),0.66(t,J=7.2Hz,(1/4)3H),0.56(m,6H),0.11(s,(1/4)9H),0.10(s,(1/4)9H),0.00(s,(1/4)9H),−0.01(s、(1/4)9H);
Physical properties of indole 13;
1 H NMR (CDCl 3 , 400 MHz) 8.68 (s, (1/4) 1 H), 8.65 (s, (1/4) 1 H), 8.39 (s, (1/2) 1 H), 7.61 (m, 6H), 7.37 (m, 6H), 7.12 (m1H), 7.06 (m, 1H), 4.54 (m, (1/2) 1H), 4. 51 (m, (1/2) 1H), 4.12 (m, 1H), 3.96 (m, 1H), 3.83 (m, 1H), 3.66 (s, (1/2) 3H), 3.63 (s, (1/2) 3H), 3.50 (m, 3H), 3.39 (m, 3H), 3.31 (m, 1H), 2.96 (m, 2H), 2.85 (m, 1H), 2.33 (m, 1H), 2.23 (m, 1H), 2.13 (m, 1H), 1.79 (m, 2H), 1. 60-1.37 (m, 4H), 1.27 (m, 2H) 1.06 (s, (1/2) 9H), 1.05 (s, (1/2) 9H), 0.99-0.81 (m, 9H), 0.74 (t, J = 7 .2 HzH (1/2) 3H), 0.67 (t, J = 7.2 Hz, (1/4) 3H), 0.66 (t, J = 7.2 Hz, (1/4) 3H), 0.56 (m, 6H), 0.11 (s, (1/4) 9H), 0.10 (s, (1/4) 9H), 0.00 (s, (1/4) 9H) , -0.01 (s, (1/4) 9H);

インドール13から保護基を入れた化合物14は以下の工程で得られる。 Compound 14 containing a protecting group from indole 13 is obtained by the following steps.

Figure 2006193529
Figure 2006193529

インドール13(6.055g,6.709mmol)、トリエチルアミン(1.40mL,10.1mmol)のジクロロメタン溶液(16.8mL)にBoc2O(2.93g,13.4mmol)、4−ジメチルアミノピリジン(82mg,0.67mmol)を加え、室温で終夜撹拌した。反応液に水を加え有機層を分離後、水層を酢酸エチルで抽出した。合致した有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(3−8%酢酸エチル/n−ヘキサン)で精製することにより、シリルエーテル化合物14(5.83g,86.7%)を黄色油状物として得た。 Indole 13 (6.055 g, 6.709 mmol), triethylamine (1.40 mL, 10.1 mmol) in dichloromethane (16.8 mL) and Boc2O (2.93 g, 13.4 mmol), 4-dimethylaminopyridine (82 mg, 0.67 mmol) was added and stirred at room temperature overnight. Water was added to the reaction solution, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The matched organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (3-8% ethyl acetate / n-hexane) to give silyl ether compound 14 (5.83 g, 86.7%) as a yellow oil. Obtained.

シリルエーテル化合物14の物性:
HNMR(CDCl,400MHz)7.95(m,1H),7.67(m,3H),7.53(t,J=8.3Hz,2H),7.37(m,6H),7.21(m,2H),4.57(m,1H),4.51(m,1H),4.23(m,(1/2)1H),4.12(m,(1/2)1H),3.92(m,(1/2)1H),3.85(m,(1/2)1H),3.82(m,1H),3.70(m,1H),3.60(s,(1/2)3H),3.59(s,(1/4)3H),3.58(s,(1/4)3H),3.57(m,2H),3.43(m,3H),3.19(m,2H),2.92(m,2H),2.82(m,2H),2.53(m,(1/2)1H),2.12(m,(1/2)1H),1.86(m,1H),1.64(s,(1/4)9H),1.60(s,(1/4)9H),1.57(s,(1/2)9H),1.72−1.40(m,4H),1.28(m,2H),1.27(brs,(1/2)9H),1.06(s,(1/2)9H),0.93(t,J=8.0Hz,(1/4)9H),0.89(t,J=8.0Hz,(1/4)9H),0.85(t,J=8.0Hz,(1/4)9H),0.84(t,J=8.0Hz,(1/4)9H),0.74(t,J=7.2Hz,(1/2)3H),0.65(t,J=7.2Hz,(1/2)3H),0.56(q,J=8.0Hz,(1/2)6H),0.45(q,J=8.0Hz,(1/4)6H),0.44(q,J=8.0Hz,(1/4)6H),−0.03(s,(1/2)9H),−0.10(s,(1/4)9H),−0.11(s,(1/4)9H);
Physical properties of silyl ether compound 14:
1 HNMR (CDCl 3 , 400 MHz) 7.95 (m, 1H), 7.67 (m, 3H), 7.53 (t, J = 8.3 Hz, 2H), 7.37 (m, 6H), 7.21 (m, 2H), 4.57 (m, 1H), 4.51 (m, 1H), 4.23 (m, (1/2) 1H), 4.12 (m, (1 / 2) 1H), 3.92 (m, (1/2) 1H), 3.85 (m, (1/2) 1H), 3.82 (m, 1H), 3.70 (m, 1H) , 3.60 (s, (1/2) 3H), 3.59 (s, (1/4) 3H), 3.58 (s, (1/4) 3H), 3.57 (m, 2H) ), 3.43 (m, 3H), 3.19 (m, 2H), 2.92 (m, 2H), 2.82 (m, 2H), 2.53 (m, (1/2) 1H ), 2.12 (m, (1/2) 1H), 1.86 (m, H), 1.64 (s, (1/4) 9H), 1.60 (s, (1/4) 9H), 1.57 (s, (1/2) 9H), 1.72-1 .40 (m, 4H), 1.28 (m, 2H), 1.27 (brs, (1/2) 9H), 1.06 (s, (1/2) 9H), 0.93 (t , J = 8.0 Hz, (1/4) 9H), 0.89 (t, J = 8.0 Hz, (1/4) 9H), 0.85 (t, J = 8.0 Hz, (1 / 4) 9H), 0.84 (t, J = 8.0 Hz, (1/4) 9H), 0.74 (t, J = 7.2 Hz, (1/2) 3H), 0.65 (t , J = 7.2 Hz, (1/2) 3H), 0.56 (q, J = 8.0 Hz, (1/2) 6H), 0.45 (q, J = 8.0 Hz, (1 / 4) 6H), 0.44 (q, J = 8.0 Hz, (1/4) 6H), -0.0 (S, (1/2) 9H), - 0.10 (s, (1/4) 9H), - 0.11 (s, (1/4) 9H);

シリルエーテル化合物14から前記化合物3に含まれるトリオール化合物15を製造する工程は以下のとおりである。 The process for producing the triol compound 15 contained in the compound 3 from the silyl ether compound 14 is as follows.

Figure 2006193529
Figure 2006193529

シリルエーテル化合物14(184mg,0.184mmol)の酢酸−水(95:5)溶液(7.4mL)を、80度で30分間撹拌した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(20−80%酢酸エチル/n−ヘキサン)で精製することにより、トリオール15(101mg,75%)を淡黄色油状物として得た。異性体を薄層シリカゲルクロマトグラフィーにて分離し、機器データを測定した。 A solution of silyl ether compound 14 (184 mg, 0.184 mmol) in acetic acid-water (95: 5) (7.4 mL) was stirred at 80 degrees for 30 minutes. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (20-80% ethyl acetate / n-hexane) to give triol 15 (101 mg, 75%) as a pale yellow oil. The isomers were separated by thin layer silica gel chromatography and instrument data were measured.

トリオール15の物性;
I、低極性異性体〔α〕26 +78(c0.57,CHCl);IR(film)3423,2934,2860,1731,1457,1431,1366,1325,1231,1163,1131,1113,1047,910,823,738,705,614cm−1HNMR(CDCl,400MHz)7.96(d,J=7.8Hz,1H),7.65(d,J=7.8Hz,2H),7.62(d,J=7.8Hz,2H),7.44(m,3H),7.37(m,3H),7.30(td,J=7.8,1.2Hz,1H),7.23(dd,J=7.8,1.2Hz,1H),4.05(t,J=6.3Hz,1H),3.74(m,1H),3.68(m,1H),3.61(s,3H),3.60(dd,J=9.9,4.9Hz,1H),3.36(dd,J=9.9,7.9Hz,1H),3.28(s,2H),2.82(dt,J=14.4,4.3Hz,1H),2.67(ddd,J=14.4,9.0,5.6Hz,1H),2.42(dt,J=13.7,6.3Hz,1H),1.87(m,1H),1.79(ddd,J=13.7,7.3,5.6Hz,1H),1.63(s,9H),1.62(dd,J=15.0,5.9Hz,1H),1.50(dd,J=15.0,4.3Hz,1H),1.34(q,J=7.6Hz,2H),1.03(s,9H),0.75(t,J=7.6Hz,3H);13CNMR(CDCl,100MHz)173.2,150.4,135.8,135.7,135.6,135.5,132.9,132.8,129.9,129.8,129.1,127.8,127.8,124.6,122.7,118.6,117.8,115.9,84.4,73.8,68.6,67.2,61.7,52.2,41.3,38.6,34.1,34.0,30.0,28.2,27.7,26.8,19.1,7.8;
Physical properties of Triol 15;
I, low polar isomer [α] 26 D +78 (c 0.57, CHCl 3 ); IR (film) 3423, 2934, 2860, 1731, 1457, 1431, 1366, 1325, 1231, 1163, 1131, 1113, 1047 , 910, 823, 738, 705, 614 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.96 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.8 Hz, 2H) 7.62 (d, J = 7.8 Hz, 2H), 7.44 (m, 3H), 7.37 (m, 3H), 7.30 (td, J = 7.8, 1.2 Hz, 1H), 7.23 (dd, J = 7.8, 1.2 Hz, 1H), 4.05 (t, J = 6.3 Hz, 1H), 3.74 (m, 1H), 3.68 ( m, 1H), 3.61 (s, 3H), 3.60 (Dd, J = 9.9, 4.9 Hz, 1H), 3.36 (dd, J = 9.9, 7.9 Hz, 1H), 3.28 (s, 2H), 2.82 (dt, J = 14.4, 4.3 Hz, 1H), 2.67 (ddd, J = 14.4, 9.0, 5.6 Hz, 1H), 2.42 (dt, J = 13.7, 6. 3 Hz, 1 H), 1.87 (m, 1 H), 1.79 (ddd, J = 13.7, 7.3, 5.6 Hz, 1 H), 1.63 (s, 9 H), 1.62 ( dd, J = 15.0, 5.9 Hz, 1H), 1.50 (dd, J = 15.0, 4.3 Hz, 1H), 1.34 (q, J = 7.6 Hz, 2H), 1 .03 (s, 9H), 0.75 (t, J = 7.6 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) 173.2, 150.4, 135.8, 135.7, 13 5.6, 135.5, 132.9, 132.8, 129.9, 129.8, 129.1, 127.8, 127.8, 124.6, 122.7, 118.6, 117. 8, 115.9, 84.4, 73.8, 68.6, 67.2, 61.7, 52.2, 41.3, 38.6, 34.1, 34.0, 30.0, 28.2, 27.7, 26.8, 19.1, 7.8;

II、高極性異性体
〔α〕26.5 −59(c0.47,CHCl);IR(film)3430,2934,2863,1728,1458,1430,1366,1326,1230,1163,1131,1116,1048,910,738,705,614cm−1HNMR(CDCl,400MHz)7.93(d,J=8.0Hz,1H),7.61(d,J=8.1Hz,2H),7.58(d,J=8.1Hz,2H),7.42(t,J=8.0Hz,1H),7.39(t,J=8.1Hz,2H),7.32(t,J=8.1Hz,4H),7.26(dd,J=8.0,1.0Hz,1H),7.23(td,J=8.0,1.0Hz,1H),3.96(brs,1H),3.66(m,2H),3.63(s,3H),3.55(dd,J=10.2,4.2Hz,1H),3.51(d,J=11.0Hz,1H),3.47(d,J=11.0Hz,1H),3.37(dd,J=10.2,8.4Hz,1H),2.74(dt,J=14.4,4.7Hz,1H),2.58(ddd,J=14.4,8.3,6.4Hz,1H),2.47(ddd,J=14.7,6.8,5.1Hz,1H),1.98(m,1H),1.68(dd,J=14.9,5.9Hz,1H),1.61(dd,J=14.9,7.1Hz,1H),1.60(m,2H),1.60(s,9H),1.45(ddd,J=14.7,7.6,4.9Hz,1H),0.98(s,9H),0.91(t,J=7.4Hz,3H);13CNMR(CDCl,100MHz)173.5,150.3,135.8,135.6,135.6,135.6,132.9,132.8,129.8,129.8,129.2,127.8,127.7,124.5,122.7,118.6,116.9,115.9,84.4,74.2,68.9,67.6,61.8,52.3,42.0,39.2,35.6,34.9,30.2,28.1,27.7,26.7,19.0,8.2;
II, highly polar isomer [α] 26.5 D- 59 (c0.47, CHCl 3 ); IR (film) 3430, 2934, 2863, 1728, 1458, 1430, 1366, 1326, 1230, 1163, 1131 1116, 1048, 910, 738, 705, 614 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.93 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H) ), 7.58 (d, J = 8.1 Hz, 2H), 7.42 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 8.1 Hz, 2H), 7.32 (T, J = 8.1 Hz, 4H), 7.26 (dd, J = 8.0, 1.0 Hz, 1H), 7.23 (td, J = 8.0, 1.0 Hz, 1H), 3.96 (brs, 1H), 3.66 (m, 2H) 3.63 (s, 3H), 3.55 (dd, J = 10.2, 4.2 Hz, 1H), 3.51 (d, J = 11.0 Hz, 1H), 3.47 (d, J = 11.0 Hz, 1 H), 3.37 (dd, J = 10.2, 8.4 Hz, 1 H), 2.74 (dt, J = 14.4, 4.7 Hz, 1 H), 2.58 ( ddd, J = 14.4, 8.3, 6.4 Hz, 1H), 2.47 (ddd, J = 14.7, 6.8, 5.1 Hz, 1H), 1.98 (m, 1H) 1.68 (dd, J = 14.9, 5.9 Hz, 1H), 1.61 (dd, J = 14.9, 7.1 Hz, 1H), 1.60 (m, 2H), 1. 60 (s, 9H), 1.45 (ddd, J = 14.7, 7.6, 4.9 Hz, 1H), 0.98 (s, 9H), 0.91 (t, J = 7.4 Hz) , 3H); 13 C NMR (CDCl 3 , 100 MHz) 173.5, 150.3, 135.8, 135.6, 135.6, 135.6, 132.9, 132.8, 129.8, 129.8, 129.2 , 127.8, 127.7, 124.5, 122.7, 118.6, 116.9, 115.9, 84.4, 74.2, 68.9, 67.6, 61.8, 52 3, 42.0, 39.2, 35.6, 34.9, 30.2, 28.1, 27.7, 26.7, 19.0, 8.2;

トリオール化合物15から上記トシラート化合物16を製造する工程は以下のとおりである。 The process for producing the tosylate compound 16 from the triol compound 15 is as follows.

Figure 2006193529
Figure 2006193529

トリオール15(148mg,0.202mmol)、トリエチルアミン(84μL,0.606mmol)、ジブチルスズオキシド(15mg,0.061mmol)のジクロロメタン懸濁液(2mL)にp−トルエンスルホン酸塩化物(40mg,0.212mmol)を加え、室温下20時間撹拌した。固体をセライトカラムを用いて除去した後、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィー(25-40%酢酸エチル/n−ヘキサン)で精製することにより、トシラート16(149mg,83.2%)を淡黄色油状物として得た。異性体を薄層シリカゲルクロマトグラフィーにより分離し、機器データを測定した。 P-Toluenesulfonic acid chloride (40 mg, 0.212 mmol) was added to a suspension of triol 15 (148 mg, 0.202 mmol), triethylamine (84 μL, 0.606 mmol), dibutyltin oxide (15 mg, 0.061 mmol) in dichloromethane (2 mL). ) And stirred at room temperature for 20 hours. The solid was removed using a celite column and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (25-40% ethyl acetate / n-hexane) to give tosylate 16 (149 mg, 83.2%) as a pale yellow oil. The isomers were separated by thin layer silica gel chromatography and instrument data was measured.

トシラート16の物性;
I、低極性異性体〔α〕24 +73(c0.41,CHCl);IR(film)3543,3397,2934,1731,1597,1457,1431,1364,1325,1253,1232,1175,1130,1113,1044,973,911,842,821,740,705,667,615,555cm-1;1HNMR(CDCl3,400MHz)7.96(d,J=8.3Hz,1H),7.68(d,J=8.1Hz,2H),7.50(m,5H),7.39(m,2H),7.32(td,J=7.3,1.2Hz,1H),7.29(t,J=7.3Hz,4H),7.26(dd,J=7.3,1.2Hz,1H),7.23(d,J=8.1Hz,2H),3.96(brs,1H),3.93(d,J=9.2Hz,1H),3.79(d,J=9.2Hz,1H),3.69(m,2H),3.63(s,3H),3.47(dd,J=10.3,3.8Hz,1H),3.33(dd,J=10.3,8.3Hz,1H),2.90(dt,J=14.4,4.5Hz,1H),2.65(ddd,J=14.4,9.0,6.1Hz,1H),2.41(ddd,J=15.9,6.1,4.6Hz,1H),2.37(s,2H),1.83(m,1H),1.69(dd,J=14.9,4.4Hz,1H),1.61(m,1H),1.58(s,9H),1.51(m,1H),1.00(m,2H),0.91(s,9H),0.79(t,J=7.6Hz,3H);13CNMR(CDCl,100MHz)173.2,150.3,144.7,135.7,135.5,135.5,135.4,132.6,132.5,132.5,129.9,129.8,129.8,129.3,128.0,127.8,127.8,124.5,122.7,118.8,117.5,116.0,84.4,73.1,72.4,68.9,61.8,52.3,41.8,40.2,35.3,34.7,30.5,28.1,27.8,26.7,21.6,19.0,7.5;
Physical properties of tosylate 16;
I, low polar isomer [α] 24 D +73 (c0.41, CHCl 3 ); IR (film) 3543, 3397, 2934, 1731, 1597, 1457, 1431, 1364, 1325, 1253, 1232, 1175, 1130 , 1113, 1044, 973, 911, 842, 821, 740, 705, 667, 615, 555 cm −1; 1H NMR (CDCl 3, 400 MHz) 7.96 (d, J = 8.3 Hz, 1H), 7.68 ( d, J = 8.1 Hz, 2H), 7.50 (m, 5H), 7.39 (m, 2H), 7.32 (td, J = 7.3, 1.2 Hz, 1H), 7. 29 (t, J = 7.3 Hz, 4H), 7.26 (dd, J = 7.3, 1.2 Hz, 1H), 7.23 (d, J = 8.1 Hz, 2H), 3.96 (Brs, 1H), 3. 3 (d, J = 9.2 Hz, 1H), 3.79 (d, J = 9.2 Hz, 1H), 3.69 (m, 2H), 3.63 (s, 3H), 3.47 ( dd, J = 10.3, 3.8 Hz, 1H), 3.33 (dd, J = 10.3, 8.3 Hz, 1H), 2.90 (dt, J = 14.4, 4.5 Hz, 1H), 2.65 (ddd, J = 14.4, 9.0, 6.1 Hz, 1H), 2.41 (ddd, J = 15.9, 6.1, 4.6 Hz, 1H), 2 .37 (s, 2H), 1.83 (m, 1H), 1.69 (dd, J = 14.9, 4.4 Hz, 1H), 1.61 (m, 1H), 1.58 (s , 9H), 1.51 (m, 1H), 1.00 (m, 2H), 0.91 (s, 9H), 0.79 (t, J = 7.6 Hz, 3H); 13 CNMR (CDCl 3, 100MH ) 173.2, 150.3, 144.7, 135.7, 135.5, 135.5, 135.4, 132.6, 132.5, 132.5, 129.9, 129.8, 129 .8, 129.3, 128.0, 127.8, 127.8, 124.5, 122.7, 118.8, 117.5, 116.0, 84.4, 73.1, 72.4 , 68.9, 61.8, 52.3, 41.8, 40.2, 35.3, 34.7, 30.5, 28.1, 27.8, 26.7, 21.6, 19 0.0, 7.5;

II、高極性異性体
〔α〕25 −20(c0.57,CHCl);IR(film)3416,2934,1729,1597,1457,1431,1364,1325,1254,1231,1175,1131,1112,1045,974,912,841,821,739,705,667,614,556,508cm−1HNMR(CDCl,400MHz)7.96(d,J=7.6Hz,1H),7.68(d,J=8.3Hz,2H),7.61(m,4H),7.47(t,J=7.6Hz,1H),7.43(m,2H),7.37(m,4H),7.29(td,J=7.6,1.2Hz,1H),7.26(d,J=8.3Hz,2H),7.23(dd,J=7.6,1.2Hz,1H),3.98(t,J=5.5Hz,1H),3.82(d,J=9.3Hz,1H),3.74(m,2H),3.64(d,J=9.3Hz,1H),3.63(dd,J=10.0,2.3Hz,1H),3.61(s,3H),3.33(dd,J=10.0,8.3Hz,1H),2.92(dt,J=14.2,5.2Hz,1H),2.72(dt,J=14.2,8.0Hz,1H),2.41(s,2H),2.40(m,1H),1.98(m,1H),1.65(m,1H),1.61(s,9H),1.58(m,2H),1.37(dq,J=14.4,7.4Hz,1H),1.31(dq,J=14.4,7.4Hz,1H),1.00(s,9H),0.68(t,J=7.4Hz,3H);13CNMR(CDCl,100MHz)172.9,150.3,144.9,135.8,135.7,135.6,135.6,132.5,132.5,132.5,132.4,130.0,129.9,129.3,128.0,127.9,127.8,124.4,122.6,118.6,117.4,116.0,84.3,72.9,72.0,68.8,61.8,52.1,41.2,39.4,34.5,34.2,30.5,28.1,28.0,26.8,21.6,19.1,7.3;
II, highly polar isomer [α] 25 D- 20 (c 0.57, CHCl 3 ); IR (film) 3416, 2934, 1729, 1597, 1457, 1431, 1364, 1325, 1254, 1231, 1175, 1131 1112, 1045, 974, 912, 841, 821, 739, 705, 667, 614, 556, 508 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.96 (d, J = 7.6 Hz, 1H), 7 .68 (d, J = 8.3 Hz, 2H), 7.61 (m, 4H), 7.47 (t, J = 7.6 Hz, 1H), 7.43 (m, 2H), 7.37 (M, 4H), 7.29 (td, J = 7.6, 1.2 Hz, 1H), 7.26 (d, J = 8.3 Hz, 2H), 7.23 (dd, J = 7. 6, 1.2 Hz, 1 H), 3 98 (t, J = 5.5 Hz, 1H), 3.82 (d, J = 9.3 Hz, 1H), 3.74 (m, 2H), 3.64 (d, J = 9.3 Hz, 1H) ), 3.63 (dd, J = 10.0, 2.3 Hz, 1H), 3.61 (s, 3H), 3.33 (dd, J = 10.0, 8.3 Hz, 1H), 2 .92 (dt, J = 14.2, 5.2 Hz, 1H), 2.72 (dt, J = 14.2, 8.0 Hz, 1H), 2.41 (s, 2H), 2.40 ( m, 1H), 1.98 (m, 1H), 1.65 (m, 1H), 1.61 (s, 9H), 1.58 (m, 2H), 1.37 (dq, J = 14) .4, 7.4 Hz, 1 H), 1.31 (dq, J = 14.4, 7.4 Hz, 1 H), 1.00 (s, 9 H), 0.68 (t, J = 7.4 Hz, 3H); 13 C NMR (CD Cl 3 , 100 MHz) 172.9, 150.3, 144.9, 135.8, 135.7, 135.6, 135.6, 132.5, 132.5, 132.5, 132.4, 130 0.0, 129.9, 129.3, 128.0, 127.9, 127.8, 124.4, 122.6, 118.6, 117.4, 116.0, 84.3, 72.9 72.0, 68.8, 61.8, 52.1, 41.2, 39.4, 34.5, 34.2, 30.5, 28.1, 28.0, 26.8, 21 .6, 19.1, 7.3;

トシラート16から前記化合物4に含まれるエポキシド17を製造する工程は以下のとおりである。 The process for producing the epoxide 17 contained in the compound 4 from the tosylate 16 is as follows.

Figure 2006193529
Figure 2006193529

トシラート16(238mg,0.269mmol)、炭酸水素ナトリウム(113mg,1.343mmol)のジメチルホルムアミド懸濁液(2.7mL)を90℃で2時間半撹拌した。反応液に飽和炭酸ナトリウム水溶液を加え、ジエチルエーテルで3回抽出した。合致した有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(25−40%酢酸エチル/n−ヘキサン)で精製することにより、エポキシド17(176mg,91.8%)を白色泡状固体として得た。異性体を薄層シリカゲルクロマトグラフィーにより分離し、機器データを測定した。 A dimethylformamide suspension (2.7 mL) of tosylate 16 (238 mg, 0.269 mmol) and sodium hydrogen carbonate (113 mg, 1.343 mmol) was stirred at 90 ° C. for 2.5 hours. A saturated aqueous sodium carbonate solution was added to the reaction mixture, and the mixture was extracted 3 times with diethyl ether. The matched organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (25-40% ethyl acetate / n-hexane) to give epoxide 17 (176 mg, 91.8%) as a white foamy solid. The isomers were separated by thin layer silica gel chromatography and instrument data was measured.

エポキシド17の物性;I、
低極性異性体
〔α〕23 +93(c0.31,CHCl);IR(film)3456,2934,2859,1731,1588,1458,1431,1364,1324,1254,1229,1164,1130,1113,1049,1004,910,822,741,705,616cm−1HNMR(CDCl,400MHz)7.98(d,J=7.7Hz,1H),7.64(m,4H),7.43(m,3H),7.36(m,4H),7.29(td,J=7.7,1.2Hz,1H),7.23(td,J=7.7,1.2Hz,1H),4.01(dd,J=9.9,4.3Hz,1H),3.68(m,2H),3.66(s,3H),3.55(dd,J=10.2,4.1Hz,1H),3.47(dd,J=10.2,4.7Hz,1H),2.82(dt,J=14.7,3.9Hz,1H),2.55(m,2H),2.34(d,J=4.7Hz,1H),2.27(d,J=4.7Hz,1H),2.11(dd,J=9.6,3.8Hz,1H),2.05(ddd,J=14.7,9.8,3.4Hz,1H),1.66(m,1H),1.65(s,9H),1.44(brs,1H),1.21(qd,J=7.4,3.6Hz,2H),1.05(s,9H),0.64(t,J=7.4Hz,3H);13CNMR(CDCl,100MHz)173.0,150.3,136.0,135.8,135.6,135.1,133.5,133.5,129.8,129.7,129.7,127.7,127.7,124.5,122.7,118.5,118.3,116.0,84.4,65.9,61.7,58.7,52.1,51.6,41.8,36.2,35.0,31.8,28.2,27.8,26.9,26.5,19.3,8.5;
Physical properties of epoxide 17; I,
Low polar isomer [α] 23 D +93 (c 0.31, CHCl 3 ); IR (film) 3456, 2934, 2859, 1731, 1588, 1458, 1431, 1364, 1324, 1254, 1229, 1164, 1130, 1113 , 1049, 1004, 910, 822, 741, 705, 616 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.98 (d, J = 7.7 Hz, 1H), 7.64 (m, 4H), 7 .43 (m, 3H), 7.36 (m, 4H), 7.29 (td, J = 7.7, 1.2 Hz, 1H), 7.23 (td, J = 7.7, 1. 2 Hz, 1H), 4.01 (dd, J = 9.9, 4.3 Hz, 1H), 3.68 (m, 2H), 3.66 (s, 3H), 3.55 (dd, J = (10.2, 4.1 Hz, 1H) 3.47 (dd, J = 10.2, 4.7 Hz, 1H), 2.82 (dt, J = 14.7, 3.9 Hz, 1H), 2.55 (m, 2H), 2. 34 (d, J = 4.7 Hz, 1H), 2.27 (d, J = 4.7 Hz, 1H), 2.11 (dd, J = 9.6, 3.8 Hz, 1H), 2.05 (Ddd, J = 14.7, 9.8, 3.4 Hz, 1H), 1.66 (m, 1H), 1.65 (s, 9H), 1.44 (brs, 1H), 1.21 (Qd, J = 7.4, 3.6 Hz, 2H), 1.05 (s, 9H), 0.64 (t, J = 7.4 Hz, 3H); 13 CNMR (CDCl 3 , 100 MHz) 173. 0, 150.3, 136.0, 135.8, 135.6, 135.1, 133.5, 133.5, 129.8, 129.7, 129.7, 127 7, 127.7, 124.5, 122.7, 118.5, 118.3, 116.0, 84.4, 65.9, 61.7, 58.7, 52.1, 51.6 41.8, 36.2, 35.0, 31.8, 28.2, 27.8, 26.9, 26.5, 19.3, 8.5;

II、高極性異性体
〔α〕24 62(c0.36,CHCl);IR(film)3455,2934,2859,1730,1458,1431,1365,1325,1253,1229,1164,1130,1112,1079,1008,910,823,742,705,615cm−1HNMR(CDCl,400MHz)7.99(d,J=7.8Hz,1H),7.56(d,J=8.0Hz,4H),7.50-7.20(m,9H),4.14(t,J=6.8Hz,1H),3.76(m,2H),3.65(s,3H),3.47(d,J=4.6Hz,2H),2.93(dt,J=14.4,4.3Hz,1H),2.80(ddd,J=14.4,9.0,5.9Hz,1H),2.45(ddd,J=14.2,6.8,4.6Hz,1H),2.42(d,J=4.6Hz,1H),2.40(d,J=4.6Hz,1H),2.27(dd,J=9.5,4.4Hz,1H),2.09(ddd,J=14.2,7.3,4.9Hz,1H),1.63(s,9H),1.62(m,1H),1.39(m,2H),1.06(m,1H),0.90(s,9H),0.76(t,J=7.6Hz,3H);13CNMR(CDCl,100MHz)173.2,150.4,135.9,135.8,135.6,135.6,133.6,133.4,129.6,129.6,129.3,127.6,127.5,124.5,122.7,118.5,117.6,116.1,84.4,66.7,61.9,59.1,52.3,52.2,41.7,36.3,36.0,33.6,28.1,28.1,26.8,26.7,19.1,8.7;
II, highly polar isomer [α] 24 D 62 (c0.36, CHCl 3 ); IR (film) 3455, 2934, 2859, 1730, 1458, 1431, 1365, 1325, 1253, 1229, 1164, 1130, 1112 , 1079, 1008, 910, 823, 742, 705, 615 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 7.9 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 8. 0 Hz, 4H), 7.50-7.20 (m, 9H), 4.14 (t, J = 6.8 Hz, 1H), 3.76 (m, 2H), 3.65 (s, 3H) 3.47 (d, J = 4.6 Hz, 2H), 2.93 (dt, J = 14.4, 4.3 Hz, 1H), 2.80 (ddd, J = 14.4, 9.0) , 5.9 Hz, 1 H), 2.45 (d dd, J = 14.2, 6.8, 4.6 Hz, 1H), 2.42 (d, J = 4.6 Hz, 1H), 2.40 (d, J = 4.6 Hz, 1H), 2 .27 (dd, J = 9.5, 4.4 Hz, 1H), 2.09 (ddd, J = 14.2, 7.3, 4.9 Hz, 1H), 1.63 (s, 9H), 1.62 (m, 1H), 1.39 (m, 2H), 1.06 (m, 1H), 0.90 (s, 9H), 0.76 (t, J = 7.6 Hz, 3H) 13 C NMR (CDCl 3 , 100 MHz) 173.2, 150.4, 135.9, 135.8, 135.6, 135.6, 133.6, 133.4, 129.6, 129.6, 129; .3, 127.6, 127.5, 124.5, 122.7, 118.5, 117.6, 116.1, 84.4, 66.7, 61.9 , 59.1, 52.3, 52.2, 41.7, 36.3, 36.0, 33.6, 28.1, 28.1, 26.8, 26.7, 19.1, 8 .7;

エポキシド17にスルホンアミドを導入して一般式Dに含まれるノシルアミド18を合成する方法は次のとおりである。 A method for synthesizing the nosylamide 18 contained in the general formula D by introducing sulfonamide into the epoxide 17 is as follows.

Figure 2006193529
Figure 2006193529

エポキシド17(171mg,0.240mmol)、2−ニトロベンゼンスルホンアミド(97mg,0.48mmol)、トリフェニルホスフィン(94mg,0.36mmol)のトルエン懸濁液(6mL)にジエチルアゾジカアルボン酸(40%のトルエン溶液,0.163mL,0.359mmol)を室温で滴下し、20分間撹拌した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(20−22.5%酢酸エチル/n−ヘキサン)で精製することにより、ノシルアミド18(187mg,86.9%)を黄色泡状固体として得た。 Diethylazodica arbonic acid (40%) was added to a toluene suspension (6 mL) of epoxide 17 (171 mg, 0.240 mmol), 2-nitrobenzenesulfonamide (97 mg, 0.48 mmol) and triphenylphosphine (94 mg, 0.36 mmol). Of toluene solution, 0.163 mL, 0.359 mmol) was added dropwise at room temperature and stirred for 20 minutes. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (20-22.5% ethyl acetate / n-hexane) to give nosylamide 18 (187 mg, 86.9%) as a yellow foamy solid. It was.

IR(film)cm−1HNMR(CDCl,400MHz)8.04(dd,J=8.0,4.0Hz,(1/2)1H),7.97(dd,J=6.8,4.0Hz,(1/2)1H),7.94(d,J=8.8Hz,(1/2)1H),7.91(d,J=8.0Hz,(1/2)1H),7.70-7.50(m,6H),7.46−7.36(m,4H),7.34−7.32(m,2H),7.23−7.17(m,2H+(1/2)1H),7.13(d,J=6.8Hz,(1/2)1H),7.09(t,J=7.4Hz,(1/2)1H),7.00(t,J=7.2Hz,(1/2)1H),5.73(dd,J=6.8,4.0Hz,(1/2)1H),5.48(dd,J=6.8,2.8Hz,(1/2)1H),4.07(m,(1/2)1H),3.87(m,(1/2)1H),3.71(s,(1/2)3H),3.68(s,(1/2)3H),3.53(dd,J=10.8,4.8Hz,(1/2)1H),3.47-3.32(m,2H),3.24(m,1H),2.95(m,(1/2)1H),2.92(ddd,J=14.8,5.6,4.0Hz,(1/2)1H),2.84(dd,J=16.8,8.0Hz,(1/2)1H),2.75(dt,J=14.8,4.8Hz,(1/2)1H),2.59(ddd,J=14.8,10.0,4.8Hz,(1/2)1H),2.48(d,J=4.8Hz,(1/2)1H),2.44(m,2H),2.42(d,J=4.8Hz,(1/2)1H),2.36(d,J=4.0Hz,(1/2)1H),2.30(d,J=4.0Hz,(1/2)1H),2.05(m,1H),1.67(s,(1/2)1H),1.64(s,(1/2)1H),1.62(m,1H),1.45(m,1H),1.27(m,2H),1.05(s,(1/2)9H),0.88(s,(1/2)9H),0.74(t,J=7.8Hz,(1/2)3H),0.65(t,J=7.8Hz,(1/2)3H); IR (film) cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 8.04 (dd, J = 8.0, 4.0 Hz, (1/2) 1 H), 7.97 (dd, J = 6. 8, 4.0 Hz, (1/2) 1 H), 7.94 (d, J = 8.8 Hz, (1/2) 1 H), 7.91 (d, J = 8.0 Hz, (1/2 ) 1H), 7.70-7.50 (m, 6H), 7.46-7.36 (m, 4H), 7.34-7.32 (m, 2H), 7.23-7.17. (M, 2H + (1/2) 1H), 7.13 (d, J = 6.8 Hz, (1/2) 1H), 7.09 (t, J = 7.4 Hz, (1/2) 1H ), 7.00 (t, J = 7.2 Hz, (1/2) 1H), 5.73 (dd, J = 6.8, 4.0 Hz, (1/2) 1H), 5.48 ( dd, J = 6.8, 2.8 Hz, ( 1/2) 1H), 4.07 (m, (1/2) 1H), 3.87 (m, (1/2) 1H), 3.71 (s, (1/2) 3H), 3 .68 (s, (1/2) 3H), 3.53 (dd, J = 10.8, 4.8 Hz, (1/2) 1H), 3.47-3.32 (m, 2H), 3.24 (m, 1H), 2.95 (m, (1/2) 1H), 2.92 (ddd, J = 14.8, 5.6, 4.0 Hz, (1/2) 1H) , 2.84 (dd, J = 16.8, 8.0 Hz, (1/2) 1H), 2.75 (dt, J = 14.8, 4.8 Hz, (1/2) 1H), 2 .59 (ddd, J = 14.8, 10.0, 4.8 Hz, (1/2) 1H), 2.48 (d, J = 4.8 Hz, (1/2) 1H), 2.44 (M, 2H), 2.42 (d, J = 4.8 Hz, (1/2) 1H) , 2.36 (d, J = 4.0 Hz, (1/2) 1H), 2.30 (d, J = 4.0 Hz, (1/2) 1H), 2.05 (m, 1H), 1.67 (s, (1/2) 1H), 1.64 (s, (1/2) 1H), 1.62 (m, 1H), 1.45 (m, 1H), 1.27 ( m, 2H), 1.05 (s, (1/2) 9H), 0.88 (s, (1/2) 9H), 0.74 (t, J = 7.8 Hz, (1/2) 3H), 0.65 (t, J = 7.8 Hz, (1/2) 3H);

ノシルアミド18を中員環形成反応を進行させ前記化合物5に含まれる11員環化合物19を製造する工程は以下のとおりである。 The process of producing the 11-membered ring compound 19 contained in the compound 5 by causing the nosylamide 18 to undergo a medium-membered ring formation reaction is as follows.

Figure 2006193529
Figure 2006193529

ノシルアミド18(113mg,0.126mmol)、炭酸カリウム(35mg,0.25mmol)のジメチルホルムアミド懸濁液(2.5mL)を90度で13時間撹拌した。室温に冷却後、反応液に飽和塩化アンモニウム水溶液を加えジエチルエーテルで3回抽出した。合致した有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(20−25%酢酸エチル/n−ヘキサン)で精製することにより、11員環化合物19(80mg,71%)を黄色泡状固体として得た。 A suspension of nosylamide 18 (113 mg, 0.126 mmol) and potassium carbonate (35 mg, 0.25 mmol) in dimethylformamide (2.5 mL) was stirred at 90 degrees for 13 hours. After cooling to room temperature, a saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted 3 times with diethyl ether. The matched organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (20-25% ethyl acetate / n-hexane) to give 11-membered ring compound 19 (80 mg, 71%) as a yellow foamy solid. .

11員環化合物19の物性;
IR(film)3397,3071,2934,2859,1731,1546,1459,1432,1367,1327,1235,1165,1115,910,735,705,581cm−1HNMR(CDCl,400MHz)8.04(d,J=8.3Hz,1H),7.93(m,(1/2)1H),7.89(d,J=7.1Hz,(1/2)1H),7.78-7.16(m,13H+(1/2)1H),7.13(d,J=7.3Hz,(1/2)1H),7.11(d,J=7.3Hz,(1/2)1H),6.77(brs,(1/2)3H),4.83(s,(1/2)1H),4.31(brs,(1/2)1H),4.23(m,(1/2)2H),3.82-3.19(m,4H+(1/2)1H),3.60(s,(1/2)3H),3.56(s,(1/2)3H),3.12(m,(1/2)1H),2.98(m,1H),2.88(d,J=14.9Hz,(1/2)1H),2.75(m,(1/2)1H),2.51−1.71(m,3H),1.64(s,(1/2)9H),1.61(s,(1/2)9H),1.42−1.15(m,4H),1.06(s,(1/2)9H),0.98(s,(1/2)9H),0.89(t,J=7.6Hz,(1/2)3H),0.68(t,J=7.6Hz,(1/2)3H);
Physical properties of 11-membered ring compound 19;
IR (film) 3397, 3071, 2934, 2859, 1731, 1546, 1459, 1432, 1367, 1327, 1235, 1165, 1115, 910, 735, 705, 581 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 8. 04 (d, J = 8.3 Hz, 1H), 7.93 (m, (1/2) 1H), 7.89 (d, J = 7.1 Hz, (1/2) 1H), 7.78 -7.16 (m, 13H + (1/2) 1H), 7.13 (d, J = 7.3 Hz, (1/2) 1H), 7.11 (d, J = 7.3 Hz, (1 / 2) 1H), 6.77 (brs, (1/2) 3H), 4.83 (s, (1/2) 1H), 4.31 (brs, (1/2) 1H), 4. 23 (m, (1/2) 2H), 3.82-3.19 (m, 4H + (1/2) H), 3.60 (s, (1/2) 3H), 3.56 (s, (1/2) 3H), 3.12 (m, (1/2) 1H), 2.98 (m) , 1H), 2.88 (d, J = 14.9 Hz, (1/2) 1H), 2.75 (m, (1/2) 1H), 2.51-1.71 (m, 3H) , 1.64 (s, (1/2) 9H), 1.61 (s, (1/2) 9H), 1.42-1.15 (m, 4H), 1.06 (s, (1 / 2) 9H), 0.98 (s, (1/2) 9H), 0.89 (t, J = 7.6 Hz, (1/2) 3H), 0.68 (t, J = 7. 6Hz, (1/2) 3H);

11員環化合物19の脱保護により11員環を持つジオール20を製造する工程は次のとおりである。 The process of producing the diol 20 having an 11-membered ring by deprotecting the 11-membered ring compound 19 is as follows.

Figure 2006193529
Figure 2006193529

11員環化合物19(124mg,0.138mmol)のジクロロメタン溶液(2mL)に室温下トリフルオロ酢酸(2mL)を加え、2時間撹拌した。減圧下濃縮した後、残留物をメタノール(3mL)に溶解し、トリエチルアミン(0.2mL)を加え、室温で1時間撹拌した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(50−100%酢酸エチル/n−ヘキサン)で精製することにより、ジオール20(71mg,92%)を淡黄色油状物として得た。異性体を薄層シリカゲルクロマトグラフィーにより分離し、機器データを測定した。 To a dichloromethane solution (2 mL) of 11-membered ring compound 19 (124 mg, 0.138 mmol) was added trifluoroacetic acid (2 mL) at room temperature, and the mixture was stirred for 2 hours. After concentration under reduced pressure, the residue was dissolved in methanol (3 mL), triethylamine (0.2 mL) was added, and the mixture was stirred at room temperature for 1 hr. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (50-100% ethyl acetate / n-hexane) to give diol 20 (71 mg, 92%) as a pale yellow oil. The isomers were separated by thin layer silica gel chromatography and instrument data was measured.

ジオール20の物性;
I、低極性異性体
〔α〕22 −89(c0.37,CHCl);IR(film)3389,2947,1728,1545,1460,1439,1370,1341,1167,910,734,580cm−1HNMR(CDCl,400MHz)8.76(s,1H),7.93(dd,J=7.6,1.2Hz,1H),7.72(td,J=7.6,1.2Hz,1H),7.67(td,J=7.6,1.2Hz,1H),7.62(dd,J=7.6,1.2Hz,1H),7.42(d,J=8.0Hz,1H),7.31(d,J=8.0Hz,1H),7.15(td,J=8.0,1.0Hz,1H),7.05(td,J=8.0,1.0Hz,1H),4.17(dd,J=12.8,3.3Hz,1H),4.07(ddd,J=15.1,8.5,6.6Hz,1H),3.74(s,3H),3.58(d,J=14.4Hz,1H),3.51(dd,J=10.9,4.0Hz,1H),3.46(dd,J=10.9,6.3Hz,1H),3.40(dt,J=15.1,7.9Hz,1H),3.11(m,2H),3.10(d,J=14.4Hz,1H),2.97(ddd,J=15.4,6.6,3.3Hz,1H),2.19(d,J=15.4Hz,1H),2.10(t,J=12.1Hz,1H),1.77-1.63(m,4H),0.98(t,J=7.4Hz,3H);13CNMR(CDCl,100MHz)174.3,148.9,136.0,133.9,131.5,131.3,130.5,129.8,127.2,124.2,122.5,119.8,118.6,112.6,111.2,74.3,68.3,60.4,53.6,52.6,39.4,37.9,37.2,33.7,33.6,26.4,7.4;
Physical properties of diol 20;
I, low polar isomer [α] 22 D- 89 (c 0.37, CHCl 3 ); IR (film) 3389, 2947, 1728, 1545, 1460, 1439, 1370, 1341, 1167, 910, 734, 580 cm − 1 ; 1 HNMR (CDCl 3 , 400 MHz) 8.76 (s, 1H), 7.93 (dd, J = 7.6, 1.2 Hz, 1H), 7.72 (td, J = 7.6) 1.2 Hz, 1H), 7.67 (td, J = 7.6, 1.2 Hz, 1H), 7.62 (dd, J = 7.6, 1.2 Hz, 1H), 7.42 (d , J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.15 (td, J = 8.0, 1.0 Hz, 1H), 7.05 (td, J = 8.0, 1.0 Hz, 1H), 4.17 (dd, J = 12.8, 3.3) Hz, 1H), 4.07 (ddd, J = 15.1, 8.5, 6.6 Hz, 1H), 3.74 (s, 3H), 3.58 (d, J = 14.4 Hz, 1H) ), 3.51 (dd, J = 10.9, 4.0 Hz, 1H), 3.46 (dd, J = 10.9, 6.3 Hz, 1H), 3.40 (dt, J = 15. 1, 7.9 Hz, 1 H), 3.11 (m, 2 H), 3.10 (d, J = 14.4 Hz, 1 H), 2.97 (ddd, J = 15.4, 6.6, 3 .3 Hz, 1H), 2.19 (d, J = 15.4 Hz, 1H), 2.10 (t, J = 12.1 Hz, 1H), 1.77-1.63 (m, 4H), 0 .98 (t, J = 7.4Hz, 3H); 13 CNMR (CDCl 3, 100MHz) 174.3,148.9,136.0,133.9,131.5,131 3, 130.5, 129.8, 127.2, 124.2, 122.5, 119.8, 118.6, 112.6, 111.2, 74.3, 68.3, 60.4, 53.6, 52.6, 39.4, 37.9, 37.2, 33.7, 33.6, 26.4, 7.4;

II、高極性異性体
〔α〕23 +21(c0.24,CHCl);IR(film)3385,2930,1726,1546,1461,1440,1372,1347,1166,909,735,581cm−1HNMR(CDCl,400MHz)8.56(s,1H),7.98(dd,J=7.7,1.5Hz,1H),7.76(td,J=7.7,1.5Hz,1H),7.72(td,J=7.7,1.5Hz,1H),7.64(dd,J=7.7,1.5Hz,1H),7.50(d,J=7.9Hz,1H),7.33(d,J=7.9Hz,1H),7.16(t,J=7.9Hz,1H),7.08(t,J=7.9Hz,1H),4.15(dd,J=10.0,2.4Hz,1H),4.02(m,1H),3.70(s,3H),3.58(dd,J=10.8,6.1Hz,1H),3.54(dd,J=10.8,5.7Hz,1H),3.40(d,J=15.4Hz,1H),3.31(m,3H),2.77(d,J=15.4Hz,1H),2.44(m,1H),2.17(dt,J=13.9,2.4Hz,1H),1.80(dt,J=13.9,10.8Hz,1H),1.05(m,4H),0.40(t,J=7.4Hz,3H);13CNMR(CDCl,100MHz)174.3,149.0,136.0,134.1,132.4,131.5,131.0,130.3,127.6,124.2,122.5,119.8,118.6,111.1,110.8,73.0,68.6,61.8,53.9,52.5,42.2,37.5,37.5,36.0,34.6,25.6,7.1;
II, highly polar isomer [α] 23 D +21 (c0.24, CHCl 3 ); IR (film) 3385, 2930, 1726, 1546, 1461, 1440, 1372, 1347, 1166, 909, 735, 581 cm −1 1 H NMR (CDCl 3 , 400 MHz) 8.56 (s, 1H), 7.98 (dd, J = 7.7, 1.5 Hz, 1H), 7.76 (td, J = 7.7, 1 .5 Hz, 1H), 7.72 (td, J = 7.7, 1.5 Hz, 1H), 7.64 (dd, J = 7.7, 1.5 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 7.08 (t, J = 7.9 Hz) , 1H), 4.15 (dd, J = 10.0, 2.4 Hz, 1H), 4.0 (M, 1H), 3.70 (s, 3H), 3.58 (dd, J = 10.8, 6.1 Hz, 1H), 3.54 (dd, J = 10.8, 5.7 Hz, 1H), 3.40 (d, J = 15.4 Hz, 1H), 3.31 (m, 3H), 2.77 (d, J = 15.4 Hz, 1H), 2.44 (m, 1H) , 2.17 (dt, J = 13.9, 2.4 Hz, 1H), 1.80 (dt, J = 13.9, 10.8 Hz, 1H), 1.05 (m, 4H),. 40 (t, J = 7.4 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) 174.3, 149.0, 136.0, 134.1, 132.4, 131.5, 131.0, 130 3,127.6,124.2,122.5,119.8,118.6,111.1,110.8,73.0,68.6, 1.8,53.9,52.5,42.2,37.5,37.5,36.0,34.6,25.6,7.1;

ジオール20にトシル化してトシラート21を製造する工程は次のとおりである。 The process for producing tosylate 21 by tosylation to diol 20 is as follows.

Figure 2006193529
Figure 2006193529

ジオール20(57.0mg,0.102mmol)、テトラメチルジアミノプロパン(26μL,0.15mmol)のトルエン−アセトニトリル溶液(1mL−1mL)に、室温下p−トルエンスルホン酸塩化物(22mg,0.11mmol)を加え、3時間撹拌した。固体をセライトカラムを用いて除去した後、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィー(30−50%酢酸エチル/n−ヘキサン)で精製することにより、トシラート21(55mg,75%)を淡黄色油状物として得た。 To a toluene-acetonitrile solution (1 mL-1 mL) of diol 20 (57.0 mg, 0.102 mmol) and tetramethyldiaminopropane (26 μL, 0.15 mmol), p-toluenesulfonic acid chloride (22 mg, 0.11 mmol) at room temperature. ) Was added and stirred for 3 hours. The solid was removed using a celite column and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (30-50% ethyl acetate / n-hexane) to give tosylate 21 (55 mg, 75%) as a pale yellow oil.

トシラート21の物性;
IR(film)3514,3393,2956,1728,1595,1546,1461,1440,1354,1173,962,754,667,580cm−1HNMR(CDCl,400MHz)8.67(s,(1/2)1H),8.51(s,(1/2)1H),7.89(d,J=8.0Hz,(1/2)1H),7.81(d,J=8.0Hz,(1/2)1H),7.77(d,J=8.0Hz,(1/2)2H),7.73-7.57(m,4H),7.43(d,J=7.1Hz,1H),7.36(d,J=7.1Hz,1H),7.32(d,J=8.0Hz,(1/2)2H),7.18(t,J=7.1Hz,(1/2)1H),7.16(t,J=7.1Hz,(1/2)1H),7.11(d,J=8.0Hz,(1/2)2H),7.06(t,J=7.1Hz,(1/2)1H),7.04(t,J=7.1Hz,(1/2)1H),4.23-4.07(m,2H),3.92(dd,J=9.5,6.6Hz,(1/2)1H),3.86(dd,J=9.8,7.1Hz,(1/2)1H),3.80(m,(1/2)1H),3.70(s,(1/2)3H),3.69(s,(1/2)3H),3.38(d,J=15.0Hz,1H),3.25(m,1H),3.17(m,(1/2)1H),3.10(m,(1/2)1H),2.97(d,J=15.0Hz,(1/2)1H),2.63(d,J=15.0Hz,(1/2)1H),2.50(m,(1/2)1H),2.42(s,(1/2)3H),2.32(s,(1/2)3H),2.21(dt,J=13.9,1.5Hz,(1/2)1H),1.94(d,J=15.9Hz,(1/2)1H),1.83(m,1H),1.49(m,2H),1.28(m,2H),1.02(m,2H),0.77(t,J=7.4Hz,(1/2)3H),0.37(t,J=7.4Hz,(1/2)3H);
Physical properties of tosylate 21;
IR (film) 3514, 3393, 2956, 1728, 1595, 1546, 1461, 1440, 1354, 1173, 962, 754, 667, 580 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 8.67 (s, (1 / 2) 1H), 8.51 (s, (1/2) 1H), 7.89 (d, J = 8.0 Hz, (1/2) 1H), 7.81 (d, J = 8. 0 Hz, (1/2) 1H), 7.77 (d, J = 8.0 Hz, (1/2) 2H), 7.73-7.57 (m, 4H), 7.43 (d, J = 7.1 Hz, 1H), 7.36 (d, J = 7.1 Hz, 1H), 7.32 (d, J = 8.0 Hz, (1/2) 2H), 7.18 (t, J = 7.1 Hz, (1/2) 1H), 7.16 (t, J = 7.1 Hz, (1/2) 1H), 7.11 ( d, J = 8.0 Hz, (1/2) 2H), 7.06 (t, J = 7.1 Hz, (1/2) 1H), 7.04 (t, J = 7.1 Hz, (1 / 2) 1H), 4.23-4.07 (m, 2H), 3.92 (dd, J = 9.5, 6.6 Hz, (1/2) 1H), 3.86 (dd, J = 9.8, 7.1 Hz, (1/2) 1H), 3.80 (m, (1/2) 1H), 3.70 (s, (1/2) 3H), 3.69 (s) , (1/2) 3H), 3.38 (d, J = 15.0 Hz, 1H), 3.25 (m, 1H), 3.17 (m, (1/2) 1H), 3.10 (M, (1/2) 1H), 2.97 (d, J = 15.0 Hz, (1/2) 1H), 2.63 (d, J = 15.0 Hz, (1/2) 1H) , 2.50 (m, (1/2) 1H), 2.42 (s, (1/2) 3H), 2.32 (s, (1/2) 3H), 2.21 (dt, J = 13.9, 1.5 Hz, (1/2) 1H), 1.94 (d, J = 15.9 Hz, (1/2) 1H), 1.83 (m, 1H), 1.49 (m, 2H), 1.28 (m, 2H), 1.02 (m, 2H), 0.77 (t, J = 7.4 Hz, (1/2) 3H), 0.37 (t, J = 7.4 Hz, (1/2) 3H);

トシラート21をトリフルオロ酢酸無水物でエステル化して一般式Aに含まれるエステル22を製造する工程は次のとおりである。 The step of esterifying tosylate 21 with trifluoroacetic anhydride to produce ester 22 contained in general formula A is as follows.

Figure 2006193529
Figure 2006193529

トシラート21(55mg,0.077mmol)、ピリジン(62μL,0.77mmol)のジクロロメタン溶液(2mL)に、室温でトリフルオロ酢酸無水物(44μL,0.31mmol)を加え、1時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え有機層を分離後、水層を酢酸エチルで抽出した。合致した有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(20−40%酢酸エチル/n−ヘキサン)で精製することにより、エステル22(49mg,79%)を淡黄色油状物として得た。 To a solution of tosylate 21 (55 mg, 0.077 mmol) and pyridine (62 μL, 0.77 mmol) in dichloromethane (2 mL) was added trifluoroacetic anhydride (44 μL, 0.31 mmol) at room temperature, and the mixture was stirred for 1 hour. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The matched organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (20-40% ethyl acetate / n-hexane) to give ester 22 (49 mg, 79%) as a pale yellow oil.

IR(film)3397,2953,1781,1730,1595,1548,1461,1441,1366,1222,1173,965,930,817,754,667,580,556cm−1HNMR(CDCl,400MHz)8.74(s,(1/2)1H),8.63(s,(1/2)1H),7.93(dd,J=7.3,1.8Hz,(1/2)1H),7.73(m,3H+(1/2)1H),7.64(dd,J=7.3,1.8Hz,(1/2)1H),7.58(dd,J=7.3,1.8Hz,(1/2)1H),7.53(d,J=8.4Hz,(1/2)2H),7.36(m,3H),7.20(t,J=7.4Hz,(1/2)1H),7.18(t,J=7.4Hz,(1/2)1H),7.08(t,J=7.4Hz,(1/2)1H),7.06(t,J=7.4Hz,(1/2)1H),6.99(d,J=8.4Hz,(1/2)2H),4.49(d,J=16.4Hz,(1/2)1H),4.14(m,1H+(1/2)1H),4.05(d,J=10.5Hz,(1/2)1H),3.87(m,1H+(1/2)1H),3.74(s,(1/2)3H),3.71(s,(1/2)3H),3.38-3.08(m,3H),2.78(m,1H),2.64(d,J=16.1Hz,(1/2)1H),2.42(s,(1/2)3H),2.25(s,(1/2)3H),2.16(m,1H+(1/2)1H),2.00(d,J=14.2Hz,(1/2)1H),1.90(d,J=16.1Hz,(1/2)1H),1.85−1.52(m,3H),1.67(brs,1H),1.02(m,(1/2)1H),0.88(t,J=7.4Hz,(1/2)1H),0.77(t,J=7.4Hz,(1/2)3H),0.62(d,J=15.6Hz,(1/2)1H),0.25(t,J=7.4Hz,(1/2)3H); IR (film) 3397, 2953, 1781, 1730, 1595, 1548, 1461, 1441, 1366, 1222, 1173, 965, 930, 817, 754, 667, 580, 556 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 8.74 (s, (1/2) 1H), 8.63 (s, (1/2) 1H), 7.93 (dd, J = 7.3, 1.8 Hz, (1/2) 1H ), 7.73 (m, 3H + (1/2) 1H), 7.64 (dd, J = 7.3, 1.8 Hz, (1/2) 1H), 7.58 (dd, J = 7) .3, 1.8 Hz, (1/2) 1 H), 7.53 (d, J = 8.4 Hz, (1/2) 2 H), 7.36 (m, 3 H), 7.20 (t, J = 7.4 Hz, (1/2) 1H), 7.18 (t, J = 7.4 Hz, (1/2) H), 7.08 (t, J = 7.4 Hz, (1/2) 1H), 7.06 (t, J = 7.4 Hz, (1/2) 1H), 6.99 (d, J = 8.4 Hz, (1/2) 2H), 4.49 (d, J = 16.4 Hz, (1/2) 1H), 4.14 (m, 1H + (1/2) 1H), 4. 05 (d, J = 10.5 Hz, (1/2) 1H), 3.87 (m, 1H + (1/2) 1H), 3.74 (s, (1/2) 3H), 3.71 (S, (1/2) 3H), 3.38-3.08 (m, 3H), 2.78 (m, 1H), 2.64 (d, J = 16.1 Hz, (1/2) 1H), 2.42 (s, (1/2) 3H), 2.25 (s, (1/2) 3H), 2.16 (m, 1H + (1/2) 1H), 2.00 ( d, J = 14.2 Hz, (1/2) 1H), 1.90 (d, J = 1) .1 Hz, (1/2) 1 H), 1.85-1.52 (m, 3 H), 1.67 (brs, 1 H), 1.02 (m, (1/2) 1 H), 0.88 (T, J = 7.4 Hz, (1/2) 1H), 0.77 (t, J = 7.4 Hz, (1/2) 3H), 0.62 (d, J = 15.6 Hz, ( 1/2) 1H), 0.25 (t, J = 7.4 Hz, (1/2) 3H);

III、前記II、で合成された一般式Aに含まれる化合物にビンドリン類をカップリングさせ、次いでトリフルオロアセチル基およびNsを除去し、更にピペリジン環を構築して(+)−ビンブラスチン類を合成する方法。実施例3a,一般式Aに含まれるエステル22にビンドリンをカップリングさせて一般式Eに含まれるビンブラスチン前駆体23を合成する工程は以下のとおりである。  (+)-Vinblastine is synthesized by coupling vindolines to the compound of general formula A synthesized in III, II, and then removing the trifluoroacetyl group and Ns, and further constructing a piperidine ring. how to. Example 3a The process of synthesizing vinblastine precursor 23 contained in general formula E by coupling vindrin to ester 22 contained in general formula A is as follows.

Figure 2006193529
Figure 2006193529

エステル22(10mg,0.012mmol)のジクロロメタン溶液(0.4mL)に、氷冷下t-ブチルハイポクロライト(1.5μl,0.013mmol)のジクロロメタン溶液を滴下し、15分間撹拌した。反応液を直接薄層シリカゲルクロマトグラフィーで精製し、クロロインドレニンを得た。クロロインドレニン、ビンドリン(5.6mg,0.012mmol)のジクロロメタン溶液(0.5mL)に、氷冷下トリフルオロ酢酸(10μL,0.12mol)を加え、同温で10分間撹拌後、室温で20分間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、有機層を分離した後、水層をジクロロメタンで抽出した。合致した有機層を硫酸ナトリウムで乾燥し、減圧下濃縮した。残留物を薄層シリカゲルクロマトグラフィーにより精製し、化合物23(12.5mg,80.4%)を無色油状化合物として得た。 To a dichloromethane solution (0.4 mL) of ester 22 (10 mg, 0.012 mmol), a dichloromethane solution of t-butyl hypochlorite (1.5 μl, 0.013 mmol) was added dropwise under ice cooling, followed by stirring for 15 minutes. The reaction solution was directly purified by thin layer silica gel chromatography to obtain chloroindolenin. To a dichloromethane solution (0.5 mL) of chloroindolenine and vindoline (5.6 mg, 0.012 mmol) was added trifluoroacetic acid (10 μL, 0.12 mol) under ice-cooling, followed by stirring at the same temperature for 10 minutes, and at room temperature. Stir for 20 minutes. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The matched organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by thin layer silica gel chromatography to give compound 23 (12.5 mg, 80.4%) as a colorless oily compound.

化合物23の物性;
〔α〕28 +27(c0.32,CHCl);IR(film)3414,2952,2879,1778,1740,1614,1548,1498,1461,1434,1396,1226,1175,1043,913,817,734,668,580,554cm−1HNMR(CDCl,400MHz)10.56(brs,1H),9.42(brs,1H),7.86(dd,J=7.8,1.2Hz,1H),7.78(td,J=7.8,1.2Hz,1H),7.76(d,J=8.3Hz,1H),7.70(td,J=7.8,1.2Hz,1H),7.64(dd,J=7.8,1.2Hz,1H),7.41(s,1H),7.34(d,J=7.3Hz,1H),7.32(d,J=8.3Hz,2H),7.14(d,J=7.3Hz,1H),7.11(t,J=7.3Hz,1H),6.94(t,J=7.3Hz,1H),5.91(dd,J=10.2,3.7Hz,1H),5.81(dd,J=10.2,3.7Hz,1H),5.57(s,1H),5.27(d,J=10.2Hz,1H),4.12(d,J=9.7Hz,1H),3.90(d,J=16.0Hz,1H),3.80(s,3H),3.79(m,1H),3.71(s,3H),3.64(d,J=9.7Hz,1H),3.44(s,3H),3.44(m,1H),3.36(t,J=7.3Hz,1H),3.29(m,1H),3.16(dd,J=16.0,6.1Hz,1H),3.04(d,J=16.6Hz,1H),2.94(t,J=12.2Hz,1H),2.82(m,2H),2.81(s,1H),2.70(m,1H),2.63(s,3H),2.54(m,2H),2.41(s,3H),2.09(s,3H),1.89(m,3H),1.71(m,2H),1.58(brs,2H),1.30(m,3H),0.59(t,J=7.4Hz,3H),0.43(t,J=7.3Hz,3H);13CNMR(CDCl,100MHz)177.1,177.0,172.3,170.9,158.5,155.8,155.4,155.0,153.2,148.8,145.0,135.1,134.5,134.0,132.4,131.6,131.3,130.2,129.9,128.0,127.7,127.7,125.4,124.6,124.0,122.5,121.6,120.1,119.0,117.5,115.1,112.2,111.1,108.4,94.4,94.1,77.2,72.9,68.0,55.7,54.1,53.0,52.8,52.6,52.4,51.0,50.7,43.4,39.5,37.8,37.7,31.6,30.7,29.3,25.2,21.6,21.1,8.8,7.0;
Physical properties of compound 23;
[Α] 28 D +27 (c 0.32, CHCl 3 ); IR (film) 3414, 2952, 2879, 1778, 1740, 1614, 1548, 1498, 1461, 1434, 1396, 1226, 1175, 1043, 913, 817 , 734, 668, 580, 554 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 10.56 (brs, 1H), 9.42 (brs, 1H), 7.86 (dd, J = 7.8, 1 .2 Hz, 1H), 7.78 (td, J = 7.8, 1.2 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.70 (td, J = 7. 8, 1.2 Hz, 1H), 7.64 (dd, J = 7.8, 1.2 Hz, 1H), 7.41 (s, 1H), 7.34 (d, J = 7.3 Hz, 1H) ), 7.32 (d, J = 8 .3 Hz, 2H), 7.14 (d, J = 7.3 Hz, 1H), 7.11 (t, J = 7.3 Hz, 1H), 6.94 (t, J = 7.3 Hz, 1H) 5.91 (dd, J = 10.2, 3.7 Hz, 1H), 5.81 (dd, J = 10.2, 3.7 Hz, 1H), 5.57 (s, 1H), 5. 27 (d, J = 10.2 Hz, 1H), 4.12 (d, J = 9.7 Hz, 1H), 3.90 (d, J = 16.0 Hz, 1H), 3.80 (s, 3H) ), 3.79 (m, 1H), 3.71 (s, 3H), 3.64 (d, J = 9.7 Hz, 1H), 3.44 (s, 3H), 3.44 (m, 1H), 3.36 (t, J = 7.3 Hz, 1H), 3.29 (m, 1H), 3.16 (dd, J = 16.0, 6.1 Hz, 1H), 3.04 ( d, J = 16.6 Hz, 1H 2.94 (t, J = 12.2 Hz, 1H), 2.82 (m, 2H), 2.81 (s, 1H), 2.70 (m, 1H), 2.63 (s, 3H) ), 2.54 (m, 2H), 2.41 (s, 3H), 2.09 (s, 3H), 1.89 (m, 3H), 1.71 (m, 2H), 1.58 (Brs, 2H), 1.30 (m, 3H), 0.59 (t, J = 7.4 Hz, 3H), 0.43 (t, J = 7.3 Hz, 3H); 13 CNMR (CDCl 3 , 100 MHz) 177.1, 177.0, 172.3, 170.9, 158.5, 155.8, 155.4, 155.0, 153.2, 148.8, 145.0, 135.1 134.5, 134.0, 132.4, 131.6, 131.3, 130.2, 129.9, 128.0, 127.7, 127 7, 125.4, 124.6, 124.0, 122.5, 121.6, 120.1, 119.0, 117.5, 115.1, 112.2, 111.1, 108.4. 94.4, 94.1, 77.2, 72.9, 68.0, 55.7, 54.1, 53.0, 52.8, 52.6, 52.4, 51.0, 50. 7, 43.4, 39.5, 37.8, 37.7, 31.6, 30.7, 29.3, 25.2, 21.6, 21.1, 8.8, 7.0;

化合物23から脱トリフルオロアセチルされたビンブラスチン前駆体24を製造する工程は以下のとおりである。 The step of producing vinblastine precursor 24 detrifluoroacetylated from compound 23 is as follows.

Figure 2006193529
Figure 2006193529

化合物23(12.5mg,0.0100mmol)のメタノール溶液(1mL)に、室温下トリエチルアミン(12μL)を滴下し、45分間撹拌した。減圧下濃縮することにより、化合物24(10mg,90%)を白色固体として得た。 To a methanol solution (1 mL) of compound 23 (12.5 mg, 0.0100 mmol), triethylamine (12 μL) was added dropwise at room temperature and stirred for 45 minutes. Concentration under reduced pressure gave Compound 24 (10 mg, 90%) as a white solid.

〔α〕25 +57(c0.30,CHCl);IR(film)3750,3464,3414,2951,1739,1614,1545,1500,1459,1434,1358,1250,1174,1042,964,914,837,739,667,581,556cm−1HNMR(CDCl,400MHz)10.99(s,1H),7.83(d,J=7.7Hz,1H),7.79(d,J=8.1Hz,2H),7.75(d,J=7.7Hz,1H),7.68(t,J=7.7Hz,2H),7.58(s,1H),7.43(d,J=7.8Hz,1H),7.34(d,J=8.1Hz,2H),7.19(d,J=7.8Hz,1H),7.17(t,J=7.8Hz,1H),7.02(t,J=7.8Hz,1H),5.86(s,1H),5.81(dd,J=10.1,4.4Hz,1H),5.64(s,1H),5.27(d,J=10.1Hz,1H),3.95(dd,J=15.0,5.6Hz,1H),3.80(s,3H),3.77(s,1H),3.73(dd,J=9.3,6.6Hz,1H),3.66(d,J=9.3Hz,1H),3.55(s,3H),3.50(m,2H),3.43(s,3H),3.35(m,2H),3.04(m,1H),2.94(s,1H),2.83(m,2H),2.67(m,1H),2.60(s,3H),2.52(dt,J=14.4,4.4Hz,1H),2.44(s,3H),2.09(s,3H),1.95(dd,J=15.1,9.8Hz,1H),1.72(dq,J=14.4,7.3Hz,1H),1.41(d,J=14.9Hz,1H),1.38−1.26(m,6H),1.08(dq,J=14.4,7.3Hz,1H),0.99(dq,J=14.4,7.3Hz,1H),0.86(m,1H),0.62(t,J=7.3Hz,3H),0.55(t,J=7.3Hz,3H);13CNMR(CDCl,100MHz)176.7,172.7,171.0,157.7,153.4,148.8,144.8,137.8,134.1,133.9,132.9,131.1,130.5,130.1,129.8,128.0,127.4,126.1,124.8,124.0,122.6,122.2,120.8,119.6,117.3,111.7,106.7,93.6,83.3,79.1,76.2,7.1,73.4,68.1,64.6,55.6,54.1,53.0,52.8,52.3,52.2,50.9,50.3,45.6,43.6,43.4,40.1,38.5,37.7,35.7,31.6,29.7,29.0,26.9,21.6,21.1,9.1,6.9; [Α] 25 D +57 (c 0.30, CHCl 3 ); IR (film) 3750, 3464, 3414, 2951, 1739, 1614, 1545, 1500, 1459, 1434, 1358, 1250, 1174, 1042, 964, 914 , 837, 739, 667, 581, 556 cm −1 ; 1 HNMR (CDCl 3 , 400 MHz) 10.99 (s, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.79 (d , J = 8.1 Hz, 2H), 7.75 (d, J = 7.7 Hz, 1H), 7.68 (t, J = 7.7 Hz, 2H), 7.58 (s, 1H), 7 .43 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 7.8 Hz, 1H), 7.17 (t, J = 7.8Hz, 1H), 7.0 2 (t, J = 7.8 Hz, 1H), 5.86 (s, 1H), 5.81 (dd, J = 10.1, 4.4 Hz, 1H), 5.64 (s, 1H), 5.27 (d, J = 10.1 Hz, 1H), 3.95 (dd, J = 15.0, 5.6 Hz, 1H), 3.80 (s, 3H), 3.77 (s, 1H) ), 3.73 (dd, J = 9.3, 6.6 Hz, 1H), 3.66 (d, J = 9.3 Hz, 1H), 3.55 (s, 3H), 3.50 (m) , 2H), 3.43 (s, 3H), 3.35 (m, 2H), 3.04 (m, 1H), 2.94 (s, 1H), 2.83 (m, 2H), 2 .67 (m, 1H), 2.60 (s, 3H), 2.52 (dt, J = 14.4, 4.4 Hz, 1H), 2.44 (s, 3H), 2.09 (s , 3H), 1.95 (dd, J = 15.1. 9.8 Hz, 1 H), 1.72 (dq, J = 14.4, 7.3 Hz, 1 H), 1.41 (d, J = 14.9 Hz, 1 H), 1.38-1.26 (m , 6H), 1.08 (dq, J = 14.4, 7.3 Hz, 1H), 0.99 (dq, J = 14.4, 7.3 Hz, 1H), 0.86 (m, 1H) , 0.62 (t, J = 7.3 Hz, 3H), 0.55 (t, J = 7.3 Hz, 3H); 13 CNMR (CDCl 3 , 100 MHz) 176.7, 172.7, 171.0 , 157.7, 153.4, 148.8, 144.8, 137.8, 134.1, 133.9, 132.9, 131.1, 130.5, 130.1, 129.8, 128 0.0, 127.4, 126.1, 124.8, 124.0, 122.6, 122.2, 120.8, 119 6, 117.3, 111.7, 106.7, 93.6, 83.3, 79.1, 76.2, 7.1, 73.4, 68.1, 64.6, 55.6, 54.1, 53.0, 52.8, 52.3, 52.2, 50.9, 50.3, 45.6, 43.6, 43.4, 40.1, 38.5, 37. 7, 35.7, 31.6, 29.7, 29.0, 26.9, 21.6, 21.1, 9.1, 6.9;

化合物24のラジカル環化反応による(+)−ビンブラスチンを生成させる反応は以下のとおりである。 The reaction for producing (+)-vinblastine by radical cyclization reaction of Compound 24 is as follows.

Figure 2006193529
Figure 2006193529

化合物24(16mg,0.014mmol)、1,8-ジアザビシクロ[5.4.0]ウンデセン(DBU)(3μL,0.02mmol)のアセトニトリル溶液に、氷冷下メルカプトエタノール(1μL,0.01mmol)のアセトニトリル溶液を滴下し、1時間撹拌した。反応液を酢酸エチル−飽和炭酸水素ナトリウム水溶液で分液し、水層を酢酸エチルで抽出した。合致した有機層を無水硫酸ナトリウムで乾燥し、減圧下濃縮した。残留物を薄層シリカゲルクロマトグラフィーで精製し環化前駆体(9.0mg,67%)を黄色油状物として得た。環化前駆体(2.0mg,0.0020mmol)のアセトン溶液(0.3mL)に、飽和炭酸水素ナトリウム水溶液(0.3mL)を加えて終夜撹拌した。反応液を酢酸エチル?飽和食塩水で分液し、水層を酢酸エチルで抽出した。合致した有機層を無水硫酸ナトリウムで乾燥し、減圧下濃縮した。残留物を薄層シリカゲルクロマトグラフィーにより精製し、ビンブラスチン(25、1.3mg,79%)を白色固体として得た。各種機器データは文献値と一致した(非特許文献9)。 To an acetonitrile solution of Compound 24 (16 mg, 0.014 mmol), 1,8-diazabicyclo [5.4.0] undecene (DBU) (3 μL, 0.02 mmol), mercaptoethanol (1 μL, 0.01 mmol) under ice cooling. Was added dropwise and stirred for 1 hour. The reaction mixture was partitioned between ethyl acetate and saturated aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with ethyl acetate. The matched organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by thin layer silica gel chromatography to obtain a cyclization precursor (9.0 mg, 67%) as a yellow oil. To an acetone solution (0.3 mL) of the cyclization precursor (2.0 mg, 0.0020 mmol), a saturated aqueous sodium hydrogen carbonate solution (0.3 mL) was added and stirred overnight. The reaction mixture was partitioned between ethyl acetate and saturated brine, and the aqueous layer was extracted with ethyl acetate. The matched organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by thin layer silica gel chromatography to give vinblastine (25, 1.3 mg, 79%) as a white solid. Various device data was consistent with literature values (Non-Patent Document 9).

以上述べたように、本発明の一般式Aで表される中間体を経ることにより、2つのインドール化合物のカップリング反応、およびこれに続くインドール環の形成反応が立体化学選択的に効率よく進行し、天然型のビンブラスチン類を高効率で得ることができる、という効果がもたらされ、かつ前記の中間体の製造も温和な条件で進行させることができる化合物Cを設計できたという優れた効果がもたらされる。 As described above, through the intermediate represented by the general formula A of the present invention, the coupling reaction of two indole compounds and the subsequent indole ring formation reaction proceed efficiently in a stereochemically selective manner. In addition, it is possible to obtain a natural vinblastine with high efficiency, and it is possible to design a compound C that can be produced under mild conditions. Is brought about.

略号;
AIBN = アゾビスイソブチロニトリル
Bn = ベンジル
Boc = t−ブトキシカルボニル基
DBU = 1、8−ジアザビシクロウンデセン
DEAD = ジエチルアゾジカルボン酸
DIBAL = 水素化ジイソブチルアルミニウム
DMAP = 4−ジメチルアミノピリジン
DMF = ジメチルホルムアミド
Et = エチル基
LDA = リチウムジイソプロピルアミド
Me = メチル基
Ns = 2−ニトロベンゼンスルホニル基
Ph = フェニル基
Py = ピリジン
TBDPS = t−ブチルジフェニルシリル基
TES = トリエチルシリル基
TFA = トリフルオロアセチル基またはトリフルオロ酢酸
TFAA = トリフルオロ酢酸無水物
THF = テトラヒドロフラン
THP = テトラヒドロピラニル基
TMS = トリメチルシリル基
Ts = p−トルエンスルホニル基
Abbreviation;
AIBN = azobisisobutyronitrile Bn = benzyl Boc = t-butoxycarbonyl group DBU = 1,8-diazabicycloundecene DEAD = diethylazodicarboxylic acid DIBAL = diisobutylaluminum hydride DMAP = 4-dimethylaminopyridine DMF = Dimethylformamide Et = ethyl group LDA = lithium diisopropylamide Me = methyl group Ns = 2-nitrobenzenesulfonyl group Ph = phenyl group Py = pyridine TBDPS = t-butyldiphenylsilyl group TES = triethylsilyl group TFA = trifluoroacetyl group or tri Fluoroacetate TFAA = trifluoroacetic anhydride THF = tetrahydrofuran THP = tetrahydropyranyl group TMS = trimethylsilyl group Ts = p-to Ensuruhoniru based on

制ガン剤等として有用性が見出されている(+)−ビンブラスチン類の合成の効率的な製造を可能にする中間体の設計を確立したことにより、(+)−ビンブラスチン類のコマーシャル合成プロセスの確立に貢献できることは明らかである。   Establishing a commercial synthesis process for (+)-vinblastine by establishing an intermediate design that enables efficient production of the synthesis of (+)-vinblastine, which has been found useful as an anticancer agent, etc. It is clear that you can contribute to

Claims (1)

一般式Cからなる一般式Aの製造用中間体。
Figure 2006193529
(一般式C中R、R、RおよびRはH、低級アルキル基、低級アルコキシ基、ハロゲン、低級パーフルオロアルキル基、低級アルキルチオ基、ヒドロキシ基、アミノ基、モノ−又はジ−アルキルまたはアシルアミノ基、低級アルキルまたはアリ−ルスルホニルオキシ基から独立に選択される基である。RはHまたは低級アルキル基または置換または非置換アリール基、Rは炭素数4までのアルキル基、R10は、炭素数4までのアルキル基および置換基を有していても良いアリール基から独立に選択され、かつ、それぞれの基で選択され3つの基は同一でも異なっていても良い。また、R11、R12は炭素数4までのアルキル基および置換基を有していても良いアリール基から独立に選択され、かつ、それぞれの基で選択され3つの基は同一でも異なっていても良い。R13はトリアルキルシリル基、テトラヒドロピラニル基もしくは他の低級アルコールとのアセタール構造である。)
Figure 2006193529
(式中R、R、RおよびRは、H、低級アルキル基、低級アルコキシ基、ハロゲン、低級パーフルオロアルキル基、低級アルキルチオ基、ヒドロキシ基、アミノ基、モノ−又はジ−アルキルまたはアシルアミノ基、低級アルキルまたはアリ−ルスルホニルオキシ基から独立に選択される基である。RはHまたは低級アルキル基または置換または非置換アリール基、Rは炭素数4までのアルキル基、R、Rは置換または非置換のアリール基、Rはアシル基またはトリアルキルシリル基である。)
尚、ビンドリン類の命名における番号付けは、Men等により提唱された方法に基づく(非特許文献10)
Intermediate for production of general formula A consisting of general formula C.
Figure 2006193529
(In formula C, R 1 , R 2 , R 3 and R 4 are H, lower alkyl group, lower alkoxy group, halogen, lower perfluoroalkyl group, lower alkylthio group, hydroxy group, amino group, mono- or di- A group independently selected from an alkyl or acylamino group, a lower alkyl or arylsulfonyloxy group, R 5 is H or a lower alkyl group or a substituted or unsubstituted aryl group, and R 6 is an alkyl group having up to 4 carbon atoms. , R 10 is independently selected from an alkyl group having up to 4 carbon atoms and an aryl group which may have a substituent, and the three groups selected for each group may be the same or different. also, R 11, R 12 is independently selected from an aryl group which may have an alkyl group and substituents having up to 4 carbon atoms, and, in each group -Option by three groups may .R 13 be the same or different is an acetal structure and trialkylsilyl group, tetrahydropyranyl group or other lower alcohols.)
Figure 2006193529
Wherein R 1 , R 2 , R 3 and R 4 are H, lower alkyl group, lower alkoxy group, halogen, lower perfluoroalkyl group, lower alkylthio group, hydroxy group, amino group, mono- or di-alkyl. Or an acylamino group, a lower alkyl group or an arylsulfonyloxy group independently selected from R 5 is H or a lower alkyl group or a substituted or unsubstituted aryl group, R 6 is an alkyl group having up to 4 carbon atoms, R 7 and R 8 are substituted or unsubstituted aryl groups, and R 9 is an acyl group or a trialkylsilyl group.)
The numbering in the naming of Bindrins is based on the method proposed by Men et al. (Non-patent Document 10)
JP2006046111A 2006-02-23 2006-02-23 Intermediate for producing vinblastine by coupling reaction with bindrin Expired - Fee Related JP4406406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046111A JP4406406B2 (en) 2006-02-23 2006-02-23 Intermediate for producing vinblastine by coupling reaction with bindrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046111A JP4406406B2 (en) 2006-02-23 2006-02-23 Intermediate for producing vinblastine by coupling reaction with bindrin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001254108A Division JP3808735B2 (en) 2001-08-24 2001-08-24 Intermediates for synthesizing vinblastine, methods for producing them, and methods for synthesizing vinblastine

Publications (2)

Publication Number Publication Date
JP2006193529A true JP2006193529A (en) 2006-07-27
JP4406406B2 JP4406406B2 (en) 2010-01-27

Family

ID=36799873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046111A Expired - Fee Related JP4406406B2 (en) 2006-02-23 2006-02-23 Intermediate for producing vinblastine by coupling reaction with bindrin

Country Status (1)

Country Link
JP (1) JP4406406B2 (en)

Also Published As

Publication number Publication date
JP4406406B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
AU678423B2 (en) 2-debenzoyl-2-acyl taxol derivatives and methods for making same
CN110997645B (en) Preparation method of ozagrel
WO2006006290A1 (en) PROCESS FOR PRODUCING 1-OXACEPHALOSPORIN-7α-METHOXY-3-CHLOROMETHYL DERIVATIVE
WO2013135165A1 (en) Synthetic intermediate of entecavir and method for preparing same
EP2760848A1 (en) Processes for the preparation of cabazitaxel involving c(7) -oh and c(13) -oh silylation or just c(7) -oh silylation
US7420052B2 (en) Intermediates for synthesis of vinblastine, process for preparation of the intermediates and process for synthesis of vinblastines
PL195906B1 (en) A process for the preparation of taxanes from 10-deacetylbaccatin iii
JPS63165387A (en) Production of (+)-biotin
KR100799393B1 (en) A process for the preparation of taxan derivatives
JP4406406B2 (en) Intermediate for producing vinblastine by coupling reaction with bindrin
JP4481255B2 (en) Compounds for the production of intermediates that synthesize vinblastine by coupling reaction with bindrin
KR100921036B1 (en) Method of preparing taxane derivatives and intermediates used therein
NO332367B1 (en) Taxane derivatives functionalized at the 14th position
JP3037965B2 (en) 2-Alkoxycarbonyl-2-methyl-1-oxo-1,2,3,6,7,8-hexahydro-benzo [1,2-b; 4,3-b &#39;] dipyrrole derivative
JP4170799B2 (en) Improved synthesis of ectinasaidin 743, an antitumor active substance
KR970006471B1 (en) Method of producing amino butene derivatives
RU2478637C2 (en) METHOD FOR PREPARING 5,8,9,10-TETRAHYDROPYRIMIDINO[4,5-d]AZOCINE DERIVATIVES HAVING TRIFLATE, SECONDARY AND TERTIARY AMINO GROUPS IN 4-TH POSITION
JP3787809B2 (en) Synthetic method of oxathiazepine ring
JP4922761B2 (en) Synthesis of substituted heterocyclic compounds.
Dubasi et al. Studies towards the Total Synthesis of (+)-Discodermolide: Desymmetrization Approach
Narasimhaswamy et al. Studies toward the total synthesis of (+)-Discodermolide: Desymmetrization approach
KR101003820B1 (en) A method for preparing docetaxel and new intermediates for preparing the same
JP2006511469A5 (en)
JP2007536329A (en) Regioselective functionalization and protection of spirolactams
JPH06220052A (en) Production of imide derivative

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees