JP2006192928A - Resilient vibration blade - Google Patents

Resilient vibration blade Download PDF

Info

Publication number
JP2006192928A
JP2006192928A JP2005003696A JP2005003696A JP2006192928A JP 2006192928 A JP2006192928 A JP 2006192928A JP 2005003696 A JP2005003696 A JP 2005003696A JP 2005003696 A JP2005003696 A JP 2005003696A JP 2006192928 A JP2006192928 A JP 2006192928A
Authority
JP
Japan
Prior art keywords
vibration blade
resilient vibration
movement
blade
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005003696A
Other languages
Japanese (ja)
Inventor
Ko Yamaguchi
甲 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005003696A priority Critical patent/JP2006192928A/en
Publication of JP2006192928A publication Critical patent/JP2006192928A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Transmission Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient resilient vibration blade device having softness, flexibility, strength and safety. <P>SOLUTION: A material having plasticity and elasticity and imitated to a plurality of muscles does not have a function to autonomously contract in itself. But when kinetic energy of a front part is mediated to a rear side in the material, exfoliation of fluid is reduced for propulsion by transmitting S-type deformed waves enlarged by a frame part of the vibration blade provided with a plurality of movable joints. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、しなやかで柔軟性があり、強度と安全性のあるな弾性を持った振動する翼に関するものである。   The present invention relates to a vibrating wing having flexibility, flexibility, strength and safety.

回転運動を単純な往復運動に変換することは容易にできるが、魚類の鰭や鳥類の翼の動きを模擬することは機械的に困難である。   Although it is easy to convert the rotational motion into a simple reciprocating motion, it is mechanically difficult to simulate the movement of a fish cage or bird wing.

なぜならば機械は柔らかくしなやかな動きに対して相性が悪い。またバネの動きは慣性による復元力のため振動翼の運動を模することは全体的に有望ではない。
特開2002−253873 永井 実著 「イルカに学ぶ流体力学」
This is because machines are not compatible with soft and supple movements. Also, since the movement of the spring is a restoring force due to inertia, it is not entirely promising to simulate the movement of the vibrating blade.
JP2002-253873 Minoru Nagai "Hydrodynamics Learned from Dolphins"

解決しようとする問題点は、生物の柔らかく、しなやかな動きを人工的に作り出すことである。   The problem to be solved is to artificially create a soft and supple movement of the organism.

本発明は、生物が瞬間的に筋肉を次々と収縮しながら変形波を生じる動きを模擬することを最も主要な特徴とする。   The most important feature of the present invention is that a living body simulates a movement that generates a deformation wave while momentarily contracting muscles one after another.

推進効率が向上する。   Propulsion efficiency is improved.

本発明は、断面の中心部に複数の稼動関節を有する骨格部とそれを取巻く複数のユニットで構成された可塑性のある物質及び、全体を保護する薄く強度のある膜により構成される。   The present invention is composed of a skeleton having a plurality of working joints at the center of the cross section and a plastic material composed of a plurality of units surrounding the skeleton and a thin and strong film for protecting the whole.

推進機関はディーゼルエンジン等の内燃機関やスターリングエンジン等の外燃機関のピストンによる往復運動を直接的に後方部にエネルギーを伝える方法と、電気モーターの回転運動を機械的に往復運動に変換して後方部にエネルギーを伝える方法がある。   The propulsion engine is a method of transmitting energy directly to the rear part of the reciprocating motion of the internal combustion engine such as a diesel engine or an external combustion engine such as a Stirling engine, and mechanically converting the rotational motion of the electric motor to reciprocating motion There is a way to transfer energy to the rear.

船舶の推進装置、飛行船の翼などに利用可能である。   It can be used for ship propulsion devices and airship wings.

弾性振動翼の平面図である。It is a top view of an elastic vibration blade. ピストン運動のエネルギーが外側に伝わる弾性振動翼の平面図である。It is a top view of the elastic vibration wing | blade which the energy of piston motion is transmitted outside. カムの利用によるエネルギーが内部に伝わる弾性振動翼の平面図である。It is a top view of the elastic vibration blade in which the energy by utilization of a cam is transmitted to an inside.

符号の説明Explanation of symbols

1 弁
2 骨格部
3 ピストン
4 カム
1 Valve 2 Skeleton 3 Piston 4 Cam

Claims (1)

運動エネルギーが可塑性と弾性を有した複数の物質が移動ではなく媒介により拡大するS字型の変形波状の弾性振動翼。
An S-shaped deformation wave elastic vibrating blade in which a plurality of materials having kinetic energy having plasticity and elasticity are expanded not by movement but by mediation.
JP2005003696A 2005-01-11 2005-01-11 Resilient vibration blade Pending JP2006192928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003696A JP2006192928A (en) 2005-01-11 2005-01-11 Resilient vibration blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003696A JP2006192928A (en) 2005-01-11 2005-01-11 Resilient vibration blade

Publications (1)

Publication Number Publication Date
JP2006192928A true JP2006192928A (en) 2006-07-27

Family

ID=36799344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003696A Pending JP2006192928A (en) 2005-01-11 2005-01-11 Resilient vibration blade

Country Status (1)

Country Link
JP (1) JP2006192928A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815388A (en) * 2012-08-27 2012-12-12 百力科技有限公司 Line-drive polyarticular fishtail underwater propulsion device and bionic mechanism thereof
CN102963515A (en) * 2012-12-03 2013-03-13 深圳市中科莲花净水科技有限公司 Line drive flexible fishtail-like underwater propulsion unit and bionic mechanism thereof
CN104340349A (en) * 2013-07-29 2015-02-11 深圳市中科莲花净水科技有限公司 Rope-drive bionic fishtail propelled boat
CN105292418A (en) * 2015-11-23 2016-02-03 南京信息工程大学 Skeleton structure of electromagnetic mechanical fish
CN108423147A (en) * 2017-09-28 2018-08-21 范望平 Three-dimensional spiral axis drives the method and its device of bionical power fish
CN111959730A (en) * 2020-07-09 2020-11-20 浙江大学 Bionic fishtail propelling mechanism
CN113047913A (en) * 2021-04-16 2021-06-29 上海理工大学 Travelling wave vibration wing section

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815388A (en) * 2012-08-27 2012-12-12 百力科技有限公司 Line-drive polyarticular fishtail underwater propulsion device and bionic mechanism thereof
CN102963515A (en) * 2012-12-03 2013-03-13 深圳市中科莲花净水科技有限公司 Line drive flexible fishtail-like underwater propulsion unit and bionic mechanism thereof
CN102963515B (en) * 2012-12-03 2014-12-10 深圳市中科莲花净水科技有限公司 Line drive flexible fishtail-like underwater propulsion unit and bionic mechanism thereof
CN104340349A (en) * 2013-07-29 2015-02-11 深圳市中科莲花净水科技有限公司 Rope-drive bionic fishtail propelled boat
CN105292418A (en) * 2015-11-23 2016-02-03 南京信息工程大学 Skeleton structure of electromagnetic mechanical fish
CN108423147A (en) * 2017-09-28 2018-08-21 范望平 Three-dimensional spiral axis drives the method and its device of bionical power fish
CN108423147B (en) * 2017-09-28 2020-10-16 范望平 Method and device for driving bionic power fish by three-dimensional screw shaft
CN111959730A (en) * 2020-07-09 2020-11-20 浙江大学 Bionic fishtail propelling mechanism
CN111959730B (en) * 2020-07-09 2021-12-31 浙江大学 Bionic fishtail propelling mechanism
CN113047913A (en) * 2021-04-16 2021-06-29 上海理工大学 Travelling wave vibration wing section

Similar Documents

Publication Publication Date Title
JP2006192928A (en) Resilient vibration blade
Salazar et al. A review on the modeling, materials, and actuators of aquatic unmanned vehicles
Low Modelling and parametric study of modular undulating fin rays for fish robots
Serchi et al. Biomimetic vortex propulsion: toward the new paradigm of soft unmanned underwater vehicles
Moored et al. Batoid fishes: inspiration for the next generation of underwater robots
Kwak et al. Locomotion of arthropods in aquatic environment and their applications in robotics
Cai et al. Design and experiments of a robotic fish imitating cow-nosed ray
Villanueva et al. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators
Gao et al. Development and design of a robotic manta ray featuring flexible pectoral fins
Low Current and future trends of biologically inspired underwater vehicles
Shinjo et al. Use of a shape memory alloy for the design of an oscillatory propulsion system
Sfakiotakis et al. Multi-arm robotic swimming with octopus-inspired compliant web
Zhu et al. Effects of stiffness distribution and spanwise deformation on the dynamics of a ray-supported caudal fin
Zhang et al. Design and control of bionic manta ray robot with flexible pectoral fin
Willy et al. Development and initial experiment of modular undulating fin for untethered biorobotic AUVs
Liu et al. A fluid-driven soft robotic fish inspired by fish muscle architecture
CN109094762B (en) Frog-imitating swimming leg adopting under-actuated series soft pneumatic bending module
RB et al. Robotic fish locomotion & propulsion in marine environment: A survey
JP2008018794A (en) Electromagnetic propulsion device
Low Design, development and locomotion control of bio-fish robot with undulating anal fins
He et al. Development and motion testing of a robotic ray
Cui et al. Design and implementation of thunniform robotic fish with variable body stiffness
Willy et al. Initial experimental investigation of undulating fin
Behbahani et al. A flexible passive joint for robotic fish pectoral fins: Design, dynamic modeling, and experimental results
Chen et al. An untethered soft robotic fish using SMA wires and its performance analysis