JP2006192552A - Throw-away tip, its manufacturing method, and cutting method - Google Patents

Throw-away tip, its manufacturing method, and cutting method Download PDF

Info

Publication number
JP2006192552A
JP2006192552A JP2005008769A JP2005008769A JP2006192552A JP 2006192552 A JP2006192552 A JP 2006192552A JP 2005008769 A JP2005008769 A JP 2005008769A JP 2005008769 A JP2005008769 A JP 2005008769A JP 2006192552 A JP2006192552 A JP 2006192552A
Authority
JP
Japan
Prior art keywords
throw
cutting edge
away tip
face
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008769A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Nakaoka
達行 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005008769A priority Critical patent/JP2006192552A/en
Publication of JP2006192552A publication Critical patent/JP2006192552A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a throw-away tip capable of suppressing chipping even if the tip processing amount is small and equipped with excellent anti-abrasiveness and anti-chipping performance, provide a cutting method using the tip, and also a method of manufacturing throw-away tips. <P>SOLUTION: The throw-away tip 1 has a machined surface where the arithmetic mean surface roughness Ra of the machined portion is 0.15 μm, and the condition that S/d<SP>2</SP>is between 2.8×10<SP>-6</SP>and 2.8×10<SP>-4</SP>should be met, where S in mm<SP>2</SP>is the area on the section of the part near the cutting edge 4 generated when it is cut by a plane perpendicular to the face 2, perpendicular to the tangent to the cutting edge 4, and passing the center O of the tip 1 in its part formed by excluding the actual section from the virtual section generated when the extension line L2 from the face 2 intersects the extension line L1 from the flank 3 while d in mm is the diameter of the inscribing circle of the tip 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼、合金等を切削するスローアウェイチップ、その製造方法、及び切削方法に関する。   The present invention relates to a throw-away tip that cuts steel, an alloy, and the like, a manufacturing method thereof, and a cutting method.

近年、金属の切削加工分野ではその加工条件が年々厳しくなり、これに用いる切削工具としては、超硬合金、サーメット、セラミック等の硬質焼結体からなるスローアウェイチップが普及している。一般に、このようなスローアウェイチップでは、切刃が切削初期にチッピングや欠損するのを防止する目的で刃先処理が施されている。この刃先処理については、処理量を大きくすると切刃の耐欠損性が向上する反面、切削抵抗が大きくなるためビビリが発生して加工面が粗雑になったり、耐摩耗性が低下することが良く知られている。したがって、刃先処理量はできるだけ小さく抑えることが望ましい。しかし、特に従来のセラミックスのように硬くて脆い材質では、チッピングや欠損を防止するために刃先処理量を大きくせざるを得ず、加工面の面粗度を高めることができなかった。   In recent years, in the field of metal cutting, the processing conditions have become stricter year by year, and as a cutting tool used therefor, a throw-away tip made of a hard sintered body such as cemented carbide, cermet, ceramic, etc. has become widespread. Generally, in such a throw-away tip, a cutting edge treatment is performed for the purpose of preventing the cutting edge from chipping or chipping in the early stage of cutting. With regard to this cutting edge treatment, the chipping resistance of the cutting edge is improved when the processing amount is increased. On the other hand, the cutting resistance increases, chattering occurs, the processing surface becomes rough, and the wear resistance decreases. Are known. Therefore, it is desirable to keep the cutting edge processing amount as small as possible. However, particularly in the case of hard and brittle materials such as conventional ceramics, it has been necessary to increase the processing amount of the blade edge in order to prevent chipping and chipping, and the surface roughness of the processed surface could not be increased.

この問題を解決する方法として、例えば特許文献1にはノーズ部の切刃部分の刃先処理量を小さくし、かつ切屑が衝突するノーズ部から離れた切刃部分の刃先処理量を大きくすることによって摩耗の進行防止および欠損防止を図る方法が提案されている。また、特許文献2には、研削(刃先処理)方向を変えて研削時の応力集中を緩和する内容が記載されている。
特開平1−188202号公報 特開2000−280105号公報
As a method for solving this problem, for example, Patent Document 1 discloses that by reducing the cutting edge processing amount of the cutting edge portion of the nose portion and increasing the cutting edge processing amount of the cutting blade portion away from the nose portion where the chips collide. Methods have been proposed for preventing the progress of wear and preventing breakage. Japanese Patent Laid-Open No. 2004-228561 describes contents for relaxing stress concentration during grinding by changing the grinding (blade edge processing) direction.
JP-A-1-188202 JP 2000-280105 A

しかしながら、上記したような方法で刃先処理方法を工夫する対策では、耐チッピング性を高める効果はあるが、切刃における切削に用いる部分の刃先処理量を減少させるには至っていない。このため、被削材と切刃との接触面積が大きくなるので、加工面粗度が大きくなり、また摩耗の進行が早くなって工具寿命にも限界があった。   However, measures to devise the blade edge processing method by the above-described method have an effect of improving chipping resistance, but have not yet reduced the amount of blade edge processing of the portion used for cutting in the cutting edge. For this reason, since the contact area between the work material and the cutting edge is increased, the roughness of the machined surface is increased, the wear progresses faster, and the tool life is limited.

本発明は上記課題を解決するためになされたもので、その目的は、刃先処理量が小さくてもチッピングの発生が抑制され、耐摩耗性および耐チッピング性に優れたスローアウェイチップ、その製造方法、及び切削方法を提供することである。   The present invention has been made to solve the above-mentioned problems, and its object is to suppress the occurrence of chipping even when the cutting edge processing amount is small, and a throw-away tip excellent in wear resistance and chipping resistance, and a method for producing the same And a cutting method.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、スローアウェイチップを構成する母材が、長尺状の芯材の外周を該芯材とは異なる組成の表皮材で被覆した繊維状材料が集合した複合構造体からなるとともに、刃先部分の刃先処理量(除去量)と刃先処理面の面粗度とを調整することによって、耐チッピング性と耐摩耗性に優れたスローアウェイチップを提供することができるという新たな事実を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have covered the outer periphery of a long core material with a skin material having a composition different from that of the core material. Slow with excellent chipping resistance and wear resistance by adjusting the cutting edge processing amount (removal amount) of the cutting edge part and the surface roughness of the cutting edge processing surface. The present inventors have found a new fact that an away chip can be provided and completed the present invention.

すなわち、本発明のスローアウェイチップは、上面にすくい面、側面に逃げ面を有し、前記すくい面と前記逃げ面の交差稜線に切刃を設けた母材からなるスローアウェイチップにおいて、前記母材が、長尺状の芯材の外周を該芯材とは異なる組成の表皮材で被覆した繊維状材料が集合した複合構造体からなり、前記切刃付近を前記すくい面に略垂直な面で切った場合の断面において、すくい面からの延長線と逃げ面からの延長線とが交わってできる仮想断面から実際の断面を除いた部分の面積をSとし、スローアウェイチップの内接円の直径をdとするとき、(S/d)が2.8×10−6〜2.8×10−4となるように刃先処理が施されているとともに、該刃先処理部分の算術平均粗さRaが0.15μm以下であることを特徴とする。 That is, the throw-away tip of the present invention is a throw-away tip comprising a base material having a rake face on an upper surface and a flank face on a side surface, and a cutting edge provided on a cross ridge line of the rake face and the flank face. The material is composed of a composite structure in which fibrous materials obtained by covering the outer periphery of a long core material with a skin material having a composition different from that of the core material, and the surface near the cutting edge is substantially perpendicular to the rake face In the cross-section when cut at, the area of the virtual cross section excluding the actual cross section from the virtual cross section formed by the intersection of the extension line from the rake face and the extension line from the flank face is S, and the inscribed circle of the throwaway tip When the diameter is d, the cutting edge processing is performed so that (S / d 2 ) is 2.8 × 10 −6 to 2.8 × 10 −4, and the arithmetic average roughness of the cutting edge processing portion Ra is 0.15 μm or less. .

本発明における前記芯材は、酸化アルミニウム、窒化ケイ素、炭化ケイ素、周期律表4a、5a、6a族元素の炭化物、窒化物、炭窒化物から選ばれる1種または2種以上で構成されるセラミックスからなり、前記表皮材は酸化アルミニウム、窒化ケイ素、炭化ケイ素、周期律表4a、5a、6a族元素の炭化物、窒化物、炭窒化物から選ばれる1種または2種以上で構成されるセラミックスからなるのが好ましい。これにより、複合構造体の硬度を高めて切削工具の耐摩耗性のさらなる向上を図ることができる。   The core material in the present invention is a ceramic composed of one or more selected from aluminum oxide, silicon nitride, silicon carbide, carbides of the periodic table 4a, 5a, and 6a group elements, nitrides, and carbonitrides. The skin material is made of ceramics composed of one or more selected from aluminum oxide, silicon nitride, silicon carbide, carbides of group 4a, 5a, 6a group elements, nitrides, carbonitrides. Preferably it is. Thereby, the hardness of a composite structure can be raised and the further improvement of the abrasion resistance of a cutting tool can be aimed at.

また、前記刃先処理がチャンファーホーニングであることで、切刃の切れ味を高めて切削抵抗を低減し、突発的な欠損やチッピング等の工具損傷を抑制することができる。   Further, since the blade edge processing is chamfer honing, the cutting edge can be sharpened to reduce cutting resistance, and tool damage such as sudden chipping and chipping can be suppressed.

さらに、前記チャンファーホーニングにおける前記すくい面からの延長線の長さをL、前記逃げ面からの延長線の長さをLとしたとき、これらがL≧(√3)Lであるのが好ましい。これにより、切刃の切れ味をより向上させ、切削抵抗を低減することでビビリや刃先のチッピングを防ぐことができる。 Further, the length L R of the extension line from the rake face in the chamfer honing, the length of the extension line from the flank when the L F, they at L R ≧ (√3) L F Preferably there is. Thereby, chattering and chipping of the cutting edge can be prevented by further improving the sharpness of the cutting edge and reducing the cutting resistance.

また、本発明の切削方法は、上記スローアウェイチップを用いて超耐熱合金の切削を行うことを特徴とする。このように、本発明のスローアウェイチップは、ニッケル基合金、チタン合金等の超耐熱合金を切削加工する際に用いることで、耐摩耗性および耐チッピング性においてより顕著な効果を発揮する。   Further, the cutting method of the present invention is characterized in that the super heat-resistant alloy is cut using the above throwaway tip. As described above, the throw-away tip of the present invention exhibits a more remarkable effect in wear resistance and chipping resistance when used in cutting super heat-resistant alloys such as nickel-base alloys and titanium alloys.

本発明の製造方法は、上面にすくい面、側面に逃げ面を有し、前記すくい面と前記逃げ面の交差稜線に切刃を設けた母材からなるスローアウェイチップの製造方法であって、前記母材が、長尺状の芯材の外周を該芯材とは異なる組成の表皮材で被覆した繊維状材料が集合した複合構造体で構成され、下記面積Sと直径dの比(S/d)が2.8×10−6〜2.8×10−4となるように前記すくい面と逃げ面の交差稜線をホーニング加工して刃先処理する工程を備えたことを特徴とする。
S:前記切刃付近を前記すくい面に略垂直な面で切った場合の断面において、すくい面からの延長線と逃げ面からの延長線とが交わってできる仮想断面から実際の断面を除いた部分の面積
d:スローアウェイチップの内接円の直径
The manufacturing method of the present invention is a method for manufacturing a throw-away tip comprising a base material having a rake face on the upper surface, a flank face on the side surface, and a cutting edge on the ridge line of the rake face and the flank face, The base material is composed of a composite structure in which fibrous materials in which the outer periphery of a long core material is covered with a skin material having a composition different from that of the core material, and the ratio of the following area S to diameter d (S / D 2 ) is 2.8 × 10 −6 to 2.8 × 10 −4, and includes a step of performing edge processing by honing the intersecting ridge line of the rake face and the flank face. .
S: In the cross section when the vicinity of the cutting edge is cut by a plane substantially perpendicular to the rake face, the actual cross section is removed from the virtual cross section formed by the intersection of the extension line from the rake face and the extension line from the flank face. Part area d: Diameter of the inscribed circle of the throw-away tip

本発明のスローアウェイチップによれば、上記した複合構造体で母材を構成することで、母材自体の破壊靭性を高めることができ、また、刃先処理量および刃先処理面の面粗度を上記範囲内に調整することで、切刃における突発欠損を防ぐことができるとともに切削抵抗を小さくして摩耗の進行を遅らせ、安定した切削加工が可能になる。   According to the throw-away tip of the present invention, by forming the base material with the composite structure described above, the fracture toughness of the base material itself can be increased, and the cutting edge processing amount and the surface roughness of the cutting edge processing surface can be reduced. By adjusting within the above range, it is possible to prevent a sudden defect in the cutting edge and reduce the cutting resistance to delay the progress of wear, thereby enabling stable cutting.

本発明のスローアウェイチップは、特に、高速切削や荒加工として用いられる重断続切削のように切刃に大きな衝撃がかかる加工条件において、切刃表面に局所的な大きな衝撃がかかることなく耐欠損性を高めることができるとともに、高い耐摩耗性を維持した状態で切刃に発生するチッピングを抑制することができる。これにより、耐久性に優れた長寿命のスローアウェイチップを得ることができる。   The throw-away tip of the present invention is resistant to chipping without causing a large local impact on the cutting edge surface, especially in machining conditions where a large impact is applied to the cutting edge, such as heavy interrupted cutting used for high speed cutting or rough machining. While being able to improve property, the chipping which generate | occur | produces in a cutting blade can be suppressed in the state which maintained high abrasion resistance. Thereby, a long-life throw-away tip with excellent durability can be obtained.

本発明の一実施形態にかかるスローアウェイチップについて図面を参照して詳細に説明する。 図1(a)は本実施形態にかかるスローアウェイチップを示す平面図であり、図1(b)はそのX−X線断面図である。また、図2(a),(b)は、図1(b)に一点鎖線で囲まれた切刃付近Cを拡大した拡大断面図である。このうち、図2(a)は、刃先処理としてチャンファーホーニングを施した例を示し、図2(b)は、刃先処理としてRホーニングを施した例を示す。   A throw-away tip according to an embodiment of the present invention will be described in detail with reference to the drawings. Fig.1 (a) is a top view which shows the throw away tip concerning this embodiment, FIG.1 (b) is the XX sectional drawing. 2 (a) and 2 (b) are enlarged cross-sectional views enlarging the vicinity C of the cutting edge surrounded by an alternate long and short dash line in FIG. 1 (b). Among these, Fig.2 (a) shows the example which performed the chamfer honing as a blade edge process, FIG.2 (b) shows the example which performed the R honing as a blade edge process.

図1(a),(b)に示すように、本実施形態のスローアウェイチップ(以下、単にチップと略す)1は、主面(上面)にすくい面2、側面に逃げ面3を有し、すくい面2と逃げ面3の交差稜線に切刃4を設けた母材からなる。このチップ1は、母材のままで使用してもよく、必要に応じて母材の表面に物理蒸着法、化学蒸着法等の公知の表面被覆法により硬質被覆膜を形成して使用してもよい。   As shown in FIGS. 1 (a) and 1 (b), a throw-away tip (hereinafter simply referred to as a tip) 1 of this embodiment has a rake face 2 on the main surface (upper surface) and a flank 3 on the side surface. It consists of the base material which provided the cutting edge 4 in the intersection ridgeline of the rake face 2 and the flank 3. This chip 1 may be used as it is, and if necessary, a hard coating film is formed on the surface of the base material by a known surface coating method such as physical vapor deposition or chemical vapor deposition. May be.

このチップ1では、図2(a),(b)に示すように、切刃4付近をすくい面2に垂直で、切刃4の接線に垂直で、かつ、チップ1の中心Oを通る面で切った場合の断面において、すくい面2からの延長線L2と逃げ面3からの延長線L1が交わってできる仮想断面から実際の断面を除いた部分の面積をS(mm)とし、チップ1の内接円の直径(図1(a)の場合、チップ1が円形であるので、内接円の直径がチップ1の直径と同じになる)をd(mm)とするとき、(S/d)が2.8×10−6〜2.8×10−4となるように刃先処理が施されているとともに、該刃先処理部分の算術平均粗さRaが0.15μm以下となるように加工されている。 In this chip 1, as shown in FIGS. 2A and 2B, the surface near the cutting edge 4 is perpendicular to the rake face 2, perpendicular to the tangent to the cutting edge 4, and passes through the center O of the chip 1. In the cross section when cut at, the area of the portion excluding the actual cross section from the virtual cross section formed by the intersection of the extension line L2 from the rake face 2 and the extension line L1 from the flank face 3 is S (mm 2 ), When the diameter of the inscribed circle of 1 (in the case of FIG. 1A, the tip 1 is circular, the diameter of the inscribed circle is the same as the diameter of the tip 1) is defined as d (mm) (S / D 2 ) is subjected to cutting edge processing so as to be 2.8 × 10 −6 to 2.8 × 10 −4, and the arithmetic average roughness Ra of the cutting edge processing portion is 0.15 μm or less. It is processed as follows.

これにより、高速切削や重断続切削のように切刃4に大きな衝撃がかかる加工条件においても切刃4にチッピングが発生することなく、かつ切削抵抗を小さくできるので、加工面粗度の向上および耐摩耗性の向上が図れる。   As a result, chipping does not occur on the cutting edge 4 even under processing conditions in which a large impact is applied to the cutting edge 4 such as high-speed cutting or heavy interrupted cutting, and the cutting resistance can be reduced. Abrasion resistance can be improved.

(S/d)が2.8×10−4を超えると、摩耗の進行が早まり、寿命が短くなると共に、切削抵抗が大きくなるためにビビリが発生し、刃先4のチッピングや加工面粗度が低下する等の問題が生じる。また、(S/d)が2.8×10−6未満になると、刃先4の欠損が発生しやすくなる。 When (S / d 2 ) exceeds 2.8 × 10 −4 , wear progresses faster, the service life is shortened, and chattering occurs due to an increase in cutting resistance. Problems such as lowering of the degree occur. Further, when (S / d 2 ) is less than 2.8 × 10 −6 , the cutting edge 4 is easily damaged.

刃先処理量に相当する面積Sを算出する際には、図1(a)のようにチップ1の平面形状が円形(いわゆる丸駒チップ)の場合、任意の断面における刃先処理量を数カ所で算出し、それらの平均値を求めるものとする。   When calculating the area S corresponding to the cutting edge processing amount, when the planar shape of the chip 1 is circular (so-called round piece chip) as shown in FIG. And the average value of them shall be obtained.

また、図1(c)に示すようにノーズ部が存在するような略四角形の平面形状からなるチップの場合には、すくい面2に垂直で、切刃4の接線に垂直で、かつ、チップ1の中心Oを通り、ノーズ部の先端を通る面で切った断面(図1(c)のy−y線断面)における刃先処理量を複数のノーズ部(好ましくは4つのノーズ部)について算出し、それらの平均値を求めるものとする。   Further, in the case of a chip having a substantially rectangular planar shape with a nose portion as shown in FIG. 1C, the chip is perpendicular to the rake face 2, perpendicular to the tangent to the cutting edge 4, and the chip. 1 is calculated for a plurality of nose parts (preferably four nose parts) in a cross section cut along a plane passing through the center O of 1 and passing through the tip of the nose part (cross section taken along line yy in FIG. 1C). And the average value of them shall be obtained.

刃先表面に施す機械加工は、ダイヤモンド砥石等での研削や、その後のブラシや弾性砥石等による表面研磨によって施される。このようにしてチップ1の表面を加工することで算術平均粗さRaを0.15μm以下に調整することができる。   Machining applied to the surface of the blade edge is performed by grinding with a diamond grindstone or the like and subsequent surface polishing with a brush or an elastic grindstone. By processing the surface of the chip 1 in this way, the arithmetic average roughness Ra can be adjusted to 0.15 μm or less.

本発明に用いる複合構造体は全体として破壊靱性に優れるものであるが、異種材料が共存する形態をとるために切刃のような表面部分においては異種材料間の境界がチッピング発生の要因となりうるが、複合構造体の加工面粗度(算術平均粗さRa)を上記規定値内に高めることにより、切刃におけるチッピングの発生を防止することができる。   Although the composite structure used in the present invention is excellent in fracture toughness as a whole, the boundary between different materials can cause chipping in the surface portion such as a cutting edge because it takes a form in which different materials coexist. However, by increasing the processed surface roughness (arithmetic average roughness Ra) of the composite structure within the specified value, occurrence of chipping in the cutting edge can be prevented.

機械加工された部分の算術平均面粗さRaの測定は、接触式の表面粗さ計を用いるか、または非接触式のレーザー顕微鏡を用いて、測定面がレーザー顕微鏡のレーザー照射方向に対して垂直となるようにチップ1を動かしながら測定する。   The arithmetic average surface roughness Ra of the machined portion is measured using a contact-type surface roughness meter or using a non-contact type laser microscope, and the measurement surface is in the direction of laser irradiation of the laser microscope. Measurement is performed while moving the tip 1 so as to be vertical.

また、上記刃先処理においては、ダイヤモンド砥石等によって刃先の面取りを行うチャンファーホーニング(図2(a))や、弾性砥石、ブラシ等で刃先に丸みを帯びさせるRホーニング(図2(b))等があるが、本発明では、刃先処理をチャンファーホーニングとすることが、刃先4の切れ味をより高めて切削抵抗を低減すると共に、刃先4のチッピングや欠損をより確実に抑えて安定した工具寿命を得ることができる点で望ましい。   In the above-mentioned blade edge processing, chamfer honing (FIG. 2 (a)) for chamfering the blade edge with a diamond grindstone or the like, and R honing for rounding the blade edge with an elastic grindstone, a brush or the like (FIG. 2 (b)). In the present invention, the cutting edge processing is chamfer honing, which improves the sharpness of the cutting edge 4 and reduces the cutting resistance, and more reliably suppresses chipping and chipping of the cutting edge 4 and stabilizes the tool. It is desirable in that a lifetime can be obtained.

チャンファーホーニングの場合には、図2(a)に示すように、すくい面2からの延長線の長さ(刃先処理幅)をL、逃げ面3からの延長線の長さ(刃先処理幅)をLとした場合、これらがL≧(√3)Lの関係を満足することによって、チャンファー部と切屑の相互作用で切り屑分断性がよくなり、刃先温度上昇を抑えることで刃先の損傷を抑制するという効果がある。 In the case of chamfer honing, as shown in FIG. 2 (a), the length of the extension line from the rake face 2 (blade edge treatment width) is L R , and the length of the extension line from the flank face 3 (blade edge treatment). If the width) was set to L F, by which they satisfy the relation: L R ≧ (√3) L F , the better the chip breakability interaction chamfer portion and the chip, reduce the cutting edge temperature rise This has the effect of suppressing damage to the blade edge.

次に、チップ1における母材を構成する複合構造体について説明する。   Next, the composite structure constituting the base material in the chip 1 will be described.

チップ1の母材は、図3(a),(b)に示すような長尺状の芯材6の外周を該芯材6とは異なる組成の表皮材7にて被覆してなるシングルタイプの複合繊維体(繊維状材料)5aまたはマルチタイプの複合繊維体(繊維状材料)5bを集合させた複合構造体からなる(例えば、図4(a)〜(d)に示す複合構造体8a〜8d)。母材をこのような複合構造体にて構成することによって、母材自体の破壊靭性を高めることができる。   The base material of the chip 1 is a single type in which the outer periphery of a long core material 6 as shown in FIGS. 3A and 3B is covered with a skin material 7 having a composition different from that of the core material 6. Composite fiber body (fibrous material) 5a or a composite structure in which multi-type composite fiber bodies (fibrous material) 5b are assembled (for example, composite structure 8a shown in FIGS. 4A to 4D) ~ 8d). By constituting the base material with such a composite structure, the fracture toughness of the base material itself can be enhanced.

複合繊維体5aは、長尺状の芯材6の外周を該芯材6とは異なる組成の表皮材7で被覆したものである。また、複合繊維体5bは、シングルタイプの繊維体5aを複数束ねた集合体を伸延したものである。本発明では、特にマルチタイプの複合繊維体5bを用いることが衝撃吸収性に優れる点で好ましい。   The composite fiber body 5 a is obtained by coating the outer periphery of a long core material 6 with a skin material 7 having a composition different from that of the core material 6. The composite fiber body 5b is obtained by extending an assembly of a plurality of single-type fiber bodies 5a. In the present invention, it is particularly preferable to use a multi-type composite fiber body 5b in terms of excellent impact absorbability.

また、複合構造体の構成としては、複合繊維体5aまたは5b(以下、これらを総称して複合繊維体5という)の充填率を高めて組織を緻密化できるとともに、衝撃エネルギーの分散効果が高く、耐衝撃性を増大させることができる点では、図4(a)〜(c)のように複合繊維体5を規則的な方向に配置するのが望ましい(複合構造体8a〜8c参照)。なお、この場合、複合繊維体5の配置方向は、図4(c)のように隣接する上下の配置角度が角度αとなるように配置してもよい。また、クラックの進行を遅くすることができ、より高い靭性を発揮することができて耐欠損性を向上させることができる点では、複合繊維体5を一定の方向に並べる方法ではなく、図4(d)のように複合繊維体5の方向がランダムになるように配置するのが望ましい(複合構造体8d参照)。   In addition, the structure of the composite structure can increase the filling rate of the composite fiber body 5a or 5b (hereinafter collectively referred to as the composite fiber body 5) to densify the structure, and has a high impact energy dispersion effect. In view of increasing the impact resistance, it is desirable to arrange the composite fiber bodies 5 in a regular direction as shown in FIGS. 4 (a) to 4 (c) (see composite structures 8a to 8c). In this case, the arrangement direction of the composite fiber body 5 may be arranged such that the adjacent upper and lower arrangement angles are the angle α as shown in FIG. Further, in terms of being able to slow the progress of cracks, exhibit higher toughness, and improve fracture resistance, it is not a method of arranging the composite fiber bodies 5 in a certain direction, but FIG. It is desirable to arrange so that the direction of the composite fiber body 5 is random as shown in (d) (see the composite structure 8d).

芯材6を構成する焼結体の結晶粒子の平均粒径は、複合繊維体5の硬度および強度向上の点、および芯材6と表皮材7中の結合材(結合金属、焼結助剤)の含有量を適正化する点で0.05〜10μm、特に0.1〜3μmであることが望ましく、他方、表皮材7を構成する結晶粒子の平均粒径は、複合繊維体4の靭性向上の点で、0.01〜5μm、特に0.01〜2μmであることが望ましい。   The average particle size of the crystal particles of the sintered body constituting the core material 6 is the point of improving the hardness and strength of the composite fiber body 5 and the binder (bonding metal, sintering aid) in the core material 6 and the skin material 7. ) Is preferably 0.05 to 10 μm, particularly 0.1 to 3 μm, and on the other hand, the average particle size of the crystal particles constituting the skin material 7 is the toughness of the composite fiber body 4. In terms of improvement, it is desirable that the thickness is 0.01 to 5 μm, particularly 0.01 to 2 μm.

芯材6は、酸化アルミニウム(Al)、窒化ケイ素(Si)、炭化ケイ素(SiC)、周期律表4a、5a、6a族元素の炭化物、窒化物、炭窒化物から選ばれる1種または2種以上で構成されるセラミックスからなるのが好ましい。また、表皮材7は、芯材6とは異なる組成のセラミックスからなり、酸化アルミニウム、窒化ケイ素、炭化ケイ素、周期律表4a、5a、6a族元素の炭化物、窒化物、炭窒化物から選ばれる1種または2種以上で構成されるセラミックスからなるのが好ましい。これにより、耐摩耗性、耐欠損性を共に向上させることができ、より本発明の効果を発揮することができる。特に、窒化ケイ素または酸化アルミニウムを主成分としたセラミックスであることが複合構造体の硬度を高めて切削工具の耐摩耗性を高め、工具寿命の向上の点で望ましい。 The core material 6 is selected from aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), periodic table 4a, 5a, 6a group element carbide, nitride, carbonitride. It is preferable that it consists of the ceramics comprised by 1 type, or 2 or more types. The skin material 7 is made of ceramics having a composition different from that of the core material 6, and is selected from aluminum oxide, silicon nitride, silicon carbide, carbides of the periodic table 4a, 5a, and 6a group elements, nitride, and carbonitride. It is preferably made of ceramics composed of one kind or two or more kinds. Thereby, both wear resistance and chipping resistance can be improved, and the effects of the present invention can be further exhibited. In particular, ceramics mainly composed of silicon nitride or aluminum oxide are desirable from the viewpoint of increasing the hardness of the composite structure, increasing the wear resistance of the cutting tool, and improving the tool life.

(製造方法)
次に、上述した本発明のチップを製造する方法の一例について図5を参照して説明する。まず、平均粒径0.1〜3μmのAl粉末を80〜95重量%と、平均粒径0.5〜5μmのZrO粉末を5〜20重量%と、所望により上述した助剤成分粉末を0.5〜1重量%とを所定の割合で添加、混合して、これにパラフィンワックス、ポリスチレン、ポリエチレン、エチレン−エチルアクリレ−ト、エチレン−ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等の有機バインダを添加、混錬した後、プレス成形、押出成形または鋳込成形等の成形方法により円柱形状の芯材用成形体12を作製する(図5(a1))。
(Production method)
Next, an example of a method for manufacturing the above-described chip of the present invention will be described with reference to FIG. First, 80 to 95% by weight of Al 2 O 3 powder having an average particle size of 0.1 to 3 μm, 5 to 20% by weight of ZrO 2 powder having an average particle size of 0.5 to 5 μm, and the above-mentioned auxiliary agents as desired. 0.5 to 1% by weight of the component powder is added and mixed at a predetermined ratio, and this is mixed with paraffin wax, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene glycol, dibutyl. After adding and kneading an organic binder such as phthalate, a cylindrical core material molded body 12 is produced by a molding method such as press molding, extrusion molding or casting (FIG. 5 (a1)).

一方、平均粒径0.1〜3μmのSi粉末80〜95%と平均粒径0.3μmのAl粉末を5〜10重量%と、平均粒径0.5〜5μmのY粉末を2〜10重量%と、を所定の割合で添加、混合して、これに前述のバインダ等を添加したものを混錬して、プレス成形、押出成形、鋳込成形等の成形方法により半割円筒形状の2本の表皮材用成形体13を作製し(図5(a2))、該表皮材用成形体13を前記芯材用成形体12の外周を覆うように配置した複合成形体14を作製する(図5(a3))。 On the other hand, Si 3 N 4 powder 80 to 95% with an average particle size of 0.1 to 3 μm, Al 2 O 3 powder with an average particle size of 0.3 μm to 5 to 10% by weight, and an average particle size of 0.5 to 5 μm. 2-10 wt% of Y 2 O 3 powder is added and mixed at a predetermined ratio, and the above-mentioned binder and the like are kneaded, and press molding, extrusion molding, casting molding, etc. The two half-cylindrical shaped moldings 13 for the skin material are produced by the molding method (FIG. 5 (a2)), and the molded body 13 for the skin material is covered with the outer circumference of the molded body 12 for the core material. The arranged composite molded body 14 is produced (FIG. 5 (a3)).

ついで、上記複合成形体14を共押出成形することにより芯材の周囲に表皮材が被覆された細い径に伸延された長尺状の複合成形体15を作製する(図5(b))。また、マルチフィラメント構造(マルチタイプ)の構造体を作製するには、上記共押出しした長尺状の複合成形体15を複数本集束して(複数本束ねて)再度共押出して複合成形体16を成形すればよい(図5(c))。   Next, the composite molded body 14 is coextruded to produce a long composite molded body 15 that is elongated to a thin diameter in which a skin material is coated around the core material (FIG. 5B). In order to produce a multifilament structure (multi-type) structure, a plurality of the coextruded long composite molded bodies 15 are converged (bundled) and coextruded again to form a composite molded body 16. May be formed (FIG. 5C).

なお、上記伸延された長尺状の複合成形体15を所望により円柱や三角柱、四角柱、六角柱等の多角形に成形することもできる。また、上記複合構造体の構成を説明した図4(a)〜(c)に示すように、長尺状の複合成形体15を整列させてシートとなし、該シート同士が平行(図4(a))、直行(図4(b))または角度α(例えば45°)等の所定の角度をなすように(図4(c))積層させた積層体とすることもできる。また、上記複合構造体の構成を説明した図4(d)に示すように、上記伸延された長尺状の複合成形体15(または複合成形体16)を1mm程度に切断し粒状となったものをランダムに配置させてもよい。これらのように配置させた後、100〜200℃でプレス成型することで目的形状の成型体を得ることができる。   Note that the elongated composite molded body 15 can be formed into a polygon such as a cylinder, a triangular prism, a quadrangular prism, or a hexagonal prism as desired. Further, as shown in FIGS. 4A to 4C illustrating the structure of the composite structure, the long composite molded body 15 is aligned to form a sheet, and the sheets are parallel to each other (FIG. 4 ( It is also possible to form a laminated body that is laminated so as to form a predetermined angle such as a)), direct (FIG. 4B) or an angle α (for example, 45 °) (FIG. 4C). Further, as shown in FIG. 4 (d) illustrating the configuration of the composite structure, the elongated composite molded body 15 (or the composite molded body 16) is cut into a size of about 1 mm to become granular. You may arrange things at random. After arrange | positioning like these, the molded object of the target shape can be obtained by press-molding at 100-200 degreeC.

また、公知のラピッドプロトダイビング法等の成形方法によって任意の形状に成形することも可能である。さらには、上記整列したシートまたは該シートを断面方向にスライスした複合構造体シートを従来の超硬合金等の硬質合金焼結体(塊状体)の表面に貼り合わせ、または接合することも可能である。   Moreover, it is also possible to shape | mold into arbitrary shapes by shaping | molding methods, such as a well-known rapid proto diving method. Furthermore, the above-described aligned sheet or a composite structure sheet obtained by slicing the sheet in the cross-sectional direction can be bonded to or bonded to the surface of a conventional hard alloy sintered body (lumped body) such as cemented carbide. is there.

また、上記方法以外にも繊維状の芯材用成形体を先に作製し、これを表皮材用のスラリー中にディッピング(浸漬して引き上げ)することによって上述したような複合構造成形体を作製することもできる。   In addition to the above-described method, a composite core molded body as described above is manufactured by first preparing a fibrous core molded body and dipping (immersing and pulling it up) into the slurry for the skin material. You can also

上記方法により、複合成形体の形状そのものをチップ形状に成形するか、または複合成形体を作製した後に所望のチップ形状に切り出す。本実施形態における複合構造体は、チップ全体を構成する場合もあり、また、切刃部分のみを構成し超硬合金等からなる台座(切刃部分のみが切りかかれている台座)にロウ付けする場合もある。   By the above method, the shape of the composite molded body itself is molded into a chip shape, or the composite molded body is produced and then cut into a desired chip shape. The composite structure according to the present embodiment may constitute the entire chip, and is brazed to a pedestal made of cemented carbide or the like that includes only the cutting edge portion (a pedestal in which only the cutting edge portion is cut). In some cases.

その後、前記チップ形状の成形体を脱バインダ処理した後、大気中または不活性ガス雰囲気中(例えばArガス中)、1100〜1900℃で焼成することにより本発明における複合構造体を作製することができる。また、焼成に際しては、所望により、1000℃〜1900℃でHIP焼成してもよい。   Thereafter, the chip-shaped molded body is treated to remove the binder, and then fired at 1100 to 1900 ° C. in the air or in an inert gas atmosphere (for example, in Ar gas) to produce the composite structure in the present invention. it can. In firing, HIP firing may be performed at 1000 ° C. to 1900 ° C. if desired.

次に、焼結体のすくい面2を#200以上の細かいダイヤモンドホイールを用いて研削加工する。その後30μm以下のダイヤモンド粉末と潤滑油を混ぜた研磨液とブラシを用いて周知の方法でブラシ加工を施すとなお良い。次に#500以上のダイヤモンドホイールで外周(逃げ面)部を研削加工する。最後に#1000以上のダイヤモンドホイールを用いてチャンファー部の加工を行う。このとき、切刃部の刃先処理量が本発明の範囲内の刃先処理量になるように調節する。   Next, the rake face 2 of the sintered body is ground using a fine diamond wheel of # 200 or more. Thereafter, brushing is preferably performed by a well-known method using a polishing liquid and a brush mixed with diamond powder of 30 μm or less and a lubricating oil. Next, the outer peripheral (flank) portion is ground with a diamond wheel of # 500 or more. Finally, the chamfer part is processed using a diamond wheel of # 1000 or more. At this time, it adjusts so that the cutting edge processing amount of a cutting blade part may become the cutting edge processing amount in the range of the present invention.

また、刃先処理部は、研削加工による加工傷の方向が切屑流れの方向と一致し見かけ上破壊源が小さくできるという点で、切刃4に対し垂直な方向で加工されるのが望ましい。   In addition, it is desirable that the cutting edge processing unit be machined in a direction perpendicular to the cutting edge 4 in that the direction of the processing flaw due to grinding coincides with the direction of the chip flow and the apparent fracture source can be reduced.

ここで、刃先処理部の表面粗さをより平滑とするために、上記研削加工を行った後、再度切刃付近を豚毛ブラシのような撓みやすいブラシと、平均粒径3μm以下のダイヤモンド粉末と潤滑剤で研磨し、上記チャンファー加工時の研削による加工傷をなくす工程を入れることにより、切刃3の表面粗さを平滑にして安定した工具寿命を得ることができる。   Here, in order to make the surface roughness of the blade edge processing portion smoother, after performing the above-mentioned grinding process, the vicinity of the cutting edge is again a flexible brush such as a pig hair brush, and a diamond powder having an average particle size of 3 μm or less The surface roughness of the cutting edge 3 can be smoothed and a stable tool life can be obtained by polishing with a lubricant and adding a step of eliminating processing scratches due to grinding during the chamfering.

本発明における好ましい製造方法は、すくい面および逃げ面を研削加工する工程と、下記面積Sと直径dの比(S/d)が2.8×10−6〜2.8×10−4となるようにすくい面と逃げ面の交差稜線をホーニング加工して刃先処理する工程と、該刃先処理部分の算術平均粗さRaが0.15μm以下となるように刃先処理部分を研磨加工する工程とからなる。 In the preferred production method of the present invention, the rake face and the flank face are ground, and the ratio of the following area S to diameter d (S / d 2 ) is 2.8 × 10 −6 to 2.8 × 10 −4. Honing the edge of the rake face and the flank so that the edge is processed, and cutting the edge so that the arithmetic average roughness Ra of the cutting edge is 0.15 μm or less. It consists of.

なお、本発明スローアウェイチップは、特に、難削材として知られるニッケル基合金、チタン合金等の超耐熱合金を切削加工する際に用いることによってより顕著な効果を発揮する。   Note that the throw-away tip of the present invention exerts a more remarkable effect by using it when cutting a heat-resistant alloy such as a nickel base alloy or a titanium alloy known as a difficult-to-cut material.

平均粒径0.3μmのAl粒子80重量%、平均直径0.5μmのZrO粒子19重量%、平均粒径0.7μmのNiO粒子0.5重量%及びCo粒子0.5重量%からなるセラミックで芯材を形成し、平均粒径0.3μmのSiN粒子87重量%、平均粒径0.8μmのMgO粒子3重量%及び平均粒径0.5のZrO粒子10重量%で表皮材を形成した。このとき最小単位の繊維状材料の直径は20μm、長さは1〜3mmとし、繊維の配列はランダムとした。この複合構造体をホットプレスで焼成した後、研摩加工して内接円の直径dが12.7mmのRNGN形状の丸駒チップを作製した。 80% by weight of Al 2 O 3 particles having an average particle diameter of 0.3 μm, 19% by weight of ZrO 2 particles having an average diameter of 0.5 μm, 0.5% by weight of NiO particles having an average particle diameter of 0.7 μm, and 0 of Co 3 O 4 particles The core material is formed of ceramic of 0.5% by weight, 87% by weight of Si 3 N 4 particles having an average particle diameter of 0.3 μm, 3 % by weight of MgO particles having an average particle diameter of 0.8 μm, and 0.5% of the average particle diameter. A skin material was formed with 10% by weight of ZrO 2 particles. At this time, the diameter of the minimum unit fibrous material was 20 μm, the length was 1 to 3 mm, and the fiber arrangement was random. This composite structure was fired with a hot press and then polished to produce an RNGN-shaped round piece chip having an inscribed circle diameter d of 12.7 mm.

なお、試料No.5は上記芯材の組成のみからなる均一なAl焼結体とし、試料No.6は上記芯材成分に加えてSiCウイスカを添加したAl−SiC焼結体とした。また、上記複合構造体にて構成した試料No.1〜4、7、8については表中にCFと記載した。 Sample No. 5 is a uniform Al 2 O 3 sintered body consisting only of the composition of the core material. 6 is an Al 2 O 3 —SiC sintered body in which SiC whisker is added in addition to the core component. In addition, the sample No. composed of the composite structure was used. About 1-4, 7, and 8, it described as CF in the table | surface.

得られたチップについて、#500のダイヤモンドホイールですくい面を研削加工し、つづけて逃げ面を同様に#500のダイヤモンドホイールで研削加工した。その後#1500のダイヤモンドで表1に示す刃先処理量(面積S)のチャンファーホーニング加工を行った。最後に、豚毛ブラシのような撓りやすいブラシと、平均粒径3μm以下のダイヤモンド粉末と潤滑剤でチャンファー部を研磨して加工傷を平滑化した。   The obtained chip was ground with a # 500 diamond wheel, and then the flank face was similarly ground with a # 500 diamond wheel. Thereafter, a chamfer honing process with a cutting edge processing amount (area S) shown in Table 1 was performed with # 1500 diamond. Finally, the chamfer part was polished with a brush that was easily bent, such as a pork brush, diamond powder having an average particle size of 3 μm or less, and a lubricant to smooth the processing scratches.

なお、刃先処理量(面積S)は、上記チップと同様に作製したチップについて刃先処理後に図1(a)に示すX−X線断面で切断して、金属顕微鏡にて100倍で観察して測定した。また、丸駒チップの刃先処理量の測定は任意5箇所で測定して平均値を算出した。   Note that the cutting edge processing amount (area S) was cut at the XX line cross section shown in FIG. 1A after the cutting edge processing for the chip manufactured in the same manner as the above chip, and observed at 100 times with a metal microscope. It was measured. Moreover, the measurement of the cutting edge processing amount of the round piece chip was measured at five arbitrary positions, and the average value was calculated.

刃先処理部分における算術平均表面粗さ(Ra)を各3箇所ずつ測定して平均値を算出した。算術平均表面粗さRaは、原子間力顕微鏡(AFM)を用いて50μm×50μmの領域について測定した。   The arithmetic average surface roughness (Ra) in the blade edge treated portion was measured at three locations, and the average value was calculated. The arithmetic average surface roughness Ra was measured for an area of 50 μm × 50 μm using an atomic force microscope (AFM).

上記チップで以下の条件で切削を行なった。結果を表1に示す。   Cutting was performed with the above chip under the following conditions. The results are shown in Table 1.

<切削条件>
切削速度:300m/min
切込み :1.0mm
送り :0.1mm/rev
被削材 :Inconel718
切削状態:湿式
切削時間:10分
評価項目:逃げ面摩耗、および切刃の損傷状態

Figure 2006192552
<Cutting conditions>
Cutting speed: 300 m / min
Cutting depth: 1.0mm
Feed: 0.1mm / rev
Work material: Inconel 718
Cutting state: wet Cutting time: 10 minutes Evaluation item: Flank wear and cutting blade damage
Figure 2006192552

表1より、刃先の刃先処理部分(除去部分)の面積S(mm)と内接円の直径d(mm)の二乗との比(S/d)が2.8×10−4よりも大きい試料No.5では、摩耗の進行が早く工具寿命が短かった。また、研磨面の表面粗さが0.15μmよりも大きい試料No.7では、刃先の損傷が大きいという結果になった。また、刃先処理部分の面積Sと内接円の直径の二乗との比(S/d)が2.8×10−6よりも小さい試料No.8では刃先が欠損するという結果となった。さらに、本発明における複合構造体を用いていない試料No.5,6では、母材の靭性が低く切刃にチッピングやフレーキングの発生が見られた。 From Table 1, the ratio (S / d 2 ) between the area S (mm 2 ) of the blade edge processing portion (removal portion) of the blade edge and the square of the diameter d (mm) of the inscribed circle is 2.8 × 10 −4 . Sample no. In No. 5, the wear progressed quickly and the tool life was short. In addition, Sample No. with a polished surface having a surface roughness larger than 0.15 μm. In No. 7, the result was that the damage to the blade edge was large. In addition, the sample No. 2 in which the ratio (S / d 2 ) between the area S of the cutting edge processing portion and the square of the diameter of the inscribed circle is smaller than 2.8 × 10 −6 . 8 resulted in a loss of cutting edge. Furthermore, sample No. which does not use the composite structure in the present invention. In Nos. 5 and 6, the toughness of the base material was low, and chipping and flaking were observed on the cutting edge.

これに対して本発明の範囲に包含される試料No.1〜4では、耐摩耗性が良好で刃先の損傷も見られなかった。   On the other hand, the sample No. included in the scope of the present invention. In 1-4, the abrasion resistance was good and the blade edge was not damaged.

(a)は本発明の一実施形態にかかるスローアウェイチップを示す平面図であり、(b)はそのX−X線断面図である。(c)は、本発明の他の実施形態にかかるスローアウェイチップを示す平面図である。(A) is a top view which shows the throw away tip concerning one Embodiment of this invention, (b) is the XX sectional drawing. (c) is a plan view showing a throw-away tip according to another embodiment of the present invention. (a),(b)は、図1(b)に一点鎖線で囲まれた切刃付近Cを拡大した拡大断面図である。このうち、(a)は、刃先処理としてチャンファーホーニングを施した例を示し、(b)は、刃先処理としてRホーニングを施した例を示す。(A), (b) is the expanded sectional view which expanded the cutting-blade vicinity C enclosed by the dashed-dotted line in FIG.1 (b). Among these, (a) shows the example which performed the chamfer honing as a blade edge process, (b) shows the example which performed the R honing as a blade edge process. (a)は、本発明の一実施形態にかかるスローアウェイチップを構成するシングルタイプ(単芯状)の複合繊維体(繊維状材料)を示す概略斜視図であり、(b)は、マルチタイプ(多芯状)の複合繊維体を示す概略斜視図である。(A) is a schematic perspective view which shows the single type (single core shape) composite fiber body (fibrous material) which comprises the throw-away tip concerning one Embodiment of this invention, (b) is multi-type. It is a schematic perspective view which shows the (multi-core) composite fiber body. (a)は、本発明の一実施形態における複合構造体を作製する際の複合繊維体の配置状態を示す斜視図であり、(b)〜(d)は複合繊維体の他の配置状態を示す斜視図である。(A) is a perspective view which shows the arrangement | positioning state of the composite fiber body at the time of producing the composite structure in one Embodiment of this invention, (b)-(d) shows the other arrangement | positioning state of a composite fiber body. It is a perspective view shown. (a1)〜(c)は、本発明のスローアウェイチップの母材を構成する複合構造体の製造工程を示す模式図である。(A1)-(c) is a schematic diagram which shows the manufacturing process of the composite structure which comprises the base material of the throw away tip of this invention.

符号の説明Explanation of symbols

1 スローアウェイチップ
2 すくい面
3 逃げ面
4 切刃
5 複合繊維体(繊維状材料)
5a 単芯状(シングルタイプ)の複合繊維体
5b 多芯状(マルチタイプ)の複合繊維体
6 芯材
7 表皮材
8a〜8d 複合構造体
12 芯材用成形体
13 表皮材用成形体
14 複合成形体
15 押し出し後の複合成形体
16 マルチタイプの複合成形体
S 刃先処理で除去された部分の断面積(刃先処理量)
O スローアウェイチップの中心
チャンファー部のすくい面における除去(刃先処理)幅
チャンファー部の逃げ面における除去(刃先処理)幅
DESCRIPTION OF SYMBOLS 1 Throw away tip 2 Rake face 3 Relief face 4 Cutting edge 5 Composite fiber body (fibrous material)
5a Single-core (single type) composite fiber body 5b Multi-core (multi-type) composite fiber body 6 Core material 7 Skin material 8a to 8d Composite structure 12 Core material molded body 13 Skin material molded body 14 Composite Molded body 15 Composite molded body after extrusion 16 Multi-type composite molded body S Cross-sectional area of part removed by blade edge processing (blade edge processing amount)
O Center of the throw-away tip LR Removal (blade edge treatment) width on the rake face of the R chamfer part L Removal (blade edge treatment) width on the flank face of the F chamfer part

Claims (6)

上面にすくい面、側面に逃げ面を有し、前記すくい面と前記逃げ面の交差稜線に切刃を設けた母材からなるスローアウェイチップにおいて、
前記母材が、長尺状の芯材の外周を該芯材とは異なる組成の表皮材で被覆した繊維状材料が集合した複合構造体からなり、
前記切刃付近を前記すくい面に略垂直な面で切った場合の断面において、すくい面からの延長線と逃げ面からの延長線とが交わってできる仮想断面から実際の断面を除いた部分の面積をSとし、スローアウェイチップの内接円の直径をdとするとき、(S/d)が2.8×10−6〜2.8×10−4となるように刃先処理が施されているとともに、該刃先処理部分の算術平均粗さRaが0.15μm以下であることを特徴とするスローアウェイチップ。
In the throw-away tip consisting of a base material having a rake face on the upper surface, a flank face on the side face, and a cutting edge on the ridge line of the rake face and the flank face,
The base material is composed of a composite structure in which fibrous materials in which the outer periphery of a long core material is covered with a skin material having a composition different from that of the core material,
In the cross section when the vicinity of the cutting edge is cut by a plane substantially perpendicular to the rake face, a portion of the virtual cross section obtained by intersecting the extension line from the rake face and the extension line from the flank face is excluded from the actual cross section. When the area is S and the diameter of the inscribed circle of the throw-away tip is d, the cutting edge processing is performed so that (S / d 2 ) is 2.8 × 10 −6 to 2.8 × 10 −4. A throw-away tip characterized in that the arithmetic average roughness Ra of the cutting edge processing portion is 0.15 μm or less.
前記芯材が、酸化アルミニウム、窒化ケイ素、炭化ケイ素、周期律表4a、5a、6a族元素の炭化物、窒化物、炭窒化物から選ばれる1種または2種以上で構成されるセラミックスからなり、前記表皮材が酸化アルミニウム、窒化ケイ素、炭化ケイ素、周期律表4a、5a、6a族元素の炭化物、窒化物、炭窒化物から選ばれる1種または2種以上で構成されるセラミックスからなる請求項1記載のスローアウェイチップ。 The core material is made of a ceramic composed of one or more selected from aluminum oxide, silicon nitride, silicon carbide, carbide of periodic table 4a, 5a, 6a group element, nitride, carbonitride, The said skin material consists of ceramics comprised by 1 type, or 2 or more types chosen from the carbide | carbonized_material, nitride, and carbonitride of an aluminum oxide, silicon nitride, silicon carbide, periodic table 4a, 5a, and 6a group element. The throw-away chip according to 1. 前記刃先処理がチャンファーホーニングである請求項1または2記載のスローアウェイチップ。 The throw-away tip according to claim 1 or 2, wherein the cutting edge processing is chamfer honing. 前記チャンファーホーニングにおける前記すくい面からの延長線の長さをL、前記逃げ面からの延長線の長さをLとしたとき、これらがL≧(√3)Lの関係を満足する請求項3に記載のスローアウェイチップ。 Lengths L R of extension from the rake face in the chamfer honing, when the length of the extension line from the flank to the L F, these relationship L R ≧ (√3) L F The throw-away tip according to claim 3, which is satisfactory. 請求項1乃至4のいずれかに記載のスローアウェイチップを用いて超耐熱合金の切削を行うことを特徴とする切削方法。 A cutting method comprising cutting a super heat-resistant alloy using the throw-away tip according to claim 1. 上面にすくい面、側面に逃げ面を有し、前記すくい面と前記逃げ面の交差稜線に切刃を設けた母材からなるスローアウェイチップの製造方法であって、
前記母材が、長尺状の芯材の外周を該芯材とは異なる組成の表皮材で被覆した繊維状材料が集合した複合構造体で構成され、
下記面積Sと直径dの比(S/d)が2.8×10−6〜2.8×10−4となるように前記すくい面と逃げ面の交差稜線をホーニング加工して刃先処理する工程を備えたことを特徴とするスローアウェイチップの製造方法。
S:前記切刃付近を前記すくい面に略垂直な面で切った場合の断面において、すくい面からの延長線と逃げ面からの延長線とが交わってできる仮想断面から実際の断面を除いた部分の面積
d:スローアウェイチップの内接円の直径
A method for producing a throw-away tip comprising a base material having a rake face on an upper surface, a flank face on a side face, and a cutting edge provided on an intersecting ridge line of the rake face and the flank face,
The base material is composed of a composite structure in which fibrous materials obtained by covering the outer periphery of a long core material with a skin material having a composition different from that of the core material,
The cutting edge processing is performed by honing the intersecting ridge line of the rake face and the flank face so that the ratio (S / d 2 ) of the following area S and diameter d is 2.8 × 10 −6 to 2.8 × 10 −4. A method of manufacturing a throw-away tip, comprising the step of:
S: In the cross section when the vicinity of the cutting edge is cut by a plane substantially perpendicular to the rake face, the actual cross section is removed from the virtual cross section formed by the intersection of the extension line from the rake face and the extension line from the flank face. Part area d: Diameter of the inscribed circle of the throw-away tip
JP2005008769A 2005-01-17 2005-01-17 Throw-away tip, its manufacturing method, and cutting method Pending JP2006192552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008769A JP2006192552A (en) 2005-01-17 2005-01-17 Throw-away tip, its manufacturing method, and cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008769A JP2006192552A (en) 2005-01-17 2005-01-17 Throw-away tip, its manufacturing method, and cutting method

Publications (1)

Publication Number Publication Date
JP2006192552A true JP2006192552A (en) 2006-07-27

Family

ID=36799001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008769A Pending JP2006192552A (en) 2005-01-17 2005-01-17 Throw-away tip, its manufacturing method, and cutting method

Country Status (1)

Country Link
JP (1) JP2006192552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221459A (en) * 2007-03-12 2008-09-25 Sandvik Intellectual Property Ab Ceramic cutting insert

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221459A (en) * 2007-03-12 2008-09-25 Sandvik Intellectual Property Ab Ceramic cutting insert
KR101472133B1 (en) * 2007-03-12 2014-12-12 산드빅 인터렉츄얼 프로퍼티 에이비 ceramic cutting insert
US9238285B2 (en) 2007-03-12 2016-01-19 Sandvik Intellectual Property Ab Ceramic cutting insert and method of making same

Similar Documents

Publication Publication Date Title
JP4728256B2 (en) Cutting tool for high-quality and high-efficiency machining and cutting method using the same
JP2751873B2 (en) Indexable insert for milling and milling cutter using the same
JP5764181B2 (en) Hard film coated cutting tool
US20180311744A1 (en) Cubic boron nitride cutting tool
KR102214373B1 (en) Cutting insert
CN1310069A (en) Ball end milling cutter
KR20020065390A (en) Throw-away tip
JPWO2005102572A1 (en) Ball end mill
EP2813304B1 (en) Edge tool
JP5969106B1 (en) End mill and manufacturing method thereof
JP6191839B2 (en) Diamond sintered ball end mill and manufacturing method thereof
JPWO2018123133A1 (en) Cutting tool and manufacturing method thereof
JP5464493B2 (en) Cutting insert
JP2004223648A (en) Hard sintered body cutting tool with chip breaker and its manufacturing method
JP4728961B2 (en) Cutting tools
WO2022089158A1 (en) Micro-blade cutting tool and manufacturing method therefor
JP3759098B2 (en) Ball end mill
JP2008183657A (en) Single crystal diamond multi-cutting tool and its manufacturing method
JP2006192552A (en) Throw-away tip, its manufacturing method, and cutting method
WO2010110198A1 (en) Cutting tip replacement type cutting tool
KR20010020683A (en) Cutting tool and holder-carrying tool
JP2018122365A (en) Ball end mill
JP2013013962A (en) Cbn end mill
JP5123919B2 (en) Manufacturing method of scribing wheel
JP5612382B2 (en) Cutting insert