JP2006191973A - Thermally conductive member, reaction vessel and reaction method of carbon dioxide absorbent - Google Patents

Thermally conductive member, reaction vessel and reaction method of carbon dioxide absorbent Download PDF

Info

Publication number
JP2006191973A
JP2006191973A JP2005004216A JP2005004216A JP2006191973A JP 2006191973 A JP2006191973 A JP 2006191973A JP 2005004216 A JP2005004216 A JP 2005004216A JP 2005004216 A JP2005004216 A JP 2005004216A JP 2006191973 A JP2006191973 A JP 2006191973A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide absorbent
container
gas
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005004216A
Other languages
Japanese (ja)
Inventor
Takeshi Hirabayashi
剛 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005004216A priority Critical patent/JP2006191973A/en
Priority to PCT/JP2005/022185 priority patent/WO2006075456A1/en
Publication of JP2006191973A publication Critical patent/JP2006191973A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B19/00Cartridges with absorbing substances for respiratory apparatus

Abstract

<P>PROBLEM TO BE SOLVED: To improve a reaction efficiency by suppressing the reactivity of a stored carbon dioxide absorbent from being lowered locally. <P>SOLUTION: The thermally conductive member 12 is mounted inside a vessel body 11 storing the carbon dioxide absorbent 10 and provided with an inflow port 13 where a gas containing carbon dioxide flows in and an outflow port 14 where the gas that has passed through the carbon dioxide absorbent 10 flows out. The heat conduction member 12 is arranged along the flowing direction of the gas passing through the carbon dioxide absorbent 10 so as to heat the other part of the carbon dioxide absorbent 10 by the heat of the heat generation part of the carbon dioxide absorbent 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば人工呼吸器の循環経路上に配置され二酸化炭素吸収剤を収容する反応容器内に設けられる熱伝導部材、反応容器および二酸化炭素吸収剤の反応方法に関する。   The present invention relates to a heat conducting member, a reaction container, and a method for reacting a carbon dioxide absorbent that are provided in a reaction container that is disposed on a circulation path of a ventilator, for example, and contains a carbon dioxide absorbent.

従来、例えば、循環式のガス麻酔器等の人工呼吸器では、患者の呼気に含まれる二酸化炭素を吸収、除去するために、循環経路上に配置されるキャニスタが知られている。   2. Description of the Related Art Conventionally, for example, in a ventilator such as a circulatory gas anesthesia machine, a canister disposed on a circulation path is known for absorbing and removing carbon dioxide contained in a patient's breath.

一般に、この種のキャニスタは、例えば粒や粒子状等の二酸化炭素吸収剤が所定量収容され、循環経路からガスが流入される流入口と、循環経路に二酸化炭素吸収剤を通過したガスを流出する流出口とが設けられたプラスチック製の収容体からなる。   In general, this type of canister contains a predetermined amount of carbon dioxide absorbent such as particles and particles, and has an inlet through which a gas flows from the circulation path, and a gas that has passed the carbon dioxide absorbent through the circulation path. And a plastic container provided with an outlet.

このようなキャニスタでは、流入口から流入したガスが、内部に収容された二酸化炭素吸収剤を通過することで、ガスに含まれる二酸化炭素と二酸化炭素吸収剤とが発熱性化学反応を起こし、ガスに含まれる二酸化炭素が吸収されて水蒸気を発生し、二酸化炭素が除去された処理済みガスが流出口から流出される。   In such a canister, the gas flowing in from the inlet passes through the carbon dioxide absorbent housed inside, so that the carbon dioxide contained in the gas and the carbon dioxide absorbent cause an exothermic chemical reaction. The carbon dioxide contained in the gas is absorbed to generate water vapor, and the treated gas from which the carbon dioxide has been removed flows out from the outlet.

そして、臨床で使用されている循環系では、キャニスタ内を通過した処理済みガスの二酸化炭素の濃度、すなわち二酸化炭素分圧が5mmHg以上になったとき、二酸化炭素吸収剤による二酸化炭素の吸収能が低下し、吸収が充分に行われないものと判断され、二酸化炭素吸収剤が完全に消耗されていないキャニスタが循環系から取り外されて、キャニスタ内に残留した二酸化炭素吸収剤が新たに所定量の二酸化炭素吸収剤に交換されている。   In the circulatory system used clinically, when the concentration of carbon dioxide in the treated gas that has passed through the canister, that is, when the partial pressure of carbon dioxide is 5 mmHg or more, the carbon dioxide absorbent absorbs carbon dioxide. It is judged that the absorption is not sufficiently performed, and the canister in which the carbon dioxide absorbent is not completely consumed is removed from the circulation system, and a predetermined amount of carbon dioxide absorbent remaining in the canister is newly added. It has been replaced with a carbon dioxide absorbent.

しかしながら、充分な吸収が行われなくなったキャニスタで、キャニスタ内を通過した処理済みガスの二酸化炭素分圧が上昇したとしても、消耗されていない二酸化炭素吸収剤が残留しており、反応可能な状態であるにもかかわらずに二酸化炭素吸収剤が無駄に廃棄されている。   However, in a canister that has not sufficiently absorbed, even if the carbon dioxide partial pressure of the treated gas that has passed through the canister increases, the carbon dioxide absorbent that has not been consumed remains and can react. Nevertheless, the carbon dioxide absorbent is wasted.

このように反応可能な二酸化炭素吸収剤が存在しているのに、二酸化炭素の吸収能が低下してしまうのは、収容体内に収容されている二酸化炭素吸収剤の各部位で反応性が不均一になる現象(以下、チャネリングと称する。)に起因している。   Although there is a carbon dioxide absorbent that can react in this way, the carbon dioxide absorption capacity is reduced because of the lack of reactivity at each part of the carbon dioxide absorbent contained in the container. This is due to a uniform phenomenon (hereinafter referred to as channeling).

従来のチャネリングの概念では、円筒状の収納体内に二酸化炭素吸収剤が充填されている状態でガスを流通させた際に、収容体内に収容された中心側部位の二酸化炭素吸収剤の流動抵抗よりも、収容体の内周面に当接する外周側部位の二酸化炭素吸収剤の流動抵抗が比較的小さく、中心側部位の二酸化炭素吸収剤を通過するガスに比較して収容体の内周面に当接する外周側部位の二酸化炭素吸収剤を通過するガスの流量が多くなることで、キャニスタの径方向の位置によってガス流量が不均一になることが考察されている。つまり、チャネリングは、収容体内の二酸化炭素吸収剤をなす多孔質粒子の間隙の不均一性に起因して、二酸化炭素吸収剤を通過するガスの流れが、この流動方向に直交する平面上で不均一になるためであると考えられている。   In the conventional concept of channeling, when the gas is circulated in a state where the carbon dioxide absorbent is filled in the cylindrical storage body, the flow resistance of the carbon dioxide absorbent in the central portion housed in the storage body In addition, the flow resistance of the carbon dioxide absorbent in the outer peripheral portion contacting the inner peripheral surface of the container is relatively small, and the inner peripheral surface of the container is compared with the gas passing through the carbon dioxide absorbent in the central portion. It has been considered that the gas flow rate becomes non-uniform depending on the radial position of the canister due to an increase in the flow rate of the gas passing through the carbon dioxide absorbent in the outer peripheral side portion in contact. In other words, channeling is caused by the non-uniformity of the gap between the porous particles forming the carbon dioxide absorbent in the container, and the flow of the gas passing through the carbon dioxide absorbent is not flat on a plane perpendicular to the flow direction. This is considered to be uniform.

したがって、収容体内の二酸化炭素吸収剤を効率的に反応させることが求められており、チャネリングを改善する対策として、キャニスタの構造や、二酸化炭素吸収剤自体の反応特性を向上するための種々の提案がされている。   Therefore, it is required to efficiently react the carbon dioxide absorbent in the container, and various measures for improving the structure of the canister and the reaction characteristics of the carbon dioxide absorbent itself as a countermeasure to improve channeling. Has been.

キャニスタの構造として、従来のキャニスタでは、チャネリングが、収容体内の二酸化炭素吸収剤をなす多孔質粒子の間隙の不均一性に起因して、二酸化炭素吸収剤を通過するガスの流れの不均一によって引き起こされるという概念に従い、外周側部位の二酸化炭素吸収剤に対応する収容体の内周面に、この内周面に沿って流れるガスを妨げる突出壁が設けられた構成が提案されている(例えば、非特許文献1参照。)。この構成によれば、内周面の突出壁によって、収容体の内周面に当接する外側部位の二酸化炭素吸収剤を通るガスの流量が抑えられ、収容体の内周面に当接する外周側部と、中心側部位の二酸化炭素吸収剤を通過するガスとの各流量の不均一を抑制することが可能とされている。   As a canister structure, in conventional canisters, channeling is caused by non-uniformity of the gas flow through the carbon dioxide absorbent due to non-uniformity of the gap between the porous particles forming the carbon dioxide absorbent in the container. In accordance with the concept of being caused, a configuration has been proposed in which a protruding wall that prevents gas flowing along the inner peripheral surface is provided on the inner peripheral surface of the container corresponding to the carbon dioxide absorbent in the outer peripheral side portion (for example, Non-patent document 1). According to this structure, the flow rate of the gas which passes the carbon dioxide absorbent of the outer side part contact | abutted to the internal peripheral surface of a container is suppressed by the protrusion wall of an internal peripheral surface, and the outer peripheral side contact | abutted to the internal peripheral surface of a container It is possible to suppress non-uniformity in the flow rates of the part and the gas passing through the carbon dioxide absorbent in the central part.

また、従来の他のキャニスタとしては、収容体内で生じているガス流量の不均一を改善するために、収容体の流出口側に、中心部を流入口側に向かって突出させた略円錐状の突出部を有するガス流制御部材を配置する構成が提案されている。この従来のキャニスタによれば、中心側部位の二酸化炭素吸収剤を通る流量を増やすことが可能とされている。   Further, as another conventional canister, in order to improve the non-uniformity of the gas flow rate generated in the container, a substantially conical shape in which the central portion protrudes toward the inlet side on the outlet side of the container. The structure which arrange | positions the gas flow control member which has this protrusion part is proposed. According to this conventional canister, it is possible to increase the flow rate through the carbon dioxide absorbent in the central portion.

また、二酸化炭素吸収剤自体の反応特性として、多孔質粒子の間隙の不均一性を改善して、二酸化炭素吸収剤の各位部位での流動抵抗の均一化を図るために、二酸化炭素吸収剤をなす個々の粒の形状、大きさ、組成等が工夫されている。しかしながら、従来の対策では、チャネリングの効果的な改善には至っていない。
ANESTHESIA EQUIPMENT principles and applications,Chapter 4, Anesthesia breathing systems,p.97-99,出版社: Williams & Wilkins,第4版(1999/01/15),ISBN: 0683304879
In addition, as a reaction characteristic of the carbon dioxide absorbent itself, in order to improve the non-uniformity of the gap between the porous particles and to make the flow resistance uniform at each position of the carbon dioxide absorbent, the carbon dioxide absorbent is used. The shape, size, composition, etc. of each individual grain are devised. However, conventional measures have not led to effective improvement of channeling.
ANESTHESIA EQUIPMENT principles and applications, Chapter 4, Anesthesia breathing systems, p.97-99, Publisher: Williams & Wilkins, 4th edition (1999/01/15), ISBN: 0683304879

ところで、一般にキャニスタでは、内部に収容された二酸化炭素吸収剤が、二酸化炭素吸収剤を通過するガスの流動方向に対して、二酸化炭素吸収剤の上流側端部から化学反応を起こし、使用時間の経過に伴って、二酸化炭素吸収剤の反応部位が上流側端部から流動方向に沿って順次に移行し、最終的に反応部位が二酸化炭素吸収剤の下流側端部に至る。このように、キャニスタ内の二酸化炭素吸収剤は、局所的な反応部位が温度の上昇を伴い、反応部位よりも下流側が常に温度が低下し、反応部位と未反応部位とで温度差が生じる。   By the way, generally in a canister, the carbon dioxide absorbent accommodated in the inside causes a chemical reaction from the upstream end of the carbon dioxide absorbent with respect to the flow direction of the gas passing through the carbon dioxide absorbent. As the reaction progresses, the reaction site of the carbon dioxide absorbent sequentially moves from the upstream end along the flow direction, and finally the reaction site reaches the downstream end of the carbon dioxide absorbent. As described above, in the carbon dioxide absorbent in the canister, the temperature at the local reaction site is increased, the temperature is always lowered at the downstream side of the reaction site, and a temperature difference occurs between the reaction site and the unreacted site.

また、従来のキャニスタ内に収容された二酸化炭素吸収剤は、収容体の内周面に当接する外周側部位の二酸化炭素吸収剤が、外気によって冷却され、中心側部位の二酸化炭素吸収剤よりも温度が低下してしまうので、二酸化炭素吸収剤の各部位による温度差を招いている。   In addition, the carbon dioxide absorbent accommodated in the conventional canister is such that the carbon dioxide absorbent in the outer peripheral side contacting the inner peripheral surface of the container is cooled by the outside air, and is more than the carbon dioxide absorbent in the central side part. Since temperature falls, the temperature difference by each site | part of a carbon dioxide absorbent is caused.

そして、化学反応で発生した水蒸気は、ガスと共に二酸化炭素吸収剤中を流動し、その後、温度の低下に伴って、二酸化炭素吸収剤の未反応部位、特に下流側部位の二酸化炭素吸収剤、および収容体の内周面に当接する外周側部位の二酸化炭素吸収剤に結露を生じさせ、これら各部位の二酸化炭素吸収剤の含水率を過剰に増加させてしまう。過剰に含水率が増加した二酸化炭素吸収剤は、多孔質粒子の表面および内部の微細孔内に付着し、微細孔を塞いだり、表面に被膜状に付着したりすることで、反応性を低下させてしまう。   Then, the water vapor generated by the chemical reaction flows in the carbon dioxide absorbent together with the gas, and then, as the temperature decreases, the carbon dioxide absorbent in the unreacted portion of the carbon dioxide absorbent, particularly the downstream portion, and Condensation is generated in the carbon dioxide absorbent in the outer peripheral portion that is in contact with the inner peripheral surface of the container, and the water content of the carbon dioxide absorbent in each portion is excessively increased. Carbon dioxide absorbent with excessively increased water content adheres to the surface and internal micropores of the porous particles, reducing the reactivity by blocking the micropores or adhering to the surface in the form of a film. I will let you.

このため、局所的に含水率が過剰に増加した下流側部位および収容体の内周面に当接する外周側部位の二酸化炭素吸収剤を通過するガスは、その部位の反応性の低下によって二酸化炭素が吸収されないまま通過してしまい、収容体内の中心側部位の二酸化炭素吸収剤に、消耗されていない二酸化炭素吸収剤が残っているにもかかわらず、処理済みガスに含まれる二酸化炭素吸収の濃度の増加を招いてしまう。   For this reason, the gas passing through the carbon dioxide absorbent in the downstream portion where the water content has increased excessively locally and in the outer peripheral portion in contact with the inner peripheral surface of the container is reduced by the decrease in the reactivity of the portion. Of carbon dioxide absorbed in the treated gas even though unconsumed carbon dioxide absorbent remains in the carbon dioxide absorbent in the central part of the container. Will increase.

そこで、本発明は、収容された二酸化炭素吸収剤の各部位に温度差が生じることを抑え、二酸化炭素吸収剤の局所的な反応性の低下を防ぎ、二酸化炭素吸収剤の反応効率の向上を図ることができる熱伝導部材、この熱伝導部材を備える反応容器、および二酸化炭素吸収剤の反応方法を提供することを目的とする。   Therefore, the present invention suppresses the occurrence of a temperature difference in each part of the stored carbon dioxide absorbent, prevents the local reactivity of the carbon dioxide absorbent from decreasing, and improves the reaction efficiency of the carbon dioxide absorbent. It is an object of the present invention to provide a heat conducting member that can be achieved, a reaction vessel equipped with the heat conducting member, and a method for reacting a carbon dioxide absorbent.

上述した目的を達成するため、本発明に係る熱伝導部材は、二酸化炭素吸収剤を収容し、二酸化炭素を含む気体が流入する流入口と、二酸化炭素吸収剤を通過した気体が流出する流出口とを有する収容体内に装着される熱伝導部材であって、二酸化炭素吸収剤の発熱部位の熱でこの二酸化炭素吸収剤の他の部位を加熱するように、二酸化炭素吸収剤を通過する気体の流動方向に沿って配置される。   In order to achieve the above-described object, the heat conducting member according to the present invention contains a carbon dioxide absorbent, an inlet into which a gas containing carbon dioxide flows, and an outlet from which the gas that has passed through the carbon dioxide absorbent flows out. A heat conducting member mounted in a container having a gas passage through the carbon dioxide absorbent so that the other part of the carbon dioxide absorbent is heated by the heat of the heat producing part of the carbon dioxide absorbent. Arranged along the flow direction.

以上のように構成された熱伝導部材によれば、二酸化炭素吸収剤と気体とが化学反応した際、二酸化炭素吸収剤の発熱部位の熱が、この二酸化炭素吸収剤の発熱が生じていない他の部位に熱伝導されることで、収容体内の二酸化炭素吸収剤の各部位に温度差が生じることが抑制され、各部位の温度分布が均一化される。このため、収容体内の二酸化炭素吸収剤は、発生する水蒸気による結露によって二酸化炭素吸収剤の含水率が不均一に過剰に増加することが抑えられ、各部位での反応性の均一化が図られ、二酸化炭素吸収剤の反応効率が向上される。また、この熱伝導部材は、流動方向に沿って配置されることで、二酸化炭素吸収剤を通過する気体の流動が妨げられることなく、収容体内の二酸化炭素吸収剤をガスが良好に通過する。   According to the heat conducting member configured as described above, when the carbon dioxide absorbent and the gas chemically react with each other, the heat of the heat generation portion of the carbon dioxide absorbent is not generated by the carbon dioxide absorbent. By conducting heat to this part, the occurrence of a temperature difference at each part of the carbon dioxide absorbent in the container is suppressed, and the temperature distribution at each part is made uniform. For this reason, the carbon dioxide absorbent in the container can suppress the moisture content of the carbon dioxide absorbent from increasing non-uniformly and excessively due to dew condensation caused by the generated water vapor, and the reactivity at each site can be made uniform. The reaction efficiency of the carbon dioxide absorbent is improved. Moreover, this heat conduction member is arrange | positioned along a flow direction, and gas passes the carbon dioxide absorbent in a container favorably, without the flow of the gas which passes a carbon dioxide absorbent being prevented.

したがって、本発明では、上述のように、チャネリングが、二酸化炭素吸収剤の各部位の温度差に起因して、局所的に含水率が不均一に過剰に増加することで引き起こされるものと捉えて、温度差を抑えることを主眼としている。   Therefore, in the present invention, as described above, channeling is considered to be caused by a non-uniform and excessive increase in moisture content locally due to the temperature difference of each part of the carbon dioxide absorbent. The main purpose is to suppress the temperature difference.

また、本発明に係る反応容器は、二酸化炭素吸収剤を収容し、二酸化炭素を含む気体が流入する流入口と、二酸化炭素吸収剤を通過した気体が流出する流出口とを有する収容体と、
収容体内に、二酸化炭素吸収剤を通過する気体の流動方向に沿って配置され、二酸化炭素吸収剤の発熱部位の熱でこの二酸化炭素吸収剤の他の部位を加熱するための熱伝導部材とを備える。
Further, the reaction container according to the present invention contains a carbon dioxide absorbent, a container having an inlet into which a gas containing carbon dioxide flows in, and an outlet from which the gas that has passed through the carbon dioxide absorbent flows out,
A heat conduction member disposed in the container along the flow direction of the gas passing through the carbon dioxide absorbent and for heating other parts of the carbon dioxide absorbent with heat of the heat generation part of the carbon dioxide absorbent; Prepare.

以上のように構成した本発明に係る反応容器によれば、二酸化炭素吸収剤と気体とが化学反応した際、熱伝導部材によって、二酸化炭素吸収剤の発熱部位の熱が、この二酸化炭素吸収剤の発熱が生じていない他の部位に熱伝導されることで、収容体内の二酸化炭素吸収剤の各部位に温度差が生じることが抑制され、各部位の温度分布が均一化される。このため、収容体内の二酸化炭素吸収剤は、発生する水蒸気による結露によって二酸化炭素吸収剤の含水率が不均一に過剰に増加することが抑えられ、各部位での反応性の均一化が図られ、二酸化炭素吸収剤の反応効率が向上される。また、この反応容器は、熱伝導部材が流動方向に沿って配置されることで、二酸化炭素吸収剤を通過する気体の流動が妨げられることなく、収容体内の二酸化炭素吸収剤をガスが良好に通過する。   According to the reaction container according to the present invention configured as described above, when the carbon dioxide absorbent and the gas chemically react with each other, the heat conduction member causes the heat of the heat generation portion of the carbon dioxide absorbent to be generated by the carbon dioxide absorbent. By conducting heat to other parts where no heat is generated, it is possible to suppress a temperature difference from occurring in each part of the carbon dioxide absorbent in the container, and to make the temperature distribution in each part uniform. For this reason, the carbon dioxide absorbent in the container can suppress the moisture content of the carbon dioxide absorbent from increasing non-uniformly and excessively due to dew condensation caused by the generated water vapor, and the reactivity at each site can be made uniform. The reaction efficiency of the carbon dioxide absorbent is improved. In addition, the reaction container is arranged in the flow direction so that the gas flowing through the carbon dioxide absorbent is not hindered, and the gas in the container is improved. pass.

また、本発明に係る反応容器が備える熱伝導部材は、気体の流動方向に対して二酸化炭素吸収剤の上流側端部と下流側端部とに亘るように配置されることが好ましい。これによって、収容体内の二酸化炭素吸収剤におけるガスの流動方向の各部位に生じる温度差が小さく抑えられる。   Moreover, it is preferable that the heat conductive member with which the reaction container which concerns on this invention is provided is arrange | positioned so that the upstream edge part and downstream edge part of a carbon dioxide absorber may be covered with respect to the flow direction of gas. Thereby, the temperature difference which arises in each site | part of the flow direction of the gas in the carbon dioxide absorbent in a container is suppressed small.

また、本発明に係る反応容器が備える熱伝導部材は、気体の流動方向に直交する方向対して収容体の中心側近傍から周面側近傍に亘るように配置されることが好ましい。これによって、収容体内の二酸化炭素吸収剤における中心側近傍と外周側近傍との各部位に生じる温度差が小さく抑えられる。   Moreover, it is preferable that the heat conductive member with which the reaction container which concerns on this invention is provided is arrange | positioned so that it may extend from the center side vicinity of a container to the surrounding surface side vicinity with respect to the direction orthogonal to the flow direction of gas. Thereby, the temperature difference which arises in each site | part of the center side vicinity and outer peripheral side vicinity in the carbon dioxide absorber in a container is suppressed small.

また、本発明に係る反応容器は、収容体に熱伝導部材が連結されてもよい。これによって、熱伝導部材を伝わる熱が収容体に伝わることで、収容体の内周面に当接する外周側部位の二酸化炭素吸収剤と中心側部位の二酸化炭素吸収剤とに生じる温度差が抑えられる。   In the reaction container according to the present invention, a heat conducting member may be connected to the container. As a result, heat transmitted through the heat conducting member is transferred to the container, thereby suppressing a temperature difference generated between the carbon dioxide absorbent in the outer peripheral portion and the carbon dioxide absorbent in the central portion contacting the inner peripheral surface of the container. It is done.

また、本発明に係る反応容器は、収容体の外周部に、外気と断熱する断熱手段が設けられてもよい。断熱手段よって、収容体が外気から熱を奪われることが防止されるので、収容体の内周面に当接する外周側部位の二酸化炭素吸収剤の温度が低下するのが抑制され、中心側部位の二酸化炭素吸収剤と、収容体の内周面に当接する外周側部位の二酸化炭素吸収剤とに生じる温度差が抑えられる。   Moreover, the reaction container which concerns on this invention may be provided with the heat insulation means which heat-insulates with external air in the outer peripheral part of a container. Since the heat insulating means prevents the container from taking heat away from the outside air, it is possible to suppress the temperature of the carbon dioxide absorbent in the outer peripheral portion contacting the inner peripheral surface of the container from being lowered, and the central portion. The difference in temperature between the carbon dioxide absorbent and the carbon dioxide absorbent at the outer peripheral side portion in contact with the inner peripheral surface of the container is suppressed.

また、本発明に係る他の反応容器は、二酸化炭素吸収剤を収容し、二酸化炭素を含む気体が流入する流入口と、二酸化炭素吸収剤を通過した気体が流出する流出口とを有する内側収容体と、
この内側収容体を内部に収容し、流出口から流出した気体を内側収容体の外周部に沿って流動させる外側収容体とを備える。
Further, another reaction container according to the present invention contains a carbon dioxide absorbent, and has an inner housing having an inlet into which a gas containing carbon dioxide flows and an outlet from which a gas that has passed through the carbon dioxide absorbent flows out. Body,
The inner container is housed inside, and an outer container is provided that allows the gas flowing out from the outlet to flow along the outer periphery of the inner container.

以上のように構成された本発明に係る反応容器によれば、二酸化炭素吸収剤と気体とが化学反応した際に、内側収容体内の二酸化炭素吸収剤を通過した気体の熱が内側収容体の外周部に伝えられ、この内側収容体を介して二酸化炭素吸収剤が加熱される。このため、内側収容体内の二酸化炭素吸収剤の各部位に生じる温度差が抑えられ、二酸化炭素吸収剤の各部位での反応性の均一化が図られる。また、この反応容器によれば、内側収容体が外側収容体で覆われるため、外気によって内側収容体内の二酸化炭素吸収剤の外周側部位が冷却されることも防止される。   According to the reaction container according to the present invention configured as described above, when the carbon dioxide absorbent and the gas undergo a chemical reaction, the heat of the gas that has passed through the carbon dioxide absorbent in the inner container is absorbed by the inner container. The carbon dioxide absorbent is heated through the inner container. For this reason, the temperature difference which arises in each site | part of the carbon dioxide absorber in an inner side container is suppressed, and the uniformity of the reactivity in each site | part of a carbon dioxide absorber is achieved. Moreover, according to this reaction container, since an inner side container is covered with an outer side container, it is also prevented that the outer peripheral side site | part of the carbon dioxide absorbent in an inner side container is cooled with external air.

また、本発明に係る他の反応容器は、内側収容体内に、二酸化炭素吸収剤を通過する気体の流動方向に沿って、二酸化炭素吸収剤の発熱部位の熱でこの二酸化炭素吸収剤の他の部位を加熱するための熱伝導部材が設けられてもよい。これによれば、二酸化炭素吸収剤と気体とが化学反応した際に、二酸化炭素吸収剤の発熱部位の熱がこの二酸化炭素吸収剤の他の部位に熱伝導されることで、内側収容体内の二酸化炭素吸収剤の各部位に生じる温度差が更に良好に抑制される。   In addition, the other reaction container according to the present invention, in the inner container, along the flow direction of the gas passing through the carbon dioxide absorbent, other heat of the carbon dioxide absorbent by heat of the carbon dioxide absorbent, A heat conducting member for heating the part may be provided. According to this, when the carbon dioxide absorbent and the gas chemically react, the heat of the exothermic part of the carbon dioxide absorbent is thermally conducted to other parts of the carbon dioxide absorbent, The temperature difference generated at each part of the carbon dioxide absorbent is further suppressed satisfactorily.

また、本発明に係る、二酸化炭素吸収剤の反応方法は、二酸化炭素を含む気体を、収容体内に収容された二酸化炭素吸収剤を通過させて気体と二酸化炭素吸収剤とを化学反応させる、二酸化炭素吸収剤の反応方法において、収容体内に設けられた熱伝導部材によって、二酸化炭素吸収剤の発熱部位の熱でこの二酸化炭素吸収剤の他の部位を加熱することを特徴とする。   Further, the carbon dioxide absorbent reaction method according to the present invention is a method in which a gas containing carbon dioxide is passed through a carbon dioxide absorbent housed in a container to cause a chemical reaction between the gas and the carbon dioxide absorbent. The carbon absorbent reaction method is characterized in that the other part of the carbon dioxide absorbent is heated by the heat of the heat generating part of the carbon dioxide absorbent by the heat conducting member provided in the container.

また、本発明に係る他の、二酸化炭素吸収剤の反応方法は、二酸化炭素を含む気体を、収容体内に収容された二酸化炭素吸収剤を通過させて気体と二酸化炭素吸収剤とを化学反応させる、二酸化炭素吸収剤の反応方法において、二酸化炭素吸収剤を通過した気体を収容体の外周部に沿って流動させ、この気体の熱によって、収容体を介して二酸化炭素吸収剤を加熱することを特徴とする。   In another carbon dioxide absorbent reaction method according to the present invention, a gas containing carbon dioxide is allowed to pass through a carbon dioxide absorbent housed in the container to cause a chemical reaction between the gas and the carbon dioxide absorbent. In the carbon dioxide absorbent reaction method, the gas that has passed through the carbon dioxide absorbent is caused to flow along the outer periphery of the container, and the heat of the gas heats the carbon dioxide absorbent through the container. Features.

上述したように本発明によれば、収容された二酸化炭素吸収剤の各部位に温度差が生じることが抑制されるので、二酸化炭素吸収剤の局所的な反応性の低下が防止され、二酸化炭素吸収剤の反応効率を向上することができる。   As described above, according to the present invention, since a temperature difference is suppressed from occurring in each part of the stored carbon dioxide absorbent, a decrease in local reactivity of the carbon dioxide absorbent is prevented, and carbon dioxide The reaction efficiency of the absorbent can be improved.

以下、本発明の具体的な実施形態について、図面を参照して説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

本発明に係る反応容器の一例として、人工呼吸器である麻酔器の循環系に配置されるキャニスタについて説明する。本実施形態のキャニスタは、例えば、空気と麻酔ガスとの混合ガスを循環させる循環経路上で、粒子状の二酸化炭素吸収剤によって、混合気に含まれる二酸化炭素を吸収するために使用される。   As an example of the reaction container according to the present invention, a canister disposed in the circulatory system of an anesthesia machine which is a ventilator will be described. The canister of this embodiment is used, for example, to absorb carbon dioxide contained in a mixture by a particulate carbon dioxide absorbent on a circulation path for circulating a mixed gas of air and anesthetic gas.

また、本実施形態のキャニスタに収容される二酸化炭素吸収剤は、水酸化カルシウム(Ca(OH)2)を主成分とし、水酸化ナトリウム(NaOH)または水酸化カリウム(KOH)を含有しており、含水率が15〜20%程度にされている。医療用に使用される二酸化炭素吸収剤は、水酸化カルシウム(Ca(OH)2)を主成分としたソーダライム、あるいは水酸化バリウムBa(OH)2を主成分としたバラライムが用いられる。他、医療用以外では水酸化リチウムLi(OH)2が用いられる。いずれの二酸化炭素吸収剤においても化学式で示される通り、二酸化吸収剤は二酸化炭素を吸収する過程で水分が必要となり、乾燥した二酸化吸収剤は二酸化炭素の吸収が困難になる。逆に、過剰な含水率を有する二酸化炭素吸収剤は反応性が低下する。例えばソーダライムでは、水分を添加して含水率25%にした場合、二酸化炭素の吸収能が低下したと報告されている。このため、一般的にソーダライムの含水率は15〜20%の範囲で反応性が良好に維持されると考えられている。 Further, the carbon dioxide absorbent accommodated in the canister of the present embodiment contains calcium hydroxide (Ca (OH) 2 ) as a main component and contains sodium hydroxide (NaOH) or potassium hydroxide (KOH). The water content is about 15 to 20%. As the carbon dioxide absorbent used for medical purposes, soda lime whose main component is calcium hydroxide (Ca (OH) 2 ) or barium lime whose main component is barium hydroxide Ba (OH) 2 is used. Besides, lithium hydroxide Li (OH) 2 is used except for medical use. In any carbon dioxide absorbent, as indicated by the chemical formula, the carbon dioxide absorbent requires moisture in the process of absorbing carbon dioxide, and the dry dioxide absorbent becomes difficult to absorb carbon dioxide. Conversely, carbon dioxide absorbents having excessive moisture content are less reactive. For example, with soda lime, it has been reported that the absorption capacity of carbon dioxide is reduced when water is added to a moisture content of 25%. For this reason, it is generally considered that the water content of soda lime is well maintained in the range of 15 to 20%.

(第1の実施形態)
図1に示すように、本実施形態のキャニスタ1は、二酸化炭素吸収剤10を内部に収容する収容体11と、この収容体11内の二酸化炭素吸収剤10の発熱部位の熱で他の部位を加熱するための熱伝導部材12とを備えている。
(First embodiment)
As shown in FIG. 1, the canister 1 according to the present embodiment includes a housing 11 that houses a carbon dioxide absorbent 10 therein, and other portions by heat of a heat generating portion of the carbon dioxide absorbent 10 in the housing 11. And a heat conductive member 12 for heating.

収容体11は、例えばプラスチック等の樹脂材によって有底円筒状に形成されている。収容体11内には、循環系から呼気、すなわち二酸化炭素を含むガスが流入する流入口13を有するガス導入管16と、二酸化炭素吸収剤10と収容体11の底面との間に間隙を確保するように二酸化炭素吸収剤10を支持する円板状のスクリーン部材17がそれぞれ設けられている。   The container 11 is formed in a bottomed cylindrical shape by a resin material such as plastic. In the container 11, a gap is secured between the gas introduction pipe 16 having an inlet 13 into which exhaled air, that is, carbon dioxide-containing gas flows from the circulation system, and the carbon dioxide absorbent 10 and the bottom surface of the container 11. Thus, a disk-shaped screen member 17 that supports the carbon dioxide absorbent 10 is provided.

ガス導入管16は、一端側の流入口13にメッシュ状のフィルタ18が設けられており、他端側がスクリーン部材17の中央部に固定されている。このガス導入管16は、スクリーン部材17の外周部が、収容体11の底面側の内周部に、スクリーン部材17と収容体11の底面との間に空間をあけるように係合されている。また、収容体11は、ガス導入管16によって導入されたガスが二酸化炭素吸収剤10を通過して流出する流出口14を有している。スクリーン部材17は、通気性を有するメッシュ状に形成されている。   The gas introduction pipe 16 is provided with a mesh-like filter 18 at the inlet 13 on one end side, and the other end side is fixed to the center of the screen member 17. In the gas introduction pipe 16, the outer peripheral portion of the screen member 17 is engaged with the inner peripheral portion on the bottom surface side of the container 11 so as to open a space between the screen member 17 and the bottom surface of the container 11. . The container 11 also has an outlet 14 through which the gas introduced by the gas introduction pipe 16 flows out through the carbon dioxide absorbent 10. The screen member 17 is formed in a mesh shape having air permeability.

なお、本実施形態のキャニスタ1は、熱伝導部材12を除いて、収容体11、ガス導入管16等として、従来のキャニスタが用いられてもよい。したがって、キャニスタ1は、従来のキャニスタの収容体内に、熱伝導部材12を装着するだけで簡易に構成することができる。    The canister 1 of the present embodiment may be a conventional canister as the container 11, the gas introduction pipe 16, etc., except for the heat conducting member 12. Therefore, the canister 1 can be configured simply by mounting the heat conducting member 12 in the conventional canister housing.

また、ガス導入管16は、例えばアルミニウム等の熱伝導率が比較的高い金属材料で形成されてもよい。これによって、収容体11内の中心側部位の二酸化炭素吸収剤10の熱が、ガスの流動方向の他の部位に良好に伝えられるので、二酸化炭素吸収剤10の各部位の温度分布が更に均一化されるので好ましい。   The gas introduction pipe 16 may be formed of a metal material having a relatively high thermal conductivity such as aluminum. As a result, the heat of the carbon dioxide absorbent 10 at the central portion in the container 11 is transmitted well to other portions in the gas flow direction, so that the temperature distribution at each portion of the carbon dioxide absorbent 10 is more uniform. This is preferable.

熱伝導部材12は、図2に示すように、例えばアルミニウムや銅等の熱伝導率が比較的高い金属材からなる平板材を渦巻き状に湾曲させた筒状に形成されている。また、熱伝導部材12には、表面上に例えば無電解ニッケルメッキ等で被覆膜が形成されており、ガス、水蒸気やアルカリ性の二酸化炭素吸収剤による腐食が防止されている。   As shown in FIG. 2, the heat conducting member 12 is formed in a cylindrical shape in which a flat plate made of a metal material having a relatively high thermal conductivity such as aluminum or copper is curved in a spiral shape. In addition, a coating film is formed on the surface of the heat conducting member 12 by, for example, electroless nickel plating, and corrosion due to gas, water vapor, or alkaline carbon dioxide absorbent is prevented.

そして、熱伝導部材12は、収容体11の内部に、二酸化炭素吸収剤10を通過するガスの流動方向に沿って、ガスの流れを妨げないように配置されている。この熱伝導部材12は、収容体11内の二酸化炭素吸収剤10を通過するガスの流動方向に平行な両端が、収容体11内に収容された二酸化炭素吸収剤10の上流側端部と下流側端部とに亘るように配置されている。これによって、収容体11内の二酸化炭素吸収剤10におけるガスの流動方向の各部位に生じる温度差が小さく抑えられる。   And the heat conductive member 12 is arrange | positioned so that the flow of gas may not be disturbed in the inside of the container 11 along the flow direction of the gas which passes the carbon dioxide absorbent 10. FIG. This heat conducting member 12 has both ends parallel to the flow direction of the gas passing through the carbon dioxide absorbent 10 in the container 11, and the upstream end and the downstream of the carbon dioxide absorbent 10 accommodated in the container 11. It arrange | positions so that a side edge part may be spanned. Thereby, the temperature difference which arises in each site | part of the gas flow direction in the carbon dioxide absorbent 10 in the container 11 is suppressed small.

また、熱伝導部材12は、二酸化炭素吸収剤10を通過するガスの流動方向に直交する方向に対して、収容体11の中心側近傍と外周側近傍とに亘るように配置されている。これによって、収容体11内の二酸化炭素吸収剤10における中心側近傍と外周側近傍との各部位に生じる温度差が小さく抑えられる。 なお、熱伝導部材12としては、熱伝導率が比較的高い金属材によって形成されることが好ましいが、二酸化炭素吸収剤10の発熱部位の熱でこの二酸化吸収剤10の他の部位を加熱することが可能であれば、例えば、プラスチック等の樹脂材や、セラミック材、ガラス材等によって形成されても、金属材料からなる構成に比較して熱伝導性が低下するものの、後述する効果が同様に得られる。   Further, the heat conducting member 12 is disposed so as to extend in the vicinity of the center side and the outer peripheral side of the container 11 with respect to the direction orthogonal to the flow direction of the gas passing through the carbon dioxide absorbent 10. Thereby, the temperature difference which arises in each site | part of the center side vicinity in the carbon dioxide absorbent 10 in the container 11 and the outer peripheral side vicinity is suppressed small. The heat conducting member 12 is preferably formed of a metal material having a relatively high thermal conductivity, but the other part of the carbon dioxide absorbent 10 is heated by the heat of the heat generating part of the carbon dioxide absorbent 10. If possible, for example, even if formed of a resin material such as plastic, a ceramic material, a glass material, etc., the thermal conductivity is lower than that of a configuration made of a metal material, but the effects described later are the same. Is obtained.

そして、キャニスタ1は、収容体11内の熱伝導部材12が二酸化炭素吸収剤10中に埋まるように二酸化炭素吸収剤10が充填されて、人工呼吸器の循環経路を構成する配管の一部に設けられたキャニスタ装着部に、着脱可能に装着される。キャニスタ1は、キャニスタ装着部に装着されることで、流入口13と流出口14とが仕切られる。   And the canister 1 is filled with the carbon dioxide absorbent 10 so that the heat conducting member 12 in the container 11 is buried in the carbon dioxide absorbent 10, and is installed in a part of the piping constituting the circulation path of the ventilator. It is detachably mounted on the provided canister mounting portion. The canister 1 is mounted on the canister mounting portion so that the inlet 13 and the outlet 14 are partitioned.

以上のように構成されたキャニスタ1について、キャニスタ装着部に装着されて、流入口13から流入したガスから二酸化炭素を吸収して流出口14から流出する状態を説明する。   Regarding the canister 1 configured as described above, a state in which the canister 1 is mounted on the canister mounting portion, absorbs carbon dioxide from the gas flowing in from the inlet 13 and flows out from the outlet 14 will be described.

キャニスタ1は、ガス導入管16の流入口13から導入されたガスが、スクリーン部材17と収容体11の底面との空間を経て、スクリーン部材17上に載せられた二酸化炭素吸収剤10の上流側端部(底面側)から進入し、ガスと二酸化炭素吸収剤10とが発熱性化学反応を始める。   In the canister 1, the gas introduced from the inlet 13 of the gas introduction pipe 16 passes through the space between the screen member 17 and the bottom surface of the container 11, and is upstream of the carbon dioxide absorbent 10 placed on the screen member 17. Entering from the end (bottom side), the gas and the carbon dioxide absorbent 10 start an exothermic chemical reaction.

収容体11内の二酸化炭素吸収剤10は、二酸化炭素吸収剤10の発熱部位に当接されている熱伝導部材12によって、二酸化炭素吸収剤10の発熱部位の熱が、ガスの流動方向の二酸化炭素吸収剤10の各部位および収容体11の径方向の二酸化炭素吸収剤10の各部位にそれぞれ伝わり、二酸化炭素吸収剤10における下流側端部の未反応部位が加熱される。   The carbon dioxide absorbent 10 in the container 11 is heated by the heat conducting member 12 in contact with the heat generating portion of the carbon dioxide absorbent 10 so that the heat of the heat generating portion of the carbon dioxide absorbent 10 is changed in the gas flow direction. It is transmitted to each part of the carbon absorbent 10 and each part of the carbon dioxide absorbent 10 in the radial direction of the container 11, and the unreacted part at the downstream end of the carbon dioxide absorbent 10 is heated.

このため、収容体11内の二酸化炭素吸収剤10は、発熱部位と下流側部位とに生じる温度較差が抑えられ、ガスの流動方向の各部位の温度分布の均一化が図られる。したがって、収容体11内の二酸化炭素吸収剤10は、発生する水蒸気による結露によって、下流側部位の含水率が不均一に過剰に増加することが避けられ、ガスの流動方向の各部位での反応性の均一化が図られる。   For this reason, in the carbon dioxide absorbent 10 in the container 11, the temperature range generated between the heat generation part and the downstream part is suppressed, and the temperature distribution in each part in the gas flow direction is made uniform. Therefore, the carbon dioxide absorbent 10 in the container 11 avoids an excessive increase in the moisture content of the downstream portion due to dew condensation caused by the generated water vapor, and the reaction at each portion in the gas flow direction. Uniformity is achieved.

上述したように、本実施形態のキャニスタ1によれば、収容体11内に、二酸化炭素吸収剤10を通過するガスの流動方向に沿って熱伝導部材12が配置されたことによって、収容体11内の二酸化炭素吸収剤10のガスの流動方向の各部位の温度分布を均一化することができる。したがって、このキャニスタ1は、二酸化炭素吸収剤10の下流側部位での反応性の低下を防ぎ、二酸化炭素吸収剤10におけるガスの流動方向の反応効率を向上することができる。   As described above, according to the canister 1 of the present embodiment, the heat conducting member 12 is disposed in the container 11 along the flow direction of the gas passing through the carbon dioxide absorbent 10. The temperature distribution of each part in the flow direction of the gas of the carbon dioxide absorbent 10 can be made uniform. Therefore, the canister 1 can prevent a decrease in reactivity at the downstream side portion of the carbon dioxide absorbent 10 and improve the reaction efficiency in the gas flow direction in the carbon dioxide absorbent 10.

そして、このキャニスタ1によれば、二酸化炭素吸収剤10として水酸化カルシウムを主成分としたソーダライムを用いた場合、従来のキャニスタに比較して、反応効率を20%程度向上することができる。したがって、このキャニスタ1によれば、二酸化炭素吸収剤10の反応性を十分に発揮させることで、使用可能時間が延長されて、反応可能な二酸化炭素吸収剤10が無駄に廃棄されることが抑えられるので、使用時のコストの低減につながる。   And according to this canister 1, when soda lime which has calcium hydroxide as a main component is used as the carbon dioxide absorbent 10, compared with the conventional canister, reaction efficiency can be improved about 20%. Therefore, according to the canister 1, by fully exhibiting the reactivity of the carbon dioxide absorbent 10, the usable time is extended and the reactive carbon dioxide absorbent 10 is prevented from being wasted. As a result, the cost during use is reduced.

なお、図示しないが、使用環境の外部温度に応じて、収容体11の外周部には、外気と断熱する断熱手段である断熱材や断熱性の被覆膜等が設けられてもよく、外気によって収容体11内の二酸化炭素吸収剤10の外周側部位が冷却されることが抑制され、各部位の温度分布の不均一を更に改善することができる。   Although not shown, depending on the external temperature of the usage environment, the outer periphery of the container 11 may be provided with a heat insulating material that is a heat insulating means for heat insulating from the outside air, a heat insulating coating film, or the like. As a result, the cooling of the outer peripheral portion of the carbon dioxide absorbent 10 in the container 11 is suppressed, and the uneven temperature distribution in each portion can be further improved.

したがって、本発明に係るキャニスタ1は、二酸化炭素吸収剤をなす多孔質粒子の間隙の不均一性に起因して二酸化炭素吸収剤を通過するガスの流れが不均一によるものとした従来のチャネリングの概念とは異なる新しいチャネリングの概念に基づいている。   Therefore, the canister 1 according to the present invention is a conventional channeling method in which the flow of gas passing through the carbon dioxide absorbent is caused by nonuniformity due to the nonuniformity of the gap between the porous particles forming the carbon dioxide absorbent. It is based on a new channeling concept that is different from the concept.

なお、本実施形態のキャニスタ1では、収容体11内にガス導入管16が設けられる構成が採られたが、ガス導入管を備えずに円筒状の収容体の一端側から他端側にガスが流れるように構成されてもよく、同様の効果が得られると共に構成の簡素化が図られる。   In the canister 1 of the present embodiment, the gas introduction pipe 16 is provided in the container 11, but the gas is not provided from the gas inlet pipe to the other end side of the cylindrical container. The same effect can be obtained and the configuration can be simplified.

また、本実施形態のキャニスタ1が備える熱伝導部材12は、上述した平板材を湾曲させた筒状に形成されたが、ガスの流動方向の両端が、上流側から下流側に亘って設けられて二酸化炭素吸収剤10の反応箇所の熱を二酸化炭素吸収剤10の他の部位に良好に伝達すると共に、ガスの流れを妨げない形状であれば、必要に応じて他の形状に形成されてもよい。   Moreover, although the heat conducting member 12 provided in the canister 1 of the present embodiment is formed in a cylindrical shape obtained by curving the flat plate described above, both ends in the gas flow direction are provided from the upstream side to the downstream side. As long as the heat of the reaction site of the carbon dioxide absorbent 10 is transferred well to other parts of the carbon dioxide absorbent 10 and does not obstruct the gas flow, it is formed into other shapes as necessary. Also good.

他の熱伝導部材の例を、図3(a)〜(d)に示す。図3(a)に示すように、熱伝導部材22aは、複数の熱伝導板が格子状に組み合わされてなり、ガスの流動方向に直交する断面が格子状に形成されている。図3(b)に示すように、熱伝導部材22bは、収容体11内の径方向に対して所定の間隔をあけて配列される複数の平板材を有している。図3(c)に示すように、熱伝導部材22cは、複数の平板材が放射状に配列されて一端が接合されており、ガスの流動方向に直交する断面が放射状に形成されている。図3(d)に示すように、熱伝導部材22dは、長さ方向が二酸化炭素吸収剤10を通過するガスの流れ方向と平行に配置され、収容体11内の径方向に対して所定の間隔をあけて配列される複数の円柱状の棒材を有している。本発明に係るキャニスタ1は、これら熱伝導部材22a〜22bを備えることによっても、上述の効果を同様に得ることができる。   Examples of other heat conducting members are shown in FIGS. As shown in FIG. 3A, the heat conducting member 22a is formed by combining a plurality of heat conducting plates in a lattice shape, and a cross section perpendicular to the gas flow direction is formed in a lattice shape. As shown in FIG. 3B, the heat conducting member 22 b has a plurality of flat plates arranged with a predetermined interval with respect to the radial direction in the housing 11. As shown in FIG. 3C, the heat conducting member 22c has a plurality of flat plates arranged radially and joined at one end, and a cross section perpendicular to the gas flow direction is formed radially. As shown in FIG. 3 (d), the heat conducting member 22 d is arranged with its length direction parallel to the flow direction of the gas passing through the carbon dioxide absorbent 10, and is predetermined with respect to the radial direction in the container 11. It has a plurality of cylindrical bars arranged at intervals. The canister 1 according to the present invention can obtain the above-described effects in the same manner by including these heat conducting members 22a to 22b.

(第2の実施形態)
次に、第2の実施形態に係るキャニスタについて、図面を参照して説明する。第2の実施形態のキャニスタは、ガスの流動方向の温度較差を抑制するものではなく、収容体の内周面に当接する外周側部位の二酸化炭素吸収剤を加熱して温度較差を抑制する点が、上述のキャニスタ1と異なっている。
(Second Embodiment)
Next, a canister according to a second embodiment will be described with reference to the drawings. The canister of the second embodiment does not suppress the temperature range in the gas flow direction, but suppresses the temperature range by heating the carbon dioxide absorbent in the outer peripheral portion that contacts the inner peripheral surface of the container. Is different from the canister 1 described above.

図4に示すように、本実施形態のキャニスタ2は、二酸化炭素吸収剤10を収容する内側収容体23と、この内側収容体23を内部に収容する外側収容体24とを備えている。   As shown in FIG. 4, the canister 2 of the present embodiment includes an inner container 23 that accommodates the carbon dioxide absorbent 10 and an outer container 24 that accommodates the inner container 23 therein.

内側収容体23は、略円筒状に形成されており、一端側に、ガスが流入する流入口26が設けられ、他端側に二酸化炭素吸収剤10を通過したガスが流出する流出口27が設けられている。内側収容体23には、流入口26にフィルタ28が設けられており、流出口27がスクリーン部材29の中央部に固定されている。この内側収容体23は、スクリーン部材29と外側収容体24の底面との間に空間をあけて、スクリーン部材29の外周部が外側収容体24の内周部に係合されている。   The inner container 23 is formed in a substantially cylindrical shape. An inlet 26 through which gas flows is provided at one end side, and an outlet 27 through which the gas that has passed through the carbon dioxide absorbent 10 flows out at the other end. Is provided. The inner container 23 is provided with a filter 28 at the inlet 26, and the outlet 27 is fixed to the center of the screen member 29. The inner container 23 has a space between the screen member 29 and the bottom surface of the outer container 24, and the outer periphery of the screen member 29 is engaged with the inner periphery of the outer container 24.

外側収容体24は、有底円筒状に形成され、内側収容体23の外周面との間に所定の間隙をあける大きさにされており、内側収容体23の流出口27からのガスを内側収容体23の外周部の全周に沿って流動させる。外側収容体24の開口は、内側収容体23の外周部に沿って流動させたガスを循環経路に流出する流出口30を構成している。   The outer container 24 is formed in a bottomed cylindrical shape, and is sized so as to open a predetermined gap between the outer container 24 and the outer peripheral surface of the inner container 23. It flows along the entire circumference of the outer periphery of the container 23. The opening of the outer container 24 constitutes an outlet 30 through which the gas that has flowed along the outer periphery of the inner container 23 flows out into the circulation path.

そして、キャニスタ2は、人工呼吸器の循環経路上に設けられたキャニスタ装着部に装着されることで、内側収容体23の流入口27と、外側収容体24の流出口30とが仕切られる。   The canister 2 is mounted on a canister mounting portion provided on the circulation path of the ventilator, thereby partitioning the inlet 27 of the inner container 23 and the outlet 30 of the outer container 24.

以上のように構成されたキャニスタ2では、二酸化炭素吸収剤10とガスとが化学反応した際に、内側収容体23内の二酸化炭素吸収剤10を通過したガスが内側収容体23の外周部に沿って流動することで、ガスの熱が内側収容体23に伝えられ、この内側収容体23を介してこの内側収容体23の内周面に当接する外周側部位の二酸化炭素吸収剤10が加熱される。このため、内側収容体23内の二酸化炭素吸収剤10の各部位に生じる温度差が抑えられる。また、このキャニスタ2では、内側収容体23の外周部が外側収容体24で覆われているので、外気によって内側収容体23内の二酸化炭素吸収剤10の外周側部位が冷却されることも防止される。   In the canister 2 configured as described above, when the carbon dioxide absorbent 10 and the gas undergo a chemical reaction, the gas that has passed through the carbon dioxide absorbent 10 in the inner container 23 is placed on the outer periphery of the inner container 23. By flowing along, the heat of the gas is transmitted to the inner container 23, and the carbon dioxide absorbent 10 at the outer peripheral side contacting the inner peripheral surface of the inner container 23 is heated through the inner container 23. Is done. For this reason, the temperature difference which arises in each site | part of the carbon dioxide absorbent 10 in the inner side container 23 is suppressed. Moreover, in this canister 2, since the outer peripheral part of the inner side container 23 is covered with the outer side container 24, it can prevent that the outer peripheral side part of the carbon dioxide absorbent 10 in the inner side container 23 is cooled by external air. Is done.

上述したキャニスタ2によれば、二酸化炭素吸収剤10を通過したガスを内側収容体23の外周部に沿って流動させる外側収容体24を備えることによって、二酸化炭素吸収剤10を通過して暖められたガスの熱で、内側収容体23内の二酸化炭素吸収剤10の外周側部位が加熱されるので、外周側部位の二酸化炭素吸収剤10と、中心側部位の二酸化炭素吸収剤10とに生じる温度較差が抑制され、外周側部位と中心側部位との間の各部の温度分布を均一化することができる。したがって、このキャニスタ2は、内側収容体23内の二酸化炭素吸収剤10の外周側部位と中心側部位との間の各部位の温度分布を均一化することによって、内側収容体23の内周面に当接する外周側部位の二酸化炭素吸収剤10の過剰な含水率増加を防いで、反応効率を向上することができる。   According to the canister 2 described above, by providing the outer container 24 that causes the gas that has passed through the carbon dioxide absorbent 10 to flow along the outer peripheral portion of the inner container 23, the carbon dioxide absorbent 10 can be warmed. Since the outer peripheral portion of the carbon dioxide absorbent 10 in the inner container 23 is heated by the heat of the gas, the carbon dioxide absorbent 10 in the outer peripheral portion and the carbon dioxide absorbent 10 in the central portion are generated. A temperature range is suppressed and the temperature distribution of each part between an outer peripheral side site | part and a center side site | part can be equalize | homogenized. Therefore, the canister 2 is configured so that the temperature distribution of each part between the outer peripheral side part and the central side part of the carbon dioxide absorbent 10 in the inner container 23 is equalized, whereby the inner peripheral surface of the inner container 23 is obtained. It is possible to prevent an excessive increase in the moisture content of the carbon dioxide absorbent 10 at the outer peripheral side portion that is in contact with the water, thereby improving the reaction efficiency.

(第3の実施形態)
第3の実施形態に係るキャニスタについて、図面を参照して説明する。第3の実施形態のキャニスタは、収容体の内周面に当接する外周側部位の二酸化炭吸収剤10と中心側部位の二酸化炭素吸収剤10との温度較差、ならびにガスの流動方向の温度較差をそれぞれ抑制する点が、上述したキャニスタ1,2と異なっている。なお、本実施形態において、上述した実施形態と同一部材には同一符号を付して説明を省略する。
(Third embodiment)
A canister according to a third embodiment will be described with reference to the drawings. The canister of the third embodiment includes a temperature difference between the carbon dioxide absorbent 10 at the outer peripheral side portion and the carbon dioxide absorbent 10 at the central side portion that contacts the inner peripheral surface of the container, and a temperature range in the gas flow direction. This is different from the above-described canisters 1 and 2 in that each of the above is suppressed. In the present embodiment, the same members as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

図5に示すように、本実施形態のキャニスタ3は、二酸化炭素吸収剤10を収容する収容体31と、この収容体31の内周部に一体に連結された熱伝導部材32とを備えている。   As shown in FIG. 5, the canister 3 of the present embodiment includes a housing 31 that houses the carbon dioxide absorbent 10 and a heat conducting member 32 that is integrally connected to the inner periphery of the housing 31. Yes.

収容体31は、例えばアルミニウム等の熱伝導率が比較的高い材料によって略有底筒状に形成されており、ガス導入管16によって導入されたガスが二酸化炭素吸収剤10を通過して流出する流出口34を有している。   The container 31 is formed in a substantially bottomed cylindrical shape with a material having a relatively high thermal conductivity such as aluminum, for example, and the gas introduced by the gas introduction pipe 16 flows out through the carbon dioxide absorbent 10. An outlet 34 is provided.

熱伝導部材32は、例えばアルミニウム等の熱伝導率が比較的高い材料からなる複数の熱伝導板からなり、図6(a),(b)に示すように、これら熱伝導板がガスの流動方向に直交する平面上で放射状をなすように、収容体31の内周面に接合されている。なお、収容体31と熱伝導部材32は、熱伝導率が比較的高い材料によって一体成形されてもよい。   The heat conducting member 32 is composed of a plurality of heat conducting plates made of a material having a relatively high thermal conductivity such as aluminum, for example. As shown in FIGS. 6 (a) and 6 (b), these heat conducting plates serve as gas flow. It joins with the inner peripheral surface of the container 31 so that it may become radial on the plane orthogonal to a direction. The container 31 and the heat conducting member 32 may be integrally formed of a material having a relatively high heat conductivity.

また、熱伝導部材32および収納体31は、例えば無電解ニッケルメッキ等で被覆膜が形成されており、ガス、水蒸気やアルカリ性の二酸化炭素吸収剤10による腐食が防止されている。   Further, the heat conducting member 32 and the housing 31 are formed with a coating film by, for example, electroless nickel plating, and corrosion due to gas, water vapor, or the alkaline carbon dioxide absorbent 10 is prevented.

そして、キャニスタ3は、人工呼吸器の循環経路上に設けられたキャニスタ装着部に装着されることで、流入口13と流出口34とが仕切られる。   The canister 3 is mounted on a canister mounting portion provided on the circulation path of the ventilator, so that the inlet 13 and the outlet 34 are partitioned.

以上のように構成されたキャニスタ3は、収容体31と熱伝導部材32とが一体に連結されているため、二酸化炭素吸収剤10の発熱部位から熱伝導部材32に伝わった熱が収容体31に伝わることで、収容体31の内周面に当接する二酸化炭素吸収剤10の外周側部位に熱伝導される。このため、キャニスタ3では、収容体内31の二酸化炭素吸収剤10の中心側部位と外周側部位とに生じる温度差が抑制される。また同時に、このキャニスタ3では、ガスの流動方向に沿って配置された熱伝導部材32によって、二酸化炭素吸収剤10のガスの流動方向に生じる温度較差も抑制される。   Since the container 31 and the heat conducting member 32 are integrally connected to the canister 3 configured as described above, the heat transmitted from the heat generating portion of the carbon dioxide absorbent 10 to the heat conducting member 32 is accommodated in the canister 3. Is transmitted to the outer peripheral side portion of the carbon dioxide absorbent 10 in contact with the inner peripheral surface of the container 31. For this reason, in the canister 3, the temperature difference which arises in the center side site | part and the outer peripheral side site | part of the carbon dioxide absorbent 10 of the container 31 is suppressed. At the same time, in this canister 3, the temperature range generated in the gas flow direction of the carbon dioxide absorbent 10 is also suppressed by the heat conducting member 32 arranged along the gas flow direction.

上述したように、キャニスタ3によれば、収容体31の内周部に熱伝導部材32が連結されたことによって、発熱部位の熱で、熱伝導部材32を介して、収容体31の内周面に当接する外周側部位の二酸化炭素吸収剤10が加熱されるので、外周側部位の二酸化炭素吸収剤10と中心側部位の二酸化炭素吸収剤10との温度較差が抑制されると共に、熱伝導部材32によって発熱部位と下流側部位の二酸化炭素吸収剤10との温度較差が抑制される。このため、収容体31内の二酸化炭素吸収剤10は、全体的に各部位の温度分布が均一化される。したがって、このキャニスタ3は、収容体31内の二酸化炭素吸収剤10全体で反応性の低下が抑えられ、二酸化炭素吸収剤10全体での反応効率を向上することができる。   As described above, according to the canister 3, the heat conduction member 32 is connected to the inner periphery of the container 31, so that the heat of the heat generating part is passed through the heat conduction member 32 and the inner periphery of the container 31. Since the carbon dioxide absorbent 10 in the outer peripheral portion that contacts the surface is heated, the temperature difference between the carbon dioxide absorbent 10 in the outer peripheral portion and the carbon dioxide absorbent 10 in the central portion is suppressed, and heat conduction is performed. The temperature difference between the heat generating portion and the carbon dioxide absorbent 10 in the downstream portion is suppressed by the member 32. For this reason, as for the carbon dioxide absorbent 10 in the container 31, the temperature distribution of each site | part is equalize | homogenized as a whole. Therefore, in the canister 3, a decrease in reactivity is suppressed in the entire carbon dioxide absorbent 10 in the container 31, and the reaction efficiency in the entire carbon dioxide absorbent 10 can be improved.

そして、このキャニスタ3によれば、二酸化炭素吸収剤10としてソーダライムを用いた場合、従来のキャニスタに比較して、反応効率を30%程度向上することができる。   And according to this canister 3, when soda lime is used as the carbon dioxide absorbent 10, compared with the conventional canister, reaction efficiency can be improved about 30%.

なお、キャニスタ3は、一見すると外部温度による収容体31の冷却が懸念されるが、通常使用される常温での一般的な使用では二酸化炭素吸収剤10の反応性を低下させるほど大幅に冷却されることはない。このため、特に収容体31の外周部に断熱材等を設ける必要がないが、収容体31が送風にさらされる等の外部環境に応じて、収容体31の外周部に断熱材や断熱性の被覆膜が設けられてもよい。   At first glance, the canister 3 is at risk of cooling the container 31 due to the external temperature. However, the canister 3 is cooled to such an extent that the reactivity of the carbon dioxide absorbent 10 is lowered in normal use at ordinary temperatures. Never happen. For this reason, it is not necessary to provide a heat insulating material etc. in the outer peripheral part of the container 31 in particular, but according to the external environment such as the container 31 being exposed to air blowing, a heat insulating material or a heat insulating material is provided in the outer peripheral part of the container 31. A coating film may be provided.

なお、第3の実施形態のキャニスタ3は、収容体31内にガス導入管が設けられる構成が採られたが、ガス導入管を備えずに円筒状の収容体の一端側から他端側にガスが流れるように構成されてもよく、同様の効果が得られると共に構成の簡素化が図られる。   The canister 3 according to the third embodiment has a configuration in which a gas introduction pipe is provided in the housing 31. However, the canister 3 is not provided with a gas introduction pipe, and is arranged from one end side to the other end side of the cylindrical housing body. The gas may flow so that the same effect can be obtained and the configuration can be simplified.

(第4の実施形態)
第4の実施形態に係るキャニスタについて、図面を参照して説明する。本実施形態のキャニスタは、上述した第2と第3の実施形態とを組み合わせた構成にほぼ相当する。つまり、第4の実施形態のキャニスタは、収容体の内周面に当接する外周側部位の二酸化炭素吸収剤10と中心側部位の二酸化炭素吸収剤10とに生じる温度較差、ならびに発熱部位と下流側部位の二酸化炭素吸収剤10とに生じる温度較差を共に抑制する構成であって、二酸化炭素吸収剤10を通過したガスによって外周側部位の二酸化炭素吸収材10を更に加熱する構成である。
(Fourth embodiment)
A canister according to a fourth embodiment will be described with reference to the drawings. The canister of the present embodiment substantially corresponds to a configuration combining the second and third embodiments described above. In other words, the canister of the fourth embodiment has a temperature range generated between the carbon dioxide absorbent 10 at the outer peripheral portion and the carbon dioxide absorbent 10 at the central portion that abuts the inner peripheral surface of the container, and the heat generating portion and the downstream portion. It is the structure which suppresses both the temperature range which arises in the carbon dioxide absorbent 10 of a side part, Comprising: It is the structure which further heats the carbon dioxide absorber 10 of an outer peripheral side part with the gas which passed the carbon dioxide absorbent 10. FIG.

図7(a),(b)に示すように、本実施形態のキャニスタ4は、二酸化炭素吸収剤10を収容する内側収容体41と、この内側収容体41の内部に連結されて設けられた熱伝導部材42と、内側収容体41を内部に収容する外側収容体43とを備えている。   As shown in FIGS. 7A and 7B, the canister 4 of the present embodiment is provided by being connected to the inner container 41 that stores the carbon dioxide absorbent 10 and the inside of the inner container 41. A heat conducting member 42 and an outer housing 43 that houses the inner housing 41 therein are provided.

内側収容体41は、例えばアルミニウム等の比較的熱伝導率が高い材料によって矩形筒状に形成されており、一端側に、ガスが流入する流入口46が設けられ、他端側に二酸化炭素吸収剤10を通過したガスが流出する流出口47が設けられている。内側収容体41には、流入口46にフィルタ48が設けられており、流出口47がスクリーン部材49の中央部に固定されている。この内側収容体41は、スクリーン部材49と外側収容体43の底面との間に空間をあけて、スクリーン部材49の外周部が外側収容体43の内周部に係合されている。   The inner container 41 is formed in a rectangular cylinder shape with a material having a relatively high thermal conductivity such as aluminum, for example, and is provided with an inlet 46 through which gas flows in at one end and absorbs carbon dioxide at the other end. An outlet 47 through which the gas that has passed through the agent 10 flows out is provided. The inner container 41 is provided with a filter 48 at the inlet 46, and the outlet 47 is fixed to the center of the screen member 49. The inner container 41 has a space between the screen member 49 and the bottom surface of the outer container 43, and the outer periphery of the screen member 49 is engaged with the inner periphery of the outer container 43.

熱伝導部材42は、例えばアルミニウム等の熱伝導率が比較的高い材料からなる複数の熱伝導板からなり、これら熱伝導板がガスの流動方向に平行な方向、および流動方向に直交する方向にそれぞれ所定の間隔をあけて配置されている。これら熱伝導板の一側端は、内側収容体41の内周面に接合されている。   The heat conducting member 42 is composed of a plurality of heat conducting plates made of a material having a relatively high thermal conductivity such as aluminum, for example, and these heat conducting plates are parallel to the gas flow direction and in a direction perpendicular to the flow direction. Each is arranged with a predetermined interval. One side ends of these heat conductive plates are joined to the inner peripheral surface of the inner container 41.

外側収容体43は、有底円筒状に形成され、内側収容体41の外周面との間に所定の間隙をあける大きさにされており、内側収容体41の流出口47からのガスを内側収容体41の外周部の全周に沿って流動させる。外側収容体43の開口は、内側収容体41の外周部に沿って流動させたガスを循環経路に流出する流出口50を構成している。また、外側収容体43の内周面には、無電解ニッケルメッキ等で被覆膜が形成されており、ガス、水蒸気やアルカリ性の二酸化炭素吸収剤による腐食が防止されている。   The outer container 43 is formed in a cylindrical shape with a bottom, and is sized so as to open a predetermined gap between the outer container 43 and the outer peripheral surface of the inner container 41. It flows along the entire circumference of the outer periphery of the container 41. The opening of the outer container 43 constitutes an outlet 50 through which the gas that has flowed along the outer periphery of the inner container 41 flows out into the circulation path. In addition, a coating film is formed on the inner peripheral surface of the outer container 43 by electroless nickel plating or the like, and corrosion due to gas, water vapor, or alkaline carbon dioxide absorbent is prevented.

そして、キャニスタ4は、人工呼吸器の循環経路上に設けられたキャニスタ装着部に装着されることで、内側収容体41の流入口47と、外側収容体43の流出口50とが仕切られる。   The canister 4 is mounted on a canister mounting portion provided on the circulation path of the ventilator, so that the inlet 47 of the inner container 41 and the outlet 50 of the outer container 43 are partitioned.

以上のように構成されたキャニスタ4では、二酸化炭素吸収剤10とガスとが化学反応した際に、二酸化炭素吸収剤10に当接されている熱伝導部材42によって、二酸化炭素吸収剤10の発熱部位の熱が、ガスの流動方向の各部位および内側収容体41の径方向の各部位にそれぞれ伝わると共に、熱伝導部材42に伝わる熱が内側収容体41に伝わることで、熱伝導部材42によって発熱部位と下流側部位の二酸化炭素吸収剤10との温度較差が抑制されると共に、外周側部位の二酸化炭素吸収剤10と中心側部位の二酸化炭素吸収剤10との温度較差が抑制される。   In the canister 4 configured as described above, when the carbon dioxide absorbent 10 and the gas chemically react, the heat conduction member 42 in contact with the carbon dioxide absorbent 10 generates heat from the carbon dioxide absorbent 10. The heat of the part is transmitted to each part in the gas flow direction and each part in the radial direction of the inner container 41, and the heat transmitted to the heat conductive member 42 is transmitted to the inner container 41. The temperature range between the heat generating part and the carbon dioxide absorbent 10 at the downstream part is suppressed, and the temperature range between the carbon dioxide absorbent 10 at the outer peripheral part and the carbon dioxide absorbent 10 at the central part is suppressed.

加えて、このキャニスタ4では、内側収容体41内の二酸化炭素吸収剤10を通過したガスが内側収容体41の外周部に沿って流動することで、ガスの熱が内側収容体41に伝えられ、この内側収容体41を介して外周側部位の二酸化炭素吸収剤10が加熱される。   In addition, in the canister 4, the gas that has passed through the carbon dioxide absorbent 10 in the inner container 41 flows along the outer periphery of the inner container 41, so that the heat of the gas is transmitted to the inner container 41. The carbon dioxide absorbent 10 at the outer peripheral side portion is heated through the inner container 41.

このため、内側収容体41内の二酸化炭素吸収剤10は、発熱部位と未反応部位とに生じる温度較差が更に良好に抑えられ、各部位の温度分布の均一化が図られる。さらに、このキャニスタ4では、内側収容体41の外周部が外側収容体43で覆われているので、外気によって内側収容体41の内周面に当接する外周側部位の二酸化炭素吸収剤10が冷却されることも防止される。   For this reason, in the carbon dioxide absorbent 10 in the inner container 41, the temperature difference generated between the heat generation part and the unreacted part is further suppressed, and the temperature distribution in each part is made uniform. Further, in this canister 4, since the outer peripheral portion of the inner container 41 is covered with the outer container 43, the carbon dioxide absorbent 10 at the outer peripheral side contacting the inner peripheral surface of the inner container 41 is cooled by the outside air. Is also prevented.

上述したキャニスタ4によれば、内側収容体41の内周部に連結された熱伝導部材42と、内側収容体41を内部に収容する外側収容体43とを備えることによって、内側収容体41内の二酸化炭素吸収剤10全体で各部位の温度分布を更に均一化することができる。したがって、このキャニスタ4は、特に二酸化炭素吸収剤10の外周側の下流側部位での反応性の低下を抑え、二酸化炭素吸収剤10全体での反応効率を更に向上することができる。   According to the canister 4 described above, the heat transfer member 42 connected to the inner periphery of the inner container 41 and the outer container 43 that accommodates the inner container 41 are provided in the inner container 41. The temperature distribution of each part can be made more uniform throughout the carbon dioxide absorbent 10. Therefore, this canister 4 can suppress the fall of the reactivity in the downstream site | part of the outer peripheral side of the carbon dioxide absorbent 10 especially, and can further improve the reaction efficiency in the carbon dioxide absorbent 10 whole.

そして、本実施形態のキャニスタによれば、二酸化炭素吸収剤として、触媒である水酸化ナトリウム(NaOH)または水酸化カリウム(KOH)の含有率が異なる複数種のソーダライムを用いた場合にも、ソーダライムの組成によって反応性が異なり二酸化炭素の吸収能に差異があるものの、二酸化炭素の吸収能を25%〜30%程度向上することができる。複数種のソーダライムとしては、例えば、NaOHおよびKOHを共に含有するもの(反応性が高い)、極少量のNaOHとKOHを含有するもの(反応性がやや低い)、NaOH,KOHを含有しないもの(反応性が低い)等が挙げられる。   And according to the canister of this embodiment, even when a plurality of types of soda lime having different contents of sodium hydroxide (NaOH) or potassium hydroxide (KOH) as a catalyst are used as a carbon dioxide absorbent, Although the reactivity differs depending on the composition of soda lime and there is a difference in carbon dioxide absorption capacity, the carbon dioxide absorption capacity can be improved by about 25% to 30%. Examples of multiple types of soda lime include those containing both NaOH and KOH (high reactivity), those containing very small amounts of NaOH and KOH (slightly low reactivity), and those not containing NaOH or KOH (Low reactivity).

また、本発明に係るキャニスタで用いられる二酸化炭素吸収剤は、ソーダライムに限定されず、必要に応じて適宜選択されればよく、二酸化炭素吸収剤の組成に関わらずに二酸化炭素の吸収能を向上させる効果が得られることは勿論である。   Further, the carbon dioxide absorbent used in the canister according to the present invention is not limited to soda lime, and may be appropriately selected as necessary, and can absorb carbon dioxide regardless of the composition of the carbon dioxide absorbent. Of course, the effect of improving can be obtained.

なお、本発明に係る熱伝導部材、反応容器は、麻酔器が備えるキャニスタに適用されるが、例えば、宇宙ステーションや潜水艦、シェルタ等の気密に閉じられた空間内での空気の循環系や、スキューバダイビングで使用される循環式の可搬型水中呼吸器等の他の呼吸器としても好適であることは勿論である。   The heat conducting member and the reaction container according to the present invention are applied to a canister provided in an anesthesia machine.For example, a circulation system of air in an airtight space such as a space station, a submarine, and a shelter, Of course, it is also suitable as other respirators such as a circulating portable underwater respirator used in scuba diving.

(実施例)
上述した第3の実施形態のキャニスタ3を用いて、収容体31内の二酸化炭素吸収剤10の各部位の温度変化を測定した。図8に、二酸化炭素吸収剤の温度測定位置を説明するための模式図を示す。図9に、実施例における、二酸化炭素吸収剤の各部位の温度変化の結果を示す。
(Example)
Using the canister 3 of the third embodiment described above, the temperature change of each part of the carbon dioxide absorbent 10 in the container 31 was measured. In FIG. 8, the schematic diagram for demonstrating the temperature measurement position of a carbon dioxide absorber is shown. In FIG. 9, the result of the temperature change of each site | part of a carbon dioxide absorbent in an Example is shown.

二酸化炭素吸収剤10としては、ソーダライムを収容体31内に1Kg充填した。そして、3Lの疑似肺を装着した疑似的な麻酔回路を作製し、二酸化炭素を流量300ml/minで擬似肺から供給し、1回当たりの換気量700ml、呼吸回数12回/min、(分時換気量8.4L/ml)、循環系に新鮮ガス(酸素)を流量500ml/minで供給して、キャニスタ3を通過したガスの二酸化炭素の濃度(分圧)が5mmHgになる終了時間までの経過時間を測定した。   As the carbon dioxide absorbent 10, 1 kg of soda lime was filled in the container 31. Then, a pseudo anesthesia circuit equipped with a 3 L simulated lung was prepared, carbon dioxide was supplied from the simulated lung at a flow rate of 300 ml / min, the ventilation volume per one time was 700 ml, the respiratory rate was 12 times / min, Ventilation rate 8.4 L / ml), supplying fresh gas (oxygen) to the circulation system at a flow rate of 500 ml / min, until the end time when the carbon dioxide concentration (partial pressure) of the gas that passed through the canister 3 becomes 5 mmHg The elapsed time was measured.

図8に示すように、収容体31内の二酸化炭素吸収剤10の外周側部位および中心側部位(収容体31の内周面とガス導入管16の外周面との間の部位)について、ガスの流動方向の上流側部位、中流側部位、下流側部位に、それぞれ各温度センサを配置して、キャニスタの使用開始から終了時間までの温度変化を測定した。また、収容体31の流出口34近傍の温度変化も測定した。図8において、二酸化炭素吸収剤10の外周側上流側部位をP1,外周側中流側部位をP2,外周側下流側部位をP3,中心側上流側部位をP4,中心側中流側部位をP5,中心側下流側部位をP6とし、収容体31の流出口34近傍をP7とする。   As shown in FIG. 8, about the outer peripheral side part and center side part (part between the inner peripheral surface of the container 31 and the outer peripheral surface of the gas introduction pipe 16) of the carbon dioxide absorbent 10 in the container 31, the gas Each temperature sensor was arranged in each of the upstream part, the middle stream part, and the downstream part in the flow direction, and the temperature change from the start of use of the canister to the end time was measured. Further, the temperature change in the vicinity of the outlet 34 of the container 31 was also measured. In FIG. 8, the outer peripheral side upstream portion of the carbon dioxide absorbent 10 is P1, the outer peripheral side intermediate portion P2, the outer peripheral downstream portion P3, the central upstream portion P4, and the central intermediate flow portion P5. A center downstream side part is set to P6, and the outflow port 34 vicinity of the container 31 is set to P7.

図9に示すように、実施例のキャニスタ3では、使用開始から終了までの間にわたって、中心側部位と外周側部位との温度差が大幅に低減され、また上流側部位、中流側部位、下流側部位に生じる温度差も大幅に低減された。そして、本実施例のキャニスタ3では、使用開始から終了までの間にわたって、二酸化炭素吸収剤10の各部位の温度分布がほぼ均一化された。   As shown in FIG. 9, in the canister 3 of the embodiment, the temperature difference between the central side portion and the outer peripheral side portion is greatly reduced from the start to the end of use, and the upstream side portion, the midstream side portion, the downstream side The temperature difference generated in the side part was also greatly reduced. And in the canister 3 of a present Example, the temperature distribution of each site | part of the carbon dioxide absorbent 10 was substantially equalized from the use start to the end.

(比較例)
従来のキャニスタを用いて、熱伝導部材を除く収容体の構成、外形寸法を同一として、第1の実施例と同一条件で、二酸化炭素吸収剤の同一部位についてそれぞれ測定を行った。図10に、比較例における、二酸化炭素吸収剤の各部位の温度変化の結果を示す。
(Comparative example)
Using a conventional canister, the same structure and outer dimensions of the container excluding the heat conducting member were the same, and the same part of the carbon dioxide absorbent was measured under the same conditions as in the first example. In FIG. 10, the result of the temperature change of each site | part of a carbon dioxide absorbent in a comparative example is shown.

図10に示すように、従来のキャニスタでは、二酸化炭素吸収剤10の最高温度になる発熱部位が、時間経過と共に、中心側上流側部位P4、中心側中流側部位P5、中心側下流側部位P6に順次移行し、最高温度が50℃程度に達した。使用開始から終了までの間にわたって、外周側部位は、中心側部位よりも明らかに温度が低く、3時間を経過した辺りから中間側部位との温度差が次第に大きくなった。そして、従来のキャニスタでは、通過したガスの二酸化炭素の濃度が7時間程度(平均436分)で5mmHgになった。   As shown in FIG. 10, in the conventional canister, the exothermic parts that reach the maximum temperature of the carbon dioxide absorbent 10 are the center side upstream part P4, the center side middle stream part P5, and the center side downstream part P6 over time. The maximum temperature reached about 50 ° C. From the start to the end of use, the temperature at the outer peripheral part was clearly lower than that at the central part, and the temperature difference from the intermediate part gradually increased after 3 hours. In the conventional canister, the concentration of carbon dioxide in the passed gas became 5 mmHg in about 7 hours (average 436 minutes).

上述したように、本実施例では、二酸化炭素吸収剤10の最高温度が45℃程度になり、比較例よりも5℃程度低下し、使用可能時間が9時間(平均570分)となって比較例よりも2時間延長させることができた。なお、キャニスタ3での最高温度の低下を避ける必要がある場合には、収容体31の外周部に断熱材等が設けられてもよい。   As described above, in this example, the maximum temperature of the carbon dioxide absorbent 10 is about 45 ° C., which is about 5 ° C. lower than the comparative example, and the usable time is 9 hours (average 570 minutes). It was possible to extend the time by 2 hours. In addition, when it is necessary to avoid a decrease in the maximum temperature in the canister 3, a heat insulating material or the like may be provided on the outer peripheral portion of the container 31.

図11に、実施例と比較例とについて、二酸化炭素吸収剤10で局所的に最高温度になる発熱部位(反応部位)と、流出口近傍との温度較差を示す。   FIG. 11 shows the temperature difference between the exothermic part (reaction part) at which the carbon dioxide absorbent 10 locally reaches the maximum temperature and the vicinity of the outlet for the example and the comparative example.

上述のように、二酸化炭素吸収剤の発熱部位で発生した水蒸気が、流出口に達するまでに冷却されて、発熱部位よりも下流側部位の二酸化炭素吸収剤に結露が生じるため、発熱部位と流出口近傍の温度較差は、下流側部位における含水率の増加の程度を反映している。図11に示すように、従来のキャニスタでは、発熱部位と流出口近傍との温度較差が比較的大きいが、本実施例では、発熱部位と流出口近傍との温度較差が低減された。この結果からも、従来のキャニスタでは、二酸化炭素吸収剤の下流側部位の含水率の増加を招き、本実施例では、この下流側部位の含水率の増加が抑制されることを示している。   As described above, the water vapor generated at the heat generating portion of the carbon dioxide absorbent is cooled by the time it reaches the outlet, and condensation occurs in the carbon dioxide absorbent at the downstream side of the heat generating portion. The temperature range near the outlet reflects the degree of increase in moisture content at the downstream site. As shown in FIG. 11, in the conventional canister, the temperature range between the heat generating part and the vicinity of the outlet is relatively large, but in this example, the temperature range between the heat generating part and the vicinity of the outlet is reduced. Also from this result, the conventional canister causes an increase in the moisture content in the downstream portion of the carbon dioxide absorbent, and this example shows that the increase in the moisture content in the downstream portion is suppressed.

表1に、キャニスタを通過した二酸化炭素吸収剤の濃度が5mmHgに達したときの、二酸化炭素吸収剤の各部位の含水率(%)を実施例と比較例とで比較して示す。
Table 1 shows the moisture content (%) of each part of the carbon dioxide absorbent when the concentration of the carbon dioxide absorbent that has passed through the canister reaches 5 mmHg, in comparison with the example and the comparative example.

Figure 2006191973
Figure 2006191973

二酸化炭素吸収剤は、二酸化炭素を良好に吸収するために、適度な水分が必要であり、乾燥した状態でも反応性、すなわち吸収能が低下するが、含水率が過剰に増加した状態でも吸収能を低下させる。上述したように、二酸化炭素吸収剤の含水率としては、15〜20%程度が適切とされている。   Carbon dioxide absorbents need moderate moisture to absorb carbon dioxide well, and the reactivity, i.e., the ability to absorb, decreases even when dried, but the ability to absorb even when the moisture content is excessively increased. Reduce. As described above, the water content of the carbon dioxide absorbent is about 15 to 20%.

実験開始前(未使用)の二酸化炭素吸収剤は、含水率が15.5%程度であった。実験開始前、収容体内の二酸化炭素吸収剤は、適度な含水率で、十分な反応性を有していた。   The carbon dioxide absorbent before the start of the experiment (unused) had a water content of about 15.5%. Before the start of the experiment, the carbon dioxide absorbent in the container had a sufficient water content and sufficient reactivity.

表1に示すように、実験終了後、実施例と比較例が共に、収容体内の二酸化炭素吸収剤は、中心側部位および下流側部位の含水率が低下した。これは、二酸化炭素吸収剤が二酸化炭素を吸収する過程で、二酸化炭素吸収剤に含まれる水分1モルを消費して13.7kcalの熱量と2molの水蒸気を放出するためであり、消耗した二酸化炭素吸収剤の含水率が低下することは正常である。   As shown in Table 1, after the end of the experiment, in both the examples and the comparative examples, in the carbon dioxide absorbent in the container, the water content in the central part and the downstream part was lowered. This is because the carbon dioxide absorbent absorbs carbon dioxide and consumes 1 mol of water contained in the carbon dioxide absorbent to release 13.7 kcal of heat and 2 mol of water vapor. It is normal for the moisture content of the absorbent to decrease.

比較例のキャニスタでは、二酸化炭素吸収剤の下流側部位の含水率が15%以上に増加し、特に外周側下流側部位では32.5%に達した。このような含水率の過剰な増加は、反応部で発生した水蒸気を含むガスが、外周側下流側部位で相対的に温度が低下することによって、結露を生じた結果である。そして、二酸化炭素吸収剤は、過剰な含水率となった二酸化炭素吸収剤は、反応性が大幅に低下してしまう。したがって、二酸化炭素吸収剤の外周側下流側部位P3を通過するガスは、二酸化炭素吸収剤が吸収されずに収容体の流出口に到達してしまうことになり、中心側下流側部位P6に依然として十分な反応性を有している多孔質粒子が多く存在しているにもかかわらず、処理済みガスの濃度が増加してしまった。つまり、外周側下流側部位の局所的な二酸化炭素吸収剤の反応性の低下によってチャネリングが起きている。   In the canister of the comparative example, the water content in the downstream portion of the carbon dioxide absorbent increased to 15% or more, and reached 32.5% particularly in the outer peripheral side downstream portion. Such an excessive increase in the moisture content is a result of the condensation of the gas containing water vapor generated in the reaction part due to the relative decrease in temperature at the outer peripheral side downstream portion. And, the carbon dioxide absorbent that has an excessive water content is significantly reduced in reactivity. Accordingly, the gas passing through the outer peripheral side downstream portion P3 of the carbon dioxide absorbent reaches the outlet of the container without being absorbed by the carbon dioxide absorbent, and still remains in the central downstream portion P6. Despite the presence of many porous particles with sufficient reactivity, the concentration of the treated gas has increased. That is, channeling occurs due to a local decrease in the reactivity of the carbon dioxide absorbent in the outer peripheral side downstream portion.

一方、実施例のキャニスタ3では、下流側部位の含水率の増加が小さく抑えられた。特に、外周側下流側部位P3では、比較例よりも有意に含水率の増加が抑制された。このことは、二酸化炭素吸収剤の各部位で生じる温度差の均一化の図られ、結露によって含水率が増加することが防がれたためである。したがって、実施例のキャニスタ3では、二酸化炭素吸収剤に含水率が過剰に増加した部位が存在せず、吸収能が低下する部位も存在しないので、局所的な反応性の低下に起因するチャネリングが発生しない。   On the other hand, in the canister 3 of the example, the increase in the moisture content in the downstream portion was suppressed to a small level. In particular, in the outer peripheral side downstream part P3, the increase in the water content was significantly suppressed as compared with the comparative example. This is because the temperature difference generated at each part of the carbon dioxide absorbent is made uniform, and the moisture content is prevented from increasing due to condensation. Therefore, in the canister 3 of the example, the carbon dioxide absorbent does not have a portion where the moisture content is excessively increased, and there is no portion where the absorption capacity is reduced, so that channeling due to a local decrease in reactivity occurs. Does not occur.

第1の実施形態に係るキャニスタを模式的に示す斜視図である。1 is a perspective view schematically showing a canister according to a first embodiment. 熱伝導部材を模式的に示す斜視図である。It is a perspective view which shows a heat conductive member typically. 熱伝導部材の他の例を示す斜視図である。It is a perspective view which shows the other example of a heat conductive member. 第2の実施形態に係るキャニスタを模式的に示す斜視図である。It is a perspective view which shows typically the canister which concerns on 2nd Embodiment. 第3の実施形態に係るキャニスタを模式的に示す 図である。It is a figure which shows typically the canister which concerns on 3rd Embodiment. 収容体および熱伝導部材を示す図であって、(a)が平面図、(b)が透視側面図である。It is a figure which shows a container and a heat conductive member, Comprising: (a) is a top view, (b) is a see-through | perspective side view. 第4の実施形態に係るキャニスタを模式的に示す図であって、(a)が平面図、(b)が縦断面図である。It is a figure which shows typically the canister which concerns on 4th Embodiment, (a) is a top view, (b) is a longitudinal cross-sectional view. 実施例および比較例での二酸化炭素吸収剤の温度測定位置を説明するための模式図である。It is a schematic diagram for demonstrating the temperature measurement position of the carbon dioxide absorbent in an Example and a comparative example. 第1の実施例のキャニスタにおける温度分布を説明するための図である。It is a figure for demonstrating the temperature distribution in the canister of a 1st Example. 従来のキャニスタにおける温度分布を説明するための図である。It is a figure for demonstrating the temperature distribution in the conventional canister. 第1の実施例と従来のキャニスタにおける二酸化炭素吸収剤の温度差を示す図である。It is a figure which shows the temperature difference of the carbon dioxide absorbent in a 1st Example and the conventional canister.

符号の説明Explanation of symbols

1 キャニスタ
10 二酸化炭素吸収剤
11 収容体
12 熱伝導部材
13 流入口
14 流出口
16 ガス導入管
DESCRIPTION OF SYMBOLS 1 Canister 10 Carbon dioxide absorbent 11 Container 12 Heat conduction member 13 Inlet 14 Outlet 16 Gas introduction pipe

Claims (11)

二酸化炭素吸収剤を収容し、二酸化炭素を含む気体が流入する流入口と、前記二酸化炭素吸収剤を通過した気体が流出する流出口とを有する収容体内に装着される熱伝導部材であって、
前記二酸化炭素吸収剤の発熱部位の熱で該二酸化炭素吸収剤の他の部位を加熱するように、前記二酸化炭素吸収剤を通過する前記気体の流動方向に沿って配置されていることを特徴とする熱伝導部材。
A heat conduction member mounted in a container that contains a carbon dioxide absorbent and has an inlet into which a gas containing carbon dioxide flows and an outlet from which the gas that has passed through the carbon dioxide absorbent flows out,
It is arranged along the flow direction of the gas passing through the carbon dioxide absorbent so as to heat the other part of the carbon dioxide absorbent with the heat of the exothermic part of the carbon dioxide absorbent. Heat conduction member.
二酸化炭素吸収剤を収容し、二酸化炭素を含む気体が流入する流入口と、前記二酸化炭素吸収剤を通過した気体が流出する流出口とを有する収容体と、
前記収容体内に、前記二酸化炭素吸収剤を通過する前記気体の流動方向に沿って配置され、前記二酸化炭素吸収剤の発熱部位の熱で該二酸化炭素吸収剤の他の部位を加熱するための熱伝導部材と、
を備える反応容器。
A container that contains a carbon dioxide absorbent and has an inlet into which a gas containing carbon dioxide flows, and an outlet from which the gas that has passed through the carbon dioxide absorbent flows out;
Heat for heating the other part of the carbon dioxide absorbent with the heat of the exothermic part of the carbon dioxide absorbent, which is disposed in the container along the flow direction of the gas passing through the carbon dioxide absorbent. A conductive member;
A reaction vessel.
前記熱伝導部材は、前記気体の流動方向に対して前記二酸化炭素吸収剤の上流側端部と下流側端部とに亘るように配置されている請求項2に記載の反応容器。   The reaction container according to claim 2, wherein the heat conducting member is disposed so as to cover an upstream end and a downstream end of the carbon dioxide absorbent with respect to a flow direction of the gas. 前記熱伝導部材は、前記気体の流動方向に直交する方向に対して前記収容体の中心側近傍から周面側近傍に亘るように配置されている請求項2または3に記載の反応容器。   The reaction container according to claim 2 or 3, wherein the heat conducting member is disposed so as to extend from the vicinity of the center side of the container to the vicinity of the peripheral surface side in a direction orthogonal to the flow direction of the gas. 前記収容体には前記熱伝導部材が連結されている請求項1ないし4のいずれか1項に記載の反応容器。   The reaction container according to any one of claims 1 to 4, wherein the heat conducting member is connected to the container. 前記収容体の外周部には、外気と断熱する断熱手段が設けられている請求項1ないし5のいずれか1項に記載の反応容器。   The reaction container according to any one of claims 1 to 5, wherein a heat insulating means for insulating heat from outside air is provided on an outer peripheral portion of the container. 二酸化炭素吸収剤を収容し、二酸化炭素を含む気体が流入する流入口と、前記二酸化炭素吸収剤を通過した気体が流出する流出口とを有する内側収容体と、
前記内側収容体を内部に収容し、前記流出口から流出した気体を前記内側収容体の外周部に沿って流動させる外側収容体と、
を備える反応容器。
An inner container having a carbon dioxide absorbent, an inlet into which a gas containing carbon dioxide flows, and an outlet from which the gas that has passed through the carbon dioxide absorbent flows out;
Storing the inner container inside, and an outer container for flowing the gas flowing out from the outlet along the outer periphery of the inner container;
A reaction vessel.
前記内側収容体内には、前記二酸化炭素吸収剤を通過する前記気体の流動方向に沿って、前記二酸化炭素吸収剤の発熱部位の熱で該二酸化炭素吸収剤の他の部位を加熱するための熱伝導部材が設けられている請求項7に記載の反応容器。   In the inner container, heat for heating other parts of the carbon dioxide absorbent with the heat of the heat producing part of the carbon dioxide absorbent along the flow direction of the gas passing through the carbon dioxide absorbent. The reaction container according to claim 7, wherein a conductive member is provided. 前記反応容器は、呼吸器が備える前記気体の循環経路上に配置される請求項1ないし8のいずれか1項に記載の反応容器。   The reaction container according to any one of claims 1 to 8, wherein the reaction container is arranged on a circulation path of the gas included in a respiratory organ. 二酸化炭素を含む気体を、収容体内に収容された二酸化炭素吸収剤を通過させて前記気体と前記二酸化炭素吸収剤とを化学反応させる、二酸化炭素吸収剤の反応方法であって、
前記収容体内に設けられた熱伝導部材によって、前記二酸化炭素吸収剤の発熱部位の熱で該二酸化炭素吸収剤の他の部位を加熱することを特徴とする、二酸化炭素吸収剤の反応方法。
A carbon dioxide absorbent reaction method in which a gas containing carbon dioxide is passed through a carbon dioxide absorbent housed in a container to cause a chemical reaction between the gas and the carbon dioxide absorbent,
A method for reacting a carbon dioxide absorbent, wherein the other part of the carbon dioxide absorbent is heated by heat of a heat generating part of the carbon dioxide absorbent by a heat conducting member provided in the container.
二酸化炭素を含む気体を、収容体内に収容された二酸化炭素吸収剤を通過させて前記気体と前記二酸化炭素吸収剤とを化学反応させる、二酸化炭素吸収剤の反応方法であって、
前記二酸化炭素吸収剤を通過した気体を前記収容体の外周部に沿って流動させ、該気体の熱によって前記収容体を介して前記二酸化炭素吸収剤を加熱することを特徴とする、二酸化炭素吸収剤の反応方法。
A carbon dioxide absorbent reaction method in which a gas containing carbon dioxide is passed through a carbon dioxide absorbent housed in a container to cause a chemical reaction between the gas and the carbon dioxide absorbent,
The gas that has passed through the carbon dioxide absorbent is caused to flow along the outer periphery of the container, and the carbon dioxide absorbent is heated by the heat of the gas through the container. The reaction method of the agent.
JP2005004216A 2005-01-11 2005-01-11 Thermally conductive member, reaction vessel and reaction method of carbon dioxide absorbent Pending JP2006191973A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005004216A JP2006191973A (en) 2005-01-11 2005-01-11 Thermally conductive member, reaction vessel and reaction method of carbon dioxide absorbent
PCT/JP2005/022185 WO2006075456A1 (en) 2005-01-11 2005-12-02 Heat-conducting member, reaction vessel and method for reacting carbon dioxide absorbing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004216A JP2006191973A (en) 2005-01-11 2005-01-11 Thermally conductive member, reaction vessel and reaction method of carbon dioxide absorbent

Publications (1)

Publication Number Publication Date
JP2006191973A true JP2006191973A (en) 2006-07-27

Family

ID=36677489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004216A Pending JP2006191973A (en) 2005-01-11 2005-01-11 Thermally conductive member, reaction vessel and reaction method of carbon dioxide absorbent

Country Status (2)

Country Link
JP (1) JP2006191973A (en)
WO (1) WO2006075456A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007735A1 (en) * 2013-07-15 2015-01-22 Msa Auer Gmbh Container for an oxygen generating and/or carbon dioxide absorbing substance in a respiratory protection apparatus, a mobile or stationary respiratory protection apparatus, and a method for producing a container for a respiratory protection apparatus
CN104784802A (en) * 2015-04-02 2015-07-22 高宏 Carbon dioxide absorbing canister
JP2015228908A (en) * 2014-06-03 2015-12-21 泉工医科工業株式会社 Inner structure of canister, the canister, and canister connected body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049127A (en) * 2006-07-24 2008-03-06 Canon Inc Inhaler
FR3040631B1 (en) * 2015-09-04 2018-07-06 Potless INDIVIDUAL RESPIRATORY APPARATUS WITH PARTIAL PRESSURE OF REGULATED OXYGEN

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010020A1 (en) * 1995-09-12 1997-03-20 Datex-Engström Ab A method and a device in anaesthetic systems
JP2001157809A (en) * 1999-12-02 2001-06-12 Nippon Sanso Corp Ozone adsorbing/desorbing cylinder
JP2003245355A (en) * 2002-02-22 2003-09-02 Takeshi Hirabayashi Respirator system for heat radiation from carbon dioxide absorbent and canister used for the system
JP2002345964A (en) * 2001-05-28 2002-12-03 Teijin Ltd Medical pressure variable oxygen condensing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007735A1 (en) * 2013-07-15 2015-01-22 Msa Auer Gmbh Container for an oxygen generating and/or carbon dioxide absorbing substance in a respiratory protection apparatus, a mobile or stationary respiratory protection apparatus, and a method for producing a container for a respiratory protection apparatus
JP2015228908A (en) * 2014-06-03 2015-12-21 泉工医科工業株式会社 Inner structure of canister, the canister, and canister connected body
CN104784802A (en) * 2015-04-02 2015-07-22 高宏 Carbon dioxide absorbing canister

Also Published As

Publication number Publication date
WO2006075456A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US7326280B2 (en) Enhanced carbon dioxide adsorbent
JP2006191973A (en) Thermally conductive member, reaction vessel and reaction method of carbon dioxide absorbent
US6591630B2 (en) Cooling device
TWI590932B (en) Hand mode operation box
US11424506B2 (en) Rechargeable battery transportation device for a rechargeable battery
JP2001505813A (en) Rebreather adsorption device
CN106170330A (en) CO2removing device
JP6046294B1 (en) Processor and regenerator
KR101332199B1 (en) Portable air purifier
JP2006128138A (en) Fuel cell device
US10661042B2 (en) Breathing air supply with rebreathing system
CN103405861A (en) Chemical oxygen self-rescuer
CN207913002U (en) Absorption unit of dioxide carbon and Anesthesia machine
US4188947A (en) Breathing device having a coolant chamber
JP2015191728A (en) Desulfurization method of air for fuel cell, and fuel cell
JP4918255B2 (en) Nitrogen gas generator
CN215285214U (en) Double-layer heat-insulation absorption tank
JP2009245948A (en) Fuel cell device
RU2400272C1 (en) Absorption cartridge cassette
CA2927909A1 (en) Submarine having a co2 binding unit
JP2006116258A (en) Warming/humidifying container
JP5444247B2 (en) Humid heat exchanger, wet heat exchanger, and mask
GB2428011A (en) Cardon dioxide gas scrubber
CN208042316U (en) A kind of heating air conditioner cooling fin
RU170515U1 (en) Heat and moisture exchange device of an insulating breathing apparatus